Qwerasd 34abe2ceba fix(macos): prevent transparency leakage/flash in new/resized surfaces
By using the `CAMetalLayer`'s `backgroundColor` property instead of
drawing the background color in our shader, it is always stretched to
cover the full surface, even when live-resizing, and it doesn't require
us to draw a frame for it to be initialized so there's no transparent
flash when a new surface is created (as in a new split/tab).

This commit also allows for hot reload of `background-opacity`,
`window-vsync`, and `window-colorspace`.
2025-01-14 20:23:21 -05:00

650 lines
20 KiB
Metal

#include <metal_stdlib>
using namespace metal;
enum Padding : uint8_t {
EXTEND_LEFT = 1u,
EXTEND_RIGHT = 2u,
EXTEND_UP = 4u,
EXTEND_DOWN = 8u,
};
struct Uniforms {
float4x4 projection_matrix;
float2 cell_size;
ushort2 grid_size;
float4 grid_padding;
uint8_t padding_extend;
float min_contrast;
ushort2 cursor_pos;
uchar4 cursor_color;
uchar4 bg_color;
bool cursor_wide;
bool use_display_p3;
bool use_linear_blending;
bool use_experimental_linear_correction;
};
//-------------------------------------------------------------------
// Color Functions
//-------------------------------------------------------------------
#pragma mark - Colors
// D50-adapted sRGB to XYZ conversion matrix.
// http://www.brucelindbloom.com/Eqn_RGB_XYZ_Matrix.html
constant float3x3 sRGB_XYZ = transpose(float3x3(
0.4360747, 0.3850649, 0.1430804,
0.2225045, 0.7168786, 0.0606169,
0.0139322, 0.0971045, 0.7141733
));
// XYZ to Display P3 conversion matrix.
// http://endavid.com/index.php?entry=79
constant float3x3 XYZ_DP3 = transpose(float3x3(
2.40414768,-0.99010704,-0.39759019,
-0.84239098, 1.79905954, 0.01597023,
0.04838763,-0.09752546, 1.27393636
));
// By composing the two above matrices we get
// our sRGB to Display P3 conversion matrix.
constant float3x3 sRGB_DP3 = XYZ_DP3 * sRGB_XYZ;
// Converts a color in linear sRGB to linear Display P3
//
// TODO: The color matrix should probably be computed
// dynamically and passed as a uniform, rather
// than being hard coded above.
float3 srgb_to_display_p3(float3 srgb) {
return sRGB_DP3 * srgb;
}
// Converts a color from sRGB gamma encoding to linear.
float4 linearize(float4 srgb) {
bool3 cutoff = srgb.rgb <= 0.04045;
float3 lower = srgb.rgb / 12.92;
float3 higher = pow((srgb.rgb + 0.055) / 1.055, 2.4);
srgb.rgb = mix(higher, lower, float3(cutoff));
return srgb;
}
// Converts a color from linear to sRGB gamma encoding.
float4 unlinearize(float4 linear) {
bool3 cutoff = linear.rgb <= 0.0031308;
float3 lower = linear.rgb * 12.92;
float3 higher = pow(linear.rgb, 1.0 / 2.4) * 1.055 - 0.055;
linear.rgb = mix(higher, lower, float3(cutoff));
return linear;
}
// Compute the luminance of the provided color.
//
// Takes colors in linear RGB space. If your colors are gamma
// encoded, linearize them before using them with this function.
float luminance(float3 color) {
return dot(color, float3(0.2126f, 0.7152f, 0.0722f));
}
// https://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef
//
// Takes colors in linear RGB space. If your colors are gamma
// encoded, linearize them before using them with this function.
float contrast_ratio(float3 color1, float3 color2) {
float l1 = luminance(color1);
float l2 = luminance(color2);
return (max(l1, l2) + 0.05f) / (min(l1, l2) + 0.05f);
}
// Return the fg if the contrast ratio is greater than min, otherwise
// return a color that satisfies the contrast ratio. Currently, the color
// is always white or black, whichever has the highest contrast ratio.
//
// Takes colors in linear RGB space. If your colors are gamma
// encoded, linearize them before using them with this function.
float4 contrasted_color(float min, float4 fg, float4 bg) {
float ratio = contrast_ratio(fg.rgb, bg.rgb);
if (ratio < min) {
float white_ratio = contrast_ratio(float3(1.0f), bg.rgb);
float black_ratio = contrast_ratio(float3(0.0f), bg.rgb);
if (white_ratio > black_ratio) {
return float4(1.0f);
} else {
return float4(0.0f, 0.0f, 0.0f, 1.0f);
}
}
return fg;
}
// Load a 4 byte RGBA non-premultiplied color and linearize
// and convert it as necessary depending on the provided info.
//
// Returns a color in the Display P3 color space.
//
// If `display_p3` is true, then the provided color is assumed to
// already be in the Display P3 color space, otherwise it's treated
// as an sRGB color and is appropriately converted to Display P3.
//
// `linear` controls whether the returned color is linear or gamma encoded.
float4 load_color(
uchar4 in_color,
bool display_p3,
bool linear
) {
// 0 .. 255 -> 0.0 .. 1.0
float4 color = float4(in_color) / 255.0f;
// If our color is already in Display P3 and
// we aren't doing linear blending, then we
// already have the correct color here and
// can premultiply and return it.
if (display_p3 && !linear) {
color *= color.a;
return color;
}
// The color is in either the sRGB or Display P3 color space,
// so in either case, it's a color space which uses the sRGB
// transfer function, so we can use one function in order to
// linearize it in either case.
//
// Even if we aren't doing linear blending, the color
// needs to be in linear space to convert color spaces.
color = linearize(color);
// If we're *NOT* using display P3 colors, then we're dealing
// with an sRGB color, in which case we need to convert it in
// to the Display P3 color space, since our output is always
// Display P3.
if (!display_p3) {
color.rgb = srgb_to_display_p3(color.rgb);
}
// If we're not doing linear blending, then we need to
// unlinearize after doing the color space conversion.
if (!linear) {
color = unlinearize(color);
}
// Premultiply our color by its alpha.
color *= color.a;
return color;
}
//-------------------------------------------------------------------
// Full Screen Vertex Shader
//-------------------------------------------------------------------
#pragma mark - Full Screen Vertex Shader
struct FullScreenVertexOut {
float4 position [[position]];
};
vertex FullScreenVertexOut full_screen_vertex(
uint vid [[vertex_id]]
) {
FullScreenVertexOut out;
float4 position;
position.x = (vid == 2) ? 3.0 : -1.0;
position.y = (vid == 0) ? -3.0 : 1.0;
position.zw = 1.0;
// Single triangle is clipped to viewport.
//
// X <- vid == 0: (-1, -3)
// |\
// | \
// | \
// |###\
// |#+# \ `+` is (0, 0). `#`s are viewport area.
// |### \
// X------X <- vid == 2: (3, 1)
// ^
// vid == 1: (-1, 1)
out.position = position;
return out;
}
//-------------------------------------------------------------------
// Cell Background Shader
//-------------------------------------------------------------------
#pragma mark - Cell BG Shader
struct CellBgVertexOut {
float4 position [[position]];
float4 bg_color;
};
vertex CellBgVertexOut cell_bg_vertex(
uint vid [[vertex_id]],
constant Uniforms& uniforms [[buffer(1)]]
) {
CellBgVertexOut out;
float4 position;
position.x = (vid == 2) ? 3.0 : -1.0;
position.y = (vid == 0) ? -3.0 : 1.0;
position.zw = 1.0;
out.position = position;
// Convert the background color to Display P3
out.bg_color = load_color(
uniforms.bg_color,
uniforms.use_display_p3,
uniforms.use_linear_blending
);
return out;
}
fragment float4 cell_bg_fragment(
CellBgVertexOut in [[stage_in]],
constant uchar4 *cells [[buffer(0)]],
constant Uniforms& uniforms [[buffer(1)]]
) {
int2 grid_pos = int2(floor((in.position.xy - uniforms.grid_padding.wx) / uniforms.cell_size));
float4 bg = in.bg_color;
// Clamp x position, extends edge bg colors in to padding on sides.
if (grid_pos.x < 0) {
if (uniforms.padding_extend & EXTEND_LEFT) {
grid_pos.x = 0;
} else {
return bg;
}
} else if (grid_pos.x > uniforms.grid_size.x - 1) {
if (uniforms.padding_extend & EXTEND_RIGHT) {
grid_pos.x = uniforms.grid_size.x - 1;
} else {
return bg;
}
}
// Clamp y position if we should extend, otherwise discard if out of bounds.
if (grid_pos.y < 0) {
if (uniforms.padding_extend & EXTEND_UP) {
grid_pos.y = 0;
} else {
return bg;
}
} else if (grid_pos.y > uniforms.grid_size.y - 1) {
if (uniforms.padding_extend & EXTEND_DOWN) {
grid_pos.y = uniforms.grid_size.y - 1;
} else {
return bg;
}
}
// Load the color for the cell.
uchar4 cell_color = cells[grid_pos.y * uniforms.grid_size.x + grid_pos.x];
// We have special case handling for when the cell color matches the bg color.
if (all(cell_color == uniforms.bg_color)) {
// If we have any background transparency then we render bg-colored cells as
// fully transparent, since the background is handled by the layer bg color
// and we don't want to double up our bg color, but if our bg color is fully
// opaque then our layer is opaque and can't handle transparency, so we need
// to return the bg color directly instead.
if (uniforms.bg_color.a == 255) {
return bg;
} else {
return float4(0.0);
}
}
// Convert the color and return it.
//
// TODO: We may want to blend the color with the background
// color, rather than purely replacing it, this needs
// some consideration about config options though.
//
// TODO: It might be a good idea to do a pass before this
// to convert all of the bg colors, so we don't waste
// a bunch of work converting the cell color in every
// fragment of each cell. It's not the most epxensive
// operation, but it is still wasted work.
return load_color(
cell_color,
uniforms.use_display_p3,
uniforms.use_linear_blending
);
}
//-------------------------------------------------------------------
// Cell Text Shader
//-------------------------------------------------------------------
#pragma mark - Cell Text Shader
// The possible modes that a cell fg entry can take.
enum CellTextMode : uint8_t {
MODE_TEXT = 1u,
MODE_TEXT_CONSTRAINED = 2u,
MODE_TEXT_COLOR = 3u,
MODE_TEXT_CURSOR = 4u,
MODE_TEXT_POWERLINE = 5u,
};
struct CellTextVertexIn {
// The position of the glyph in the texture (x, y)
uint2 glyph_pos [[attribute(0)]];
// The size of the glyph in the texture (w, h)
uint2 glyph_size [[attribute(1)]];
// The left and top bearings for the glyph (x, y)
int2 bearings [[attribute(2)]];
// The grid coordinates (x, y) where x < columns and y < rows
ushort2 grid_pos [[attribute(3)]];
// The color of the rendered text glyph.
uchar4 color [[attribute(4)]];
// The mode for this cell.
uint8_t mode [[attribute(5)]];
// The width to constrain the glyph to, in cells, or 0 for no constraint.
uint8_t constraint_width [[attribute(6)]];
};
struct CellTextVertexOut {
float4 position [[position]];
uint8_t mode;
float4 color;
float2 tex_coord;
};
vertex CellTextVertexOut cell_text_vertex(
uint vid [[vertex_id]],
CellTextVertexIn in [[stage_in]],
constant Uniforms& uniforms [[buffer(1)]],
constant uchar4 *bg_colors [[buffer(2)]]
) {
// Convert the grid x, y into world space x, y by accounting for cell size
float2 cell_pos = uniforms.cell_size * float2(in.grid_pos);
// Turn the cell position into a vertex point depending on the
// vertex ID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use vertex ID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
float2 corner;
corner.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f;
corner.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f;
CellTextVertexOut out;
out.mode = in.mode;
// === Grid Cell ===
// +X
// 0,0--...->
// |
// . offset.x = bearings.x
// +Y. .|.
// . | |
// | cell_pos -> +-------+ _.
// v ._| |_. _|- offset.y = cell_size.y - bearings.y
// | | .###. | |
// | | #...# | |
// glyph_size.y -+ | ##### | |
// | | #.... | +- bearings.y
// |_| .#### | |
// | |_|
// +-------+
// |_._|
// |
// glyph_size.x
//
// In order to get the top left of the glyph, we compute an offset based on
// the bearings. The Y bearing is the distance from the bottom of the cell
// to the top of the glyph, so we subtract it from the cell height to get
// the y offset. The X bearing is the distance from the left of the cell
// to the left of the glyph, so it works as the x offset directly.
float2 size = float2(in.glyph_size);
float2 offset = float2(in.bearings);
offset.y = uniforms.cell_size.y - offset.y;
// If we're constrained then we need to scale the glyph.
if (in.mode == MODE_TEXT_CONSTRAINED) {
float max_width = uniforms.cell_size.x * in.constraint_width;
if (size.x > max_width) {
float new_y = size.y * (max_width / size.x);
offset.y += (size.y - new_y) / 2;
size.y = new_y;
size.x = max_width;
}
}
// Calculate the final position of the cell which uses our glyph size
// and glyph offset to create the correct bounding box for the glyph.
cell_pos = cell_pos + size * corner + offset;
out.position =
uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
// Calculate the texture coordinate in pixels. This is NOT normalized
// (between 0.0 and 1.0), and does not need to be, since the texture will
// be sampled with pixel coordinate mode.
out.tex_coord = float2(in.glyph_pos) + float2(in.glyph_size) * corner;
// Get our color. We always fetch a linearized version to
// make it easier to handle minimum contrast calculations.
out.color = load_color(
in.color,
uniforms.use_display_p3,
true
);
// If we have a minimum contrast, we need to check if we need to
// change the color of the text to ensure it has enough contrast
// with the background.
// We only apply this adjustment to "normal" text with MODE_TEXT,
// since we want color glyphs to appear in their original color
// and Powerline glyphs to be unaffected (else parts of the line would
// have different colors as some parts are displayed via background colors).
if (uniforms.min_contrast > 1.0f && in.mode == MODE_TEXT) {
// Get the BG color
float4 bg_color = load_color(
bg_colors[in.grid_pos.y * uniforms.grid_size.x + in.grid_pos.x],
uniforms.use_display_p3,
true
);
// Ensure our minimum contrast
out.color = contrasted_color(uniforms.min_contrast, out.color, bg_color);
}
// If this cell is the cursor cell, then we need to change the color.
if (
in.mode != MODE_TEXT_CURSOR &&
(
in.grid_pos.x == uniforms.cursor_pos.x ||
uniforms.cursor_wide &&
in.grid_pos.x == uniforms.cursor_pos.x + 1
) &&
in.grid_pos.y == uniforms.cursor_pos.y
) {
out.color = float4(uniforms.cursor_color) / 255.0f;
}
return out;
}
fragment float4 cell_text_fragment(
CellTextVertexOut in [[stage_in]],
texture2d<float> textureGrayscale [[texture(0)]],
texture2d<float> textureColor [[texture(1)]],
constant Uniforms& uniforms [[buffer(2)]]
) {
constexpr sampler textureSampler(
coord::pixel,
address::clamp_to_edge,
filter::nearest
);
switch (in.mode) {
default:
case MODE_TEXT_CURSOR:
case MODE_TEXT_CONSTRAINED:
case MODE_TEXT_POWERLINE:
case MODE_TEXT: {
// Our input color is always linear.
float4 color = in.color;
// If we're not doing linear blending, then we need to
// re-apply the gamma encoding to our color manually.
//
// We do it BEFORE premultiplying the alpha because
// we want to produce the effect of not linearizing
// it in the first place in order to match the look
// of software that never does this.
if (!uniforms.use_linear_blending) {
color = unlinearize(color);
}
// Fetch our alpha mask for this pixel.
float a = textureGrayscale.sample(textureSampler, in.tex_coord).r;
// Experimental linear blending weight correction.
if (uniforms.use_experimental_linear_correction) {
float l = luminance(color.rgb);
// TODO: This is a dynamic dilation term that biases
// the alpha adjustment for small font sizes;
// it should be computed by dividing the font
// size in `pt`s by `13.0` and using that if
// it's less than `1.0`, but for now it's
// hard coded at 1.0, which has no effect.
float d = 13.0 / 13.0;
a += pow(a, d + d * l) - pow(a, d + 1.0 - d * l);
}
// Multiply our whole color by the alpha mask.
// Since we use premultiplied alpha, this is
// the correct way to apply the mask.
color *= a;
return color;
}
case MODE_TEXT_COLOR: {
// For now, we assume that color glyphs are
// already premultiplied Display P3 colors.
float4 color = textureColor.sample(textureSampler, in.tex_coord);
// If we aren't doing linear blending, we can return this right away.
if (!uniforms.use_linear_blending) {
return color;
}
// Otherwise we need to linearize the color. Since the alpha is
// premultiplied, we need to divide it out before linearizing.
color.rgb /= color.a;
color = linearize(color);
color.rgb *= color.a;
return color;
}
}
}
//-------------------------------------------------------------------
// Image Shader
//-------------------------------------------------------------------
#pragma mark - Image Shader
struct ImageVertexIn {
// The grid coordinates (x, y) where x < columns and y < rows where
// the image will be rendered. It will be rendered from the top left.
float2 grid_pos [[attribute(0)]];
// Offset in pixels from the top-left of the cell to make the top-left
// corner of the image.
float2 cell_offset [[attribute(1)]];
// The source rectangle of the texture to sample from.
float4 source_rect [[attribute(2)]];
// The final width/height of the image in pixels.
float2 dest_size [[attribute(3)]];
};
struct ImageVertexOut {
float4 position [[position]];
float2 tex_coord;
};
vertex ImageVertexOut image_vertex(
uint vid [[vertex_id]],
ImageVertexIn in [[stage_in]],
texture2d<uint> image [[texture(0)]],
constant Uniforms& uniforms [[buffer(1)]]
) {
// The size of the image in pixels
float2 image_size = float2(image.get_width(), image.get_height());
// Turn the image position into a vertex point depending on the
// vertex ID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use vertex ID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
float2 corner;
corner.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f;
corner.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f;
// The texture coordinates start at our source x/y, then add the width/height
// as enabled by our instance id, then normalize to [0, 1]
float2 tex_coord = in.source_rect.xy;
tex_coord += in.source_rect.zw * corner;
tex_coord /= image_size;
ImageVertexOut out;
// The position of our image starts at the top-left of the grid cell and
// adds the source rect width/height components.
float2 image_pos = (uniforms.cell_size * in.grid_pos) + in.cell_offset;
image_pos += in.dest_size * corner;
out.position =
uniforms.projection_matrix * float4(image_pos.x, image_pos.y, 0.0f, 1.0f);
out.tex_coord = tex_coord;
return out;
}
fragment float4 image_fragment(
ImageVertexOut in [[stage_in]],
texture2d<uint> image [[texture(0)]],
constant Uniforms& uniforms [[buffer(1)]]
) {
constexpr sampler textureSampler(address::clamp_to_edge, filter::linear);
// Ehhhhh our texture is in RGBA8Uint but our color attachment is
// BGRA8Unorm. So we need to convert it. We should really be converting
// our texture to BGRA8Unorm.
uint4 rgba = image.sample(textureSampler, in.tex_coord);
return load_color(
uchar4(rgba),
// We assume all images are sRGB regardless of the configured colorspace
// TODO: Maybe support wide gamut images?
false,
uniforms.use_linear_blending
);
}