mirror of
https://github.com/ghostty-org/ghostty.git
synced 2025-07-16 16:56:09 +03:00
terminal/new: add BitmapAllocator
This commit is contained in:
323
src/terminal/new/bitmap_allocator.zig
Normal file
323
src/terminal/new/bitmap_allocator.zig
Normal file
@ -0,0 +1,323 @@
|
||||
const std = @import("std");
|
||||
const assert = std.debug.assert;
|
||||
const Allocator = std.mem.Allocator;
|
||||
const size = @import("size.zig");
|
||||
const getOffset = size.getOffset;
|
||||
const Offset = size.Offset;
|
||||
const OffsetBuf = size.OffsetBuf;
|
||||
const alignForward = std.mem.alignForward;
|
||||
|
||||
/// A relatively naive bitmap allocator that uses memory offsets against
|
||||
/// a fixed backing buffer so that the backing buffer can be easily moved
|
||||
/// without having to update pointers.
|
||||
///
|
||||
/// The chunk size determines the size of each chunk in bytes. This is the
|
||||
/// minimum distributed unit of memory. For example, if you request a
|
||||
/// 1-byte allocation, you'll use a chunk of chunk_size bytes. Likewise,
|
||||
/// if your chunk size is 4, and you request a 5-byte allocation, you'll
|
||||
/// use 2 chunks.
|
||||
///
|
||||
/// The allocator is susceptible to fragmentation. If you allocate and free
|
||||
/// memory in a way that leaves small holes in the memory, you may not be
|
||||
/// able to allocate large chunks of memory even if there is enough free
|
||||
/// memory in aggregate. To avoid fragmentation, use a chunk size that is
|
||||
/// large enough to cover most of your allocations.
|
||||
///
|
||||
// Notes for contributors: this is highly contributor friendly part of
|
||||
// the code. If you can improve this, add tests, show benchmarks, then
|
||||
// please do so!
|
||||
pub fn BitmapAllocator(comptime chunk_size: comptime_int) type {
|
||||
return struct {
|
||||
const Self = @This();
|
||||
|
||||
comptime {
|
||||
assert(std.math.isPowerOfTwo(chunk_size));
|
||||
}
|
||||
|
||||
pub const base_align = @alignOf(u64);
|
||||
pub const bitmap_bit_size = @bitSizeOf(u64);
|
||||
|
||||
/// The bitmap of available chunks. Each bit represents a chunk. A
|
||||
/// 1 means the chunk is free and a 0 means it's used. We use 1
|
||||
/// for free since it makes it very slightly faster to find free
|
||||
/// chunks.
|
||||
bitmap: Offset(u64),
|
||||
bitmap_count: usize,
|
||||
|
||||
/// The contiguous buffer of chunks.
|
||||
chunks: Offset(u8),
|
||||
|
||||
/// Initialize the allocator map with a given buf and memory layout.
|
||||
pub fn init(buf: OffsetBuf, l: Layout) Self {
|
||||
assert(@intFromPtr(buf.start()) % base_align == 0);
|
||||
|
||||
// Initialize our bitmaps to all 1s to note that all chunks are free.
|
||||
const bitmap = buf.member(u64, l.bitmap_start);
|
||||
const bitmap_ptr = bitmap.ptr(buf);
|
||||
@memset(bitmap_ptr[0..l.bitmap_count], std.math.maxInt(u64));
|
||||
|
||||
return .{
|
||||
.bitmap = bitmap,
|
||||
.bitmap_count = l.bitmap_count,
|
||||
.chunks = buf.member(u8, l.chunks_start),
|
||||
};
|
||||
}
|
||||
|
||||
/// Allocate n elements of type T. This will return error.OutOfMemory
|
||||
/// if there isn't enough space in the backing buffer.
|
||||
pub fn alloc(
|
||||
self: *Self,
|
||||
comptime T: type,
|
||||
base: anytype,
|
||||
n: usize,
|
||||
) Allocator.Error![]T {
|
||||
// note: we don't handle alignment yet, we just require that all
|
||||
// types are properly aligned. This is a limitation that should be
|
||||
// fixed but we haven't needed it. Contributor friendly: add tests
|
||||
// and fix this.
|
||||
assert(chunk_size % @alignOf(T) == 0);
|
||||
|
||||
const byte_count = std.math.mul(usize, @sizeOf(T), n) catch
|
||||
return error.OutOfMemory;
|
||||
const chunk_count = std.math.divCeil(usize, byte_count, chunk_size) catch
|
||||
return error.OutOfMemory;
|
||||
|
||||
// Find the index of the free chunk. This also marks it as used.
|
||||
const bitmaps = self.bitmap.ptr(base);
|
||||
const idx = findFreeChunks(bitmaps[0..self.bitmap_count], chunk_count) orelse
|
||||
return error.OutOfMemory;
|
||||
|
||||
const chunks = self.chunks.ptr(base);
|
||||
const ptr: [*]T = @alignCast(@ptrCast(&chunks[idx * chunk_size]));
|
||||
return ptr[0..n];
|
||||
}
|
||||
|
||||
pub fn free(self: *Self, base: anytype, slice: anytype) void {
|
||||
// Convert the slice of whatever type to a slice of bytes. We
|
||||
// can then use the byte len and chunk size to determine the
|
||||
// number of chunks that were allocated.
|
||||
const bytes = std.mem.sliceAsBytes(slice);
|
||||
const aligned_len = std.mem.alignForward(usize, bytes.len, chunk_size);
|
||||
const chunk_count = @divExact(aligned_len, chunk_size);
|
||||
|
||||
// From the pointer, we can calculate the exact index.
|
||||
const chunks = self.chunks.ptr(base);
|
||||
const chunk_idx = @divExact(@intFromPtr(slice.ptr) - @intFromPtr(chunks), chunk_size);
|
||||
|
||||
// From the chunk index, we can find the bitmap index
|
||||
const bitmap_idx = @divFloor(chunk_idx, 64);
|
||||
const bitmap_bit = chunk_idx % 64;
|
||||
|
||||
// Set the bitmap to mark the chunks as free
|
||||
const bitmaps = self.bitmap.ptr(base);
|
||||
const bitmap = &bitmaps[bitmap_idx];
|
||||
for (0..chunk_count) |i| {
|
||||
const mask = @as(u64, 1) << @intCast(bitmap_bit + i);
|
||||
bitmap.* |= mask;
|
||||
}
|
||||
}
|
||||
|
||||
/// For debugging
|
||||
fn dumpBitmaps(self: *Self, base: anytype) void {
|
||||
const bitmaps = self.bitmap.ptr(base);
|
||||
for (bitmaps[0..self.bitmap_count], 0..) |bitmap, idx| {
|
||||
std.log.warn("bm={b} idx={}", .{ bitmap, idx });
|
||||
}
|
||||
}
|
||||
|
||||
const Layout = struct {
|
||||
total_size: usize,
|
||||
bitmap_count: usize,
|
||||
bitmap_start: usize,
|
||||
chunks_start: usize,
|
||||
};
|
||||
|
||||
/// Get the layout for the given capacity. The capacity is in
|
||||
/// number of bytes, not chunks. The capacity will likely be
|
||||
/// rounded up to the nearest chunk size and bitmap size so
|
||||
/// everything is perfectly divisible.
|
||||
pub fn layout(cap: usize) Layout {
|
||||
// Align the cap forward to our chunk size so we always have
|
||||
// a full chunk at the end.
|
||||
const aligned_cap = alignForward(usize, cap, chunk_size);
|
||||
|
||||
// Calculate the number of bitmaps. We need 1 bitmap per 64 chunks.
|
||||
// We align the chunk count forward so our bitmaps are full so we
|
||||
// don't have to handle the case where we have a partial bitmap.
|
||||
const chunk_count = @divExact(aligned_cap, chunk_size);
|
||||
const aligned_chunk_count = alignForward(usize, chunk_count, 64);
|
||||
const bitmap_count = @divExact(aligned_chunk_count, 64);
|
||||
|
||||
const bitmap_start = 0;
|
||||
const bitmap_end = @sizeOf(u64) * bitmap_count;
|
||||
const chunks_start = alignForward(usize, bitmap_end, @alignOf(u8));
|
||||
const chunks_end = chunks_start + (aligned_cap * chunk_size);
|
||||
const total_size = chunks_end;
|
||||
|
||||
return Layout{
|
||||
.total_size = total_size,
|
||||
.bitmap_count = bitmap_count,
|
||||
.bitmap_start = bitmap_start,
|
||||
.chunks_start = chunks_start,
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// Find `n` sequential free chunks in the given bitmaps and return the index
|
||||
/// of the first chunk. If no chunks are found, return `null`. This also updates
|
||||
/// the bitmap to mark the chunks as used.
|
||||
fn findFreeChunks(bitmaps: []u64, n: usize) ?usize {
|
||||
// NOTE: This is a naive implementation that just iterates through the
|
||||
// bitmaps. There is very likely a more efficient way to do this but
|
||||
// I'm not a bit twiddling expert. Perhaps even SIMD could be used here
|
||||
// but unsure. Contributor friendly: let's benchmark and improve this!
|
||||
|
||||
// TODO: handle large chunks
|
||||
assert(n < @bitSizeOf(u64));
|
||||
|
||||
for (bitmaps, 0..) |*bitmap, idx| {
|
||||
// Shift the bitmap to find `n` sequential free chunks.
|
||||
var shifted: u64 = bitmap.*;
|
||||
for (1..n) |i| shifted &= bitmap.* >> @intCast(i);
|
||||
|
||||
// If we have zero then we have no matches
|
||||
if (shifted == 0) continue;
|
||||
|
||||
// Trailing zeroes gets us the bit 1-indexed
|
||||
const bit = @ctz(shifted);
|
||||
|
||||
// Calculate the mask so we can mark it as used
|
||||
for (0..n) |i| {
|
||||
const mask = @as(u64, 1) << @intCast(bit + i);
|
||||
bitmap.* ^= mask;
|
||||
}
|
||||
|
||||
return (idx * 63) + bit;
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
test "findFreeChunks single found" {
|
||||
const testing = std.testing;
|
||||
|
||||
var bitmaps = [_]u64{
|
||||
0b10000000_00000000_00000000_00000000_00000000_00000000_00001110_00000000,
|
||||
};
|
||||
const idx = findFreeChunks(&bitmaps, 2).?;
|
||||
try testing.expectEqual(@as(usize, 9), idx);
|
||||
try testing.expectEqual(
|
||||
0b10000000_00000000_00000000_00000000_00000000_00000000_00001000_00000000,
|
||||
bitmaps[0],
|
||||
);
|
||||
}
|
||||
|
||||
test "findFreeChunks single not found" {
|
||||
const testing = std.testing;
|
||||
|
||||
var bitmaps = [_]u64{0b10000111_00000000_00000000_00000000_00000000_00000000_00000000_00000000};
|
||||
const idx = findFreeChunks(&bitmaps, 4);
|
||||
try testing.expect(idx == null);
|
||||
}
|
||||
|
||||
test "findFreeChunks multiple found" {
|
||||
const testing = std.testing;
|
||||
|
||||
var bitmaps = [_]u64{
|
||||
0b10000111_00000000_00000000_00000000_00000000_00000000_00000000_01110000,
|
||||
0b10000000_00111110_00000000_00000000_00000000_00000000_00111110_00000000,
|
||||
};
|
||||
const idx = findFreeChunks(&bitmaps, 4).?;
|
||||
try testing.expectEqual(@as(usize, 72), idx);
|
||||
try testing.expectEqual(
|
||||
0b10000000_00111110_00000000_00000000_00000000_00000000_00100000_00000000,
|
||||
bitmaps[1],
|
||||
);
|
||||
}
|
||||
|
||||
test "BitmapAllocator layout" {
|
||||
const Alloc = BitmapAllocator(4);
|
||||
const cap = 64 * 4;
|
||||
|
||||
const testing = std.testing;
|
||||
const layout = Alloc.layout(cap);
|
||||
|
||||
// We expect to use one bitmap since the cap is bytes.
|
||||
try testing.expectEqual(@as(usize, 1), layout.bitmap_count);
|
||||
}
|
||||
|
||||
test "BitmapAllocator alloc sequentially" {
|
||||
const Alloc = BitmapAllocator(4);
|
||||
const cap = 64;
|
||||
|
||||
const testing = std.testing;
|
||||
const alloc = testing.allocator;
|
||||
const layout = Alloc.layout(cap);
|
||||
const buf = try alloc.alignedAlloc(u8, Alloc.base_align, layout.total_size);
|
||||
defer alloc.free(buf);
|
||||
|
||||
var bm = Alloc.init(OffsetBuf.init(buf), layout);
|
||||
const ptr = try bm.alloc(u8, buf, 1);
|
||||
ptr[0] = 'A';
|
||||
|
||||
const ptr2 = try bm.alloc(u8, buf, 1);
|
||||
try testing.expect(@intFromPtr(ptr.ptr) != @intFromPtr(ptr2.ptr));
|
||||
|
||||
// Should grab the next chunk
|
||||
try testing.expectEqual(@intFromPtr(ptr.ptr) + 4, @intFromPtr(ptr2.ptr));
|
||||
|
||||
// Free ptr and next allocation should be back
|
||||
bm.free(buf, ptr);
|
||||
const ptr3 = try bm.alloc(u8, buf, 1);
|
||||
try testing.expectEqual(@intFromPtr(ptr.ptr), @intFromPtr(ptr3.ptr));
|
||||
}
|
||||
|
||||
test "BitmapAllocator alloc non-byte" {
|
||||
const Alloc = BitmapAllocator(4);
|
||||
const cap = 128;
|
||||
|
||||
const testing = std.testing;
|
||||
const alloc = testing.allocator;
|
||||
const layout = Alloc.layout(cap);
|
||||
const buf = try alloc.alignedAlloc(u8, Alloc.base_align, layout.total_size);
|
||||
defer alloc.free(buf);
|
||||
|
||||
var bm = Alloc.init(OffsetBuf.init(buf), layout);
|
||||
const ptr = try bm.alloc(u21, buf, 1);
|
||||
ptr[0] = 'A';
|
||||
|
||||
const ptr2 = try bm.alloc(u21, buf, 1);
|
||||
try testing.expect(@intFromPtr(ptr.ptr) != @intFromPtr(ptr2.ptr));
|
||||
try testing.expectEqual(@intFromPtr(ptr.ptr) + 4, @intFromPtr(ptr2.ptr));
|
||||
|
||||
// Free ptr and next allocation should be back
|
||||
bm.free(buf, ptr);
|
||||
const ptr3 = try bm.alloc(u21, buf, 1);
|
||||
try testing.expectEqual(@intFromPtr(ptr.ptr), @intFromPtr(ptr3.ptr));
|
||||
}
|
||||
|
||||
test "BitmapAllocator alloc non-byte multi-chunk" {
|
||||
const Alloc = BitmapAllocator(4 * @sizeOf(u21));
|
||||
const cap = 128;
|
||||
|
||||
const testing = std.testing;
|
||||
const alloc = testing.allocator;
|
||||
const layout = Alloc.layout(cap);
|
||||
const buf = try alloc.alignedAlloc(u8, Alloc.base_align, layout.total_size);
|
||||
defer alloc.free(buf);
|
||||
|
||||
var bm = Alloc.init(OffsetBuf.init(buf), layout);
|
||||
const ptr = try bm.alloc(u21, buf, 6);
|
||||
try testing.expectEqual(@as(usize, 6), ptr.len);
|
||||
for (ptr) |*v| v.* = 'A';
|
||||
|
||||
const ptr2 = try bm.alloc(u21, buf, 1);
|
||||
try testing.expect(@intFromPtr(ptr.ptr) != @intFromPtr(ptr2.ptr));
|
||||
try testing.expectEqual(@intFromPtr(ptr.ptr) + (@sizeOf(u21) * 4 * 2), @intFromPtr(ptr2.ptr));
|
||||
|
||||
// Free ptr and next allocation should be back
|
||||
bm.free(buf, ptr);
|
||||
const ptr3 = try bm.alloc(u21, buf, 1);
|
||||
try testing.expectEqual(@intFromPtr(ptr.ptr), @intFromPtr(ptr3.ptr));
|
||||
}
|
@ -6,6 +6,7 @@ test {
|
||||
@import("std").testing.refAllDecls(@This());
|
||||
|
||||
// todo: make top-level imports
|
||||
_ = @import("bitmap_allocator.zig");
|
||||
_ = @import("hash_map.zig");
|
||||
_ = @import("page.zig");
|
||||
_ = @import("PageList.zig");
|
||||
|
Reference in New Issue
Block a user