renderer/metal: rewrite kitty placeholder handling

This commit is contained in:
Mitchell Hashimoto
2024-07-29 09:35:51 -07:00
parent 6668930b96
commit 4bf8d30b44

View File

@ -1679,6 +1679,9 @@ fn prepKittyVirtualPlacement(
bot: *const terminal.Pin,
p: *const terminal.kitty.graphics.unicode.Placement,
) !void {
_ = top;
_ = bot;
const storage = &t.screen.kitty_images;
const image = storage.imageById(p.image_id) orelse {
log.warn(
@ -1716,18 +1719,23 @@ fn prepKittyVirtualPlacement(
return;
};
// Calculate our grid size for the placement. If it is isn't explicitly
// provided by the placement we try to calculate it to fit in the
// grid as closely as possible.
// Calculate the grid size for the placement. For virtual placements,
// we use the requested row/cols. If either isn't specified, we choose
// the best size based on the image size to fit the entire image in its
// original size.
//
// This part of the code does NOT do preserve any aspect ratios. Its
// dumbly fitting the image into the grid size -- possibly user specified.
const img_grid: renderer.GridSize = grid: {
// Use requested rows/columns if specified
var rows = placement.rows;
var columns = placement.columns;
// For unspecified rows/columns, calculate based on the image size.
if (rows == 0) {
const cell_height = self.grid_metrics.cell_height;
rows = (image.height + cell_height - 1) / cell_height;
}
if (columns == 0) {
const cell_width = self.grid_metrics.cell_width;
columns = (image.width + cell_width - 1) / cell_width;
@ -1751,11 +1759,17 @@ fn prepKittyVirtualPlacement(
};
};
// The image is fit into the placement grid size. We need to calculate
// various offsets in order to center the image vertically/horizontally
// into the grid size while preserving the aspect ratio.
// Next we have to fit the source image into the grid size while preserving
// aspect ratio. We will center the image horizontally/vertically if
// necessary.
// The offsets are the pixel offsets from the top-left of the top-left
// grid cell in order to center the image as best as possible.
var x_offset: f64 = 0;
var y_offset: f64 = 0;
// The scale factors are the scaling factors applied to the original
// image size in order to fit it into our placement grid size.
var x_scale: f64 = 0;
var y_scale: f64 = 0;
const rows_px: f64 = @floatFromInt(img_grid.rows * self.grid_metrics.cell_height);
@ -1773,76 +1787,93 @@ fn prepKittyVirtualPlacement(
x_scale = y_scale;
x_offset = (cols_px - img_width_f64 * x_scale) / 2;
}
log.warn("x_offset={}, y_offset={}, x_scale={}, y_scale={}", .{
x_offset, y_offset, x_scale, y_scale,
});
// A bunch of math to map the placement and image to virtual placeholder
// grid. This is ported as closely as possible from Kitty so we get this
// as right as possible. I EXPECT there are some rounding bugs in here
// so compared to Kitty we may be off by 1px here or there. If someone
// can show that to be true let's modify it.
// At this point, we have the following information:
// - image.width/height - The original image width and height.
// - img_grid.rows/columns - The requested grid size for the placement.
// - offset/scale - The offset and scale to fit the image into the
// placement grid.
//
// This code is purposely not super Zig-like because I want to keep it
// as close to the Kitty implementation as possible os its easy to
// compare and modify.
var pin: terminal.Pin = p.pin;
var cols: u32 = p.width;
var rows: u32 = p.height;
const x_dst: f64 = @floatFromInt(p.col * self.grid_metrics.cell_width);
const y_dst: f64 = @floatFromInt(p.row * self.grid_metrics.cell_height);
const w_dst: f64 = @floatFromInt(p.width * self.grid_metrics.cell_width);
const h_dst: f64 = @floatFromInt(p.height * self.grid_metrics.cell_height);
var cell_x_off: u32 = 0;
var cell_y_off: u32 = 0;
var src_x: f64 = (x_dst - x_offset) / x_scale;
var src_y: f64 = (y_dst - y_offset) / y_scale;
var src_w: f64 = w_dst / x_scale;
var src_h: f64 = h_dst / y_scale;
if (src_x < 0) {
src_w += src_x;
cell_x_off = @intFromFloat(@round(-src_x * x_scale));
src_x = 0;
const col_off: u32 = cell_x_off / self.grid_metrics.cell_width;
cell_x_off %= self.grid_metrics.cell_width;
pin = pin.right(col_off);
if (cols <= col_off) return;
cols -= col_off;
}
if (src_y < 0) {
src_h += src_y;
cell_y_off = @intFromFloat(@round(-src_y * y_scale));
src_y = 0;
const row_off: u32 = cell_y_off / self.grid_metrics.cell_height;
cell_y_off %= self.grid_metrics.cell_height;
pin = pin.down(row_off) orelse return;
if (rows <= row_off) return;
rows -= row_off;
}
if (src_x + src_w > img_width_f64) {
const redundant_px = src_x + src_w - img_width_f64;
const redundant_cells = @as(u32, @intFromFloat(redundant_px * x_scale)) / self.grid_metrics.cell_width;
if (cols <= redundant_cells) return;
cols -= redundant_cells;
src_w -= @as(f64, @floatFromInt(redundant_cells * self.grid_metrics.cell_width)) / x_scale;
}
if (src_y + src_h > img_height_f64) {
const redundant_px = src_y + src_h - img_height_f64;
const redundant_cells = @as(u32, @intFromFloat(redundant_px * y_scale)) / self.grid_metrics.cell_height;
if (rows <= redundant_cells) return;
rows -= redundant_cells;
src_h -= @as(f64, @floatFromInt(redundant_cells * self.grid_metrics.cell_height)) / y_scale;
// For our run requested coordinates and size we now need to map
// the original image down into our grid cells honoring the offsets
// calculated for the best fit.
const img_x_offset: f64 = x_offset / x_scale;
const img_y_offset: f64 = y_offset / y_scale;
const img_width_padded: f64 = img_width_f64 + (img_x_offset * 2);
const img_height_padded: f64 = img_height_f64 + (img_y_offset * 2);
log.warn("padded_width={}, padded_height={} original_width={}, original_height={}", .{
img_width_padded, img_height_padded, img_width_f64, img_height_f64,
});
const source_width_f64: f64 = img_width_padded * (@as(f64, @floatFromInt(p.width)) / @as(f64, @floatFromInt(img_grid.columns)));
var source_height_f64: f64 = img_height_padded * (@as(f64, @floatFromInt(p.height)) / @as(f64, @floatFromInt(img_grid.rows)));
const source_x_f64: f64 = img_width_padded * (@as(f64, @floatFromInt(p.col)) / @as(f64, @floatFromInt(img_grid.columns)));
var source_y_f64: f64 = img_height_padded * (@as(f64, @floatFromInt(p.row)) / @as(f64, @floatFromInt(img_grid.rows)));
const p_x_offset_f64: f64 = 0;
var p_y_offset_f64: f64 = 0;
const dst_width_f64: f64 = @floatFromInt(p.width * self.grid_metrics.cell_width);
var dst_height_f64: f64 = @floatFromInt(p.height * self.grid_metrics.cell_height);
// If our y is in our top offset area, we need to adjust the source to
// be shorter, and offset it into the cell.
if (source_y_f64 < img_y_offset) {
const offset: f64 = img_y_offset - source_y_f64;
source_height_f64 -= offset;
p_y_offset_f64 = offset;
dst_height_f64 -= offset * y_scale;
source_y_f64 = 0;
}
// Build our real placement
try self.prepKittyPlacement(t, top, bot, &image, &.{
.location = .{ .pin = &pin },
.x_offset = cell_x_off,
.y_offset = cell_y_off,
.source_x = @intFromFloat(@round(src_x)),
.source_y = @intFromFloat(@round(src_y)),
.source_width = @intFromFloat(@round(src_w)),
.source_height = @intFromFloat(@round(src_h)),
.columns = cols,
.rows = rows,
.z = -1, // Render behind cursor
// if our y is in our bottom offset area, we need to shorten the
// source to fit in the cell.
if (source_y_f64 + source_height_f64 > img_height_padded - img_y_offset) {
source_y_f64 -= img_y_offset;
source_height_f64 = img_height_padded - img_y_offset - source_y_f64;
source_height_f64 -= img_y_offset;
dst_height_f64 = source_height_f64 * y_scale;
}
const source_width: u32 = @intFromFloat(@round(source_width_f64));
const source_height: u32 = @intFromFloat(@round(source_height_f64));
const source_x: u32 = @intFromFloat(@round(source_x_f64));
const source_y: u32 = @intFromFloat(@round(source_y_f64));
const p_x_offset: u32 = @intFromFloat(@round(p_x_offset_f64 * x_scale));
const p_y_offset: u32 = @intFromFloat(@round(p_y_offset_f64 * y_scale));
const dest_width: u32 = @intFromFloat(@round(dst_width_f64));
const dest_height: u32 = @intFromFloat(@round(dst_height_f64));
log.warn("source_x={}, source_y={}, source_width={}, source_height={}", .{
source_x, source_y, source_width, source_height,
});
log.warn("p_x_offset={}, p_y_offset={}", .{ p_x_offset, p_y_offset });
log.warn("dest_width={}, dest_height={}", .{ dest_width, dest_height });
// Send our image to the GPU
try self.prepKittyImage(&image);
const viewport: terminal.point.Point = t.screen.pages.pointFromPin(
.viewport,
p.pin,
) orelse @panic("TODO: unreachable?");
try self.image_placements.append(self.alloc, .{
.image_id = image.id,
.x = @intCast(p.pin.x),
.y = @intCast(viewport.viewport.y),
.z = -1,
.width = dest_width,
.height = dest_height,
.cell_offset_x = p_x_offset,
.cell_offset_y = p_y_offset,
.source_x = source_x,
.source_y = source_y,
.source_width = source_width,
.source_height = source_height,
});
}
@ -1875,42 +1906,7 @@ fn prepKittyPlacement(
// We need to prep this image for upload if it isn't in the cache OR
// it is in the cache but the transmit time doesn't match meaning this
// image is different.
const gop = try self.images.getOrPut(self.alloc, image.id);
if (!gop.found_existing or
gop.value_ptr.transmit_time.order(image.transmit_time) != .eq)
{
// Copy the data into the pending state.
const data = try self.alloc.dupe(u8, image.data);
errdefer self.alloc.free(data);
// Store it in the map
const pending: Image.Pending = .{
.width = image.width,
.height = image.height,
.data = data.ptr,
};
const new_image: Image = switch (image.format) {
.grey_alpha => .{ .pending_grey_alpha = pending },
.rgb => .{ .pending_rgb = pending },
.rgba => .{ .pending_rgba = pending },
.png => unreachable, // should be decoded by now
};
if (!gop.found_existing) {
gop.value_ptr.* = .{
.image = new_image,
.transmit_time = undefined,
};
} else {
try gop.value_ptr.image.markForReplace(
self.alloc,
new_image,
);
}
gop.value_ptr.transmit_time = image.transmit_time;
}
try self.prepKittyImage(image);
// Convert our screen point to a viewport point
const viewport: terminal.point.Point = t.screen.pages.pointFromPin(
@ -1953,6 +1949,52 @@ fn prepKittyPlacement(
}
}
fn prepKittyImage(
self: *Metal,
image: *const terminal.kitty.graphics.Image,
) !void {
// If this image exists and its transmit time is the same we assume
// it is the identical image so we don't need to send it to the GPU.
const gop = try self.images.getOrPut(self.alloc, image.id);
if (gop.found_existing and
gop.value_ptr.transmit_time.order(image.transmit_time) == .eq)
{
return;
}
// Copy the data into the pending state.
const data = try self.alloc.dupe(u8, image.data);
errdefer self.alloc.free(data);
// Store it in the map
const pending: Image.Pending = .{
.width = image.width,
.height = image.height,
.data = data.ptr,
};
const new_image: Image = switch (image.format) {
.grey_alpha => .{ .pending_grey_alpha = pending },
.rgb => .{ .pending_rgb = pending },
.rgba => .{ .pending_rgba = pending },
.png => unreachable, // should be decoded by now
};
if (!gop.found_existing) {
gop.value_ptr.* = .{
.image = new_image,
.transmit_time = undefined,
};
} else {
try gop.value_ptr.image.markForReplace(
self.alloc,
new_image,
);
}
gop.value_ptr.transmit_time = image.transmit_time;
}
/// Update the configuration.
pub fn changeConfig(self: *Metal, config: *DerivedConfig) !void {
// We always redo the font shaper in case font features changed. We