Merge pull request #1001 from vancluever/vancluever-powerline-half-circles

Powerline: Add half-circle rendering
This commit is contained in:
Mitchell Hashimoto
2023-12-08 08:16:55 -08:00
committed by GitHub
2 changed files with 161 additions and 2 deletions

View File

@ -148,6 +148,8 @@ const Kind = enum {
// Powerline fonts
0xE0B0,
0xE0B4,
0xE0B6,
0xE0B2,
0xE0B8,
0xE0BA,

View File

@ -56,7 +56,7 @@ pub fn renderGlyph(
defer canvas.deinit(alloc);
// Perform the actual drawing
try self.draw(&canvas, cp);
try self.draw(alloc, &canvas, cp);
// Write the drawing to the atlas
const region = try canvas.writeAtlas(alloc, atlas);
@ -77,7 +77,7 @@ pub fn renderGlyph(
};
}
fn draw(self: Powerline, canvas: *font.sprite.Canvas, cp: u32) !void {
fn draw(self: Powerline, alloc: Allocator, canvas: *font.sprite.Canvas, cp: u32) !void {
switch (cp) {
// Hard dividers and triangles
0xE0B0,
@ -88,6 +88,11 @@ fn draw(self: Powerline, canvas: *font.sprite.Canvas, cp: u32) !void {
0xE0BE,
=> try self.draw_wedge_triangle(canvas, cp),
// Half-circles
0xE0B4,
0xE0B6,
=> try self.draw_half_circle(alloc, canvas, cp),
else => return error.InvalidCodepoint,
}
}
@ -168,6 +173,156 @@ fn draw_wedge_triangle(self: Powerline, canvas: *font.sprite.Canvas, cp: u32) !v
}, .on);
}
fn draw_half_circle(self: Powerline, alloc: Allocator, canvas: *font.sprite.Canvas, cp: u32) !void {
const supersample = 4;
// We make a canvas big enough for the whole circle, with the supersample
// applied.
const width = self.width * 2 * supersample;
const height = self.height * supersample;
// We set a minimum super-sampled canvas to assert on. The minimum cell
// size is 1x3px, and this looked safe in empirical testing.
std.debug.assert(width >= 8); // 1 * 2 * 4
std.debug.assert(height >= 12); // 3 * 4
const center_x = width / 2 - 1;
const center_y = height / 2 - 1;
// Our radius.
const radius = @min(width, height) / 2;
// Pre-allocate a matrix to plot the points on.
const cap = height * width;
var points = try alloc.alloc(u8, cap);
defer alloc.free(points);
@memset(points, 0);
{
// Using a midpoint algorithm.
// As explained on https://yurichev.com/news/20220322_circle/ and
// other sites
var x: i32 = @intCast(radius);
var y: i32 = 0;
var radius_err: i32 = 0;
const cx: i32 = @intCast(center_x);
const cy: i32 = @intCast(center_y);
while (x >= y) {
// Right side
const x1 = @max(0, cx + x);
const y1 = @max(0, cy + y);
const x2 = @max(0, cx + x);
const y2 = @max(0, cy - y);
const x3 = @max(0, cx + y);
const y3 = @max(0, cy + x);
const x4 = @max(0, cx + y);
const y4 = @max(0, cy - x);
// Left side
const x5 = @max(0, cx - x);
const y5 = @max(0, cy + y);
const x6 = @max(0, cx - x);
const y6 = @max(0, cy - y);
const x7 = @max(0, cx - y);
const y7 = @max(0, cy + x);
const x8 = @max(0, cx - y);
const y8 = @max(0, cy - x);
// Points
const p1 = y1 * width + x1;
const p2 = y2 * width + x2;
const p3 = y3 * width + x3;
const p4 = y4 * width + x4;
const p5 = y5 * width + x5;
const p6 = y6 * width + x6;
const p7 = y7 * width + x7;
const p8 = y8 * width + x8;
// Set the points in the matrix, ignore any out of bounds
if (p1 < cap) points[p1] = 0xFF;
if (p2 < cap) points[p2] = 0xFF;
if (p3 < cap) points[p3] = 0xFF;
if (p4 < cap) points[p4] = 0xFF;
if (p5 < cap) points[p5] = 0xFF;
if (p6 < cap) points[p6] = 0xFF;
if (p7 < cap) points[p7] = 0xFF;
if (p8 < cap) points[p8] = 0xFF;
// Calculate next pixels based on midpoint bounds
y += 1;
radius_err += 2 * y + 1;
if (radius_err > 0) {
x -= 1;
radius_err -= 2 * x + 1;
}
}
}
// Fill
{
const u_height: u32 = @intCast(height);
const u_width: u32 = @intCast(width);
for (0..u_height) |yf| {
for (0..u_width) |left| {
// Count forward from the left to the first filled pixel
if (points[yf * u_width + left] != 0) {
// Count back to our left point from the right to the first
// filled pixel on the other side.
var right: usize = u_width - 1;
while (right > left) : (right -= 1) {
if (points[yf * u_width + right] != 0) {
break;
}
}
// Start filling 1 index after the left and go until we hit
// the right; this will be a no-op if the line length is <
// 3 as both left and right will have already been filled.
const start = yf * u_width + left;
const end = yf * u_width + right;
if (end - start >= 3) {
for (start + 1..end) |idx| {
points[idx] = 0xFF;
}
}
}
}
}
}
// Now that we have our points, we need to "split" our matrix on the x
// axis for the downsample.
{
// The side of the circle we're drawing
const offset_j: u32 = if (cp == 0xE0B4) center_x + 1 else 0;
for (0..self.height) |r| {
for (0..self.width) |c| {
var total: u32 = 0;
for (0..supersample) |i| {
for (0..supersample) |j| {
const idx = (r * supersample + i) * width + (c * supersample + j + offset_j);
total += points[idx];
}
}
const average = @as(u8, @intCast(@min(total / (supersample * supersample), 0xFF)));
canvas.rect(
.{
.x = @intCast(c),
.y = @intCast(r),
.width = 1,
.height = 1,
},
@as(font.sprite.Color, @enumFromInt(average)),
);
}
}
}
}
test "all" {
const testing = std.testing;
const alloc = testing.allocator;
@ -179,6 +334,8 @@ test "all" {
0xE0BA,
0xE0BC,
0xE0BE,
0xE0B4,
0xE0B6,
};
for (cps) |cp| {
var atlas_greyscale = try font.Atlas.init(alloc, 512, .greyscale);