ghostty/src/apprt/gtk.zig
2023-09-11 09:18:03 -07:00

1668 lines
60 KiB
Zig

//! Application runtime that uses GTK4.
const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const glfw = @import("glfw");
const apprt = @import("../apprt.zig");
const font = @import("../font/main.zig");
const input = @import("../input.zig");
const CoreApp = @import("../App.zig");
const CoreSurface = @import("../Surface.zig");
const configpkg = @import("../config.zig");
const Config = configpkg.Config;
pub const c = @cImport({
@cInclude("gtk/gtk.h");
});
// We need native X11 access to access the primary clipboard.
const glfw_native = glfw.Native(.{ .x11 = true });
/// Compatibility with gobject < 2.74
const G_CONNECT_DEFAULT = if (@hasDecl(c, "G_CONNECT_DEFAULT"))
c.G_CONNECT_DEFAULT
else
0;
const log = std.log.scoped(.gtk);
/// App is the entrypoint for the application. This is called after all
/// of the runtime-agnostic initialization is complete and we're ready
/// to start.
///
/// There is only ever one App instance per process. This is because most
/// application frameworks also have this restriction so it simplifies
/// the assumptions.
pub const App = struct {
pub const Options = struct {};
core_app: *CoreApp,
config: Config,
app: *c.GtkApplication,
ctx: *c.GMainContext,
cursor_default: *c.GdkCursor,
cursor_ibeam: *c.GdkCursor,
/// This is set to false when the main loop should exit.
running: bool = true,
pub fn init(core_app: *CoreApp, opts: Options) !App {
_ = opts;
// This is super weird, but we still use GLFW with GTK only so that
// we can tap into their folklore logic to get screen DPI. If we can
// figure out a reliable way to determine this ourselves, we can get
// rid of this dep.
if (!glfw.init(.{})) return error.GlfwInitFailed;
// Load our configuration
var config = try Config.load(core_app.alloc);
errdefer config.deinit();
// If we had configuration errors, then log them.
if (!config._errors.empty()) {
for (config._errors.list.items) |err| {
log.warn("configuration error: {s}", .{err.message});
}
}
// Our uniqueness ID is based on whether we're in a debug mode or not.
// In debug mode we want to be separate so we can develop Ghostty in
// Ghostty.
const uniqueness_id: ?[*c]const u8 = uniqueness_id: {
if (!config.@"gtk-single-instance") break :uniqueness_id null;
break :uniqueness_id "com.mitchellh.ghostty" ++ if (builtin.mode == .Debug) "-debug" else "";
};
// Create our GTK Application which encapsulates our process.
const app = @as(?*c.GtkApplication, @ptrCast(c.gtk_application_new(
uniqueness_id orelse null,
// GTK >= 2.74
if (@hasDecl(c, "G_APPLICATION_DEFAULT_FLAGS"))
c.G_APPLICATION_DEFAULT_FLAGS
else
c.G_APPLICATION_FLAGS_NONE,
))) orelse return error.GtkInitFailed;
errdefer c.g_object_unref(app);
_ = c.g_signal_connect_data(
app,
"activate",
c.G_CALLBACK(&activate),
core_app,
null,
G_CONNECT_DEFAULT,
);
// We don't use g_application_run, we want to manually control the
// loop so we have to do the same things the run function does:
// https://github.com/GNOME/glib/blob/a8e8b742e7926e33eb635a8edceac74cf239d6ed/gio/gapplication.c#L2533
const ctx = c.g_main_context_default() orelse return error.GtkContextFailed;
if (c.g_main_context_acquire(ctx) == 0) return error.GtkContextAcquireFailed;
errdefer c.g_main_context_release(ctx);
const gapp = @as(*c.GApplication, @ptrCast(app));
var err_: ?*c.GError = null;
if (c.g_application_register(
gapp,
null,
@ptrCast(&err_),
) == 0) {
if (err_) |err| {
log.warn("error registering application: {s}", .{err.message});
c.g_error_free(err);
}
return error.GtkApplicationRegisterFailed;
}
// This just calls the "activate" signal but its part of the normal
// startup routine so we just call it:
// https://gitlab.gnome.org/GNOME/glib/-/blob/bd2ccc2f69ecfd78ca3f34ab59e42e2b462bad65/gio/gapplication.c#L2302
c.g_application_activate(gapp);
// Get our cursors
const cursor_default = c.gdk_cursor_new_from_name("default", null).?;
errdefer c.g_object_unref(cursor_default);
const cursor_ibeam = c.gdk_cursor_new_from_name("text", cursor_default).?;
errdefer c.g_object_unref(cursor_ibeam);
return .{
.core_app = core_app,
.app = app,
.config = config,
.ctx = ctx,
.cursor_default = cursor_default,
.cursor_ibeam = cursor_ibeam,
// If we are NOT the primary instance, then we never want to run.
// This means that another instance of the GTK app is running and
// our "activate" call above will open a window.
.running = c.g_application_get_is_remote(gapp) == 0,
};
}
// Terminate the application. The application will not be restarted after
// this so all global state can be cleaned up.
pub fn terminate(self: *App) void {
c.g_settings_sync();
while (c.g_main_context_iteration(self.ctx, 0) != 0) {}
c.g_main_context_release(self.ctx);
c.g_object_unref(self.app);
c.g_object_unref(self.cursor_ibeam);
c.g_object_unref(self.cursor_default);
self.config.deinit();
glfw.terminate();
}
/// Reload the configuration. This should return the new configuration.
/// The old value can be freed immediately at this point assuming a
/// successful return.
///
/// The returned pointer value is only valid for a stable self pointer.
pub fn reloadConfig(self: *App) !?*const Config {
// Load our configuration
var config = try Config.load(self.core_app.alloc);
errdefer config.deinit();
// Update the existing config, be sure to clean up the old one.
self.config.deinit();
self.config = config;
return &self.config;
}
pub fn wakeup(self: App) void {
_ = self;
c.g_main_context_wakeup(null);
}
/// Run the event loop. This doesn't return until the app exits.
pub fn run(self: *App) !void {
while (self.running) {
_ = c.g_main_context_iteration(self.ctx, 1);
// Tick the terminal app
const should_quit = try self.core_app.tick(self);
if (should_quit) self.quit();
}
}
/// Close the given surface.
pub fn redrawSurface(self: *App, surface: *Surface) void {
_ = self;
surface.invalidate();
}
pub fn newWindow(self: *App, parent_: ?*CoreSurface) !void {
const alloc = self.core_app.alloc;
// Allocate a fixed pointer for our window. We try to minimize
// allocations but windows and other GUI requirements are so minimal
// compared to the steady-state terminal operation so we use heap
// allocation for this.
//
// The allocation is owned by the GtkWindow created. It will be
// freed when the window is closed.
var window = try alloc.create(Window);
errdefer alloc.destroy(window);
try window.init(self);
// Add our initial tab
try window.newTab(parent_);
}
fn quit(self: *App) void {
// If we have no toplevel windows, then we're done.
const list = c.gtk_window_list_toplevels();
if (list == null) {
self.running = false;
return;
}
c.g_list_free(list);
// If we have windows, then we want to confirm that we want to exit.
const alert = c.gtk_message_dialog_new(
null,
c.GTK_DIALOG_MODAL,
c.GTK_MESSAGE_QUESTION,
c.GTK_BUTTONS_YES_NO,
"Quit Ghostty?",
);
c.gtk_message_dialog_format_secondary_text(
@ptrCast(alert),
"All active terminal sessions will be terminated.",
);
// We want the "yes" to appear destructive.
const yes_widget = c.gtk_dialog_get_widget_for_response(
@ptrCast(alert),
c.GTK_RESPONSE_YES,
);
c.gtk_widget_add_css_class(yes_widget, "destructive-action");
// We want the "no" to be the default action
c.gtk_dialog_set_default_response(
@ptrCast(alert),
c.GTK_RESPONSE_NO,
);
_ = c.g_signal_connect_data(alert, "response", c.G_CALLBACK(&gtkQuitConfirmation), self, null, G_CONNECT_DEFAULT);
c.gtk_widget_show(alert);
}
fn gtkQuitConfirmation(
alert: *c.GtkMessageDialog,
response: c.gint,
ud: ?*anyopaque,
) callconv(.C) void {
_ = ud;
// Close the alert window
c.gtk_window_destroy(@ptrCast(alert));
// If we didn't confirm then we're done
if (response != c.GTK_RESPONSE_YES) return;
// Force close all open windows
const list = c.gtk_window_list_toplevels();
defer c.g_list_free(list);
c.g_list_foreach(list, struct {
fn callback(data: c.gpointer, _: c.gpointer) callconv(.C) void {
const ptr = data orelse return;
const widget: *c.GtkWidget = @ptrCast(@alignCast(ptr));
const window: *c.GtkWindow = @ptrCast(widget);
c.gtk_window_destroy(window);
}
}.callback, null);
}
/// This is called by the "activate" signal. This is sent on program
/// startup and also when a secondary instance launches and requests
/// a new window.
fn activate(app: *c.GtkApplication, ud: ?*anyopaque) callconv(.C) void {
_ = app;
const core_app: *CoreApp = @ptrCast(@alignCast(ud orelse return));
// Queue a new window
_ = core_app.mailbox.push(.{
.new_window = .{},
}, .{ .forever = {} });
}
};
/// The state for a single, real GTK window.
const Window = struct {
const TAB_CLOSE_PAGE = "tab_close_page";
const TAB_CLOSE_SURFACE = "tab_close_surface";
app: *App,
/// Our window
window: *c.GtkWindow,
/// The notebook (tab grouping) for this window.
notebook: *c.GtkNotebook,
/// The background CSS for the window (if any).
css_window_background: ?[]u8 = null,
/// The resources directory for the icon (if any).
icon_search_dir: ?[:0]const u8 = null,
pub fn init(self: *Window, app: *App) !void {
// Set up our own state
self.* = .{
.app = app,
.window = undefined,
.notebook = undefined,
};
// Create the window
const window = c.gtk_application_window_new(app.app);
const gtk_window: *c.GtkWindow = @ptrCast(window);
errdefer c.gtk_window_destroy(gtk_window);
self.window = gtk_window;
c.gtk_window_set_title(gtk_window, "Ghostty");
c.gtk_window_set_default_size(gtk_window, 1000, 600);
// If we don't have the icon then we'll try to add our resources dir
// to the search path and see if we can find it there.
const icon_name = "com.mitchellh.ghostty";
const icon_theme = c.gtk_icon_theme_get_for_display(c.gtk_widget_get_display(window));
if (c.gtk_icon_theme_has_icon(icon_theme, icon_name) == 0) icon: {
const base = self.app.core_app.resources_dir orelse {
log.info("gtk app missing Ghostty icon and no resources dir detected", .{});
log.info("gtk app will not have Ghostty icon", .{});
break :icon;
};
// Note that this method for adding the icon search path is
// a fallback mechanism. The recommended mechanism is the
// Freedesktop Icon Theme Specification. We distribute a ".desktop"
// file in zig-out/share that should be installed to the proper
// place.
const dir = try std.fmt.allocPrintZ(app.core_app.alloc, "{s}/icons", .{base});
self.icon_search_dir = dir;
c.gtk_icon_theme_add_search_path(icon_theme, dir.ptr);
if (c.gtk_icon_theme_has_icon(icon_theme, icon_name) == 0) {
log.warn("Ghostty icon for gtk app not found", .{});
}
}
c.gtk_window_set_icon_name(gtk_window, icon_name);
// Apply background opacity if we have it
if (app.config.@"background-opacity" < 1) {
c.gtk_widget_set_opacity(@ptrCast(window), app.config.@"background-opacity");
}
// Hide window decoration if configured. This has to happen before
// `gtk_widget_show`.
if (!app.config.@"window-decoration") {
c.gtk_window_set_decorated(gtk_window, 0);
}
c.gtk_widget_show(window);
_ = c.g_signal_connect_data(window, "close-request", c.G_CALLBACK(&gtkCloseRequest), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(window, "destroy", c.G_CALLBACK(&gtkDestroy), self, null, G_CONNECT_DEFAULT);
// Create a notebook to hold our tabs.
const notebook_widget = c.gtk_notebook_new();
const notebook: *c.GtkNotebook = @ptrCast(notebook_widget);
self.notebook = notebook;
c.gtk_notebook_set_tab_pos(notebook, c.GTK_POS_TOP);
c.gtk_notebook_set_scrollable(notebook, 1);
c.gtk_notebook_set_show_tabs(notebook, 0);
c.gtk_notebook_set_show_border(notebook, 0);
// Create our add button for new tabs
const notebook_add_btn = c.gtk_button_new_from_icon_name("list-add-symbolic");
c.gtk_notebook_set_action_widget(notebook, notebook_add_btn, c.GTK_PACK_END);
_ = c.g_signal_connect_data(notebook_add_btn, "clicked", c.G_CALLBACK(&gtkTabAddClick), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(notebook, "switch-page", c.G_CALLBACK(&gtkSwitchPage), self, null, G_CONNECT_DEFAULT);
// The notebook is our main child
c.gtk_window_set_child(gtk_window, notebook_widget);
}
pub fn deinit(self: *Window) void {
if (self.css_window_background) |ptr| self.app.core_app.alloc.free(ptr);
if (self.icon_search_dir) |ptr| self.app.core_app.alloc.free(ptr);
}
/// Add a new tab to this window.
pub fn newTab(self: *Window, parent_: ?*CoreSurface) !void {
// Grab a surface allocation we'll need it later.
var surface = try self.app.core_app.alloc.create(Surface);
errdefer self.app.core_app.alloc.destroy(surface);
// Inherit the parent's font size if we are configured to.
const font_size: ?font.face.DesiredSize = font_size: {
if (!self.app.config.@"window-inherit-font-size") break :font_size null;
const parent = parent_ orelse break :font_size null;
break :font_size parent.font_size;
};
// Build our tab label
const label_box_widget = c.gtk_box_new(c.GTK_ORIENTATION_HORIZONTAL, 0);
const label_box = @as(*c.GtkBox, @ptrCast(label_box_widget));
const label_text = c.gtk_label_new("Ghostty");
c.gtk_box_append(label_box, label_text);
const label_close_widget = c.gtk_button_new_from_icon_name("window-close");
const label_close = @as(*c.GtkButton, @ptrCast(label_close_widget));
c.gtk_button_set_has_frame(label_close, 0);
c.gtk_box_append(label_box, label_close_widget);
_ = c.g_signal_connect_data(label_close, "clicked", c.G_CALLBACK(&gtkTabCloseClick), self, null, G_CONNECT_DEFAULT);
// Initialize the GtkGLArea and attach it to our surface.
// The surface starts in the "unrealized" state because we have to
// wait for the "realize" callback from GTK to know that the OpenGL
// context is ready. See Surface docs for more info.
const gl_area = c.gtk_gl_area_new();
try surface.init(self.app, .{
.window = self,
.gl_area = @ptrCast(gl_area),
.title_label = @ptrCast(label_text),
.font_size = font_size,
});
errdefer surface.deinit();
const page_idx = c.gtk_notebook_append_page(self.notebook, gl_area, label_box_widget);
if (page_idx < 0) {
log.warn("failed to add surface to notebook", .{});
return error.GtkAppendPageFailed;
}
// Tab settings
c.gtk_notebook_set_tab_reorderable(self.notebook, gl_area, 1);
// If we have multiple tabs, show the tab bar.
if (c.gtk_notebook_get_n_pages(self.notebook) > 1) {
c.gtk_notebook_set_show_tabs(self.notebook, 1);
}
// Set the userdata of the close button so it points to this page.
const page = c.gtk_notebook_get_page(self.notebook, gl_area) orelse
return error.GtkNotebookPageNotFound;
c.g_object_set_data(@ptrCast(label_close), TAB_CLOSE_SURFACE, surface);
c.g_object_set_data(@ptrCast(label_close), TAB_CLOSE_PAGE, page);
c.g_object_set_data(@ptrCast(gl_area), TAB_CLOSE_PAGE, page);
// Switch to the new tab
c.gtk_notebook_set_current_page(self.notebook, page_idx);
// We need to grab focus after it is added to the window. When
// creating a window we want to always focus on the widget.
const widget = @as(*c.GtkWidget, @ptrCast(gl_area));
_ = c.gtk_widget_grab_focus(widget);
}
/// Close the tab for the given notebook page. This will automatically
/// handle closing the window if there are no more tabs.
fn closeTab(self: *Window, page: *c.GtkNotebookPage) void {
// Remove the page
const page_idx = getNotebookPageIndex(page);
c.gtk_notebook_remove_page(self.notebook, page_idx);
const remaining = c.gtk_notebook_get_n_pages(self.notebook);
switch (remaining) {
// If we have no more tabs we close the window
0 => c.gtk_window_destroy(self.window),
// If we have one more tab we hide the tab bar
1 => c.gtk_notebook_set_show_tabs(self.notebook, 0),
else => {},
}
// If we have remaining tabs, we need to make sure we grab focus.
if (remaining > 0) self.focusCurrentTab();
}
/// Close the surface. This surface must be definitely part of this window.
fn closeSurface(self: *Window, surface: *Surface) void {
assert(surface.window == self);
self.closeTab(getNotebookPage(@ptrCast(surface.gl_area)) orelse return);
}
/// Go to the previous tab for a surface.
fn gotoPreviousTab(self: *Window, surface: *Surface) void {
const page = getNotebookPage(@ptrCast(surface.gl_area)) orelse return;
const page_idx = getNotebookPageIndex(page);
// The next index is the previous or we wrap around.
const next_idx = if (page_idx > 0) page_idx - 1 else next_idx: {
const max = c.gtk_notebook_get_n_pages(self.notebook);
break :next_idx max -| 1;
};
// Do nothing if we have one tab
if (next_idx == page_idx) return;
c.gtk_notebook_set_current_page(self.notebook, next_idx);
self.focusCurrentTab();
}
/// Go to the next tab for a surface.
fn gotoNextTab(self: *Window, surface: *Surface) void {
const page = getNotebookPage(@ptrCast(surface.gl_area)) orelse return;
const page_idx = getNotebookPageIndex(page);
const max = c.gtk_notebook_get_n_pages(self.notebook) -| 1;
const next_idx = if (page_idx < max) page_idx + 1 else 0;
if (next_idx == page_idx) return;
c.gtk_notebook_set_current_page(self.notebook, next_idx);
self.focusCurrentTab();
}
/// Go to the specific tab index.
fn gotoTab(self: *Window, n: usize) void {
if (n == 0) return;
const max = c.gtk_notebook_get_n_pages(self.notebook);
const page_idx = std.math.cast(c_int, n - 1) orelse return;
if (page_idx < max) {
c.gtk_notebook_set_current_page(self.notebook, page_idx);
self.focusCurrentTab();
}
}
/// Toggle fullscreen for this window.
fn toggleFullscreen(self: *Window, _: configpkg.NonNativeFullscreen) void {
const is_fullscreen = c.gtk_window_is_fullscreen(self.window);
if (is_fullscreen == 0) {
c.gtk_window_fullscreen(self.window);
} else {
c.gtk_window_unfullscreen(self.window);
}
}
/// Grabs focus on the currently selected tab.
fn focusCurrentTab(self: *Window) void {
const page_idx = c.gtk_notebook_get_current_page(self.notebook);
const widget = c.gtk_notebook_get_nth_page(self.notebook, page_idx);
_ = c.gtk_widget_grab_focus(widget);
}
fn gtkTabAddClick(_: *c.GtkButton, ud: ?*anyopaque) callconv(.C) void {
const self = userdataSelf(ud.?);
const parent = self.app.core_app.focusedSurface();
self.newTab(parent) catch |err| {
log.warn("error adding new tab: {}", .{err});
return;
};
}
fn gtkTabCloseClick(btn: *c.GtkButton, ud: ?*anyopaque) callconv(.C) void {
_ = ud;
const surface: *Surface = @ptrCast(@alignCast(
c.g_object_get_data(@ptrCast(btn), TAB_CLOSE_SURFACE) orelse return,
));
surface.core_surface.close();
}
fn gtkSwitchPage(_: *c.GtkNotebook, page: *c.GtkWidget, _: usize, ud: ?*anyopaque) callconv(.C) void {
const self = userdataSelf(ud.?);
const gtk_label_box = @as(*c.GtkWidget, @ptrCast(c.gtk_notebook_get_tab_label(self.notebook, page)));
const gtk_label = @as(*c.GtkLabel, @ptrCast(c.gtk_widget_get_first_child(gtk_label_box)));
const label_text = c.gtk_label_get_text(gtk_label);
c.gtk_window_set_title(self.window, label_text);
}
fn gtkCloseRequest(v: *c.GtkWindow, ud: ?*anyopaque) callconv(.C) bool {
_ = v;
log.debug("window close request", .{});
const self = userdataSelf(ud.?);
// Setup our basic message
const alert = c.gtk_message_dialog_new(
self.window,
c.GTK_DIALOG_MODAL,
c.GTK_MESSAGE_QUESTION,
c.GTK_BUTTONS_YES_NO,
"Close this window?",
);
c.gtk_message_dialog_format_secondary_text(
@ptrCast(alert),
"All terminal sessions in this window will be terminated.",
);
// We want the "yes" to appear destructive.
const yes_widget = c.gtk_dialog_get_widget_for_response(
@ptrCast(alert),
c.GTK_RESPONSE_YES,
);
c.gtk_widget_add_css_class(yes_widget, "destructive-action");
// We want the "no" to be the default action
c.gtk_dialog_set_default_response(
@ptrCast(alert),
c.GTK_RESPONSE_NO,
);
_ = c.g_signal_connect_data(alert, "response", c.G_CALLBACK(&gtkCloseConfirmation), self, null, G_CONNECT_DEFAULT);
c.gtk_widget_show(alert);
return true;
}
fn gtkCloseConfirmation(
alert: *c.GtkMessageDialog,
response: c.gint,
ud: ?*anyopaque,
) callconv(.C) void {
c.gtk_window_destroy(@ptrCast(alert));
if (response == c.GTK_RESPONSE_YES) {
const self = userdataSelf(ud.?);
c.gtk_window_destroy(self.window);
}
}
/// "destroy" signal for the window
fn gtkDestroy(v: *c.GtkWidget, ud: ?*anyopaque) callconv(.C) void {
_ = v;
log.debug("window destroy", .{});
const self = userdataSelf(ud.?);
const alloc = self.app.core_app.alloc;
self.deinit();
alloc.destroy(self);
}
/// Get the GtkNotebookPage for the given object. You must be sure the
/// object has the notebook page property set.
fn getNotebookPage(obj: *c.GObject) ?*c.GtkNotebookPage {
return @ptrCast(@alignCast(
c.g_object_get_data(obj, TAB_CLOSE_PAGE) orelse return null,
));
}
fn getNotebookPageIndex(page: *c.GtkNotebookPage) c_int {
var value: c.GValue = std.mem.zeroes(c.GValue);
defer c.g_value_unset(&value);
_ = c.g_value_init(&value, c.G_TYPE_INT);
c.g_object_get_property(
@ptrCast(@alignCast(page)),
"position",
&value,
);
return c.g_value_get_int(&value);
}
fn userdataSelf(ud: *anyopaque) *Window {
return @ptrCast(@alignCast(ud));
}
};
pub const Surface = struct {
/// This is detected by the OpenGL renderer to move to a single-threaded
/// draw operation. This basically puts locks around our draw path.
pub const opengl_single_threaded_draw = true;
pub const Options = struct {
/// The window that this surface is attached to.
window: *Window,
/// The GL area that this surface should draw to.
gl_area: *c.GtkGLArea,
/// The label to use as the title of this surface. This will be
/// modified with setTitle.
title_label: ?*c.GtkLabel = null,
/// A font size to set on the surface once it is initialized.
font_size: ?font.face.DesiredSize = null,
};
/// Where the title of this surface will go.
const Title = union(enum) {
none: void,
label: *c.GtkLabel,
};
/// Whether the surface has been realized or not yet. When a surface is
/// "realized" it means that the OpenGL context is ready and the core
/// surface has been initialized.
realized: bool = false,
/// The app we're part of
app: *App,
/// The window we're part of
window: *Window,
/// Our GTK area
gl_area: *c.GtkGLArea,
/// Our title label (if there is one).
title: Title,
/// The core surface backing this surface
core_surface: CoreSurface,
/// The font size to use for this surface once realized.
font_size: ?font.face.DesiredSize = null,
/// Cached metrics about the surface from GTK callbacks.
size: apprt.SurfaceSize,
cursor_pos: apprt.CursorPos,
clipboard: c.GValue,
/// Key input states. See gtkKeyPressed for detailed descriptions.
in_keypress: bool = false,
im_context: *c.GtkIMContext,
im_composing: bool = false,
im_buf: [128]u8 = undefined,
im_len: u7 = 0,
pub fn init(self: *Surface, app: *App, opts: Options) !void {
const widget = @as(*c.GtkWidget, @ptrCast(opts.gl_area));
c.gtk_gl_area_set_required_version(opts.gl_area, 3, 3);
c.gtk_gl_area_set_has_stencil_buffer(opts.gl_area, 0);
c.gtk_gl_area_set_has_depth_buffer(opts.gl_area, 0);
c.gtk_gl_area_set_use_es(opts.gl_area, 0);
// Key event controller will tell us about raw keypress events.
const ec_key = c.gtk_event_controller_key_new();
errdefer c.g_object_unref(ec_key);
c.gtk_widget_add_controller(widget, ec_key);
errdefer c.gtk_widget_remove_controller(widget, ec_key);
// Focus controller will tell us about focus enter/exit events
const ec_focus = c.gtk_event_controller_focus_new();
errdefer c.g_object_unref(ec_focus);
c.gtk_widget_add_controller(widget, ec_focus);
errdefer c.gtk_widget_remove_controller(widget, ec_focus);
// Create a second key controller so we can receive the raw
// key-press events BEFORE the input method gets them.
const ec_key_press = c.gtk_event_controller_key_new();
errdefer c.g_object_unref(ec_key_press);
c.gtk_widget_add_controller(widget, ec_key_press);
errdefer c.gtk_widget_remove_controller(widget, ec_key_press);
// Clicks
const gesture_click = c.gtk_gesture_click_new();
errdefer c.g_object_unref(gesture_click);
c.gtk_gesture_single_set_button(@ptrCast(gesture_click), 0);
c.gtk_widget_add_controller(widget, @ptrCast(gesture_click));
// Mouse movement
const ec_motion = c.gtk_event_controller_motion_new();
errdefer c.g_object_unref(ec_motion);
c.gtk_widget_add_controller(widget, ec_motion);
// Scroll events
const ec_scroll = c.gtk_event_controller_scroll_new(
c.GTK_EVENT_CONTROLLER_SCROLL_BOTH_AXES |
c.GTK_EVENT_CONTROLLER_SCROLL_DISCRETE,
);
errdefer c.g_object_unref(ec_scroll);
c.gtk_widget_add_controller(widget, ec_scroll);
// The input method context that we use to translate key events into
// characters. This doesn't have an event key controller attached because
// we call it manually from our own key controller.
const im_context = c.gtk_im_multicontext_new();
errdefer c.g_object_unref(im_context);
// The GL area has to be focusable so that it can receive events
c.gtk_widget_set_focusable(widget, 1);
c.gtk_widget_set_focus_on_click(widget, 1);
// When we're over the widget, set the cursor to the ibeam
c.gtk_widget_set_cursor(widget, app.cursor_ibeam);
// Build our result
self.* = .{
.app = app,
.window = opts.window,
.gl_area = opts.gl_area,
.title = if (opts.title_label) |label| .{
.label = label,
} else .{ .none = {} },
.core_surface = undefined,
.font_size = opts.font_size,
.size = .{ .width = 800, .height = 600 },
.cursor_pos = .{ .x = 0, .y = 0 },
.clipboard = std.mem.zeroes(c.GValue),
.im_context = im_context,
};
errdefer self.* = undefined;
// GL events
_ = c.g_signal_connect_data(opts.gl_area, "realize", c.G_CALLBACK(&gtkRealize), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(opts.gl_area, "destroy", c.G_CALLBACK(&gtkDestroy), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(opts.gl_area, "render", c.G_CALLBACK(&gtkRender), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(opts.gl_area, "resize", c.G_CALLBACK(&gtkResize), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_key_press, "key-pressed", c.G_CALLBACK(&gtkKeyPressed), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_key_press, "key-released", c.G_CALLBACK(&gtkKeyReleased), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_focus, "enter", c.G_CALLBACK(&gtkFocusEnter), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_focus, "leave", c.G_CALLBACK(&gtkFocusLeave), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(gesture_click, "pressed", c.G_CALLBACK(&gtkMouseDown), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(gesture_click, "released", c.G_CALLBACK(&gtkMouseUp), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_motion, "motion", c.G_CALLBACK(&gtkMouseMotion), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_scroll, "scroll", c.G_CALLBACK(&gtkMouseScroll), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(im_context, "preedit-start", c.G_CALLBACK(&gtkInputPreeditStart), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(im_context, "preedit-changed", c.G_CALLBACK(&gtkInputPreeditChanged), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(im_context, "preedit-end", c.G_CALLBACK(&gtkInputPreeditEnd), self, null, G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(im_context, "commit", c.G_CALLBACK(&gtkInputCommit), self, null, G_CONNECT_DEFAULT);
}
fn realize(self: *Surface) !void {
// Add ourselves to the list of surfaces on the app.
try self.app.core_app.addSurface(self);
errdefer self.app.core_app.deleteSurface(self);
// Get our new surface config
var config = try apprt.surface.newConfig(self.app.core_app, &self.app.config);
defer config.deinit();
// Initialize our surface now that we have the stable pointer.
try self.core_surface.init(
self.app.core_app.alloc,
&config,
self.app.core_app,
.{ .rt_app = self.app, .mailbox = &self.app.core_app.mailbox },
self,
);
errdefer self.core_surface.deinit();
// If we have a font size we want, set that now
if (self.font_size) |size| {
self.core_surface.setFontSize(size);
}
// Note we're realized
self.realized = true;
}
pub fn deinit(self: *Surface) void {
// We don't allocate anything if we aren't realized.
if (!self.realized) return;
// Remove ourselves from the list of known surfaces in the app.
self.app.core_app.deleteSurface(self);
// Clean up our core surface so that all the rendering and IO stop.
self.core_surface.deinit();
self.core_surface = undefined;
// Free all our GTK stuff
c.g_object_unref(self.im_context);
c.g_value_unset(&self.clipboard);
}
fn render(self: *Surface) !void {
try self.core_surface.renderer.draw();
}
/// Invalidate the surface so that it forces a redraw on the next tick.
fn invalidate(self: *Surface) void {
c.gtk_gl_area_queue_render(self.gl_area);
}
/// Close this surface.
pub fn close(self: *Surface, processActive: bool) void {
if (!processActive) {
self.window.closeSurface(self);
return;
}
// Setup our basic message
const alert = c.gtk_message_dialog_new(
self.window.window,
c.GTK_DIALOG_MODAL,
c.GTK_MESSAGE_QUESTION,
c.GTK_BUTTONS_YES_NO,
"Close this terminal?",
);
c.gtk_message_dialog_format_secondary_text(
@ptrCast(alert),
"There is still a running process in the terminal. " ++
"Closing the terminal will kill this process. " ++
"Are you sure you want to close the terminal?\n\n" ++
"Click 'No' to cancel and return to your terminal.",
);
// We want the "yes" to appear destructive.
const yes_widget = c.gtk_dialog_get_widget_for_response(
@ptrCast(alert),
c.GTK_RESPONSE_YES,
);
c.gtk_widget_add_css_class(yes_widget, "destructive-action");
// We want the "no" to be the default action
c.gtk_dialog_set_default_response(
@ptrCast(alert),
c.GTK_RESPONSE_NO,
);
_ = c.g_signal_connect_data(alert, "response", c.G_CALLBACK(&gtkCloseConfirmation), self, null, G_CONNECT_DEFAULT);
c.gtk_widget_show(alert);
}
pub fn toggleFullscreen(self: *Surface, mac_non_native: configpkg.NonNativeFullscreen) void {
self.window.toggleFullscreen(mac_non_native);
}
pub fn newTab(self: *Surface) !void {
try self.window.newTab(&self.core_surface);
}
pub fn gotoPreviousTab(self: *Surface) void {
self.window.gotoPreviousTab(self);
}
pub fn gotoNextTab(self: *Surface) void {
self.window.gotoNextTab(self);
}
pub fn gotoTab(self: *Surface, n: usize) void {
self.window.gotoTab(n);
}
pub fn setShouldClose(self: *Surface) void {
_ = self;
}
pub fn shouldClose(self: *const Surface) bool {
_ = self;
return false;
}
pub fn getContentScale(self: *const Surface) !apprt.ContentScale {
_ = self;
const monitor = glfw.Monitor.getPrimary() orelse return error.NoMonitor;
const scale = monitor.getContentScale();
return apprt.ContentScale{ .x = scale.x_scale, .y = scale.y_scale };
}
pub fn getSize(self: *const Surface) !apprt.SurfaceSize {
return self.size;
}
pub fn setSizeLimits(self: *Surface, min: apprt.SurfaceSize, max_: ?apprt.SurfaceSize) !void {
_ = self;
_ = min;
_ = max_;
}
pub fn setTitle(self: *Surface, slice: [:0]const u8) !void {
switch (self.title) {
.none => {},
.label => |label| {
c.gtk_label_set_text(label, slice.ptr);
const widget = @as(*c.GtkWidget, @ptrCast(self.gl_area));
if (c.gtk_widget_is_focus(widget) == 1) {
c.gtk_window_set_title(self.window.window, c.gtk_label_get_text(label));
}
},
}
// const root = c.gtk_widget_get_root(@ptrCast(
// *c.GtkWidget,
// self.gl_area,
// ));
}
pub fn getClipboardString(
self: *Surface,
clipboard_type: apprt.Clipboard,
) ![:0]const u8 {
const clipboard = getClipboard(@ptrCast(self.gl_area), clipboard_type);
const content = c.gdk_clipboard_get_content(clipboard) orelse {
// On my machine, this NEVER works, so we fallback to glfw's
// implementation... I believe this never works because we need to
// use the async mechanism with GTK but that doesn't play nice
// with what our core expects.
log.debug("no GTK clipboard contents, falling back to glfw", .{});
return switch (clipboard_type) {
.standard => glfw.getClipboardString() orelse glfw.mustGetErrorCode(),
.selection => value: {
const raw = glfw_native.getX11SelectionString() orelse
return glfw.mustGetErrorCode();
break :value std.mem.span(raw);
},
};
};
c.g_value_unset(&self.clipboard);
_ = c.g_value_init(&self.clipboard, c.G_TYPE_STRING);
if (c.gdk_content_provider_get_value(content, &self.clipboard, null) == 0) {
return "";
}
const ptr = c.g_value_get_string(&self.clipboard);
return std.mem.sliceTo(ptr, 0);
}
pub fn setClipboardString(
self: *const Surface,
val: [:0]const u8,
clipboard_type: apprt.Clipboard,
) !void {
const clipboard = getClipboard(@ptrCast(self.gl_area), clipboard_type);
c.gdk_clipboard_set_text(clipboard, val.ptr);
}
fn getClipboard(widget: *c.GtkWidget, clipboard: apprt.Clipboard) ?*c.GdkClipboard {
return switch (clipboard) {
.standard => c.gtk_widget_get_clipboard(widget),
.selection => c.gtk_widget_get_primary_clipboard(widget),
};
}
pub fn getCursorPos(self: *const Surface) !apprt.CursorPos {
return self.cursor_pos;
}
fn gtkRealize(area: *c.GtkGLArea, ud: ?*anyopaque) callconv(.C) void {
log.debug("gl surface realized", .{});
// We need to make the context current so we can call GL functions.
c.gtk_gl_area_make_current(area);
if (c.gtk_gl_area_get_error(area)) |err| {
log.err("surface failed to realize: {s}", .{err.*.message});
return;
}
// realize means that our OpenGL context is ready, so we can now
// initialize the core surface which will setup the renderer.
const self = userdataSelf(ud.?);
self.realize() catch |err| {
// TODO: we need to destroy the GL area here.
log.err("surface failed to realize: {}", .{err});
return;
};
}
/// render signal
fn gtkRender(area: *c.GtkGLArea, ctx: *c.GdkGLContext, ud: ?*anyopaque) callconv(.C) c.gboolean {
_ = area;
_ = ctx;
const self = userdataSelf(ud.?);
self.render() catch |err| {
log.err("surface failed to render: {}", .{err});
return 0;
};
return 1;
}
/// render signal
fn gtkResize(area: *c.GtkGLArea, width: c.gint, height: c.gint, ud: ?*anyopaque) callconv(.C) void {
const self = userdataSelf(ud.?);
// Some debug output to help understand what GTK is telling us.
{
const scale_factor = scale: {
const widget = @as(*c.GtkWidget, @ptrCast(area));
break :scale c.gtk_widget_get_scale_factor(widget);
};
const window_scale_factor = scale: {
const window = @as(*c.GtkNative, @ptrCast(self.window.window));
const gdk_surface = c.gtk_native_get_surface(window);
break :scale c.gdk_surface_get_scale_factor(gdk_surface);
};
log.debug("gl resize width={} height={} scale={} window_scale={}", .{
width,
height,
scale_factor,
window_scale_factor,
});
}
self.size = .{
.width = @intCast(width),
.height = @intCast(height),
};
// Call the primary callback.
if (self.realized) {
self.core_surface.sizeCallback(self.size) catch |err| {
log.err("error in size callback err={}", .{err});
return;
};
}
}
/// "destroy" signal for surface
fn gtkDestroy(v: *c.GtkWidget, ud: ?*anyopaque) callconv(.C) void {
_ = v;
log.debug("gl destroy", .{});
const self = userdataSelf(ud.?);
const alloc = self.app.core_app.alloc;
self.deinit();
alloc.destroy(self);
}
fn gtkMouseDown(
gesture: *c.GtkGestureClick,
_: c.gint,
_: c.gdouble,
_: c.gdouble,
ud: ?*anyopaque,
) callconv(.C) void {
const self = userdataSelf(ud.?);
const button = translateMouseButton(c.gtk_gesture_single_get_current_button(@ptrCast(gesture)));
// If we don't have focus, grab it.
const gl_widget = @as(*c.GtkWidget, @ptrCast(self.gl_area));
if (c.gtk_widget_has_focus(gl_widget) == 0) {
_ = c.gtk_widget_grab_focus(gl_widget);
}
self.core_surface.mouseButtonCallback(.press, button, .{}) catch |err| {
log.err("error in key callback err={}", .{err});
return;
};
}
fn gtkMouseUp(
gesture: *c.GtkGestureClick,
_: c.gint,
_: c.gdouble,
_: c.gdouble,
ud: ?*anyopaque,
) callconv(.C) void {
const button = translateMouseButton(c.gtk_gesture_single_get_current_button(@ptrCast(gesture)));
const self = userdataSelf(ud.?);
self.core_surface.mouseButtonCallback(.release, button, .{}) catch |err| {
log.err("error in key callback err={}", .{err});
return;
};
}
fn gtkMouseMotion(
_: *c.GtkEventControllerMotion,
x: c.gdouble,
y: c.gdouble,
ud: ?*anyopaque,
) callconv(.C) void {
const self = userdataSelf(ud.?);
self.cursor_pos = .{
.x = @max(@as(f32, 0), @as(f32, @floatCast(x))),
.y = @floatCast(y),
};
self.core_surface.cursorPosCallback(self.cursor_pos) catch |err| {
log.err("error in cursor pos callback err={}", .{err});
return;
};
}
fn gtkMouseScroll(
_: *c.GtkEventControllerScroll,
x: c.gdouble,
y: c.gdouble,
ud: ?*anyopaque,
) callconv(.C) void {
const self = userdataSelf(ud.?);
// GTK doesn't support any of the scroll mods.
const scroll_mods: input.ScrollMods = .{};
self.core_surface.scrollCallback(x, y * -1, scroll_mods) catch |err| {
log.err("error in scroll callback err={}", .{err});
return;
};
}
fn gtkKeyPressed(
ec_key: *c.GtkEventControllerKey,
keyval: c.guint,
keycode: c.guint,
gtk_mods: c.GdkModifierType,
ud: ?*anyopaque,
) callconv(.C) c.gboolean {
return if (keyEvent(.press, ec_key, keyval, keycode, gtk_mods, ud)) 1 else 0;
}
fn gtkKeyReleased(
ec_key: *c.GtkEventControllerKey,
keyval: c.guint,
keycode: c.guint,
state: c.GdkModifierType,
ud: ?*anyopaque,
) callconv(.C) c.gboolean {
return if (keyEvent(.release, ec_key, keyval, keycode, state, ud)) 1 else 0;
}
/// Key press event. This is where we do ALL of our key handling,
/// translation to keyboard layouts, dead key handling, etc. Key handling
/// is complicated so this comment will explain what's going on.
///
/// At a high level, we want to construct an `input.KeyEvent` and
/// pass that to `keyCallback`. At a low level, this is more complicated
/// than it appears because we need to construct all of this information
/// and its not given to us.
///
/// For press events, we run the keypress through the input method context
/// in order to determine if we're in a dead key state, completed unicode
/// char, etc. This all happens through various callbacks: preedit, commit,
/// etc. These inspect "in_keypress" if they have to and set some instance
/// state.
///
/// We then take all of the information in order to determine if we have
/// a unicode character or if we have to map the keyval to a code to
/// get the underlying logical key, etc.
///
/// Finally, we can emit the keyCallback.
///
/// Note we ALSO have an IMContext attached directly to the widget
/// which can emit preedit and commit callbacks. But, if we're not
/// in a keypress, we let those automatically work.
fn keyEvent(
action: input.Action,
ec_key: *c.GtkEventControllerKey,
keyval: c.guint,
keycode: c.guint,
gtk_mods: c.GdkModifierType,
ud: ?*anyopaque,
) bool {
const self = userdataSelf(ud.?);
const mods = translateMods(gtk_mods);
const keyval_unicode = c.gdk_keyval_to_unicode(keyval);
const event = c.gtk_event_controller_get_current_event(@ptrCast(ec_key));
// Get the unshifted unicode value of the keyval. This is used
// by the Kitty keyboard protocol.
const keyval_unicode_unshifted: u21 = unshifted: {
var n: c_int = undefined;
var keys: [*c]c.GdkKeymapKey = undefined;
var keyvals: [*c]c.guint = undefined;
if (c.gdk_display_map_keycode(
c.gdk_event_get_display(event),
keycode,
&keys,
&keyvals,
&n,
) == 0) break :unshifted 0;
defer c.g_free(keys);
defer c.g_free(keyvals);
for (keys[0..@intCast(n)], 0..) |key, i| {
if (key.group == 0 and key.level == 0) {
break :unshifted @intCast(c.gdk_keyval_to_unicode(keyvals[i]));
}
}
break :unshifted 0;
};
// We always reset our committed text when ending a keypress so that
// future keypresses don't think we have a commit event.
defer self.im_len = 0;
// We only want to send the event through the IM context if we're a press
if (action == .press or action == .repeat) {
// We mark that we're in a keypress event. We use this in our
// IM commit callback to determine if we need to send a char callback
// to the core surface or not.
self.in_keypress = true;
defer self.in_keypress = false;
// Pass the event through the IM controller to handle dead key states.
// Filter is true if the event was handled by the IM controller.
_ = c.gtk_im_context_filter_keypress(self.im_context, event) != 0;
// If this is a dead key, then we're composing a character and
// we need to set our proper preedit state.
if (self.im_composing) preedit: {
const text = self.im_buf[0..self.im_len];
const view = std.unicode.Utf8View.init(text) catch |err| {
log.warn("cannot build utf8 view over input: {}", .{err});
break :preedit;
};
var it = view.iterator();
const cp: u21 = it.nextCodepoint() orelse 0;
self.core_surface.preeditCallback(cp) catch |err| {
log.err("error in preedit callback err={}", .{err});
break :preedit;
};
} else {
// If we aren't composing, then we set our preedit to
// empty no matter what.
self.core_surface.preeditCallback(null) catch {};
}
}
// We want to get the physical unmapped key to process physical keybinds.
// (These are keybinds explicitly marked as requesting physical mapping).
const physical_key = keycode: for (input.keycodes.entries) |entry| {
if (entry.native == keycode) break :keycode entry.key;
} else .invalid;
// Get our consumed modifiers
const consumed_mods: input.Mods = consumed: {
const raw = c.gdk_key_event_get_consumed_modifiers(event);
const masked = raw & c.GDK_MODIFIER_MASK;
break :consumed translateMods(masked);
};
// If we're not in a dead key state, we want to translate our text
// to some input.Key.
const key = if (!self.im_composing) key: {
// A completed key. If the length of the key is one then we can
// attempt to translate it to a key enum and call the key
// callback. First try plain ASCII.
if (self.im_len > 0) {
if (input.Key.fromASCII(self.im_buf[0])) |key| {
break :key key;
}
}
// If that doesn't work then we try to translate they kevval..
if (keyval_unicode != 0) {
if (std.math.cast(u8, keyval_unicode)) |byte| {
if (input.Key.fromASCII(byte)) |key| {
break :key key;
}
}
}
break :key physical_key;
} else .invalid;
// log.debug("key pressed key={} keyval={x} physical_key={} composing={} text_len={} mods={}", .{
// key,
// keyval,
// physical_key,
// self.im_composing,
// self.im_len,
// mods,
// });
// If we have no UTF-8 text, we try to convert our keyval to
// a text value. We have to do this because GTK will not process
// "Ctrl+Shift+1" (on US keyboards) as "Ctrl+!" but instead as "".
// But the keyval is set correctly so we can at least extract that.
if (self.im_len == 0 and keyval_unicode > 0) {
if (std.math.cast(u21, keyval_unicode)) |cp| {
if (std.unicode.utf8Encode(cp, &self.im_buf)) |len| {
self.im_len = len;
} else |_| {}
}
}
// Invoke the core Ghostty logic to handle this input.
const consumed = self.core_surface.keyCallback(.{
.action = action,
.key = key,
.physical_key = physical_key,
.mods = mods,
.consumed_mods = consumed_mods,
.composing = self.im_composing,
.utf8 = self.im_buf[0..self.im_len],
.unshifted_codepoint = keyval_unicode_unshifted,
}) catch |err| {
log.err("error in key callback err={}", .{err});
return false;
};
// If we consume the key then we want to reset the dead key state.
if (consumed and (action == .press or action == .repeat)) {
c.gtk_im_context_reset(self.im_context);
self.core_surface.preeditCallback(null) catch {};
return true;
}
return false;
}
fn gtkInputPreeditStart(
_: *c.GtkIMContext,
ud: ?*anyopaque,
) callconv(.C) void {
//log.debug("preedit start", .{});
const self = userdataSelf(ud.?);
if (!self.in_keypress) return;
// Mark that we are now composing a string with a dead key state.
// We'll record the string in the preedit-changed callback.
self.im_composing = true;
}
fn gtkInputPreeditChanged(
ctx: *c.GtkIMContext,
ud: ?*anyopaque,
) callconv(.C) void {
const self = userdataSelf(ud.?);
if (!self.in_keypress) return;
// Get our pre-edit string that we'll use to show the user.
var buf: [*c]u8 = undefined;
_ = c.gtk_im_context_get_preedit_string(ctx, &buf, null, null);
defer c.g_free(buf);
const str = std.mem.sliceTo(buf, 0);
// Copy the preedit string into the im_buf. This is safe because
// commit will always overwrite this.
self.im_len = @intCast(@min(self.im_buf.len, str.len));
@memcpy(self.im_buf[0..self.im_len], str);
}
fn gtkInputPreeditEnd(
_: *c.GtkIMContext,
ud: ?*anyopaque,
) callconv(.C) void {
//log.debug("preedit end", .{});
const self = userdataSelf(ud.?);
if (!self.in_keypress) return;
self.im_composing = false;
self.im_len = 0;
}
fn gtkInputCommit(
_: *c.GtkIMContext,
bytes: [*:0]u8,
ud: ?*anyopaque,
) callconv(.C) void {
const self = userdataSelf(ud.?);
const str = std.mem.sliceTo(bytes, 0);
// If we're in a key event, then we want to buffer the commit so
// that we can send the proper keycallback followed by the char
// callback.
if (self.in_keypress) {
if (str.len <= self.im_buf.len) {
@memcpy(self.im_buf[0..str.len], str);
self.im_len = @intCast(str.len);
// log.debug("input commit: {x}", .{self.im_buf[0]});
} else {
log.warn("not enough buffer space for input method commit", .{});
}
return;
}
// We're not in a keypress, so this was sent from an on-screen emoji
// keyboard or someting like that. Send the characters directly to
// the surface.
_ = self.core_surface.keyCallback(.{
.action = .press,
.key = .invalid,
.physical_key = .invalid,
.mods = .{},
.consumed_mods = .{},
.composing = false,
.utf8 = str,
}) catch |err| {
log.err("error in key callback err={}", .{err});
return;
};
}
fn gtkFocusEnter(_: *c.GtkEventControllerFocus, ud: ?*anyopaque) callconv(.C) void {
const self = userdataSelf(ud.?);
self.core_surface.focusCallback(true) catch |err| {
log.err("error in focus callback err={}", .{err});
return;
};
}
fn gtkFocusLeave(_: *c.GtkEventControllerFocus, ud: ?*anyopaque) callconv(.C) void {
const self = userdataSelf(ud.?);
self.core_surface.focusCallback(false) catch |err| {
log.err("error in focus callback err={}", .{err});
return;
};
}
fn gtkCloseConfirmation(
alert: *c.GtkMessageDialog,
response: c.gint,
ud: ?*anyopaque,
) callconv(.C) void {
c.gtk_window_destroy(@ptrCast(alert));
if (response == c.GTK_RESPONSE_YES) {
const self = userdataSelf(ud.?);
self.window.closeSurface(self);
}
}
fn userdataSelf(ud: *anyopaque) *Surface {
return @ptrCast(@alignCast(ud));
}
};
fn translateMouseButton(button: c.guint) input.MouseButton {
return switch (button) {
1 => .left,
2 => .middle,
3 => .right,
4 => .four,
5 => .five,
6 => .six,
7 => .seven,
8 => .eight,
9 => .nine,
10 => .ten,
11 => .eleven,
else => .unknown,
};
}
fn translateMods(state: c.GdkModifierType) input.Mods {
var mods: input.Mods = .{};
if (state & c.GDK_SHIFT_MASK != 0) mods.shift = true;
if (state & c.GDK_CONTROL_MASK != 0) mods.ctrl = true;
if (state & c.GDK_ALT_MASK != 0) mods.alt = true;
if (state & c.GDK_SUPER_MASK != 0) mods.super = true;
// Lock is dependent on the X settings but we just assume caps lock.
if (state & c.GDK_LOCK_MASK != 0) mods.caps_lock = true;
return mods;
}
fn translateKey(keyval: c.guint) input.Key {
return switch (keyval) {
c.GDK_KEY_a => .a,
c.GDK_KEY_b => .b,
c.GDK_KEY_c => .c,
c.GDK_KEY_d => .d,
c.GDK_KEY_e => .e,
c.GDK_KEY_f => .f,
c.GDK_KEY_g => .g,
c.GDK_KEY_h => .h,
c.GDK_KEY_i => .i,
c.GDK_KEY_j => .j,
c.GDK_KEY_k => .k,
c.GDK_KEY_l => .l,
c.GDK_KEY_m => .m,
c.GDK_KEY_n => .n,
c.GDK_KEY_o => .o,
c.GDK_KEY_p => .p,
c.GDK_KEY_q => .q,
c.GDK_KEY_r => .r,
c.GDK_KEY_s => .s,
c.GDK_KEY_t => .t,
c.GDK_KEY_u => .u,
c.GDK_KEY_v => .v,
c.GDK_KEY_w => .w,
c.GDK_KEY_x => .x,
c.GDK_KEY_y => .y,
c.GDK_KEY_z => .z,
c.GDK_KEY_0 => .zero,
c.GDK_KEY_1 => .one,
c.GDK_KEY_2 => .two,
c.GDK_KEY_3 => .three,
c.GDK_KEY_4 => .four,
c.GDK_KEY_5 => .five,
c.GDK_KEY_6 => .six,
c.GDK_KEY_7 => .seven,
c.GDK_KEY_8 => .eight,
c.GDK_KEY_9 => .nine,
c.GDK_KEY_semicolon => .semicolon,
c.GDK_KEY_space => .space,
c.GDK_KEY_apostrophe => .apostrophe,
c.GDK_KEY_comma => .comma,
c.GDK_KEY_grave => .grave_accent, // `
c.GDK_KEY_period => .period,
c.GDK_KEY_slash => .slash,
c.GDK_KEY_minus => .minus,
c.GDK_KEY_equal => .equal,
c.GDK_KEY_bracketleft => .left_bracket, // [
c.GDK_KEY_bracketright => .right_bracket, // ]
c.GDK_KEY_backslash => .backslash, // /
c.GDK_KEY_Up => .up,
c.GDK_KEY_Down => .down,
c.GDK_KEY_Right => .right,
c.GDK_KEY_Left => .left,
c.GDK_KEY_Home => .home,
c.GDK_KEY_End => .end,
c.GDK_KEY_Insert => .insert,
c.GDK_KEY_Delete => .delete,
c.GDK_KEY_Caps_Lock => .caps_lock,
c.GDK_KEY_Scroll_Lock => .scroll_lock,
c.GDK_KEY_Num_Lock => .num_lock,
c.GDK_KEY_Page_Up => .page_up,
c.GDK_KEY_Page_Down => .page_down,
c.GDK_KEY_Escape => .escape,
c.GDK_KEY_Return => .enter,
c.GDK_KEY_Tab => .tab,
c.GDK_KEY_BackSpace => .backspace,
c.GDK_KEY_Print => .print_screen,
c.GDK_KEY_Pause => .pause,
c.GDK_KEY_F1 => .f1,
c.GDK_KEY_F2 => .f2,
c.GDK_KEY_F3 => .f3,
c.GDK_KEY_F4 => .f4,
c.GDK_KEY_F5 => .f5,
c.GDK_KEY_F6 => .f6,
c.GDK_KEY_F7 => .f7,
c.GDK_KEY_F8 => .f8,
c.GDK_KEY_F9 => .f9,
c.GDK_KEY_F10 => .f10,
c.GDK_KEY_F11 => .f11,
c.GDK_KEY_F12 => .f12,
c.GDK_KEY_F13 => .f13,
c.GDK_KEY_F14 => .f14,
c.GDK_KEY_F15 => .f15,
c.GDK_KEY_F16 => .f16,
c.GDK_KEY_F17 => .f17,
c.GDK_KEY_F18 => .f18,
c.GDK_KEY_F19 => .f19,
c.GDK_KEY_F20 => .f20,
c.GDK_KEY_F21 => .f21,
c.GDK_KEY_F22 => .f22,
c.GDK_KEY_F23 => .f23,
c.GDK_KEY_F24 => .f24,
c.GDK_KEY_F25 => .f25,
c.GDK_KEY_KP_0 => .kp_0,
c.GDK_KEY_KP_1 => .kp_1,
c.GDK_KEY_KP_2 => .kp_2,
c.GDK_KEY_KP_3 => .kp_3,
c.GDK_KEY_KP_4 => .kp_4,
c.GDK_KEY_KP_5 => .kp_5,
c.GDK_KEY_KP_6 => .kp_6,
c.GDK_KEY_KP_7 => .kp_7,
c.GDK_KEY_KP_8 => .kp_8,
c.GDK_KEY_KP_9 => .kp_9,
c.GDK_KEY_KP_Decimal => .kp_decimal,
c.GDK_KEY_KP_Divide => .kp_divide,
c.GDK_KEY_KP_Multiply => .kp_multiply,
c.GDK_KEY_KP_Subtract => .kp_subtract,
c.GDK_KEY_KP_Add => .kp_add,
c.GDK_KEY_KP_Enter => .kp_enter,
c.GDK_KEY_KP_Equal => .kp_equal,
c.GDK_KEY_Shift_L => .left_shift,
c.GDK_KEY_Control_L => .left_control,
c.GDK_KEY_Alt_L => .left_alt,
c.GDK_KEY_Super_L => .left_super,
c.GDK_KEY_Shift_R => .right_shift,
c.GDK_KEY_Control_R => .right_control,
c.GDK_KEY_Alt_R => .right_alt,
c.GDK_KEY_Super_R => .right_super,
else => .invalid,
};
}