ghostty/src/termio/Exec.zig

2775 lines
101 KiB
Zig

//! Implementation of IO that uses child exec to talk to the child process.
pub const Exec = @This();
const std = @import("std");
const builtin = @import("builtin");
const build_config = @import("../build_config.zig");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const ArenaAllocator = std.heap.ArenaAllocator;
const EnvMap = std.process.EnvMap;
const termio = @import("../termio.zig");
const Command = @import("../Command.zig");
const Pty = @import("../pty.zig").Pty;
const SegmentedPool = @import("../segmented_pool.zig").SegmentedPool;
const terminal = @import("../terminal/main.zig");
const terminfo = @import("../terminfo/main.zig");
const xev = @import("xev");
const renderer = @import("../renderer.zig");
const tracy = @import("tracy");
const trace = tracy.trace;
const apprt = @import("../apprt.zig");
const fastmem = @import("../fastmem.zig");
const internal_os = @import("../os/main.zig");
const windows = internal_os.windows;
const configpkg = @import("../config.zig");
const shell_integration = @import("shell_integration.zig");
const log = std.log.scoped(.io_exec);
const c = @cImport({
@cInclude("errno.h");
@cInclude("signal.h");
@cInclude("unistd.h");
});
/// True if we should disable the kitty keyboard protocol. We have to
/// disable this on GLFW because GLFW input events don't support the
/// correct granularity of events.
const disable_kitty_keyboard_protocol = apprt.runtime == apprt.glfw;
/// The number of milliseconds below which we consider a process
/// exit to be abnormal. This is used to show an error message
/// when the process exits too quickly.
const abnormal_runtime_threshold_ms = 250;
/// Allocator
alloc: Allocator,
/// This is the pty fd created for the subcommand.
subprocess: Subprocess,
/// The terminal emulator internal state. This is the abstract "terminal"
/// that manages input, grid updating, etc. and is renderer-agnostic. It
/// just stores internal state about a grid.
terminal: terminal.Terminal,
/// The shared render state
renderer_state: *renderer.State,
/// A handle to wake up the renderer. This hints to the renderer that that
/// a repaint should happen.
renderer_wakeup: xev.Async,
/// The mailbox for notifying the renderer of things.
renderer_mailbox: *renderer.Thread.Mailbox,
/// The mailbox for communicating with the surface.
surface_mailbox: apprt.surface.Mailbox,
/// The cached grid size whenever a resize is called.
grid_size: renderer.GridSize,
/// The default cursor style. We need to know this so that we can set
/// it when a CSI q with default is called.
default_cursor_style: terminal.Cursor.Style,
default_cursor_blink: ?bool,
default_cursor_color: ?terminal.color.RGB,
/// Actual cursor color
cursor_color: ?terminal.color.RGB,
/// Default foreground color as set by the config file
default_foreground_color: terminal.color.RGB,
/// Default background color as set by the config file
default_background_color: terminal.color.RGB,
/// Actual foreground color
foreground_color: terminal.color.RGB,
/// Actual background color
background_color: terminal.color.RGB,
/// The OSC 10/11 reply style.
osc_color_report_format: configpkg.Config.OSCColorReportFormat,
/// The data associated with the currently running thread.
data: ?*EventData,
/// The configuration for this IO that is derived from the main
/// configuration. This must be exported so that we don't need to
/// pass around Config pointers which makes memory management a pain.
pub const DerivedConfig = struct {
palette: terminal.color.Palette,
image_storage_limit: usize,
cursor_style: terminal.Cursor.Style,
cursor_blink: ?bool,
cursor_color: ?configpkg.Config.Color,
foreground: configpkg.Config.Color,
background: configpkg.Config.Color,
osc_color_report_format: configpkg.Config.OSCColorReportFormat,
term: []const u8,
grapheme_width_method: configpkg.Config.GraphemeWidthMethod,
pub fn init(
alloc_gpa: Allocator,
config: *const configpkg.Config,
) !DerivedConfig {
_ = alloc_gpa;
return .{
.palette = config.palette.value,
.image_storage_limit = config.@"image-storage-limit",
.cursor_style = config.@"cursor-style",
.cursor_blink = config.@"cursor-style-blink",
.cursor_color = config.@"cursor-color",
.foreground = config.foreground,
.background = config.background,
.osc_color_report_format = config.@"osc-color-report-format",
.term = config.term,
.grapheme_width_method = config.@"grapheme-width-method",
};
}
pub fn deinit(self: *DerivedConfig) void {
_ = self;
}
};
/// Initialize the exec implementation. This will also start the child
/// process.
pub fn init(alloc: Allocator, opts: termio.Options) !Exec {
// Clean up our derived config because we don't need it after this.
var config = opts.config;
defer config.deinit();
// Create our terminal
var term = try terminal.Terminal.init(
alloc,
opts.grid_size.columns,
opts.grid_size.rows,
);
errdefer term.deinit(alloc);
term.default_palette = opts.config.palette;
term.color_palette.colors = opts.config.palette;
term.flags.default_grapheme_cluster = opts.config.grapheme_width_method == .unicode;
// Set the image size limits
try term.screen.kitty_images.setLimit(alloc, opts.config.image_storage_limit);
try term.secondary_screen.kitty_images.setLimit(alloc, opts.config.image_storage_limit);
// Set default cursor blink settings
term.modes.set(
.cursor_blinking,
opts.config.cursor_blink orelse true,
);
// Set our default cursor style
term.screen.cursor.style = opts.config.cursor_style;
var subprocess = try Subprocess.init(alloc, opts);
errdefer subprocess.deinit();
// If we have an initial pwd requested by the subprocess, then we
// set that on the terminal now. This allows rapidly initializing
// new surfaces to use the proper pwd.
if (subprocess.cwd) |cwd| term.setPwd(cwd) catch |err| {
log.warn("error setting initial pwd err={}", .{err});
};
// Initial width/height based on subprocess
term.width_px = subprocess.screen_size.width;
term.height_px = subprocess.screen_size.height;
return Exec{
.alloc = alloc,
.terminal = term,
.subprocess = subprocess,
.renderer_state = opts.renderer_state,
.renderer_wakeup = opts.renderer_wakeup,
.renderer_mailbox = opts.renderer_mailbox,
.surface_mailbox = opts.surface_mailbox,
.grid_size = opts.grid_size,
.default_cursor_style = opts.config.cursor_style,
.default_cursor_blink = opts.config.cursor_blink,
.default_cursor_color = if (opts.config.cursor_color) |col|
col.toTerminalRGB()
else
null,
.cursor_color = if (opts.config.cursor_color) |col|
col.toTerminalRGB()
else
null,
.default_foreground_color = config.foreground.toTerminalRGB(),
.default_background_color = config.background.toTerminalRGB(),
.foreground_color = config.foreground.toTerminalRGB(),
.background_color = config.background.toTerminalRGB(),
.osc_color_report_format = config.osc_color_report_format,
.data = null,
};
}
pub fn deinit(self: *Exec) void {
self.subprocess.deinit();
// Clean up our other members
self.terminal.deinit(self.alloc);
}
pub fn threadEnter(self: *Exec, thread: *termio.Thread) !ThreadData {
assert(self.data == null);
const alloc = self.alloc;
// Start our subprocess
const pty_fds = self.subprocess.start(alloc) catch |err| {
// If we specifically got this error then we are in the forked
// process and our child failed to execute. In that case
if (err != error.ExecFailedInChild) return err;
// Output an error message about the exec faililng and exit.
// This generally should NOT happen because we always wrap
// our command execution either in login (macOS) or /bin/sh
// (Linux) which are usually guaranteed to exist. Still, we
// want to handle this scenario.
self.execFailedInChild() catch {};
std.os.exit(1);
};
errdefer self.subprocess.stop();
const pid = pid: {
const command = self.subprocess.command orelse return error.ProcessNotStarted;
break :pid command.pid orelse return error.ProcessNoPid;
};
// Track our process start time so we know how long it was
// running for.
const process_start = try std.time.Instant.now();
// Create our pipe that we'll use to kill our read thread.
// pipe[0] is the read end, pipe[1] is the write end.
const pipe = try internal_os.pipe();
errdefer std.os.close(pipe[0]);
errdefer std.os.close(pipe[1]);
// Setup our data that is used for callbacks
var ev_data_ptr = try alloc.create(EventData);
errdefer alloc.destroy(ev_data_ptr);
// Setup our stream so that we can write.
var stream = xev.Stream.initFd(pty_fds.write);
errdefer stream.deinit();
// Wakeup watcher for the writer thread.
var wakeup = try xev.Async.init();
errdefer wakeup.deinit();
// Watcher to detect subprocess exit
var process = try xev.Process.init(pid);
errdefer process.deinit();
// Setup our event data before we start
ev_data_ptr.* = .{
.writer_mailbox = thread.mailbox,
.writer_wakeup = thread.wakeup,
.surface_mailbox = self.surface_mailbox,
.renderer_state = self.renderer_state,
.renderer_wakeup = self.renderer_wakeup,
.renderer_mailbox = self.renderer_mailbox,
.process = process,
.process_start = process_start,
.data_stream = stream,
.loop = &thread.loop,
.terminal_stream = .{
.handler = .{
.alloc = self.alloc,
.ev = ev_data_ptr,
.terminal = &self.terminal,
.grid_size = &self.grid_size,
.default_cursor_style = self.default_cursor_style,
.default_cursor_blink = self.default_cursor_blink,
.default_cursor_color = self.default_cursor_color,
.cursor_color = self.cursor_color,
.default_foreground_color = self.default_foreground_color,
.default_background_color = self.default_background_color,
.foreground_color = self.foreground_color,
.background_color = self.background_color,
.osc_color_report_format = self.osc_color_report_format,
},
.parser = .{
.osc_parser = .{
// Populate the OSC parser allocator (optional) because
// we want to support large OSC payloads such as OSC 52.
.alloc = self.alloc,
},
},
},
};
errdefer ev_data_ptr.deinit(self.alloc);
// Store our data so our callbacks can access it
self.data = ev_data_ptr;
errdefer self.data = null;
// Start our process watcher
process.wait(
ev_data_ptr.loop,
&ev_data_ptr.process_wait_c,
EventData,
ev_data_ptr,
processExit,
);
// Start our reader thread
const read_thread = try std.Thread.spawn(
.{},
if (builtin.os.tag == .windows) ReadThread.threadMainWindows else ReadThread.threadMainPosix,
.{ pty_fds.read, ev_data_ptr, pipe[0] },
);
read_thread.setName("io-reader") catch {};
// Return our thread data
return ThreadData{
.alloc = alloc,
.ev = ev_data_ptr,
.read_thread = read_thread,
.read_thread_pipe = pipe[1],
.read_thread_fd = if (builtin.os.tag == .windows) pty_fds.read else {},
};
}
/// This outputs an error message when exec failed and we are the
/// child process. This returns so the caller should probably exit
/// after calling this.
///
/// Note that this usually is only called under very very rare
/// circumstances because we wrap our command execution in login
/// (macOS) or /bin/sh (Linux). So this output can be pretty crude
/// because it should never happen. Notably, this is not the error
/// users see when `command` is invalid.
fn execFailedInChild(self: *Exec) !void {
_ = self;
const stderr = std.io.getStdErr().writer();
try stderr.writeAll("exec failed\n");
try stderr.writeAll("press any key to exit\n");
var buf: [1]u8 = undefined;
var reader = std.io.getStdIn().reader();
_ = try reader.read(&buf);
}
pub fn threadExit(self: *Exec, data: ThreadData) void {
// Clear out our data since we're not active anymore.
self.data = null;
// Stop our subprocess
if (data.ev.process_exited) self.subprocess.externalExit();
self.subprocess.stop();
// Quit our read thread after exiting the subprocess so that
// we don't get stuck waiting for data to stop flowing if it is
// a particularly noisy process.
_ = std.os.write(data.read_thread_pipe, "x") catch |err|
log.warn("error writing to read thread quit pipe err={}", .{err});
if (comptime builtin.os.tag == .windows) {
// Interrupt the blocking read so the thread can see the quit message
if (windows.kernel32.CancelIoEx(data.read_thread_fd, null) == 0) {
switch (windows.kernel32.GetLastError()) {
.NOT_FOUND => {},
else => |err| log.warn("error interrupting read thread err={}", .{err}),
}
}
}
data.read_thread.join();
}
/// Update the configuration.
pub fn changeConfig(self: *Exec, config: *DerivedConfig) !void {
defer config.deinit();
// Update the configuration that we know about.
//
// Specific things we don't update:
// - command, working-directory: we never restart the underlying
// process so we don't care or need to know about these.
self.terminal.flags.default_grapheme_cluster = config.grapheme_width_method == .unicode;
// Update the default palette. Note this will only apply to new colors drawn
// since we decode all palette colors to RGB on usage.
self.terminal.default_palette = config.palette;
// Update the active palette, except for any colors that were modified with
// OSC 4
for (0..config.palette.len) |i| {
if (!self.terminal.color_palette.mask.isSet(i)) {
self.terminal.color_palette.colors[i] = config.palette[i];
}
}
// Update our default cursor style
self.default_cursor_style = config.cursor_style;
self.default_cursor_blink = config.cursor_blink;
self.default_cursor_color = if (config.cursor_color) |col|
col.toTerminalRGB()
else
null;
// Update default foreground and background colors
self.default_foreground_color = config.foreground.toTerminalRGB();
self.default_background_color = config.background.toTerminalRGB();
// If we have event data, then update our active stream too
if (self.data) |data| {
data.terminal_stream.handler.changeDefaultCursor(
config.cursor_style,
config.cursor_blink,
);
}
// Set the image size limits
try self.terminal.screen.kitty_images.setLimit(
self.alloc,
config.image_storage_limit,
);
try self.terminal.secondary_screen.kitty_images.setLimit(
self.alloc,
config.image_storage_limit,
);
}
/// Resize the terminal.
pub fn resize(
self: *Exec,
grid_size: renderer.GridSize,
screen_size: renderer.ScreenSize,
padding: renderer.Padding,
) !void {
// Update the size of our pty.
const padded_size = screen_size.subPadding(padding);
try self.subprocess.resize(grid_size, padded_size);
// Update our cached grid size
self.grid_size = grid_size;
// Enter the critical area that we want to keep small
{
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
// Update the size of our terminal state
try self.terminal.resize(
self.alloc,
grid_size.columns,
grid_size.rows,
);
// Update our pixel sizes
self.terminal.width_px = padded_size.width;
self.terminal.height_px = padded_size.height;
// Disable synchronized output mode so that we show changes
// immediately for a resize. This is allowed by the spec.
self.terminal.modes.set(.synchronized_output, false);
// Wake up our renderer so any changes will be shown asap
self.renderer_wakeup.notify() catch {};
}
}
/// Reset the synchronized output mode. This is usually called by timer
/// expiration from the termio thread.
pub fn resetSynchronizedOutput(self: *Exec) void {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
self.terminal.modes.set(.synchronized_output, false);
self.renderer_wakeup.notify() catch {};
}
/// Clear the screen.
pub fn clearScreen(self: *Exec, history: bool) !void {
{
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
// If we're on the alternate screen, we do not clear. Since this is an
// emulator-level screen clear, this messes up the running programs
// knowledge of where the cursor is and causes rendering issues. So,
// for alt screen, we do nothing.
if (self.terminal.active_screen == .alternate) return;
// Clear our scrollback
if (history) self.terminal.eraseDisplay(self.alloc, .scrollback, false);
// If we're not at a prompt, we just delete above the cursor.
if (!self.terminal.cursorIsAtPrompt()) {
try self.terminal.screen.clear(.above_cursor);
return;
}
// At a prompt, we want to first fully clear the screen, and then after
// send a FF (0x0C) to the shell so that it can repaint the screen.
// Mark the current row as a not a prompt so we can properly
// clear the full screen in the next eraseDisplay call.
self.terminal.markSemanticPrompt(.command);
assert(!self.terminal.cursorIsAtPrompt());
self.terminal.eraseDisplay(self.alloc, .complete, false);
}
// If we reached here it means we're at a prompt, so we send a form-feed.
try self.queueWrite(&[_]u8{0x0C}, false);
}
/// Scroll the viewport
pub fn scrollViewport(self: *Exec, scroll: terminal.Terminal.ScrollViewport) !void {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
try self.terminal.scrollViewport(scroll);
}
/// Jump the viewport to the prompt.
pub fn jumpToPrompt(self: *Exec, delta: isize) !void {
const wakeup: bool = wakeup: {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
break :wakeup self.terminal.screen.jump(.{
.prompt_delta = delta,
});
};
if (wakeup) {
try self.renderer_wakeup.notify();
}
}
/// Called when the child process exited abnormally but before
/// the surface is notified.
pub fn childExitedAbnormally(self: *Exec) !void {
// Build up our command for the error message
const command = try std.mem.join(
self.alloc,
" ",
self.subprocess.args,
);
defer self.alloc.free(command);
// Build our error message. Do this outside of the renderer lock.
var msg = std.ArrayList(u8).init(self.alloc);
defer msg.deinit();
var writer = msg.writer();
try writer.print(
\\Ghostty failed to launch the requested command.
\\Please check your "command" configuration.
\\
\\Command: {s}
\\
\\Press any key to close this window.
, .{command});
// Modify the terminal to show our error message. This
// requires grabbing the renderer state lock.
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
const t = self.renderer_state.terminal;
// Reset the terminal completely.
// NOTE: The error output is in the terminal at this point. In the
// future, we can make an even better error message by scrolling,
// writing at the bottom, etc.
t.fullReset(self.alloc);
// Write our message out.
const view = try std.unicode.Utf8View.init(msg.items);
var it = view.iterator();
while (it.nextCodepoint()) |cp| {
if (cp == '\n') {
t.carriageReturn();
try t.linefeed();
continue;
}
try t.print(cp);
}
}
pub inline fn queueWrite(self: *Exec, data: []const u8, linefeed: bool) !void {
const ev = self.data.?;
// If our process is exited then we send our surface a message
// about it but we don't queue any more writes.
if (ev.process_exited) {
_ = ev.surface_mailbox.push(.{
.child_exited = {},
}, .{ .forever = {} });
return;
}
// We go through and chunk the data if necessary to fit into
// our cached buffers that we can queue to the stream.
var i: usize = 0;
while (i < data.len) {
const req = try ev.write_req_pool.getGrow(self.alloc);
const buf = try ev.write_buf_pool.getGrow(self.alloc);
const slice = slice: {
// The maximum end index is either the end of our data or
// the end of our buffer, whichever is smaller.
const max = @min(data.len, i + buf.len);
// Fast
if (!linefeed) {
fastmem.copy(u8, buf, data[i..max]);
const len = max - i;
i = max;
break :slice buf[0..len];
}
// Slow, have to replace \r with \r\n
var buf_i: usize = 0;
while (i < data.len and buf_i < buf.len - 1) {
const ch = data[i];
i += 1;
if (ch != '\r') {
buf[buf_i] = ch;
buf_i += 1;
continue;
}
// CRLF
buf[buf_i] = '\r';
buf[buf_i + 1] = '\n';
buf_i += 2;
}
break :slice buf[0..buf_i];
};
//for (slice) |b| log.warn("write: {x}", .{b});
ev.data_stream.queueWrite(
ev.loop,
&ev.write_queue,
req,
.{ .slice = slice },
EventData,
ev,
ttyWrite,
);
}
}
const ThreadData = struct {
/// Allocator used for the event data
alloc: Allocator,
/// The data that is attached to the callbacks.
ev: *EventData,
/// Our read thread
read_thread: std.Thread,
read_thread_pipe: std.os.fd_t,
read_thread_fd: if (builtin.os.tag == .windows) std.os.fd_t else void,
pub fn deinit(self: *ThreadData) void {
std.os.close(self.read_thread_pipe);
self.ev.deinit(self.alloc);
self.alloc.destroy(self.ev);
self.* = undefined;
}
};
const EventData = struct {
// The preallocation size for the write request pool. This should be big
// enough to satisfy most write requests. It must be a power of 2.
const WRITE_REQ_PREALLOC = std.math.pow(usize, 2, 5);
/// Mailbox for data to the writer thread.
writer_mailbox: *termio.Mailbox,
writer_wakeup: xev.Async,
/// Mailbox for the surface.
surface_mailbox: apprt.surface.Mailbox,
/// The stream parser. This parses the stream of escape codes and so on
/// from the child process and calls callbacks in the stream handler.
terminal_stream: terminal.Stream(StreamHandler),
/// The shared render state
renderer_state: *renderer.State,
/// A handle to wake up the renderer. This hints to the renderer that that
/// a repaint should happen.
renderer_wakeup: xev.Async,
/// The mailbox for notifying the renderer of things.
renderer_mailbox: *renderer.Thread.Mailbox,
/// The process watcher
process: xev.Process,
process_start: std.time.Instant,
process_exited: bool = false,
/// This is used for both waiting for the process to exit and then
/// subsequently to wait for the data_stream to close.
process_wait_c: xev.Completion = .{},
/// The data stream is the main IO for the pty.
data_stream: xev.Stream,
/// The event loop,
loop: *xev.Loop,
/// The write queue for the data stream.
write_queue: xev.Stream.WriteQueue = .{},
/// This is the pool of available (unused) write requests. If you grab
/// one from the pool, you must put it back when you're done!
write_req_pool: SegmentedPool(xev.Stream.WriteRequest, WRITE_REQ_PREALLOC) = .{},
/// The pool of available buffers for writing to the pty.
write_buf_pool: SegmentedPool([64]u8, WRITE_REQ_PREALLOC) = .{},
/// Last time the cursor was reset. This is used to prevent message
/// flooding with cursor resets.
last_cursor_reset: i64 = 0,
/// This is set to true when we've seen a title escape sequence. We use
/// this to determine if we need to default the window title.
seen_title: bool = false,
pub fn deinit(self: *EventData, alloc: Allocator) void {
// Clear our write pools. We know we aren't ever going to do
// any more IO since we stop our data stream below so we can just
// drop this.
self.write_req_pool.deinit(alloc);
self.write_buf_pool.deinit(alloc);
// Stop our data stream
self.data_stream.deinit();
// Stop our process watcher
self.process.deinit();
// Clear any StreamHandler state
self.terminal_stream.handler.deinit();
self.terminal_stream.deinit();
}
/// This queues a render operation with the renderer thread. The render
/// isn't guaranteed to happen immediately but it will happen as soon as
/// practical.
inline fn queueRender(self: *EventData) !void {
try self.renderer_wakeup.notify();
}
};
fn processExit(
ev_: ?*EventData,
_: *xev.Loop,
_: *xev.Completion,
r: xev.Process.WaitError!u32,
) xev.CallbackAction {
const code = r catch unreachable;
const ev = ev_.?;
ev.process_exited = true;
// Determine how long the process was running for.
const runtime_ms: ?u64 = runtime: {
const process_end = std.time.Instant.now() catch break :runtime null;
const runtime_ns = process_end.since(ev.process_start);
const runtime_ms = runtime_ns / std.time.ns_per_ms;
break :runtime runtime_ms;
};
log.debug(
"child process exited status={} runtime={}ms",
.{ code, runtime_ms orelse 0 },
);
// If our runtime was below some threshold then we assume that this
// was an abnormal exit and we show an error message.
if (runtime_ms) |runtime| runtime: {
// On macOS, our exit code detection doesn't work, possibly
// because of our `login` wrapper. More investigation required.
if (comptime !builtin.target.isDarwin()) {
// If our exit code is zero, then the command was successful
// and we don't ever consider it abnormal.
if (code == 0) break :runtime;
}
// Our runtime always has to be under the threshold to be
// considered abnormal. This is because a user can always
// manually do something like `exit 1` in their shell to
// force the exit code to be non-zero. We only want to detect
// abnormal exits that happen so quickly the user can't react.
if (runtime > abnormal_runtime_threshold_ms) break :runtime;
log.warn("abnormal process exit detected, showing error message", .{});
// Notify our main writer thread which has access to more
// information so it can show a better error message.
_ = ev.writer_mailbox.push(.{
.child_exited_abnormally = {},
}, .{ .forever = {} });
ev.writer_wakeup.notify() catch break :runtime;
return .disarm;
}
// Notify our surface we want to close
_ = ev.surface_mailbox.push(.{
.child_exited = {},
}, .{ .forever = {} });
return .disarm;
}
fn ttyWrite(
ev_: ?*EventData,
_: *xev.Loop,
_: *xev.Completion,
_: xev.Stream,
_: xev.WriteBuffer,
r: xev.Stream.WriteError!usize,
) xev.CallbackAction {
const ev = ev_.?;
ev.write_req_pool.put();
ev.write_buf_pool.put();
const d = r catch |err| {
log.err("write error: {}", .{err});
return .disarm;
};
_ = d;
//log.info("WROTE: {d}", .{d});
return .disarm;
}
/// Subprocess manages the lifecycle of the shell subprocess.
const Subprocess = struct {
/// If we build with flatpak support then we have to keep track of
/// a potential execution on the host.
const FlatpakHostCommand = if (build_config.flatpak) internal_os.FlatpakHostCommand else void;
arena: std.heap.ArenaAllocator,
cwd: ?[]const u8,
env: EnvMap,
args: [][]const u8,
grid_size: renderer.GridSize,
screen_size: renderer.ScreenSize,
pty: ?Pty = null,
command: ?Command = null,
flatpak_command: ?FlatpakHostCommand = null,
/// Initialize the subprocess. This will NOT start it, this only sets
/// up the internal state necessary to start it later.
pub fn init(gpa: Allocator, opts: termio.Options) !Subprocess {
// We have a lot of maybe-allocations that all share the same lifetime
// so use an arena so we don't end up in an accounting nightmare.
var arena = std.heap.ArenaAllocator.init(gpa);
errdefer arena.deinit();
const alloc = arena.allocator();
// Determine the path to the binary we're executing
const default_path = switch (builtin.os.tag) {
.windows => "cmd.exe",
else => "sh",
};
// Set our env vars. For Flatpak builds running in Flatpak we don't
// inherit our environment because the login shell on the host side
// will get it.
var env = env: {
if (comptime build_config.flatpak) {
if (internal_os.isFlatpak()) {
break :env std.process.EnvMap.init(alloc);
}
}
break :env try std.process.getEnvMap(alloc);
};
errdefer env.deinit();
// If we have a resources dir then set our env var
const resources_key = "GHOSTTY_RESOURCES_DIR";
if (opts.resources_dir) |dir| {
log.info("found Ghostty resources dir: {s}", .{dir});
try env.put(resources_key, dir);
}
// Set our TERM var. This is a bit complicated because we want to use
// the ghostty TERM value but we want to only do that if we have
// ghostty in the TERMINFO database.
//
// For now, we just look up a bundled dir but in the future we should
// also load the terminfo database and look for it.
if (opts.resources_dir) |base| {
try env.put("TERM", opts.config.term);
try env.put("COLORTERM", "truecolor");
// Assume that the resources directory is adjacent to the terminfo
// database
var buf: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const dir = try std.fmt.bufPrint(&buf, "{s}/terminfo", .{
std.fs.path.dirname(base) orelse unreachable,
});
try env.put("TERMINFO", dir);
} else {
if (comptime builtin.target.isDarwin()) {
log.warn("ghostty terminfo not found, using xterm-256color", .{});
log.warn("the terminfo SHOULD exist on macos, please ensure", .{});
log.warn("you're using a valid app bundle.", .{});
}
try env.put("TERM", "xterm-256color");
try env.put("COLORTERM", "truecolor");
}
// Set environment variables used by some programs (such as neovim) to detect
// which terminal emulator and version they're running under.
try env.put("TERM_PROGRAM", "ghostty");
try env.put("TERM_PROGRAM_VERSION", build_config.version_string);
// When embedding in macOS and running via XCode, XCode injects
// a bunch of things that break our shell process. We remove those.
if (comptime builtin.target.isDarwin() and build_config.artifact == .lib) {
if (env.get("__XCODE_BUILT_PRODUCTS_DIR_PATHS") != null) {
env.remove("__XCODE_BUILT_PRODUCTS_DIR_PATHS");
env.remove("__XPC_DYLD_LIBRARY_PATH");
env.remove("DYLD_FRAMEWORK_PATH");
env.remove("DYLD_INSERT_LIBRARIES");
env.remove("DYLD_LIBRARY_PATH");
env.remove("LD_LIBRARY_PATH");
env.remove("SECURITYSESSIONID");
env.remove("XPC_SERVICE_NAME");
}
// Remove this so that running `ghostty` within Ghostty works.
env.remove("GHOSTTY_MAC_APP");
}
// Build our args list
const args = args: {
const cap = 9; // the most we'll ever use
var args = try std.ArrayList([]const u8).initCapacity(alloc, cap);
defer args.deinit();
// If we're on macOS, we have to use `login(1)` to get all of
// the proper environment variables set, a login shell, and proper
// hushlogin behavior.
if (comptime builtin.target.isDarwin()) darwin: {
const passwd = internal_os.passwd.get(alloc) catch |err| {
log.warn("failed to read passwd, not using a login shell err={}", .{err});
break :darwin;
};
const username = passwd.name orelse {
log.warn("failed to get username, not using a login shell", .{});
break :darwin;
};
const hush = if (passwd.home) |home| hush: {
var dir = std.fs.openDirAbsolute(home, .{}) catch |err| {
log.warn(
"failed to open home dir, not checking for hushlogin err={}",
.{err},
);
break :hush false;
};
defer dir.close();
break :hush if (dir.access(".hushlogin", .{})) true else |_| false;
} else false;
const cmd = try std.fmt.allocPrint(
alloc,
"exec -l {s}",
.{opts.full_config.command orelse default_path},
);
// The reason for executing login this way is unclear. This
// comment will attempt to explain but prepare for a truly
// unhinged reality.
//
// The first major issue is that on macOS, a lot of users
// put shell configurations in ~/.bash_profile instead of
// ~/.bashrc (or equivalent for another shell). This file is only
// loaded for a login shell so macOS users expect all their terminals
// to be login shells. No other platform behaves this way and its
// totally braindead but somehow the entire dev community on
// macOS has cargo culted their way to this reality so we have to
// do it...
//
// To get a login shell, you COULD just prepend argv0 with a `-`
// but that doesn't fully work because `getlogin()` C API will
// return the wrong value, SHELL won't be set, and various
// other login behaviors that macOS users expect.
//
// The proper way is to use `login(1)`. But login(1) forces
// the working directory to change to the home directory,
// which we may not want. If we specify "-l" then we can avoid
// this behavior but now the shell isn't a login shell.
//
// There is another issue: `login(1)` only checks for ".hushlogin"
// in the working directory. This means that if we specify "-l"
// then we won't get hushlogin honored if its in the home
// directory (which is standard). To get around this, we
// check for hushlogin ourselves and if present specify the
// "-q" flag to login(1).
//
// So to get all the behaviors we want, we specify "-l" but
// execute "bash" (which is built-in to macOS). We then use
// the bash builtin "exec" to replace the process with a login
// shell ("-l" on exec) with the command we really want.
//
// We use "bash" instead of other shells that ship with macOS
// because as of macOS Sonoma, we found with a microbenchmark
// that bash can `exec` into the desired command ~2x faster
// than zsh.
//
// To figure out a lot of this logic I read the login.c
// source code in the OSS distribution Apple provides for
// macOS.
//
// Awesome.
try args.append("/usr/bin/login");
if (hush) try args.append("-q");
try args.append("-flp");
// We execute bash with "--noprofile --norc" so that it doesn't
// load startup files so that (1) our shell integration doesn't
// break and (2) user configuration doesn't mess this process
// up.
try args.append(username);
try args.append("/bin/bash");
try args.append("--noprofile");
try args.append("--norc");
try args.append("-c");
try args.append(cmd);
break :args try args.toOwnedSlice();
}
// We run our shell wrapped in `/bin/sh` so that we don't have
// to parse the commadnd line ourselves if it has arguments.
// Additionally, some environments (NixOS, I found) use /bin/sh
// to setup some environment variables that are important to
// have set.
try args.append("/bin/sh");
if (internal_os.isFlatpak()) try args.append("-l");
try args.append("-c");
try args.append(opts.full_config.command orelse default_path);
break :args try args.toOwnedSlice();
};
// We have to copy the cwd because there is no guarantee that
// pointers in full_config remain valid.
const cwd: ?[]u8 = if (opts.full_config.@"working-directory") |cwd|
try alloc.dupe(u8, cwd)
else
null;
// Setup our shell integration, if we can.
const shell_integrated: ?shell_integration.Shell = shell: {
const force: ?shell_integration.Shell = switch (opts.full_config.@"shell-integration") {
.none => break :shell null,
.detect => null,
.fish => .fish,
.zsh => .zsh,
};
// We have to get the path to the executing shell. The command
// can be a full shell string with arguments so we look for a space
// and take the first part.
const path = if (opts.full_config.command) |cmd| path: {
const idx = std.mem.indexOfScalar(u8, cmd, ' ') orelse cmd.len;
break :path cmd[0..idx];
} else default_path;
const dir = opts.resources_dir orelse break :shell null;
break :shell try shell_integration.setup(
dir,
path,
&env,
force,
opts.full_config.@"shell-integration-features",
);
};
if (shell_integrated) |shell| {
log.info(
"shell integration automatically injected shell={}",
.{shell},
);
} else if (opts.full_config.@"shell-integration" != .none) {
log.warn("shell could not be detected, no automatic shell integration will be injected", .{});
}
// Our screen size should be our padded size
const padded_size = opts.screen_size.subPadding(opts.padding);
return .{
.arena = arena,
.env = env,
.cwd = cwd,
.args = args,
.grid_size = opts.grid_size,
.screen_size = padded_size,
};
}
/// Clean up the subprocess. This will stop the subprocess if it is started.
pub fn deinit(self: *Subprocess) void {
self.stop();
if (self.pty) |*pty| pty.deinit();
self.arena.deinit();
self.* = undefined;
}
/// Start the subprocess. If the subprocess is already started this
/// will crash.
pub fn start(self: *Subprocess, alloc: Allocator) !struct {
read: Pty.Fd,
write: Pty.Fd,
} {
assert(self.pty == null and self.command == null);
// Create our pty
var pty = try Pty.open(.{
.ws_row = @intCast(self.grid_size.rows),
.ws_col = @intCast(self.grid_size.columns),
.ws_xpixel = @intCast(self.screen_size.width),
.ws_ypixel = @intCast(self.screen_size.height),
});
self.pty = pty;
errdefer {
pty.deinit();
self.pty = null;
}
log.debug("starting command command={s}", .{self.args});
// In flatpak, we use the HostCommand to execute our shell.
if (internal_os.isFlatpak()) flatpak: {
if (comptime !build_config.flatpak) {
log.warn("flatpak detected, but flatpak support not built-in", .{});
break :flatpak;
}
// Flatpak command must have a stable pointer.
self.flatpak_command = .{
.argv = self.args,
.env = &self.env,
.stdin = pty.slave,
.stdout = pty.slave,
.stderr = pty.slave,
};
var cmd = &self.flatpak_command.?;
const pid = try cmd.spawn(alloc);
errdefer killCommandFlatpak(cmd);
log.info("started subcommand on host via flatpak API path={s} pid={?}", .{
self.args[0],
pid,
});
// Once started, we can close the pty child side. We do this after
// wait right now but that is fine too. This lets us read the
// parent and detect EOF.
_ = std.os.close(pty.slave);
return .{
.read = pty.master,
.write = pty.master,
};
}
// If we can't access the cwd, then don't set any cwd and inherit.
// This is important because our cwd can be set by the shell (OSC 7)
// and we don't want to break new windows.
const cwd: ?[]const u8 = if (self.cwd) |proposed| cwd: {
if (std.fs.accessAbsolute(proposed, .{})) {
break :cwd proposed;
} else |err| {
log.warn("cannot access cwd, ignoring: {}", .{err});
break :cwd null;
}
} else null;
// Build our subcommand
var cmd: Command = .{
.path = self.args[0],
.args = self.args,
.env = &self.env,
.cwd = cwd,
.stdin = if (builtin.os.tag == .windows) null else .{ .handle = pty.slave },
.stdout = if (builtin.os.tag == .windows) null else .{ .handle = pty.slave },
.stderr = if (builtin.os.tag == .windows) null else .{ .handle = pty.slave },
.pseudo_console = if (builtin.os.tag == .windows) pty.pseudo_console else {},
.pre_exec = if (builtin.os.tag == .windows) null else (struct {
fn callback(cmd: *Command) void {
const p = cmd.getData(Pty) orelse unreachable;
p.childPreExec() catch |err|
log.err("error initializing child: {}", .{err});
}
}).callback,
.data = &self.pty.?,
};
try cmd.start(alloc);
errdefer killCommand(&cmd) catch |err| {
log.warn("error killing command during cleanup err={}", .{err});
};
log.info("started subcommand path={s} pid={?}", .{ self.args[0], cmd.pid });
self.command = cmd;
return switch (builtin.os.tag) {
.windows => .{
.read = pty.out_pipe,
.write = pty.in_pipe,
},
else => .{
.read = pty.master,
.write = pty.master,
},
};
}
/// Called to notify that we exited externally so we can unset our
/// running state.
pub fn externalExit(self: *Subprocess) void {
self.command = null;
}
/// Stop the subprocess. This is safe to call anytime. This will wait
/// for the subprocess to register that it has been signalled, but not
/// for it to terminate, so it will not block.
/// This does not close the pty.
pub fn stop(self: *Subprocess) void {
// Kill our command
if (self.command) |*cmd| {
// Note: this will also wait for the command to exit, so
// DO NOT call cmd.wait
killCommand(cmd) catch |err|
log.err("error sending SIGHUP to command, may hang: {}", .{err});
self.command = null;
}
// Kill our Flatpak command
if (FlatpakHostCommand != void) {
if (self.flatpak_command) |*cmd| {
killCommandFlatpak(cmd) catch |err|
log.err("error sending SIGHUP to command, may hang: {}", .{err});
_ = cmd.wait() catch |err|
log.err("error waiting for command to exit: {}", .{err});
self.flatpak_command = null;
}
}
}
/// Resize the pty subprocess. This is safe to call anytime.
pub fn resize(
self: *Subprocess,
grid_size: renderer.GridSize,
screen_size: renderer.ScreenSize,
) !void {
self.grid_size = grid_size;
self.screen_size = screen_size;
if (self.pty) |*pty| {
try pty.setSize(.{
.ws_row = @intCast(grid_size.rows),
.ws_col = @intCast(grid_size.columns),
.ws_xpixel = @intCast(screen_size.width),
.ws_ypixel = @intCast(screen_size.height),
});
}
}
/// Kill the underlying subprocess. This sends a SIGHUP to the child
/// process. This also waits for the command to exit and will return the
/// exit code.
fn killCommand(command: *Command) !void {
if (command.pid) |pid| {
switch (builtin.os.tag) {
.windows => {
if (windows.kernel32.TerminateProcess(pid, 0) == 0) {
return windows.unexpectedError(windows.kernel32.GetLastError());
}
_ = try command.wait(false);
},
else => if (getpgid(pid)) |pgid| {
// It is possible to send a killpg between the time that
// our child process calls setsid but before or simultaneous
// to calling execve. In this case, the direct child dies
// but grandchildren survive. To work around this, we loop
// and repeatedly kill the process group until all
// descendents are well and truly dead. We will not rest
// until the entire family tree is obliterated.
while (true) {
if (c.killpg(pgid, c.SIGHUP) < 0) {
log.warn("error killing process group pgid={}", .{pgid});
return error.KillFailed;
}
// See Command.zig wait for why we specify WNOHANG.
// The gist is that it lets us detect when children
// are still alive without blocking so that we can
// kill them again.
const res = std.os.waitpid(pid, std.c.W.NOHANG);
if (res.pid != 0) break;
std.time.sleep(10 * std.time.ns_per_ms);
}
},
}
}
}
fn getpgid(pid: c.pid_t) ?c.pid_t {
// Get our process group ID. Before the child pid calls setsid
// the pgid will be ours because we forked it. Its possible that
// we may be calling this before setsid if we are killing a surface
// VERY quickly after starting it.
const my_pgid = c.getpgid(0);
// We loop while pgid == my_pgid. The expectation if we have a valid
// pid is that setsid will eventually be called because it is the
// FIRST thing the child process does and as far as I can tell,
// setsid cannot fail. I'm sure that's not true, but I'd rather
// have a bug reported than defensively program against it now.
while (true) {
const pgid = c.getpgid(pid);
if (pgid == my_pgid) {
log.warn("pgid is our own, retrying", .{});
std.time.sleep(10 * std.time.ns_per_ms);
continue;
}
// Don't know why it would be zero but its not a valid pid
if (pgid == 0) return null;
// If the pid doesn't exist then... we're done!
if (pgid == c.ESRCH) return null;
// If we have an error we're done.
if (pgid < 0) {
log.warn("error getting pgid for kill", .{});
return null;
}
return pgid;
}
}
/// Kill the underlying process started via Flatpak host command.
/// This sends a signal via the Flatpak API.
fn killCommandFlatpak(command: *FlatpakHostCommand) !void {
try command.signal(c.SIGHUP, true);
}
};
/// The read thread sits in a loop doing the following pseudo code:
///
/// while (true) { blocking_read(); exit_if_eof(); process(); }
///
/// Almost all terminal-modifying activity is from the pty read, so
/// putting this on a dedicated thread keeps performance very predictable
/// while also almost optimal. "Locking is fast, lock contention is slow."
/// and since we rarely have contention, this is fast.
///
/// This is also empirically fast compared to putting the read into
/// an async mechanism like io_uring/epoll because the reads are generally
/// small.
///
/// We use a basic poll syscall here because we are only monitoring two
/// fds and this is still much faster and lower overhead than any async
/// mechanism.
const ReadThread = struct {
fn threadMainPosix(fd: std.os.fd_t, ev: *EventData, quit: std.os.fd_t) void {
// Always close our end of the pipe when we exit.
defer std.os.close(quit);
// First thing, we want to set the fd to non-blocking. We do this
// so that we can try to read from the fd in a tight loop and only
// check the quit fd occasionally.
if (std.os.fcntl(fd, std.os.F.GETFL, 0)) |flags| {
_ = std.os.fcntl(fd, std.os.F.SETFL, flags | std.os.O.NONBLOCK) catch |err| {
log.warn("read thread failed to set flags err={}", .{err});
log.warn("this isn't a fatal error, but may cause performance issues", .{});
};
} else |err| {
log.warn("read thread failed to get flags err={}", .{err});
log.warn("this isn't a fatal error, but may cause performance issues", .{});
}
// Build up the list of fds we're going to poll. We are looking
// for data on the pty and our quit notification.
var pollfds: [2]std.os.pollfd = .{
.{ .fd = fd, .events = std.os.POLL.IN, .revents = undefined },
.{ .fd = quit, .events = std.os.POLL.IN, .revents = undefined },
};
var buf: [1024]u8 = undefined;
while (true) {
// We try to read from the file descriptor as long as possible
// to maximize performance. We only check the quit fd if the
// main fd blocks. This optimizes for the realistic scenario that
// the data will eventually stop while we're trying to quit. This
// is always true because we kill the process.
while (true) {
const n = std.os.read(fd, &buf) catch |err| {
switch (err) {
// This means our pty is closed. We're probably
// gracefully shutting down.
error.NotOpenForReading,
error.InputOutput,
=> {
log.info("io reader exiting", .{});
return;
},
// No more data, fall back to poll and check for
// exit conditions.
error.WouldBlock => break,
else => {
log.err("io reader error err={}", .{err});
unreachable;
},
}
};
// This happens on macOS instead of WouldBlock when the
// child process dies. To be safe, we just break the loop
// and let our poll happen.
if (n == 0) break;
// log.info("DATA: {d}", .{n});
@call(.always_inline, process, .{ ev, buf[0..n] });
}
// Wait for data.
_ = std.os.poll(&pollfds, -1) catch |err| {
log.warn("poll failed on read thread, exiting early err={}", .{err});
return;
};
// If our quit fd is set, we're done.
if (pollfds[1].revents & std.os.POLL.IN != 0) {
log.info("read thread got quit signal", .{});
return;
}
}
}
fn threadMainWindows(fd: std.os.fd_t, ev: *EventData, quit: std.os.fd_t) void {
// Always close our end of the pipe when we exit.
defer std.os.close(quit);
var buf: [1024]u8 = undefined;
while (true) {
while (true) {
var n: windows.DWORD = 0;
if (windows.kernel32.ReadFile(fd, &buf, buf.len, &n, null) == 0) {
const err = windows.kernel32.GetLastError();
switch (err) {
// Check for a quit signal
.OPERATION_ABORTED => break,
else => {
log.err("io reader error err={}", .{err});
unreachable;
},
}
}
@call(.always_inline, process, .{ ev, buf[0..n] });
}
var quit_bytes: windows.DWORD = 0;
if (windows.exp.kernel32.PeekNamedPipe(quit, null, 0, null, &quit_bytes, null) == 0) {
const err = windows.kernel32.GetLastError();
log.err("quit pipe reader error err={}", .{err});
unreachable;
}
if (quit_bytes > 0) {
log.info("read thread got quit signal", .{});
return;
}
}
}
fn process(
ev: *EventData,
buf: []const u8,
) void {
const zone = trace(@src());
defer zone.end();
// log.info("DATA: {d}", .{n});
// log.info("DATA: {any}", .{buf[0..@intCast(usize, n)]});
// Whenever a character is typed, we ensure the cursor is in the
// non-blink state so it is rendered if visible. If we're under
// HEAVY read load, we don't want to send a ton of these so we
// use a timer under the covers
const now = ev.loop.now();
if (now - ev.last_cursor_reset > 500) {
ev.last_cursor_reset = now;
_ = ev.renderer_mailbox.push(.{
.reset_cursor_blink = {},
}, .{ .forever = {} });
}
// We are modifying terminal state from here on out
ev.renderer_state.mutex.lock();
defer ev.renderer_state.mutex.unlock();
// Schedule a render
ev.queueRender() catch unreachable;
// If we have an inspector, we enter SLOW MODE because we need to
// process a byte at a time alternating between the inspector handler
// and the termio handler. This is very slow compared to our optimizations
// below but at least users only pay for it if they're using the inspector.
if (ev.renderer_state.inspector) |insp| {
for (buf, 0..) |byte, i| {
insp.recordPtyRead(buf[i .. i + 1]) catch |err| {
log.err("error recording pty read in inspector err={}", .{err});
};
ev.terminal_stream.next(byte) catch |err|
log.err("error processing terminal data: {}", .{err});
}
} else {
// Process the terminal data. This is an extremely hot part of the
// terminal emulator, so we do some abstraction leakage to avoid
// function calls and unnecessary logic.
//
// The ground state is the only state that we can see and print/execute
// ASCII, so we only execute this hot path if we're already in the ground
// state.
//
// Empirically, this alone improved throughput of large text output by ~20%.
var i: usize = 0;
const end = buf.len;
if (ev.terminal_stream.parser.state == .ground) {
for (buf[i..end]) |ch| {
switch (terminal.parse_table.table[ch][@intFromEnum(terminal.Parser.State.ground)].action) {
// Print, call directly.
.print => ev.terminal_stream.handler.print(@intCast(ch)) catch |err|
log.err("error processing terminal data: {}", .{err}),
// C0 execute, let our stream handle this one but otherwise
// continue since we're guaranteed to be back in ground.
.execute => ev.terminal_stream.execute(ch) catch |err|
log.err("error processing terminal data: {}", .{err}),
// Otherwise, break out and go the slow path until we're
// back in ground. There is a slight optimization here where
// could try to find the next transition to ground but when
// I implemented that it didn't materially change performance.
else => break,
}
i += 1;
}
}
if (i < end) {
ev.terminal_stream.nextSlice(buf[i..end]) catch |err|
log.err("error processing terminal data: {}", .{err});
}
}
// If our stream handling caused messages to be sent to the writer
// thread, then we need to wake it up so that it processes them.
if (ev.terminal_stream.handler.writer_messaged) {
ev.terminal_stream.handler.writer_messaged = false;
ev.writer_wakeup.notify() catch |err| {
log.warn("failed to wake up writer thread err={}", .{err});
};
}
}
};
/// This is used as the handler for the terminal.Stream type. This is
/// stateful and is expected to live for the entire lifetime of the terminal.
/// It is NOT VALID to stop a stream handler, create a new one, and use that
/// unless all of the member fields are copied.
const StreamHandler = struct {
ev: *EventData,
alloc: Allocator,
grid_size: *renderer.GridSize,
terminal: *terminal.Terminal,
/// The APC command handler maintains the APC state. APC is like
/// CSI or OSC, but it is a private escape sequence that is used
/// to send commands to the terminal emulator. This is used by
/// the kitty graphics protocol.
apc: terminal.apc.Handler = .{},
/// The DCS handler maintains DCS state. DCS is like CSI or OSC,
/// but requires more stateful parsing. This is used by functionality
/// such as XTGETTCAP.
dcs: terminal.dcs.Handler = .{},
/// This is set to true when a message was written to the writer
/// mailbox. This can be used by callers to determine if they need
/// to wake up the writer.
writer_messaged: bool = false,
/// The default cursor state. This is used with CSI q. This is
/// set to true when we're currently in the default cursor state.
default_cursor: bool = true,
default_cursor_style: terminal.Cursor.Style,
default_cursor_blink: ?bool,
default_cursor_color: ?terminal.color.RGB,
/// Actual cursor color. This can be changed with OSC 12.
cursor_color: ?terminal.color.RGB,
/// The default foreground and background color are those set by the user's
/// config file. These can be overridden by terminal applications using OSC
/// 10 and OSC 11, respectively.
default_foreground_color: terminal.color.RGB,
default_background_color: terminal.color.RGB,
/// The actual foreground and background color. Normally this will be the
/// same as the default foreground and background color, unless changed by a
/// terminal application.
foreground_color: terminal.color.RGB,
background_color: terminal.color.RGB,
osc_color_report_format: configpkg.Config.OSCColorReportFormat,
pub fn deinit(self: *StreamHandler) void {
self.apc.deinit();
self.dcs.deinit();
}
inline fn queueRender(self: *StreamHandler) !void {
try self.ev.queueRender();
}
inline fn messageWriter(self: *StreamHandler, msg: termio.Message) void {
// Try to write to the mailbox with an instant timeout. This is the
// fast path because we can queue without a lock.
if (self.ev.writer_mailbox.push(msg, .{ .instant = {} }) == 0) {
// If we enter this conditional, the mailbox is full. We wake up
// the writer thread so that it can process messages to clear up
// space. However, the writer thread may require the renderer
// lock so we need to unlock.
self.ev.writer_wakeup.notify() catch |err| {
log.warn("failed to wake up writer, data will be dropped err={}", .{err});
return;
};
// Unlock the renderer state so the writer thread can acquire it.
// Then try to queue our message before continuing. This is a very
// slow path because we are having a lot of contention for data.
// But this only gets triggered in certain pathological cases.
//
// Note that writes themselves don't require a lock, but there
// are other messages in the writer mailbox (resize, focus) that
// could acquire the lock. This is why we have to release our lock
// here.
self.ev.renderer_state.mutex.unlock();
defer self.ev.renderer_state.mutex.lock();
_ = self.ev.writer_mailbox.push(msg, .{ .forever = {} });
}
// Normally, we just flag this true to wake up the writer thread
// once per batch of data.
self.writer_messaged = true;
}
pub fn changeDefaultCursor(
self: *StreamHandler,
style: terminal.Cursor.Style,
blink: ?bool,
) void {
self.default_cursor_style = style;
self.default_cursor_blink = blink;
// If our cursor is the default, then we update it immediately.
if (self.default_cursor) self.setCursorStyle(.default) catch |err| {
log.warn("failed to set default cursor style: {}", .{err});
return;
};
}
pub fn dcsHook(self: *StreamHandler, dcs: terminal.DCS) !void {
self.dcs.hook(self.alloc, dcs);
}
pub fn dcsPut(self: *StreamHandler, byte: u8) !void {
self.dcs.put(byte);
}
pub fn dcsUnhook(self: *StreamHandler) !void {
var cmd = self.dcs.unhook() orelse return;
defer cmd.deinit();
// log.warn("DCS command: {}", .{cmd});
switch (cmd) {
.xtgettcap => |*gettcap| {
const map = comptime terminfo.ghostty.xtgettcapMap();
while (gettcap.next()) |key| {
const response = map.get(key) orelse continue;
self.messageWriter(.{ .write_stable = response });
}
},
.decrqss => |decrqss| {
var response: [128]u8 = undefined;
var stream = std.io.fixedBufferStream(&response);
const writer = stream.writer();
// Offset the stream position to just past the response prefix.
// We will write the "payload" (if any) below. If no payload is
// written then we send an invalid DECRPSS response.
const prefix_fmt = "\x1bP{d}$r";
const prefix_len = std.fmt.comptimePrint(prefix_fmt, .{0}).len;
stream.pos = prefix_len;
switch (decrqss) {
// Invalid or unhandled request
.none => {},
.sgr => {
const buf = try self.terminal.printAttributes(stream.buffer[stream.pos..]);
// printAttributes wrote into our buffer, so adjust the stream
// position
stream.pos += buf.len;
try writer.writeByte('m');
},
.decscusr => {
const blink = self.terminal.modes.get(.cursor_blinking);
const style: u8 = switch (self.terminal.screen.cursor.style) {
.block => if (blink) 1 else 2,
.underline => if (blink) 3 else 4,
.bar => if (blink) 5 else 6,
};
try writer.print("{d} q", .{style});
},
.decstbm => {
try writer.print("{d};{d}r", .{
self.terminal.scrolling_region.top + 1,
self.terminal.scrolling_region.bottom + 1,
});
},
.decslrm => {
// We only send a valid response when left and right
// margin mode (DECLRMM) is enabled.
if (self.terminal.modes.get(.enable_left_and_right_margin)) {
try writer.print("{d};{d}s", .{
self.terminal.scrolling_region.left + 1,
self.terminal.scrolling_region.right + 1,
});
}
},
}
// Our response is valid if we have a response payload
const valid = stream.pos > prefix_len;
// Write the terminator
try writer.writeAll("\x1b\\");
// Write the response prefix into the buffer
_ = try std.fmt.bufPrint(response[0..prefix_len], prefix_fmt, .{@intFromBool(valid)});
const msg = try termio.Message.writeReq(self.alloc, response[0..stream.pos]);
self.messageWriter(msg);
},
}
}
pub fn apcStart(self: *StreamHandler) !void {
self.apc.start();
}
pub fn apcPut(self: *StreamHandler, byte: u8) !void {
self.apc.feed(self.alloc, byte);
}
pub fn apcEnd(self: *StreamHandler) !void {
var cmd = self.apc.end() orelse return;
defer cmd.deinit(self.alloc);
// log.warn("APC command: {}", .{cmd});
switch (cmd) {
.kitty => |*kitty_cmd| {
if (self.terminal.kittyGraphics(self.alloc, kitty_cmd)) |resp| {
var buf: [1024]u8 = undefined;
var buf_stream = std.io.fixedBufferStream(&buf);
try resp.encode(buf_stream.writer());
const final = buf_stream.getWritten();
if (final.len > 2) {
// log.warn("kitty graphics response: {s}", .{std.fmt.fmtSliceHexLower(final)});
self.messageWriter(try termio.Message.writeReq(self.alloc, final));
}
}
},
}
}
pub fn print(self: *StreamHandler, ch: u21) !void {
try self.terminal.print(ch);
}
pub fn printRepeat(self: *StreamHandler, count: usize) !void {
try self.terminal.printRepeat(count);
}
pub fn bell(self: StreamHandler) !void {
_ = self;
log.info("BELL", .{});
}
pub fn backspace(self: *StreamHandler) !void {
self.terminal.backspace();
}
pub fn horizontalTab(self: *StreamHandler, count: u16) !void {
for (0..count) |_| {
const x = self.terminal.screen.cursor.x;
try self.terminal.horizontalTab();
if (x == self.terminal.screen.cursor.x) break;
}
}
pub fn horizontalTabBack(self: *StreamHandler, count: u16) !void {
for (0..count) |_| {
const x = self.terminal.screen.cursor.x;
try self.terminal.horizontalTabBack();
if (x == self.terminal.screen.cursor.x) break;
}
}
pub fn linefeed(self: *StreamHandler) !void {
// Small optimization: call index instead of linefeed because they're
// identical and this avoids one layer of function call overhead.
try self.terminal.index();
}
pub fn carriageReturn(self: *StreamHandler) !void {
self.terminal.carriageReturn();
}
pub fn setCursorLeft(self: *StreamHandler, amount: u16) !void {
self.terminal.cursorLeft(amount);
}
pub fn setCursorRight(self: *StreamHandler, amount: u16) !void {
self.terminal.cursorRight(amount);
}
pub fn setCursorDown(self: *StreamHandler, amount: u16, carriage: bool) !void {
self.terminal.cursorDown(amount);
if (carriage) self.terminal.carriageReturn();
}
pub fn setCursorUp(self: *StreamHandler, amount: u16, carriage: bool) !void {
self.terminal.cursorUp(amount);
if (carriage) self.terminal.carriageReturn();
}
pub fn setCursorCol(self: *StreamHandler, col: u16) !void {
self.terminal.setCursorPos(self.terminal.screen.cursor.y + 1, col);
}
pub fn setCursorColRelative(self: *StreamHandler, offset: u16) !void {
self.terminal.setCursorPos(
self.terminal.screen.cursor.y + 1,
self.terminal.screen.cursor.x + 1 + offset,
);
}
pub fn setCursorRow(self: *StreamHandler, row: u16) !void {
self.terminal.setCursorPos(row, self.terminal.screen.cursor.x + 1);
}
pub fn setCursorRowRelative(self: *StreamHandler, offset: u16) !void {
self.terminal.setCursorPos(
self.terminal.screen.cursor.y + 1 + offset,
self.terminal.screen.cursor.x + 1,
);
}
pub fn setCursorPos(self: *StreamHandler, row: u16, col: u16) !void {
self.terminal.setCursorPos(row, col);
}
pub fn eraseDisplay(self: *StreamHandler, mode: terminal.EraseDisplay, protected: bool) !void {
if (mode == .complete) {
// Whenever we erase the full display, scroll to bottom.
try self.terminal.scrollViewport(.{ .bottom = {} });
try self.queueRender();
}
self.terminal.eraseDisplay(self.alloc, mode, protected);
}
pub fn eraseLine(self: *StreamHandler, mode: terminal.EraseLine, protected: bool) !void {
self.terminal.eraseLine(mode, protected);
}
pub fn deleteChars(self: *StreamHandler, count: usize) !void {
try self.terminal.deleteChars(count);
}
pub fn eraseChars(self: *StreamHandler, count: usize) !void {
self.terminal.eraseChars(count);
}
pub fn insertLines(self: *StreamHandler, count: usize) !void {
try self.terminal.insertLines(count);
}
pub fn insertBlanks(self: *StreamHandler, count: usize) !void {
self.terminal.insertBlanks(count);
}
pub fn deleteLines(self: *StreamHandler, count: usize) !void {
try self.terminal.deleteLines(count);
}
pub fn reverseIndex(self: *StreamHandler) !void {
try self.terminal.reverseIndex();
}
pub fn index(self: *StreamHandler) !void {
try self.terminal.index();
}
pub fn nextLine(self: *StreamHandler) !void {
try self.terminal.index();
self.terminal.carriageReturn();
}
pub fn setTopAndBottomMargin(self: *StreamHandler, top: u16, bot: u16) !void {
self.terminal.setTopAndBottomMargin(top, bot);
}
pub fn setLeftAndRightMargin(self: *StreamHandler, left: u16, right: u16) !void {
self.terminal.setLeftAndRightMargin(left, right);
}
pub fn setModifyKeyFormat(self: *StreamHandler, format: terminal.ModifyKeyFormat) !void {
self.terminal.flags.modify_other_keys_2 = false;
switch (format) {
.other_keys => |v| switch (v) {
.numeric => self.terminal.flags.modify_other_keys_2 = true,
else => {},
},
else => {},
}
}
pub fn requestMode(self: *StreamHandler, mode_raw: u16, ansi: bool) !void {
// Get the mode value and respond.
const code: u8 = code: {
const mode = terminal.modes.modeFromInt(mode_raw, ansi) orelse break :code 0;
if (self.terminal.modes.get(mode)) break :code 1;
break :code 2;
};
var msg: termio.Message = .{ .write_small = .{} };
const resp = try std.fmt.bufPrint(
&msg.write_small.data,
"\x1B[{s}{};{}$y",
.{
if (ansi) "" else "?",
mode_raw,
code,
},
);
msg.write_small.len = @intCast(resp.len);
self.messageWriter(msg);
}
pub fn saveMode(self: *StreamHandler, mode: terminal.Mode) !void {
// log.debug("save mode={}", .{mode});
self.terminal.modes.save(mode);
}
pub fn restoreMode(self: *StreamHandler, mode: terminal.Mode) !void {
// For restore mode we have to restore but if we set it, we
// always have to call setMode because setting some modes have
// side effects and we want to make sure we process those.
const v = self.terminal.modes.restore(mode);
// log.debug("restore mode={} v={}", .{ mode, v });
try self.setMode(mode, v);
}
pub fn setMode(self: *StreamHandler, mode: terminal.Mode, enabled: bool) !void {
// Note: this function doesn't need to grab the render state or
// terminal locks because it is only called from process() which
// grabs the lock.
// If we are setting cursor blinking, we ignore it if we have
// a default cursor blink setting set. This is a really weird
// behavior so this comment will go deep into trying to explain it.
//
// There are two ways to set cursor blinks: DECSCUSR (CSI _ q)
// and DEC mode 12. DECSCUSR is the modern approach and has a
// way to revert to the "default" (as defined by the terminal)
// cursor style and blink by doing "CSI 0 q". DEC mode 12 controls
// blinking and is either on or off and has no way to set a
// default. DEC mode 12 is also the more antiquated approach.
//
// The problem is that if the user specifies a desired default
// cursor blink with `cursor-style-blink`, the moment a running
// program uses DEC mode 12, the cursor blink can never be reset
// to the default without an explicit DECSCUSR. But if a program
// is using mode 12, it is by definition not using DECSCUSR.
// This makes for somewhat annoying interactions where a poorly
// (or legacy) behaved program will stop blinking, and it simply
// never restarts.
//
// To get around this, we have a special case where if the user
// specifies some explicit default cursor blink desire, we ignore
// DEC mode 12. We allow DECSCUSR to still set the cursor blink
// because programs using DECSCUSR usually are well behaved and
// reset the cursor blink to the default when they exit.
//
// To be extra safe, users can also add a manual `CSI 0 q` to
// their shell config when they render prompts to ensure the
// cursor is exactly as they request.
if (mode == .cursor_blinking and
self.default_cursor_blink != null)
{
return;
}
// We first always set the raw mode on our mode state.
self.terminal.modes.set(mode, enabled);
// And then some modes require additional processing.
switch (mode) {
// Just noting here that autorepeat has no effect on
// the terminal. xterm ignores this mode and so do we.
// We know about just so that we don't log that it is
// an unknown mode.
.autorepeat => {},
// Schedule a render since we changed colors
.reverse_colors => try self.queueRender(),
// Origin resets cursor pos. This is called whether or not
// we're enabling or disabling origin mode and whether or
// not the value changed.
.origin => self.terminal.setCursorPos(1, 1),
.enable_left_and_right_margin => if (!enabled) {
// When we disable left/right margin mode we need to
// reset the left/right margins.
self.terminal.scrolling_region.left = 0;
self.terminal.scrolling_region.right = self.terminal.cols - 1;
},
.alt_screen => {
const opts: terminal.Terminal.AlternateScreenOptions = .{
.cursor_save = false,
.clear_on_enter = false,
};
if (enabled)
self.terminal.alternateScreen(self.alloc, opts)
else
self.terminal.primaryScreen(self.alloc, opts);
// Schedule a render since we changed screens
try self.queueRender();
},
.alt_screen_save_cursor_clear_enter => {
const opts: terminal.Terminal.AlternateScreenOptions = .{
.cursor_save = true,
.clear_on_enter = true,
};
if (enabled)
self.terminal.alternateScreen(self.alloc, opts)
else
self.terminal.primaryScreen(self.alloc, opts);
// Schedule a render since we changed screens
try self.queueRender();
},
// Force resize back to the window size
.enable_mode_3 => self.terminal.resize(
self.alloc,
self.grid_size.columns,
self.grid_size.rows,
) catch |err| {
log.err("error updating terminal size: {}", .{err});
},
.@"132_column" => try self.terminal.deccolm(
self.alloc,
if (enabled) .@"132_cols" else .@"80_cols",
),
// We need to start a timer to prevent the emulator being hung
// forever.
.synchronized_output => {
if (enabled) self.messageWriter(.{ .start_synchronized_output = {} });
try self.queueRender();
},
.linefeed => {
self.messageWriter(.{ .linefeed_mode = enabled });
},
.mouse_event_x10 => {
if (enabled) {
self.terminal.flags.mouse_event = .x10;
try self.setMouseShape(.default);
} else {
self.terminal.flags.mouse_event = .none;
try self.setMouseShape(.text);
}
},
.mouse_event_normal => {
if (enabled) {
self.terminal.flags.mouse_event = .normal;
try self.setMouseShape(.default);
} else {
self.terminal.flags.mouse_event = .none;
try self.setMouseShape(.text);
}
},
.mouse_event_button => {
if (enabled) {
self.terminal.flags.mouse_event = .button;
try self.setMouseShape(.default);
} else {
self.terminal.flags.mouse_event = .none;
try self.setMouseShape(.text);
}
},
.mouse_event_any => {
if (enabled) {
self.terminal.flags.mouse_event = .any;
try self.setMouseShape(.default);
} else {
self.terminal.flags.mouse_event = .none;
try self.setMouseShape(.text);
}
},
.mouse_format_utf8 => self.terminal.flags.mouse_format = if (enabled) .utf8 else .x10,
.mouse_format_sgr => self.terminal.flags.mouse_format = if (enabled) .sgr else .x10,
.mouse_format_urxvt => self.terminal.flags.mouse_format = if (enabled) .urxvt else .x10,
.mouse_format_sgr_pixels => self.terminal.flags.mouse_format = if (enabled) .sgr_pixels else .x10,
else => {},
}
}
pub fn setMouseShiftCapture(self: *StreamHandler, v: bool) !void {
self.terminal.flags.mouse_shift_capture = if (v) .true else .false;
}
pub fn setAttribute(self: *StreamHandler, attr: terminal.Attribute) !void {
switch (attr) {
.unknown => |unk| log.warn("unimplemented or unknown SGR attribute: {any}", .{unk}),
else => self.terminal.setAttribute(attr) catch |err|
log.warn("error setting attribute {}: {}", .{ attr, err }),
}
}
pub fn deviceAttributes(
self: *StreamHandler,
req: terminal.DeviceAttributeReq,
params: []const u16,
) !void {
_ = params;
// For the below, we quack as a VT220. We don't quack as
// a 420 because we don't support DCS sequences.
switch (req) {
.primary => self.messageWriter(.{
.write_stable = "\x1B[?62;22c",
}),
.secondary => self.messageWriter(.{
.write_stable = "\x1B[>1;10;0c",
}),
else => log.warn("unimplemented device attributes req: {}", .{req}),
}
}
pub fn deviceStatusReport(
self: *StreamHandler,
req: terminal.DeviceStatusReq,
) !void {
switch (req) {
.operating_status => self.messageWriter(.{ .write_stable = "\x1B[0n" }),
.cursor_position => {
const pos: struct {
x: usize,
y: usize,
} = if (self.terminal.modes.get(.origin)) .{
.x = self.terminal.screen.cursor.x -| self.terminal.scrolling_region.left,
.y = self.terminal.screen.cursor.y -| self.terminal.scrolling_region.top,
} else .{
.x = self.terminal.screen.cursor.x,
.y = self.terminal.screen.cursor.y,
};
// Response always is at least 4 chars, so this leaves the
// remainder for the row/column as base-10 numbers. This
// will support a very large terminal.
var msg: termio.Message = .{ .write_small = .{} };
const resp = try std.fmt.bufPrint(&msg.write_small.data, "\x1B[{};{}R", .{
pos.y + 1,
pos.x + 1,
});
msg.write_small.len = @intCast(resp.len);
self.messageWriter(msg);
},
else => log.warn("unimplemented device status req: {}", .{req}),
}
}
pub fn setCursorStyle(
self: *StreamHandler,
style: terminal.CursorStyleReq,
) !void {
// Assume we're setting to a non-default.
self.default_cursor = false;
switch (style) {
.default => {
self.default_cursor = true;
self.terminal.screen.cursor.style = self.default_cursor_style;
self.terminal.modes.set(
.cursor_blinking,
self.default_cursor_blink orelse true,
);
},
.blinking_block => {
self.terminal.screen.cursor.style = .block;
self.terminal.modes.set(.cursor_blinking, true);
},
.steady_block => {
self.terminal.screen.cursor.style = .block;
self.terminal.modes.set(.cursor_blinking, false);
},
.blinking_underline => {
self.terminal.screen.cursor.style = .underline;
self.terminal.modes.set(.cursor_blinking, true);
},
.steady_underline => {
self.terminal.screen.cursor.style = .underline;
self.terminal.modes.set(.cursor_blinking, false);
},
.blinking_bar => {
self.terminal.screen.cursor.style = .bar;
self.terminal.modes.set(.cursor_blinking, true);
},
.steady_bar => {
self.terminal.screen.cursor.style = .bar;
self.terminal.modes.set(.cursor_blinking, false);
},
else => log.warn("unimplemented cursor style: {}", .{style}),
}
}
pub fn setProtectedMode(self: *StreamHandler, mode: terminal.ProtectedMode) !void {
self.terminal.setProtectedMode(mode);
}
pub fn decaln(self: *StreamHandler) !void {
try self.terminal.decaln();
}
pub fn tabClear(self: *StreamHandler, cmd: terminal.TabClear) !void {
self.terminal.tabClear(cmd);
}
pub fn tabSet(self: *StreamHandler) !void {
self.terminal.tabSet();
}
pub fn tabReset(self: *StreamHandler) !void {
self.terminal.tabReset();
}
pub fn saveCursor(self: *StreamHandler) !void {
self.terminal.saveCursor();
}
pub fn restoreCursor(self: *StreamHandler) !void {
self.terminal.restoreCursor();
}
pub fn enquiry(self: *StreamHandler) !void {
self.messageWriter(.{ .write_stable = "" });
}
pub fn scrollDown(self: *StreamHandler, count: usize) !void {
try self.terminal.scrollDown(count);
}
pub fn scrollUp(self: *StreamHandler, count: usize) !void {
try self.terminal.scrollUp(count);
}
pub fn setActiveStatusDisplay(
self: *StreamHandler,
req: terminal.StatusDisplay,
) !void {
self.terminal.status_display = req;
}
pub fn configureCharset(
self: *StreamHandler,
slot: terminal.CharsetSlot,
set: terminal.Charset,
) !void {
self.terminal.configureCharset(slot, set);
}
pub fn invokeCharset(
self: *StreamHandler,
active: terminal.CharsetActiveSlot,
slot: terminal.CharsetSlot,
single: bool,
) !void {
self.terminal.invokeCharset(active, slot, single);
}
pub fn fullReset(
self: *StreamHandler,
) !void {
self.terminal.fullReset(self.alloc);
try self.setMouseShape(.text);
}
pub fn queryKittyKeyboard(self: *StreamHandler) !void {
if (comptime disable_kitty_keyboard_protocol) return;
log.debug("querying kitty keyboard mode", .{});
var data: termio.Message.WriteReq.Small.Array = undefined;
const resp = try std.fmt.bufPrint(&data, "\x1b[?{}u", .{
self.terminal.screen.kitty_keyboard.current().int(),
});
self.messageWriter(.{
.write_small = .{
.data = data,
.len = @intCast(resp.len),
},
});
}
pub fn pushKittyKeyboard(
self: *StreamHandler,
flags: terminal.kitty.KeyFlags,
) !void {
if (comptime disable_kitty_keyboard_protocol) return;
log.debug("pushing kitty keyboard mode: {}", .{flags});
self.terminal.screen.kitty_keyboard.push(flags);
}
pub fn popKittyKeyboard(self: *StreamHandler, n: u16) !void {
if (comptime disable_kitty_keyboard_protocol) return;
log.debug("popping kitty keyboard mode n={}", .{n});
self.terminal.screen.kitty_keyboard.pop(@intCast(n));
}
pub fn setKittyKeyboard(
self: *StreamHandler,
mode: terminal.kitty.KeySetMode,
flags: terminal.kitty.KeyFlags,
) !void {
if (comptime disable_kitty_keyboard_protocol) return;
log.debug("setting kitty keyboard mode: {} {}", .{ mode, flags });
self.terminal.screen.kitty_keyboard.set(mode, flags);
}
pub fn reportXtversion(
self: *StreamHandler,
) !void {
log.debug("reporting XTVERSION: ghostty {s}", .{build_config.version_string});
var buf: [288]u8 = undefined;
const resp = try std.fmt.bufPrint(
&buf,
"\x1BP>|{s} {s}\x1B\\",
.{
"ghostty",
build_config.version_string,
},
);
const msg = try termio.Message.writeReq(self.alloc, resp);
self.messageWriter(msg);
}
//-------------------------------------------------------------------------
// OSC
pub fn changeWindowTitle(self: *StreamHandler, title: []const u8) !void {
var buf: [256]u8 = undefined;
if (title.len >= buf.len) {
log.warn("change title requested larger than our buffer size, ignoring", .{});
return;
}
@memcpy(buf[0..title.len], title);
buf[title.len] = 0;
// Mark that we've seen a title
self.ev.seen_title = true;
_ = self.ev.surface_mailbox.push(.{
.set_title = buf,
}, .{ .forever = {} });
}
pub fn setMouseShape(
self: *StreamHandler,
shape: terminal.MouseShape,
) !void {
// Avoid changing the shape it it is already set to avoid excess
// cross-thread messaging.
if (self.terminal.mouse_shape == shape) return;
self.terminal.mouse_shape = shape;
_ = self.ev.surface_mailbox.push(.{
.set_mouse_shape = shape,
}, .{ .forever = {} });
}
pub fn clipboardContents(self: *StreamHandler, kind: u8, data: []const u8) !void {
// Note: we ignore the "kind" field and always use the standard clipboard.
// iTerm also appears to do this but other terminals seem to only allow
// certain. Let's investigate more.
const clipboard_type: apprt.Clipboard = switch (kind) {
'c' => .standard,
's' => .selection,
'p' => .primary,
else => .standard,
};
// Get clipboard contents
if (data.len == 1 and data[0] == '?') {
_ = self.ev.surface_mailbox.push(.{
.clipboard_read = clipboard_type,
}, .{ .forever = {} });
return;
}
// Write clipboard contents
_ = self.ev.surface_mailbox.push(.{
.clipboard_write = .{
.req = try apprt.surface.Message.WriteReq.init(
self.alloc,
data,
),
.clipboard_type = clipboard_type,
},
}, .{ .forever = {} });
}
pub fn promptStart(self: *StreamHandler, aid: ?[]const u8, redraw: bool) !void {
_ = aid;
self.terminal.markSemanticPrompt(.prompt);
self.terminal.flags.shell_redraws_prompt = redraw;
}
pub fn promptContinuation(self: *StreamHandler, aid: ?[]const u8) !void {
_ = aid;
self.terminal.markSemanticPrompt(.prompt_continuation);
}
pub fn promptEnd(self: *StreamHandler) !void {
self.terminal.markSemanticPrompt(.input);
}
pub fn endOfInput(self: *StreamHandler) !void {
self.terminal.markSemanticPrompt(.command);
}
pub fn reportPwd(self: *StreamHandler, url: []const u8) !void {
if (builtin.os.tag == .windows) {
log.warn("reportPwd unimplemented on windows", .{});
return;
}
const uri = std.Uri.parse(url) catch |e| {
log.warn("invalid url in OSC 7: {}", .{e});
return;
};
if (!std.mem.eql(u8, "file", uri.scheme) and
!std.mem.eql(u8, "kitty-shell-cwd", uri.scheme))
{
log.warn("OSC 7 scheme must be file, got: {s}", .{uri.scheme});
return;
}
// OSC 7 is a little sketchy because anyone can send any value from
// any host (such an SSH session). The best practice terminals follow
// is to valid the hostname to be local.
const host_valid = host_valid: {
const host = uri.host orelse break :host_valid false;
// Empty or localhost is always good
if (host.len == 0 or std.mem.eql(u8, "localhost", host)) {
break :host_valid true;
}
// Otherwise, it must match our hostname.
var buf: [std.os.HOST_NAME_MAX]u8 = undefined;
const hostname = std.os.gethostname(&buf) catch |err| {
log.warn("failed to get hostname for OSC 7 validation: {}", .{err});
break :host_valid false;
};
break :host_valid std.mem.eql(u8, host, hostname);
};
if (!host_valid) {
log.warn("OSC 7 host must be local", .{});
return;
}
// We need to unescape the path. We first try to unescape onto
// the stack and fall back to heap allocation if we have to.
var pathBuf: [1024]u8 = undefined;
const path, const heap = path: {
// If the path doesn't have any escapes, we can use it directly.
if (std.mem.indexOfScalar(u8, uri.path, '%') == null)
break :path .{ uri.path, false };
// First try to stack-allocate
var fba = std.heap.FixedBufferAllocator.init(&pathBuf);
if (std.Uri.unescapeString(fba.allocator(), uri.path)) |path|
break :path .{ path, false }
else |_| {}
// Fall back to heap
if (std.Uri.unescapeString(self.alloc, uri.path)) |path|
break :path .{ path, true }
else |_| {}
// Fall back to using it directly...
log.warn("failed to unescape OSC 7 path, using it directly path={s}", .{uri.path});
break :path .{ uri.path, false };
};
defer if (heap) self.alloc.free(path);
log.debug("terminal pwd: {s}", .{path});
try self.terminal.setPwd(path);
// If we haven't seen a title, use our pwd as the title.
if (!self.ev.seen_title) {
try self.changeWindowTitle(path);
self.ev.seen_title = false;
}
}
/// Implements OSC 4, OSC 10, and OSC 11, which reports palette color,
/// default foreground color, and background color respectively.
pub fn reportColor(
self: *StreamHandler,
kind: terminal.osc.Command.ColorKind,
terminator: terminal.osc.Terminator,
) !void {
if (self.osc_color_report_format == .none) return;
const color = switch (kind) {
.palette => |i| self.terminal.color_palette.colors[i],
.foreground => self.foreground_color,
.background => self.background_color,
.cursor => self.cursor_color orelse self.foreground_color,
};
var msg: termio.Message = .{ .write_small = .{} };
const resp = switch (self.osc_color_report_format) {
.@"16-bit" => switch (kind) {
.palette => |i| try std.fmt.bufPrint(
&msg.write_small.data,
"\x1B]{s};{d};rgb:{x:0>4}/{x:0>4}/{x:0>4}{s}",
.{
kind.code(),
i,
@as(u16, color.r) * 257,
@as(u16, color.g) * 257,
@as(u16, color.b) * 257,
terminator.string(),
},
),
else => try std.fmt.bufPrint(
&msg.write_small.data,
"\x1B]{s};rgb:{x:0>4}/{x:0>4}/{x:0>4}{s}",
.{
kind.code(),
@as(u16, color.r) * 257,
@as(u16, color.g) * 257,
@as(u16, color.b) * 257,
terminator.string(),
},
),
},
.@"8-bit" => switch (kind) {
.palette => |i| try std.fmt.bufPrint(
&msg.write_small.data,
"\x1B]{s};{d};rgb:{x:0>2}/{x:0>2}/{x:0>2}{s}",
.{
kind.code(),
i,
@as(u16, color.r),
@as(u16, color.g),
@as(u16, color.b),
terminator.string(),
},
),
else => try std.fmt.bufPrint(
&msg.write_small.data,
"\x1B]{s};rgb:{x:0>2}/{x:0>2}/{x:0>2}{s}",
.{
kind.code(),
@as(u16, color.r),
@as(u16, color.g),
@as(u16, color.b),
terminator.string(),
},
),
},
.none => unreachable, // early return above
};
msg.write_small.len = @intCast(resp.len);
self.messageWriter(msg);
}
pub fn setColor(
self: *StreamHandler,
kind: terminal.osc.Command.ColorKind,
value: []const u8,
) !void {
const color = try terminal.color.RGB.parse(value);
switch (kind) {
.palette => |i| {
self.terminal.color_palette.colors[i] = color;
self.terminal.color_palette.mask.set(i);
},
.foreground => {
self.foreground_color = color;
_ = self.ev.renderer_mailbox.push(.{
.foreground_color = color,
}, .{ .forever = {} });
},
.background => {
self.background_color = color;
_ = self.ev.renderer_mailbox.push(.{
.background_color = color,
}, .{ .forever = {} });
},
.cursor => {
self.cursor_color = color;
_ = self.ev.renderer_mailbox.push(.{
.cursor_color = color,
}, .{ .forever = {} });
},
}
}
pub fn resetColor(
self: *StreamHandler,
kind: terminal.osc.Command.ColorKind,
value: []const u8,
) !void {
switch (kind) {
.palette => {
const mask = &self.terminal.color_palette.mask;
if (value.len == 0) {
// Find all bit positions in the mask which are set and
// reset those indices to the default palette
var it = mask.iterator(.{});
while (it.next()) |i| {
self.terminal.color_palette.colors[i] = self.terminal.default_palette[i];
mask.unset(i);
}
} else {
var it = std.mem.tokenizeScalar(u8, value, ';');
while (it.next()) |param| {
// Skip invalid parameters
const i = std.fmt.parseUnsigned(u8, param, 10) catch continue;
if (mask.isSet(i)) {
self.terminal.color_palette.colors[i] = self.terminal.default_palette[i];
mask.unset(i);
}
}
}
},
.foreground => {
self.foreground_color = self.default_foreground_color;
_ = self.ev.renderer_mailbox.push(.{
.foreground_color = self.foreground_color,
}, .{ .forever = {} });
},
.background => {
self.background_color = self.default_background_color;
_ = self.ev.renderer_mailbox.push(.{
.background_color = self.background_color,
}, .{ .forever = {} });
},
.cursor => {
self.cursor_color = self.default_cursor_color;
_ = self.ev.renderer_mailbox.push(.{
.cursor_color = self.cursor_color,
}, .{ .forever = {} });
},
}
}
pub fn showDesktopNotification(
self: *StreamHandler,
title: []const u8,
body: []const u8,
) !void {
var message = apprt.surface.Message{ .desktop_notification = undefined };
const title_len = @min(title.len, message.desktop_notification.title.len);
@memcpy(message.desktop_notification.title[0..title_len], title[0..title_len]);
message.desktop_notification.title[title_len] = 0;
const body_len = @min(body.len, message.desktop_notification.body.len);
@memcpy(message.desktop_notification.body[0..body_len], body[0..body_len]);
message.desktop_notification.body[body_len] = 0;
_ = self.ev.surface_mailbox.push(message, .{ .forever = {} });
}
};