ghostty/src/input/Binding.zig
2025-07-06 14:15:11 -05:00

3138 lines
104 KiB
Zig

//! A binding maps some input trigger to an action. When the trigger
//! occurs, the action is performed.
const Binding = @This();
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const ziglyph = @import("ziglyph");
const key = @import("key.zig");
const KeyEvent = key.KeyEvent;
/// The trigger that needs to be performed to execute the action.
trigger: Trigger,
/// The action to take if this binding matches
action: Action,
/// Boolean flags that can be set per binding.
flags: Flags = .{},
pub const Error = error{
InvalidFormat,
InvalidAction,
};
/// Flags the full binding-scoped flags that can be set per binding.
pub const Flags = packed struct {
/// True if this binding should consume the input when the
/// action is triggered.
consumed: bool = true,
/// True if this binding should be forwarded to all active surfaces
/// in the application.
all: bool = false,
/// True if this binding is global. Global bindings should work system-wide
/// and not just while Ghostty is focused. This may not work on all platforms.
/// See the keybind config documentation for more information.
global: bool = false,
/// True if this binding should only be triggered if the action can be
/// performed. If the action can't be performed then the binding acts as
/// if it doesn't exist.
performable: bool = false,
};
/// Full binding parser. The binding parser is implemented as an iterator
/// which yields elements to support multi-key sequences without allocation.
pub const Parser = struct {
trigger_it: SequenceIterator,
action: Action,
flags: Flags = .{},
pub const Elem = union(enum) {
/// A leader trigger in a sequence.
leader: Trigger,
/// The final trigger and action in a sequence.
binding: Binding,
};
pub fn init(raw_input: []const u8) Error!Parser {
const flags, const start_idx = try parseFlags(raw_input);
const input = raw_input[start_idx..];
// Find the last = which splits are mapping into the trigger
// and action, respectively.
// We use the last = because the keybind itself could contain
// raw equal signs (for the = codepoint)
const eql_idx = std.mem.lastIndexOf(u8, input, "=") orelse return Error.InvalidFormat;
// Sequence iterator goes up to the equal, action is after. We can
// parse the action now.
return .{
.trigger_it = .{ .input = input[0..eql_idx] },
.action = try .parse(input[eql_idx + 1 ..]),
.flags = flags,
};
}
fn parseFlags(raw_input: []const u8) Error!struct { Flags, usize } {
var flags: Flags = .{};
var start_idx: usize = 0;
var input: []const u8 = raw_input;
while (true) {
// Find the next prefix
const idx = std.mem.indexOf(u8, input, ":") orelse break;
const prefix = input[0..idx];
// If the prefix is one of our flags then set it.
if (std.mem.eql(u8, prefix, "all")) {
if (flags.all) return Error.InvalidFormat;
flags.all = true;
} else if (std.mem.eql(u8, prefix, "global")) {
if (flags.global) return Error.InvalidFormat;
flags.global = true;
} else if (std.mem.eql(u8, prefix, "unconsumed")) {
if (!flags.consumed) return Error.InvalidFormat;
flags.consumed = false;
} else if (std.mem.eql(u8, prefix, "performable")) {
if (flags.performable) return Error.InvalidFormat;
flags.performable = true;
} else {
// If we don't recognize the prefix then we're done. We
// let any unknown prefix fallthrough to trigger-specific
// parsing in case there are trigger-specific prefixes
// (none currently but historically there was `physical:`
// at one point). Breaking here lets us always implement new
// prefixes.
break;
}
// Move past the prefix
start_idx += idx + 1;
input = input[idx + 1 ..];
}
return .{ flags, start_idx };
}
pub fn next(self: *Parser) Error!?Elem {
// Get our trigger. If we're out of triggers then we're done.
const trigger = (try self.trigger_it.next()) orelse return null;
// If this is our last trigger then it is our final binding.
if (!self.trigger_it.done()) {
// Global/all bindings can't be sequences
if (self.flags.global or self.flags.all) return error.InvalidFormat;
return .{ .leader = trigger };
}
// Out of triggers, yield the final action.
return .{ .binding = .{
.trigger = trigger,
.action = self.action,
.flags = self.flags,
} };
}
pub fn reset(self: *Parser) void {
self.trigger_it.i = 0;
}
};
/// An iterator that yields each trigger in a sequence of triggers. For
/// example, the sequence "ctrl+a>ctrl+b" would yield "ctrl+a" and then
/// "ctrl+b". The iterator approach allows us to parse a sequence of
/// triggers without allocations.
const SequenceIterator = struct {
/// The input of triggers. This is expected to be ONLY triggers. Things
/// like the "unconsumed:" prefix or action must be stripped before
/// passing to this iterator.
input: []const u8,
i: usize = 0,
/// Returns the next trigger in the sequence if there is no parsing error.
pub fn next(self: *SequenceIterator) Error!?Trigger {
if (self.done()) return null;
const rem = self.input[self.i..];
const idx = std.mem.indexOf(u8, rem, ">") orelse rem.len;
defer self.i += idx + 1;
return try .parse(rem[0..idx]);
}
/// Returns true if there are no more triggers to parse.
pub fn done(self: *const SequenceIterator) bool {
return self.i > self.input.len;
}
};
/// Parse a single, non-sequenced binding. To support sequences you must
/// use parse. This is a convenience function for single bindings aimed
/// primarily at tests.
fn parseSingle(raw_input: []const u8) (Error || error{UnexpectedSequence})!Binding {
var p = try Parser.init(raw_input);
const elem = (try p.next()) orelse return Error.InvalidFormat;
return switch (elem) {
.leader => error.UnexpectedSequence,
.binding => elem.binding,
};
}
/// Returns true if lhs should be sorted before rhs
pub fn lessThan(_: void, lhs: Binding, rhs: Binding) bool {
const lhs_count: usize = blk: {
var count: usize = 0;
if (lhs.trigger.mods.super) count += 1;
if (lhs.trigger.mods.ctrl) count += 1;
if (lhs.trigger.mods.shift) count += 1;
if (lhs.trigger.mods.alt) count += 1;
break :blk count;
};
const rhs_count: usize = blk: {
var count: usize = 0;
if (rhs.trigger.mods.super) count += 1;
if (rhs.trigger.mods.ctrl) count += 1;
if (rhs.trigger.mods.shift) count += 1;
if (rhs.trigger.mods.alt) count += 1;
break :blk count;
};
if (lhs_count != rhs_count)
return lhs_count > rhs_count;
if (lhs.trigger.mods.int() != rhs.trigger.mods.int())
return lhs.trigger.mods.int() > rhs.trigger.mods.int();
const lhs_key: c_int = blk: {
switch (lhs.trigger.key) {
.physical => break :blk @intFromEnum(lhs.trigger.key.physical),
.unicode => break :blk @intCast(lhs.trigger.key.unicode),
}
};
const rhs_key: c_int = blk: {
switch (rhs.trigger.key) {
.physical => break :blk @intFromEnum(rhs.trigger.key.physical),
.unicode => break :blk @intCast(rhs.trigger.key.unicode),
}
};
return lhs_key < rhs_key;
}
/// The set of actions that a keybinding can take.
pub const Action = union(enum) {
/// Ignore this key combination.
///
/// Ghostty will not process this combination nor forward it to the child
/// process within the terminal, but it may still be processed by the OS or
/// other applications.
ignore,
/// Unbind a previously bound key binding.
///
/// This cannot unbind bindings that were not bound by Ghostty or the user
/// (e.g. bindings set by the OS or some other application).
unbind,
/// Send a CSI sequence.
///
/// The value should be the CSI sequence without the CSI header (`ESC [` or
/// `\x1b[`).
///
/// For example, `csi:0m` can be sent to reset all styles of the current text.
csi: []const u8,
/// Send an `ESC` sequence.
esc: []const u8,
/// Send the specified text.
///
/// Uses Zig string literal syntax. This is currently not validated.
/// If the text is invalid (i.e. contains an invalid escape sequence),
/// the error will currently only show up in logs.
text: []const u8,
/// Send data to the pty depending on whether cursor key mode is enabled
/// (`application`) or disabled (`normal`).
cursor_key: CursorKey,
/// Reset the terminal.
///
/// This can fix a lot of issues when a running program puts the terminal
/// into a broken state, equivalent to running the `reset` command.
///
/// If you do this while in a TUI program such as vim, this may break
/// the program. If you do this while in a shell, you may have to press
/// enter after to get a new prompt.
reset,
/// Copy the selected text to the clipboard.
copy_to_clipboard,
/// Paste the contents of the default clipboard.
paste_from_clipboard,
/// Paste the contents of the selection clipboard.
paste_from_selection,
/// If there is a URL under the cursor, copy it to the default clipboard.
copy_url_to_clipboard,
/// Copy the terminal title to the clipboard. If the terminal title is not
/// set or is empty this has no effect.
copy_title_to_clipboard,
/// Increase the font size by the specified amount in points (pt).
///
/// For example, `increase_font_size:1.5` will increase the font size
/// by 1.5 points.
increase_font_size: f32,
/// Decrease the font size by the specified amount in points (pt).
///
/// For example, `decrease_font_size:1.5` will decrease the font size
/// by 1.5 points.
decrease_font_size: f32,
/// Reset the font size to the original configured size.
reset_font_size,
/// Set the font size to the specified size in points (pt).
///
/// For example, `set_font_size:14.5` will set the font size
/// to 14.5 points.
set_font_size: f32,
/// Clear the screen and all scrollback.
clear_screen,
/// Select all text on the screen.
select_all,
/// Scroll to the top of the screen.
scroll_to_top,
/// Scroll to the bottom of the screen.
scroll_to_bottom,
/// Scroll to the selected text.
scroll_to_selection,
/// Scroll the screen up by one page.
scroll_page_up,
/// Scroll the screen down by one page.
scroll_page_down,
/// Scroll the screen by the specified fraction of a page.
///
/// Positive values scroll downwards, and negative values scroll upwards.
///
/// For example, `scroll_page_fractional:0.5` would scroll the screen
/// downwards by half a page, while `scroll_page_fractional:-1.5` would
/// scroll it upwards by one and a half pages.
scroll_page_fractional: f32,
/// Scroll the screen by the specified amount of lines.
///
/// Positive values scroll downwards, and negative values scroll upwards.
///
/// For example, `scroll_page_lines:3` would scroll the screen downwards
/// by 3 lines, while `scroll_page_lines:-10` would scroll it upwards by 10
/// lines.
scroll_page_lines: i16,
/// Adjust the current selection in the given direction or position,
/// relative to the cursor.
///
/// WARNING: This does not create a new selection, and does nothing when
/// there currently isn't one.
///
/// Valid arguments are:
///
/// - `left`, `right`
///
/// Adjust the selection one cell to the left or right respectively.
///
/// - `up`, `down`
///
/// Adjust the selection one line upwards or downwards respectively.
///
/// - `page_up`, `page_down`
///
/// Adjust the selection one page upwards or downwards respectively.
///
/// - `home`, `end`
///
/// Adjust the selection to the top-left or the bottom-right corner
/// of the screen respectively.
///
/// - `beginning_of_line`, `end_of_line`
///
/// Adjust the selection to the beginning or the end of the line
/// respectively.
///
adjust_selection: AdjustSelection,
/// Jump the viewport forward or back by the given number of prompts.
///
/// Requires shell integration.
///
/// Positive values scroll downwards, and negative values scroll upwards.
jump_to_prompt: i16,
/// Write the entire scrollback into a temporary file with the specified
/// action. The action determines what to do with the filepath.
///
/// Valid actions are:
///
/// - `copy`
///
/// Copy the file path into the clipboard.
///
/// - `paste`
///
/// Paste the file path into the terminal.
///
/// - `open`
///
/// Open the file in the default OS editor for text files.
///
/// The default OS editor is determined by using `open` on macOS
/// and `xdg-open` on Linux.
///
write_scrollback_file: WriteScreenAction,
/// Write the contents of the screen into a temporary file with the
/// specified action.
///
/// See `write_scrollback_file` for possible actions.
write_screen_file: WriteScreenAction,
/// Write the currently selected text into a temporary file with the
/// specified action.
///
/// See `write_scrollback_file` for possible actions.
///
/// Does nothing when no text is selected.
write_selection_file: WriteScreenAction,
/// Open a new window.
///
/// If the application isn't currently focused,
/// this will bring it to the front.
new_window,
/// Open a new tab.
new_tab,
/// Go to the previous tab.
previous_tab,
/// Go to the next tab.
next_tab,
/// Go to the last tab.
last_tab,
/// Go to the tab with the specific index, starting from 1.
///
/// If the tab number is higher than the number of tabs,
/// this will go to the last tab.
goto_tab: usize,
/// Moves a tab by a relative offset.
///
/// Positive values move the tab forwards, and negative values move it
/// backwards. If the new position is out of bounds, it is wrapped around
/// cyclically within the tab list.
///
/// For example, `move_tab:1` moves the tab one position forwards, and if
/// it was already the last tab in the list, it wraps around and becomes
/// the first tab in the list. Likewise, `move_tab:-1` moves the tab one
/// position backwards, and if it was the first tab, then it will become
/// the last tab.
move_tab: isize,
/// Toggle the tab overview.
///
/// This is only supported on Linux and when the system's libadwaita
/// version is 1.4 or newer. The current libadwaita version can be
/// found by running `ghostty +version`.
toggle_tab_overview,
/// Change the title of the current focused surface via a pop-up prompt.
///
/// This requires libadwaita 1.5 or newer on Linux. The current libadwaita
/// version can be found by running `ghostty +version`.
prompt_surface_title,
/// Create a new split in the specified direction.
///
/// Valid arguments:
///
/// - `right`, `down`, `left`, `up`
///
/// Creates a new split in the corresponding direction.
///
/// - `auto`
///
/// Creates a new split along the larger direction.
/// For example, if the parent split is currently wider than it is tall,
/// then a left-right split would be created, and vice versa.
///
new_split: SplitDirection,
/// Focus on a split either in the specified direction (`right`, `down`,
/// `left` and `up`), or in the adjacent split in the order of creation
/// (`previous` and `next`).
goto_split: SplitFocusDirection,
/// Zoom in or out of the current split.
///
/// When a split is zoomed into, it will take up the entire space in
/// the current tab, hiding other splits. The tab or tab bar would also
/// reflect this by displaying an icon indicating the zoomed state.
toggle_split_zoom,
/// Resize the current split in the specified direction and amount in
/// pixels. The two arguments should be joined with a comma (`,`),
/// like in `resize_split:up,10`.
resize_split: SplitResizeParameter,
/// Equalize the size of all splits in the current window.
equalize_splits,
/// Reset the window to the default size. The "default size" is the
/// size that a new window would be created with. This has no effect
/// if the window is fullscreen.
///
/// Only implemented on macOS.
reset_window_size,
/// Control the visibility of the terminal inspector.
///
/// Valid arguments: `toggle`, `show`, `hide`.
inspector: InspectorMode,
/// Show the GTK inspector.
///
/// Has no effect on macOS.
show_gtk_inspector,
/// Open the configuration file in the default OS editor.
///
/// If your default OS editor isn't configured then this will fail.
/// Currently, any failures to open the configuration will show up only in
/// the logs.
open_config,
/// Reload the configuration.
///
/// The exact meaning depends on the app runtime in use, but this usually
/// involves re-reading the configuration file and applying any changes
/// Note that not all changes can be applied at runtime.
reload_config,
/// Close the current "surface", whether that is a window, tab, split, etc.
///
/// This might trigger a close confirmation popup, depending on the value
/// of the `confirm-close-surface` configuration setting.
close_surface,
/// Close the current tab and all splits therein.
///
/// This might trigger a close confirmation popup, depending on the value
/// of the `confirm-close-surface` configuration setting.
close_tab,
/// Close the current window and all tabs and splits therein.
///
/// This might trigger a close confirmation popup, depending on the value
/// of the `confirm-close-surface` configuration setting.
close_window,
/// Close all windows.
///
/// WARNING: This action has been deprecated and has no effect on either
/// Linux or macOS. Users are instead encouraged to use `all:close_window`
/// instead.
close_all_windows,
/// Maximize or unmaximize the current window.
///
/// This has no effect on macOS as it does not have the concept of
/// maximized windows.
toggle_maximize,
/// Fullscreen or unfullscreen the current window.
toggle_fullscreen,
/// Toggle window decorations (titlebar, buttons, etc.) for the current window.
///
/// Only implemented on Linux.
toggle_window_decorations,
/// Toggle whether the terminal window should always float on top of other
/// windows even when unfocused.
///
/// Terminal windows always start as normal (not float-on-top) windows.
///
/// Only implemented on macOS.
toggle_window_float_on_top,
/// Toggle secure input mode.
///
/// This is used to prevent apps from monitoring your keyboard input
/// when entering passwords or other sensitive information.
///
/// This applies to the entire application, not just the focused terminal.
/// You must manually untoggle it or quit Ghostty entirely to disable it.
///
/// Only implemented on macOS, as this uses a built-in system API.
toggle_secure_input,
/// Toggle the command palette.
///
/// The command palette is a popup that lets you see what actions
/// you can perform, their associated keybindings (if any), a search bar
/// to filter the actions, and the ability to then execute the action.
///
/// This requires libadwaita 1.5 or newer on Linux. The current libadwaita
/// version can be found by running `ghostty +version`.
toggle_command_palette,
/// Toggle the quick terminal.
///
/// The quick terminal, also known as the "Quake-style" or drop-down
/// terminal, is a terminal window that appears on demand from a keybinding,
/// often sliding in from a screen edge such as the top. This is useful for
/// quick access to a terminal without having to open a new window or tab.
///
/// The terminal state is preserved between appearances, so showing the
/// quick terminal after it was already hidden would display the same
/// window instead of creating a new one.
///
/// As quick terminals are often useful when other windows are currently
/// focused, they are best used with *global* keybinds. For example, one
/// can define the following key bind to toggle the quick terminal from
/// anywhere within the system by pressing `` Cmd+` ``:
///
/// ```ini
/// keybind = global:cmd+backquote=toggle_quick_terminal
/// ```
///
/// The quick terminal has some limitations:
///
/// - Only one quick terminal instance can exist at a time.
///
/// - Unlike normal terminal windows, the quick terminal will not be
/// restored when the application is restarted on systems that support
/// window restoration like macOS.
///
/// - On Linux, the quick terminal is only supported on Wayland and not
/// X11, and only on Wayland compositors that support the `wlr-layer-shell-v1`
/// protocol. In practice, this means that only GNOME users would not be
/// able to use this feature.
///
/// - On Linux, slide-in animations are only supported on KDE, and when
/// the "Sliding Popups" KWin plugin is enabled.
///
/// If you do not have this plugin enabled, open System Settings > Apps
/// & Windows > Window Management > Desktop Effects, and enable the
/// plugin in the plugin list. Ghostty would then need to be restarted
/// fully for this to take effect.
///
/// - Quick terminal tabs are only supported on Linux and not on macOS.
/// This is because tabs on macOS require a title bar.
///
/// - On macOS, a fullscreened quick terminal will always be in non-native
/// fullscreen mode. This is a requirement due to how the quick terminal
/// is rendered.
///
/// See the various configurations for the quick terminal in the
/// configuration file to customize its behavior.
toggle_quick_terminal,
/// Show or hide all windows. If all windows become shown, we also ensure
/// Ghostty becomes focused. When hiding all windows, focus is yielded
/// to the next application as determined by the OS.
///
/// Note: When the focused surface is fullscreen, this method does nothing.
///
/// Only implemented on macOS.
toggle_visibility,
/// Check for updates.
///
/// Only implemented on macOS.
check_for_updates,
/// Undo the last undoable action for the focused surface or terminal,
/// if possible. This can undo actions such as closing tabs or
/// windows.
///
/// Not every action in Ghostty can be undone or redone. The list
/// of actions support undo/redo is currently limited to:
///
/// - New window, close window
/// - New tab, close tab
/// - New split, close split
///
/// All actions are only undoable/redoable for a limited time.
/// For example, restoring a closed split can only be done for
/// some number of seconds since the split was closed. The exact
/// amount is configured with `TODO`.
///
/// The undo/redo actions being limited ensures that there is
/// bounded memory usage over time, closed surfaces don't continue running
/// in the background indefinitely, and the keybinds become available
/// for terminal applications to use.
///
/// Only implemented on macOS.
undo,
/// Redo the last undoable action for the focused surface or terminal,
/// if possible. See "undo" for more details on what can and cannot
/// be undone or redone.
redo,
/// Quit Ghostty.
quit,
/// Crash Ghostty in the desired thread for the focused surface.
///
/// WARNING: This is a hard crash (panic) and data can be lost.
///
/// The purpose of this action is to test crash handling. For some
/// users, it may be useful to test crash reporting functionality in
/// order to determine if it all works as expected.
///
/// The value determines the crash location:
///
/// - `main`
///
/// Crash on the main (GUI) thread.
///
/// - `io`
///
/// Crash on the IO thread for the focused surface.
///
/// - `render`
///
/// Crash on the render thread for the focused surface.
///
crash: CrashThread,
pub const Key = @typeInfo(Action).@"union".tag_type.?;
pub const CrashThread = enum {
main,
io,
render,
};
pub const CursorKey = struct {
normal: []const u8,
application: []const u8,
pub fn clone(
self: CursorKey,
alloc: Allocator,
) Allocator.Error!CursorKey {
return .{
.normal = try alloc.dupe(u8, self.normal),
.application = try alloc.dupe(u8, self.application),
};
}
};
pub const AdjustSelection = enum {
left,
right,
up,
down,
page_up,
page_down,
home,
end,
beginning_of_line,
end_of_line,
};
pub const SplitDirection = enum {
right,
down,
left,
up,
auto, // splits along the larger direction
pub const default: SplitDirection = .auto;
};
pub const SplitFocusDirection = enum {
previous,
next,
up,
left,
down,
right,
pub fn parse(input: []const u8) !SplitFocusDirection {
return std.meta.stringToEnum(SplitFocusDirection, input) orelse {
// For backwards compatibility we map "top" and "bottom" onto the enum
// values "up" and "down"
if (std.mem.eql(u8, input, "top")) {
return .up;
} else if (std.mem.eql(u8, input, "bottom")) {
return .down;
} else {
return Error.InvalidFormat;
}
};
}
test "parse" {
const testing = std.testing;
try testing.expectEqual(.previous, try SplitFocusDirection.parse("previous"));
try testing.expectEqual(.next, try SplitFocusDirection.parse("next"));
try testing.expectEqual(.up, try SplitFocusDirection.parse("up"));
try testing.expectEqual(.left, try SplitFocusDirection.parse("left"));
try testing.expectEqual(.down, try SplitFocusDirection.parse("down"));
try testing.expectEqual(.right, try SplitFocusDirection.parse("right"));
try testing.expectEqual(.up, try SplitFocusDirection.parse("top"));
try testing.expectEqual(.down, try SplitFocusDirection.parse("bottom"));
try testing.expectError(error.InvalidFormat, SplitFocusDirection.parse(""));
try testing.expectError(error.InvalidFormat, SplitFocusDirection.parse("green"));
}
};
pub const SplitResizeDirection = enum {
up,
down,
left,
right,
};
pub const SplitResizeParameter = struct {
SplitResizeDirection,
u16,
};
pub const WriteScreenAction = enum {
copy,
paste,
open,
};
// Extern because it is used in the embedded runtime ABI.
pub const InspectorMode = enum {
toggle,
show,
hide,
};
fn parseEnum(comptime T: type, value: []const u8) !T {
return std.meta.stringToEnum(T, value) orelse return Error.InvalidFormat;
}
fn parseInt(comptime T: type, value: []const u8) !T {
return std.fmt.parseInt(T, value, 10) catch return Error.InvalidFormat;
}
fn parseFloat(comptime T: type, value: []const u8) !T {
return std.fmt.parseFloat(T, value) catch return Error.InvalidFormat;
}
fn parseParameter(
comptime field: std.builtin.Type.UnionField,
param: []const u8,
) !field.type {
const field_info = @typeInfo(field.type);
// Fields can provide a custom "parse" function
if (field_info == .@"struct" or
field_info == .@"union" or
field_info == .@"enum")
{
if (@hasDecl(field.type, "parse") and
@typeInfo(@TypeOf(field.type.parse)) == .@"fn")
{
return field.type.parse(param);
}
}
return switch (field_info) {
.@"enum" => try parseEnum(field.type, param),
.int => try parseInt(field.type, param),
.float => try parseFloat(field.type, param),
.@"struct" => |info| blk: {
// Only tuples are supported to avoid ambiguity with field
// ordering
comptime assert(info.is_tuple);
var it = std.mem.splitAny(u8, param, ",");
var value: field.type = undefined;
inline for (info.fields) |field_| {
const next = it.next() orelse return Error.InvalidFormat;
@field(value, field_.name) = switch (@typeInfo(field_.type)) {
.@"enum" => try parseEnum(field_.type, next),
.int => try parseInt(field_.type, next),
.float => try parseFloat(field_.type, next),
else => unreachable,
};
}
// If we have extra parameters it is an error
if (it.next() != null) return Error.InvalidFormat;
break :blk value;
},
else => unreachable,
};
}
/// Parse an action in the format of "key=value" where key is the
/// action name and value is the action parameter. The parameter
/// is optional depending on the action.
pub fn parse(input: []const u8) !Action {
// Split our action by colon. A colon may not exist for some
// actions so it is optional. The part preceding the colon is the
// action name.
const colonIdx = std.mem.indexOf(u8, input, ":");
const action = input[0..(colonIdx orelse input.len)];
// An action name is always required
if (action.len == 0) return Error.InvalidFormat;
const actionInfo = @typeInfo(Action).@"union";
inline for (actionInfo.fields) |field| {
if (std.mem.eql(u8, action, field.name)) {
// If the field type is void we expect no value
switch (field.type) {
void => {
if (colonIdx != null) return Error.InvalidFormat;
return @unionInit(Action, field.name, {});
},
[]const u8 => {
const idx = colonIdx orelse return Error.InvalidFormat;
const param = input[idx + 1 ..];
return @unionInit(Action, field.name, param);
},
// Cursor keys can't be set currently
Action.CursorKey => return Error.InvalidAction,
else => {
// Get the parameter after the colon. The parameter
// can be optional for action types that can have a
// "default" decl.
const idx = colonIdx orelse {
switch (@typeInfo(field.type)) {
.@"struct",
.@"union",
.@"enum",
=> if (@hasDecl(field.type, "default")) {
return @unionInit(
Action,
field.name,
@field(field.type, "default"),
);
},
else => {},
}
return Error.InvalidFormat;
};
const param = input[idx + 1 ..];
return @unionInit(
Action,
field.name,
try parseParameter(field, param),
);
},
}
}
}
return Error.InvalidAction;
}
/// The scope of an action. The scope is the context in which an action
/// must be executed.
pub const Scope = enum {
app,
surface,
};
/// Returns the scope of an action.
pub fn scope(self: Action) Scope {
return switch (self) {
// Doesn't really matter, so we'll see app.
.ignore,
.unbind,
=> .app,
// Obviously app actions.
.open_config,
.reload_config,
.close_all_windows,
.quit,
.toggle_quick_terminal,
.toggle_visibility,
.check_for_updates,
.show_gtk_inspector,
=> .app,
// These are app but can be special-cased in a surface context.
.new_window,
.undo,
.redo,
=> .app,
// Obviously surface actions.
.csi,
.esc,
.text,
.cursor_key,
.reset,
.copy_to_clipboard,
.copy_url_to_clipboard,
.copy_title_to_clipboard,
.paste_from_clipboard,
.paste_from_selection,
.increase_font_size,
.decrease_font_size,
.reset_font_size,
.set_font_size,
.prompt_surface_title,
.clear_screen,
.select_all,
.scroll_to_top,
.scroll_to_bottom,
.scroll_to_selection,
.scroll_page_up,
.scroll_page_down,
.scroll_page_fractional,
.scroll_page_lines,
.adjust_selection,
.jump_to_prompt,
.write_scrollback_file,
.write_screen_file,
.write_selection_file,
.close_surface,
.close_tab,
.close_window,
.toggle_maximize,
.toggle_fullscreen,
.toggle_window_decorations,
.toggle_window_float_on_top,
.toggle_secure_input,
.toggle_command_palette,
.reset_window_size,
.crash,
=> .surface,
// These are less obvious surface actions. They're surface
// actions because they are relevant to the surface they
// come from. For example `new_window` needs to be sourced to
// a surface so inheritance can be done correctly.
.new_tab,
.previous_tab,
.next_tab,
.last_tab,
.goto_tab,
.move_tab,
.toggle_tab_overview,
.new_split,
.goto_split,
.toggle_split_zoom,
.resize_split,
.equalize_splits,
.inspector,
=> .surface,
};
}
/// Returns a union type that only contains actions that are scoped to
/// the given scope.
pub fn Scoped(comptime s: Scope) type {
@setEvalBranchQuota(100_000);
const all_fields = @typeInfo(Action).@"union".fields;
// Find all fields that are app-scoped
var i: usize = 0;
var union_fields: [all_fields.len]std.builtin.Type.UnionField = undefined;
var enum_fields: [all_fields.len]std.builtin.Type.EnumField = undefined;
for (all_fields) |field| {
const action = @unionInit(Action, field.name, undefined);
if (action.scope() == s) {
union_fields[i] = field;
enum_fields[i] = .{ .name = field.name, .value = i };
i += 1;
}
}
// Build our union
return @Type(.{ .@"union" = .{
.layout = .auto,
.tag_type = @Type(.{ .@"enum" = .{
.tag_type = std.math.IntFittingRange(0, i),
.fields = enum_fields[0..i],
.decls = &.{},
.is_exhaustive = true,
} }),
.fields = union_fields[0..i],
.decls = &.{},
} });
}
/// Returns the scoped version of this action. If the action is not
/// scoped to the given scope then this returns null.
///
/// The benefit of this function is that it allows us to use Zig's
/// exhaustive switch safety to ensure we always properly handle certain
/// scoped actions.
pub fn scoped(self: Action, comptime s: Scope) ?Scoped(s) {
switch (self) {
inline else => |v, tag| {
// Use comptime to prune out non-app actions
if (comptime @unionInit(
Action,
@tagName(tag),
undefined,
).scope() != s) return null;
// Initialize our app action
return @unionInit(
Scoped(s),
@tagName(tag),
v,
);
},
}
}
/// Implements the formatter for the fmt package. This encodes the
/// action back into the format used by parse.
pub fn format(
self: Action,
comptime layout: []const u8,
opts: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = layout;
_ = opts;
switch (self) {
inline else => |value| {
// All actions start with the tag.
try writer.print("{s}", .{@tagName(self)});
// Only write the value depending on the type if it's not void
if (@TypeOf(value) != void) {
try writer.writeAll(":");
try formatValue(writer, value);
}
},
}
}
fn formatValue(
writer: anytype,
value: anytype,
) !void {
const Value = @TypeOf(value);
const value_info = @typeInfo(Value);
switch (Value) {
void => {},
[]const u8 => try writer.print("{s}", .{value}),
else => switch (value_info) {
.@"enum" => try writer.print("{s}", .{@tagName(value)}),
.float => try writer.print("{d}", .{value}),
.int => try writer.print("{d}", .{value}),
.@"struct" => |info| if (!info.is_tuple) {
try writer.print("{} (not configurable)", .{value});
} else {
inline for (info.fields, 0..) |field, i| {
try formatValue(writer, @field(value, field.name));
if (i + 1 < info.fields.len) try writer.writeAll(",");
}
},
else => @compileError("unhandled type: " ++ @typeName(Value)),
},
}
}
/// Clone this action with the given allocator. The allocator
/// should be an arena-style allocator since fine-grained
/// deallocation is not possible.
pub fn clone(self: Action, alloc: Allocator) Allocator.Error!Action {
return switch (self) {
inline else => |value, tag| @unionInit(
Action,
@tagName(tag),
try cloneValue(alloc, value),
),
};
}
fn cloneValue(
alloc: Allocator,
value: anytype,
) Allocator.Error!@TypeOf(value) {
return switch (@typeInfo(@TypeOf(value))) {
.void,
.int,
.float,
.@"enum",
=> value,
.pointer => |info| slice: {
comptime assert(info.size == .slice);
break :slice try alloc.dupe(
info.child,
value,
);
},
.@"struct" => |info| if (info.is_tuple)
value
else
try value.clone(alloc),
else => {
@compileLog(@TypeOf(value));
@compileError("unexpected type");
},
};
}
/// Returns a hash code that can be used to uniquely identify this
/// action.
pub fn hash(self: Action) u64 {
var hasher = std.hash.Wyhash.init(0);
self.hashIncremental(&hasher);
return hasher.final();
}
/// Hash the action into the given hasher.
fn hashIncremental(self: Action, hasher: anytype) void {
// Always has the active tag.
const Tag = @typeInfo(Action).@"union".tag_type.?;
std.hash.autoHash(hasher, @as(Tag, self));
// Hash the value of the field.
switch (self) {
inline else => |field| {
const FieldType = @TypeOf(field);
switch (FieldType) {
// Do nothing for void
void => {},
// Floats are hashed by their bits. This is totally not
// portable and there are edge cases such as NaNs and
// signed zeros but these are not cases we expect for
// our bindings.
f32 => std.hash.autoHash(
hasher,
@as(u32, @bitCast(field)),
),
f64 => std.hash.autoHash(
hasher,
@as(u64, @bitCast(field)),
),
// Everything else automatically handle.
else => std.hash.autoHashStrat(
hasher,
field,
.DeepRecursive,
),
}
},
}
}
};
/// Trigger is the associated key state that can trigger an action.
/// This is an extern struct because this is also used in the C API.
///
/// This must be kept in sync with include/ghostty.h ghostty_input_trigger_s
pub const Trigger = struct {
/// The key that has to be pressed for a binding to take action.
key: Trigger.Key = .{ .physical = .unidentified },
/// The key modifiers that must be active for this to match.
mods: key.Mods = .{},
pub const Key = union(C.Tag) {
/// key is the "physical" version. This is the same as mapped for
/// standard US keyboard layouts. For non-US keyboard layouts, this
/// is used to bind to a physical key location rather than a translated
/// key.
physical: key.Key,
/// This is used for binding to keys that produce a certain unicode
/// codepoint. This is useful for binding to keys that don't have a
/// registered keycode with Ghostty.
unicode: u21,
};
/// The extern struct used for triggers in the C API.
pub const C = extern struct {
tag: Tag = .physical,
key: C.Key = .{ .physical = .unidentified },
mods: key.Mods = .{},
pub const Tag = enum(c_int) {
physical,
unicode,
};
pub const Key = extern union {
physical: key.Key,
unicode: u32,
};
};
/// Parse a single trigger. The input is expected to be ONLY the trigger
/// (i.e. in the sequence `a=ignore` input is only `a`). The trigger may
/// not be part of a sequence (i.e. `a>b`). This parses exactly a single
/// trigger.
pub fn parse(input: []const u8) !Trigger {
if (input.len == 0) return Error.InvalidFormat;
var result: Trigger = .{};
var rem: []const u8 = input;
loop: while (rem.len > 0) {
const idx = std.mem.indexOfScalar(u8, rem, '+') orelse rem.len;
const part = rem[0..idx];
rem = if (idx >= rem.len) "" else rem[idx + 1 ..];
// Check if its a modifier
const modsInfo = @typeInfo(key.Mods).@"struct";
inline for (modsInfo.fields) |field| {
if (field.type == bool) {
if (std.mem.eql(u8, part, field.name)) {
// Repeat not allowed
if (@field(result.mods, field.name)) return Error.InvalidFormat;
@field(result.mods, field.name) = true;
continue :loop;
}
}
}
// Alias modifiers
const alias_mods = .{
.{ "cmd", "super" },
.{ "command", "super" },
.{ "opt", "alt" },
.{ "option", "alt" },
.{ "control", "ctrl" },
};
inline for (alias_mods) |pair| {
if (std.mem.eql(u8, part, pair[0])) {
// Repeat not allowed
if (@field(result.mods, pair[1])) return Error.InvalidFormat;
@field(result.mods, pair[1]) = true;
continue :loop;
}
}
// Anything after this point is a key and we only support
// single keys.
if (!result.isKeyUnset()) return Error.InvalidFormat;
// If the part is empty it means that it is actually
// a literal `+`, which we treat as a Unicode character.
if (part.len == 0) {
result.key = .{ .unicode = '+' };
continue :loop;
}
// Check if its a key
const keysInfo = @typeInfo(key.Key).@"enum";
inline for (keysInfo.fields) |field| {
if (!std.mem.eql(u8, field.name, "unidentified")) {
if (std.mem.eql(u8, part, field.name)) {
const keyval = @field(key.Key, field.name);
result.key = .{ .physical = keyval };
continue :loop;
}
}
}
// If we're still unset and we have exactly one unicode
// character then we can use that as a key.
if (result.isKeyUnset()) unicode: {
// Invalid UTF8 drops to invalid format
const view = std.unicode.Utf8View.init(part) catch break :unicode;
var it = view.iterator();
// No codepoints or multiple codepoints drops to invalid format
const cp = it.nextCodepoint() orelse break :unicode;
if (it.nextCodepoint() != null) break :unicode;
result.key = .{ .unicode = cp };
continue :loop;
}
// Look for a matching w3c name next.
if (key.Key.fromW3C(part)) |w3c_key| {
result.key = .{ .physical = w3c_key };
continue :loop;
}
// If we're still unset then we look for backwards compatible
// keys with Ghostty 1.1.x. We do this last so its least likely
// to impact performance for modern users.
if (backwards_compatible_keys.get(part)) |old_key| {
result.key = old_key;
continue :loop;
}
// We didn't recognize this value
return Error.InvalidFormat;
}
return result;
}
/// The values that are backwards compatible with Ghostty 1.1.x.
/// Ghostty 1.2+ doesn't support these anymore since we moved to
/// W3C key codes.
const backwards_compatible_keys = std.StaticStringMap(Key).initComptime(.{
.{ "zero", Key{ .unicode = '0' } },
.{ "one", Key{ .unicode = '1' } },
.{ "two", Key{ .unicode = '2' } },
.{ "three", Key{ .unicode = '3' } },
.{ "four", Key{ .unicode = '4' } },
.{ "five", Key{ .unicode = '5' } },
.{ "six", Key{ .unicode = '6' } },
.{ "seven", Key{ .unicode = '7' } },
.{ "eight", Key{ .unicode = '8' } },
.{ "nine", Key{ .unicode = '9' } },
.{ "plus", Key{ .unicode = '+' } },
.{ "apostrophe", Key{ .unicode = '\'' } },
.{ "grave_accent", Key{ .physical = .backquote } },
.{ "left_bracket", Key{ .physical = .bracket_left } },
.{ "right_bracket", Key{ .physical = .bracket_right } },
.{ "up", Key{ .physical = .arrow_up } },
.{ "down", Key{ .physical = .arrow_down } },
.{ "left", Key{ .physical = .arrow_left } },
.{ "right", Key{ .physical = .arrow_right } },
.{ "kp_0", Key{ .physical = .numpad_0 } },
.{ "kp_1", Key{ .physical = .numpad_1 } },
.{ "kp_2", Key{ .physical = .numpad_2 } },
.{ "kp_3", Key{ .physical = .numpad_3 } },
.{ "kp_4", Key{ .physical = .numpad_4 } },
.{ "kp_5", Key{ .physical = .numpad_5 } },
.{ "kp_6", Key{ .physical = .numpad_6 } },
.{ "kp_7", Key{ .physical = .numpad_7 } },
.{ "kp_8", Key{ .physical = .numpad_8 } },
.{ "kp_9", Key{ .physical = .numpad_9 } },
.{ "kp_add", Key{ .physical = .numpad_add } },
.{ "kp_subtract", Key{ .physical = .numpad_subtract } },
.{ "kp_multiply", Key{ .physical = .numpad_multiply } },
.{ "kp_divide", Key{ .physical = .numpad_divide } },
.{ "kp_decimal", Key{ .physical = .numpad_decimal } },
.{ "kp_enter", Key{ .physical = .numpad_enter } },
.{ "kp_equal", Key{ .physical = .numpad_equal } },
.{ "kp_separator", Key{ .physical = .numpad_separator } },
.{ "kp_left", Key{ .physical = .numpad_left } },
.{ "kp_right", Key{ .physical = .numpad_right } },
.{ "kp_up", Key{ .physical = .numpad_up } },
.{ "kp_down", Key{ .physical = .numpad_down } },
.{ "kp_page_up", Key{ .physical = .numpad_page_up } },
.{ "kp_page_down", Key{ .physical = .numpad_page_down } },
.{ "kp_home", Key{ .physical = .numpad_home } },
.{ "kp_end", Key{ .physical = .numpad_end } },
.{ "kp_insert", Key{ .physical = .numpad_insert } },
.{ "kp_delete", Key{ .physical = .numpad_delete } },
.{ "kp_begin", Key{ .physical = .numpad_begin } },
.{ "left_shift", Key{ .physical = .shift_left } },
.{ "right_shift", Key{ .physical = .shift_right } },
.{ "left_control", Key{ .physical = .control_left } },
.{ "right_control", Key{ .physical = .control_right } },
.{ "left_alt", Key{ .physical = .alt_left } },
.{ "right_alt", Key{ .physical = .alt_right } },
.{ "left_super", Key{ .physical = .meta_left } },
.{ "right_super", Key{ .physical = .meta_right } },
// Physical variants. This is a blunt approach to this but its
// glue for backwards compatibility so I'm not too worried about
// making this super nice.
.{ "physical:zero", Key{ .physical = .digit_0 } },
.{ "physical:one", Key{ .physical = .digit_1 } },
.{ "physical:two", Key{ .physical = .digit_2 } },
.{ "physical:three", Key{ .physical = .digit_3 } },
.{ "physical:four", Key{ .physical = .digit_4 } },
.{ "physical:five", Key{ .physical = .digit_5 } },
.{ "physical:six", Key{ .physical = .digit_6 } },
.{ "physical:seven", Key{ .physical = .digit_7 } },
.{ "physical:eight", Key{ .physical = .digit_8 } },
.{ "physical:nine", Key{ .physical = .digit_9 } },
.{ "physical:apostrophe", Key{ .physical = .quote } },
.{ "physical:grave_accent", Key{ .physical = .backquote } },
.{ "physical:left_bracket", Key{ .physical = .bracket_left } },
.{ "physical:right_bracket", Key{ .physical = .bracket_right } },
.{ "physical:up", Key{ .physical = .arrow_up } },
.{ "physical:down", Key{ .physical = .arrow_down } },
.{ "physical:left", Key{ .physical = .arrow_left } },
.{ "physical:right", Key{ .physical = .arrow_right } },
.{ "physical:kp_0", Key{ .physical = .numpad_0 } },
.{ "physical:kp_1", Key{ .physical = .numpad_1 } },
.{ "physical:kp_2", Key{ .physical = .numpad_2 } },
.{ "physical:kp_3", Key{ .physical = .numpad_3 } },
.{ "physical:kp_4", Key{ .physical = .numpad_4 } },
.{ "physical:kp_5", Key{ .physical = .numpad_5 } },
.{ "physical:kp_6", Key{ .physical = .numpad_6 } },
.{ "physical:kp_7", Key{ .physical = .numpad_7 } },
.{ "physical:kp_8", Key{ .physical = .numpad_8 } },
.{ "physical:kp_9", Key{ .physical = .numpad_9 } },
.{ "physical:kp_add", Key{ .physical = .numpad_add } },
.{ "physical:kp_subtract", Key{ .physical = .numpad_subtract } },
.{ "physical:kp_multiply", Key{ .physical = .numpad_multiply } },
.{ "physical:kp_divide", Key{ .physical = .numpad_divide } },
.{ "physical:kp_decimal", Key{ .physical = .numpad_decimal } },
.{ "physical:kp_enter", Key{ .physical = .numpad_enter } },
.{ "physical:kp_equal", Key{ .physical = .numpad_equal } },
.{ "physical:kp_separator", Key{ .physical = .numpad_separator } },
.{ "physical:kp_left", Key{ .physical = .numpad_left } },
.{ "physical:kp_right", Key{ .physical = .numpad_right } },
.{ "physical:kp_up", Key{ .physical = .numpad_up } },
.{ "physical:kp_down", Key{ .physical = .numpad_down } },
.{ "physical:kp_page_up", Key{ .physical = .numpad_page_up } },
.{ "physical:kp_page_down", Key{ .physical = .numpad_page_down } },
.{ "physical:kp_home", Key{ .physical = .numpad_home } },
.{ "physical:kp_end", Key{ .physical = .numpad_end } },
.{ "physical:kp_insert", Key{ .physical = .numpad_insert } },
.{ "physical:kp_delete", Key{ .physical = .numpad_delete } },
.{ "physical:kp_begin", Key{ .physical = .numpad_begin } },
.{ "physical:left_shift", Key{ .physical = .shift_left } },
.{ "physical:right_shift", Key{ .physical = .shift_right } },
.{ "physical:left_control", Key{ .physical = .control_left } },
.{ "physical:right_control", Key{ .physical = .control_right } },
.{ "physical:left_alt", Key{ .physical = .alt_left } },
.{ "physical:right_alt", Key{ .physical = .alt_right } },
.{ "physical:left_super", Key{ .physical = .meta_left } },
.{ "physical:right_super", Key{ .physical = .meta_right } },
});
/// Returns true if this trigger has no key set.
pub fn isKeyUnset(self: Trigger) bool {
return switch (self.key) {
.physical => |v| v == .unidentified,
else => false,
};
}
/// Returns a hash code that can be used to uniquely identify this trigger.
pub fn hash(self: Trigger) u64 {
var hasher = std.hash.Wyhash.init(0);
self.hashIncremental(&hasher);
return hasher.final();
}
/// Hash the trigger into the given hasher.
fn hashIncremental(self: Trigger, hasher: anytype) void {
std.hash.autoHash(hasher, std.meta.activeTag(self.key));
switch (self.key) {
.physical => |v| std.hash.autoHash(hasher, v),
.unicode => |cp| std.hash.autoHash(
hasher,
foldedCodepoint(cp),
),
}
std.hash.autoHash(hasher, self.mods.binding());
}
/// The codepoint we use for comparisons. Case folding can result
/// in more codepoints so we need to use a 3 element array.
fn foldedCodepoint(cp: u21) [3]u21 {
// ASCII fast path
if (ziglyph.letter.isAsciiLetter(cp)) {
return .{ ziglyph.letter.toLower(cp), 0, 0 };
}
// Unicode slow path. Case folding can resultin more codepoints.
// If more codepoints are produced then we return the codepoint
// as-is which isn't correct but until we have a failing test
// then I don't want to handle this.
return ziglyph.letter.toCaseFold(cp);
}
/// Convert the trigger to a C API compatible trigger.
pub fn cval(self: Trigger) C {
return .{
.tag = self.key,
.key = switch (self.key) {
.physical => |v| .{ .physical = v },
.unicode => |v| .{ .unicode = @intCast(v) },
},
.mods = self.mods,
};
}
/// Format implementation for fmt package.
pub fn format(
self: Trigger,
comptime layout: []const u8,
opts: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = layout;
_ = opts;
// Modifiers first
if (self.mods.super) try writer.writeAll("super+");
if (self.mods.ctrl) try writer.writeAll("ctrl+");
if (self.mods.alt) try writer.writeAll("alt+");
if (self.mods.shift) try writer.writeAll("shift+");
// Key
switch (self.key) {
.physical => |k| try writer.print("{s}", .{@tagName(k)}),
.unicode => |c| try writer.print("{u}", .{c}),
}
}
};
/// A structure that contains a set of bindings and focuses on fast lookup.
/// The use case is that this will be called on EVERY key input to look
/// for an associated action so it must be fast.
pub const Set = struct {
const HashMap = std.HashMapUnmanaged(
Trigger,
Value,
Context(Trigger),
std.hash_map.default_max_load_percentage,
);
const ReverseMap = std.HashMapUnmanaged(
Action,
Trigger,
Context(Action),
std.hash_map.default_max_load_percentage,
);
/// The set of bindings.
bindings: HashMap = .{},
/// The reverse mapping of action to binding. Note that multiple
/// bindings can map to the same action and this map will only have
/// the most recently added binding for an action.
///
/// Sequenced triggers are never present in the reverse map at this time.
/// This is a conscious decision since the primary use case of the reverse
/// map is to support GUI toolkit keyboard accelerators and no mainstream
/// GUI toolkit supports sequences.
///
/// Performable triggers are also not present in the reverse map. This
/// is so that GUI toolkits don't register performable triggers as
/// menu shortcuts (the primary use case of the reverse map). GUI toolkits
/// such as GTK handle menu shortcuts too early in the event lifecycle
/// for performable to work so this is a conscious decision to ease the
/// integration with GUI toolkits.
reverse: ReverseMap = .{},
/// The entry type for the forward mapping of trigger to action.
pub const Value = union(enum) {
/// This key is a leader key in a sequence. You must follow the given
/// set to find the next key in the sequence.
leader: *Set,
/// This trigger completes a sequence and the value is the action
/// to take along with the flags that may define binding behavior.
leaf: Leaf,
/// Implements the formatter for the fmt package. This encodes the
/// action back into the format used by parse.
pub fn format(
self: Value,
comptime layout: []const u8,
opts: std.fmt.FormatOptions,
writer: anytype,
) !void {
_ = layout;
_ = opts;
switch (self) {
.leader => |set| {
// the leader key was already printed.
var iter = set.bindings.iterator();
while (iter.next()) |binding| {
try writer.print(
">{s}{s}",
.{ binding.key_ptr.*, binding.value_ptr.* },
);
}
},
.leaf => |leaf| {
// action implements the format
try writer.print("={s}", .{leaf.action});
},
}
}
/// Writes the configuration entries for the binding
/// that this value is part of.
///
/// The value may be part of multiple configuration entries
/// if they're all part of the same prefix sequence (e.g. 'a>b', 'a>c').
/// These will result in multiple separate entries in the configuration.
///
/// `buffer_stream` is a FixedBufferStream used for temporary storage
/// that is shared between calls to nested levels of the set.
/// For example, 'a>b>c=x' and 'a>b>d=y' will re-use the 'a>b' written
/// to the buffer before flushing it to the formatter with 'c=x' and 'd=y'.
pub fn formatEntries(self: Value, buffer_stream: anytype, formatter: anytype) !void {
switch (self) {
.leader => |set| {
// We'll rewind to this position after each sub-entry,
// sharing the prefix between siblings.
const pos = try buffer_stream.getPos();
var iter = set.bindings.iterator();
while (iter.next()) |binding| {
buffer_stream.seekTo(pos) catch unreachable; // can't fail
std.fmt.format(buffer_stream.writer(), ">{s}", .{binding.key_ptr.*}) catch return error.OutOfMemory;
try binding.value_ptr.*.formatEntries(buffer_stream, formatter);
}
},
.leaf => |leaf| {
// When we get to the leaf, the buffer_stream contains
// the full sequence of keys needed to reach this action.
std.fmt.format(buffer_stream.writer(), "={s}", .{leaf.action}) catch return error.OutOfMemory;
try formatter.formatEntry([]const u8, buffer_stream.getWritten());
},
}
}
};
/// Leaf node of a set is an action to trigger. This is a "leaf" compared
/// to the inner nodes which are "leaders" for sequences.
pub const Leaf = struct {
action: Action,
flags: Flags,
pub fn clone(
self: Leaf,
alloc: Allocator,
) Allocator.Error!Leaf {
return .{
.action = try self.action.clone(alloc),
.flags = self.flags,
};
}
pub fn hash(self: Leaf) u64 {
var hasher = std.hash.Wyhash.init(0);
self.action.hash(&hasher);
std.hash.autoHash(&hasher, self.flags);
return hasher.final();
}
};
/// A full key-value entry for the set.
pub const Entry = HashMap.Entry;
pub fn deinit(self: *Set, alloc: Allocator) void {
// Clear any leaders if we have them
var it = self.bindings.iterator();
while (it.next()) |entry| switch (entry.value_ptr.*) {
.leader => |s| {
s.deinit(alloc);
alloc.destroy(s);
},
.leaf => {},
};
self.bindings.deinit(alloc);
self.reverse.deinit(alloc);
self.* = undefined;
}
/// Parse a user input binding and add it to the set. This will handle
/// the "unbind" case, ensure consumed/unconsumed fields are set correctly,
/// handle sequences, etc.
///
/// If this returns an OutOfMemory error then the set is in a broken
/// state and should not be used again. Any Error returned is validated
/// before any set modifications are made.
pub fn parseAndPut(
self: *Set,
alloc: Allocator,
input: []const u8,
) (Allocator.Error || Error)!void {
// To make cleanup easier, we ensure that the full sequence is
// valid before making any set modifications. This is more expensive
// computationally but it makes cleanup way, way easier.
var it = try Parser.init(input);
while (try it.next()) |_| {}
it.reset();
// We use recursion so that we can utilize the stack as our state
// for cleanup.
self.parseAndPutRecurse(alloc, &it) catch |err| switch (err) {
// If this gets sent up to the root then we've unbound
// all the way up and this put was a success.
error.SequenceUnbind => {},
// Unrecoverable
error.OutOfMemory => return error.OutOfMemory,
};
}
const ParseAndPutRecurseError = Allocator.Error || error{
SequenceUnbind,
};
fn parseAndPutRecurse(
set: *Set,
alloc: Allocator,
it: *Parser,
) ParseAndPutRecurseError!void {
const elem = (it.next() catch unreachable) orelse return;
switch (elem) {
.leader => |t| {
// If we have a leader, we need to upsert a set for it.
// Since we remove the value, we need to copy it.
const old: ?Value = if (set.get(t)) |entry|
entry.value_ptr.*
else
null;
if (old) |entry| switch (entry) {
// We have an existing leader for this key already
// so recurse into this set.
.leader => |s| return parseAndPutRecurse(
s,
alloc,
it,
) catch |err| switch (err) {
// Our child put unbound. If our set is empty we
// need to dealloc and continue up. If our set is
// not empty then we're done.
error.SequenceUnbind => if (s.bindings.count() == 0) {
set.remove(alloc, t);
return error.SequenceUnbind;
},
error.OutOfMemory => return error.OutOfMemory,
},
.leaf => {
// Remove the existing action. Fallthrough as if
// we don't have a leader.
set.remove(alloc, t);
},
};
// Create our new set for this leader
const next = try alloc.create(Set);
errdefer alloc.destroy(next);
next.* = .{};
errdefer next.deinit(alloc);
// Insert the leader entry
try set.bindings.put(alloc, t, .{ .leader = next });
// Recurse
parseAndPutRecurse(next, alloc, it) catch |err| switch (err) {
// If our action was to unbind, we restore the old
// action if we have it.
error.SequenceUnbind => {
set.remove(alloc, t);
if (old) |entry| switch (entry) {
.leader => unreachable, // Handled above
.leaf => |leaf| set.putFlags(
alloc,
t,
leaf.action,
leaf.flags,
) catch {},
};
},
error.OutOfMemory => return error.OutOfMemory,
};
},
.binding => |b| switch (b.action) {
.unbind => {
set.remove(alloc, b.trigger);
return error.SequenceUnbind;
},
else => try set.putFlags(
alloc,
b.trigger,
b.action,
b.flags,
),
},
}
}
/// Add a binding to the set. If the binding already exists then
/// this will overwrite it.
pub fn put(
self: *Set,
alloc: Allocator,
t: Trigger,
action: Action,
) Allocator.Error!void {
try self.putFlags(alloc, t, action, .{});
}
/// Add a binding to the set with explicit flags.
pub fn putFlags(
self: *Set,
alloc: Allocator,
t: Trigger,
action: Action,
flags: Flags,
) Allocator.Error!void {
// unbind should never go into the set, it should be handled prior
assert(action != .unbind);
// This is true if we're going to track this entry as
// a reverse mapping. There are certain scenarios we don't.
// See the reverse map docs for more information.
const track_reverse: bool = !flags.performable;
const gop = try self.bindings.getOrPut(alloc, t);
if (gop.found_existing) switch (gop.value_ptr.*) {
// If we have a leader we need to clean up the memory
.leader => |s| {
s.deinit(alloc);
alloc.destroy(s);
},
// If we have an existing binding for this trigger, we have to
// update the reverse mapping to remove the old action.
.leaf => if (track_reverse) {
const t_hash = t.hash();
var it = self.reverse.iterator();
while (it.next()) |reverse_entry| it: {
if (t_hash == reverse_entry.value_ptr.hash()) {
self.reverse.removeByPtr(reverse_entry.key_ptr);
break :it;
}
}
},
};
gop.value_ptr.* = .{ .leaf = .{
.action = action,
.flags = flags,
} };
errdefer _ = self.bindings.remove(t);
if (track_reverse) try self.reverse.put(alloc, action, t);
errdefer if (track_reverse) self.reverse.remove(action);
}
/// Get a binding for a given trigger.
pub fn get(self: Set, t: Trigger) ?Entry {
return self.bindings.getEntry(t);
}
/// Get a trigger for the given action. An action can have multiple
/// triggers so this will return the first one found.
pub fn getTrigger(self: Set, a: Action) ?Trigger {
return self.reverse.get(a);
}
/// Get an entry for the given key event. This will attempt to find
/// a binding using multiple parts of the event in the following order:
///
/// 1. Translated key (event.key)
/// 2. Physical key (event.physical_key)
/// 3. Unshifted Unicode codepoint (event.unshifted_codepoint)
///
pub fn getEvent(self: *const Set, event: KeyEvent) ?Entry {
var trigger: Trigger = .{
.mods = event.mods.binding(),
.key = .{ .physical = event.key },
};
if (self.get(trigger)) |v| return v;
// If our UTF-8 text is exactly one codepoint, we try to match that.
if (event.utf8.len > 0) unicode: {
const view = std.unicode.Utf8View.init(event.utf8) catch break :unicode;
var it = view.iterator();
// No codepoints or multiple codepoints drops to invalid format
const cp = it.nextCodepoint() orelse break :unicode;
if (it.nextCodepoint() != null) break :unicode;
trigger.key = .{ .unicode = cp };
if (self.get(trigger)) |v| return v;
}
// Finally fallback to the full unshifted codepoint if we have one.
// Question: should we be doing this if we have UTF-8 text? I
// suspect "no" but we don't currently have any failing scenarios
// to verify this.
if (event.unshifted_codepoint > 0) {
trigger.key = .{ .unicode = event.unshifted_codepoint };
if (self.get(trigger)) |v| return v;
}
return null;
}
/// Remove a binding for a given trigger.
pub fn remove(self: *Set, alloc: Allocator, t: Trigger) void {
self.removeExact(alloc, t);
}
fn removeExact(self: *Set, alloc: Allocator, t: Trigger) void {
const entry = self.bindings.get(t) orelse return;
_ = self.bindings.remove(t);
switch (entry) {
// For a leader removal, we need to deallocate our child set.
// Leaders are never part of reverse maps so no other accounting
// needs to be done.
.leader => |s| {
s.deinit(alloc);
alloc.destroy(s);
},
// For an action we need to fix up the reverse mapping.
// Note: we'd LIKE to replace this with the most recent binding but
// our hash map obviously has no concept of ordering so we have to
// choose whatever. Maybe a switch to an array hash map here.
.leaf => |leaf| {
const action_hash = leaf.action.hash();
var it = self.bindings.iterator();
while (it.next()) |it_entry| {
switch (it_entry.value_ptr.*) {
.leader => {},
.leaf => |leaf_search| {
if (leaf_search.action.hash() == action_hash) {
self.reverse.putAssumeCapacity(leaf.action, it_entry.key_ptr.*);
break;
}
},
}
} else {
// No other trigger points to this action so we remove
// the reverse mapping completely.
_ = self.reverse.remove(leaf.action);
}
},
}
}
/// Deep clone the set.
pub fn clone(self: *const Set, alloc: Allocator) !Set {
var result: Set = .{
.bindings = try self.bindings.clone(alloc),
.reverse = try self.reverse.clone(alloc),
};
// If we have any leaders we need to clone them.
{
var it = result.bindings.iterator();
while (it.next()) |entry| switch (entry.value_ptr.*) {
// Leaves could have data to clone (i.e. text actions
// contain allocated strings).
.leaf => |*s| s.* = try s.clone(alloc),
// Must be deep cloned.
.leader => |*s| {
const ptr = try alloc.create(Set);
errdefer alloc.destroy(ptr);
ptr.* = try s.*.clone(alloc);
errdefer ptr.deinit(alloc);
s.* = ptr;
},
};
}
// We need to clone the action keys in the reverse map since
// they may contain allocated values.
{
var it = result.reverse.keyIterator();
while (it.next()) |action| action.* = try action.clone(alloc);
}
return result;
}
/// The hash map context for the set. This defines how the hash map
/// gets the hash key and checks for equality.
fn Context(comptime KeyType: type) type {
return struct {
pub fn hash(ctx: @This(), k: KeyType) u64 {
_ = ctx;
return k.hash();
}
pub fn eql(ctx: @This(), a: KeyType, b: KeyType) bool {
return ctx.hash(a) == ctx.hash(b);
}
};
}
};
test "parse: triggers" {
const testing = std.testing;
// single character
try testing.expectEqual(
Binding{
.trigger = .{ .key = .{ .unicode = 'a' } },
.action = .{ .ignore = {} },
},
try parseSingle("a=ignore"),
);
// single modifier
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
}, try parseSingle("shift+a=ignore"));
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .ctrl = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
}, try parseSingle("ctrl+a=ignore"));
// multiple modifier
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true, .ctrl = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
}, try parseSingle("shift+ctrl+a=ignore"));
// key can come before modifier
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
}, try parseSingle("a+shift=ignore"));
// physical keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .physical = .key_a },
},
.action = .{ .ignore = {} },
}, try parseSingle("shift+key_a=ignore"));
// unicode keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .unicode = 'ö' },
},
.action = .{ .ignore = {} },
}, try parseSingle("shift+ö=ignore"));
// unconsumed keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
.flags = .{ .consumed = false },
}, try parseSingle("unconsumed:shift+a=ignore"));
// unconsumed physical keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .physical = .key_a },
},
.action = .{ .ignore = {} },
.flags = .{ .consumed = false },
}, try parseSingle("unconsumed:key_a+shift=ignore"));
// performable keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
.flags = .{ .performable = true },
}, try parseSingle("performable:shift+a=ignore"));
// invalid key
try testing.expectError(Error.InvalidFormat, parseSingle("foo=ignore"));
// repeated control
try testing.expectError(Error.InvalidFormat, parseSingle("shift+shift+a=ignore"));
// multiple character
try testing.expectError(Error.InvalidFormat, parseSingle("a+b=ignore"));
}
test "parse: w3c key names" {
const testing = std.testing;
// Exact match
try testing.expectEqual(
Binding{
.trigger = .{ .key = .{ .physical = .key_a } },
.action = .{ .ignore = {} },
},
try parseSingle("KeyA=ignore"),
);
// Case-sensitive
try testing.expectError(Error.InvalidFormat, parseSingle("Keya=ignore"));
}
test "parse: plus sign" {
const testing = std.testing;
try testing.expectEqual(
Binding{
.trigger = .{ .key = .{ .unicode = '+' } },
.action = .{ .ignore = {} },
},
try parseSingle("+=ignore"),
);
// Modifier
try testing.expectEqual(
Binding{
.trigger = .{
.key = .{ .unicode = '+' },
.mods = .{ .ctrl = true },
},
.action = .{ .ignore = {} },
},
try parseSingle("ctrl++=ignore"),
);
try testing.expectError(Error.InvalidFormat, parseSingle("++=ignore"));
}
test "parse: equals sign" {
const testing = std.testing;
try testing.expectEqual(
Binding{
.trigger = .{ .key = .{ .unicode = '=' } },
.action = .ignore,
},
try parseSingle("==ignore"),
);
// Modifier
try testing.expectEqual(
Binding{
.trigger = .{
.key = .{ .unicode = '=' },
.mods = .{ .ctrl = true },
},
.action = .ignore,
},
try parseSingle("ctrl+==ignore"),
);
try testing.expectError(Error.InvalidFormat, parseSingle("=ignore"));
}
// For Ghostty 1.2+ we changed our key names to match the W3C and removed
// `physical:`. This tests the backwards compatibility with the old format.
// Note that our backwards compatibility isn't 100% perfect since triggers
// like `a` now map to unicode instead of "translated" (which was also
// removed). But we did our best here with what was unambiguous.
test "parse: backwards compatibility with <= 1.1.x" {
const testing = std.testing;
// simple, for sanity
try testing.expectEqual(
Binding{
.trigger = .{ .key = .{ .unicode = '0' } },
.action = .{ .ignore = {} },
},
try parseSingle("zero=ignore"),
);
try testing.expectEqual(
Binding{
.trigger = .{ .key = .{ .physical = .digit_0 } },
.action = .{ .ignore = {} },
},
try parseSingle("physical:zero=ignore"),
);
// duplicates
try testing.expectError(Error.InvalidFormat, parseSingle("zero+one=ignore"));
// test our full map
for (
Trigger.backwards_compatible_keys.keys(),
Trigger.backwards_compatible_keys.values(),
) |k, v| {
var buf: [128]u8 = undefined;
try testing.expectEqual(
Binding{
.trigger = .{ .key = v },
.action = .{ .ignore = {} },
},
try parseSingle(try std.fmt.bufPrint(&buf, "{s}=ignore", .{k})),
);
}
}
test "parse: global triggers" {
const testing = std.testing;
// global keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
.flags = .{ .global = true },
}, try parseSingle("global:shift+a=ignore"));
// global physical keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .physical = .key_a },
},
.action = .{ .ignore = {} },
.flags = .{ .global = true },
}, try parseSingle("global:key_a+shift=ignore"));
// global unconsumed keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
.flags = .{
.global = true,
.consumed = false,
},
}, try parseSingle("unconsumed:global:a+shift=ignore"));
// global sequences not allowed
{
var p = try Parser.init("global:a>b=ignore");
try testing.expectError(Error.InvalidFormat, p.next());
}
}
test "parse: all triggers" {
const testing = std.testing;
// all keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
.flags = .{ .all = true },
}, try parseSingle("all:shift+a=ignore"));
// all physical keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .physical = .key_a },
},
.action = .{ .ignore = {} },
.flags = .{ .all = true },
}, try parseSingle("all:key_a+shift=ignore"));
// all unconsumed keys
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .shift = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
.flags = .{
.all = true,
.consumed = false,
},
}, try parseSingle("unconsumed:all:a+shift=ignore"));
// all sequences not allowed
{
var p = try Parser.init("all:a>b=ignore");
try testing.expectError(Error.InvalidFormat, p.next());
}
}
test "parse: modifier aliases" {
const testing = std.testing;
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .super = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
}, try parseSingle("cmd+a=ignore"));
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .super = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
}, try parseSingle("command+a=ignore"));
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .alt = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
}, try parseSingle("opt+a=ignore"));
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .alt = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
}, try parseSingle("option+a=ignore"));
try testing.expectEqual(Binding{
.trigger = .{
.mods = .{ .ctrl = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
}, try parseSingle("control+a=ignore"));
}
test "parse: action invalid" {
const testing = std.testing;
// invalid action
try testing.expectError(Error.InvalidAction, parseSingle("a=nopenopenope"));
}
test "parse: action no parameters" {
const testing = std.testing;
// no parameters
try testing.expectEqual(
Binding{
.trigger = .{ .key = .{ .unicode = 'a' } },
.action = .{ .ignore = {} },
},
try parseSingle("a=ignore"),
);
try testing.expectError(Error.InvalidFormat, parseSingle("a=ignore:A"));
}
test "parse: action with string" {
const testing = std.testing;
// parameter
{
const binding = try parseSingle("a=csi:A");
try testing.expect(binding.action == .csi);
try testing.expectEqualStrings("A", binding.action.csi);
}
// parameter
{
const binding = try parseSingle("a=esc:A");
try testing.expect(binding.action == .esc);
try testing.expectEqualStrings("A", binding.action.esc);
}
}
test "parse: action with enum" {
const testing = std.testing;
// parameter
{
const binding = try parseSingle("a=new_split:right");
try testing.expect(binding.action == .new_split);
try testing.expectEqual(Action.SplitDirection.right, binding.action.new_split);
}
}
test "parse: action with enum with default" {
const testing = std.testing;
// parameter
{
const binding = try parseSingle("a=new_split");
try testing.expect(binding.action == .new_split);
try testing.expectEqual(Action.SplitDirection.auto, binding.action.new_split);
}
}
test "parse: action with int" {
const testing = std.testing;
// parameter
{
const binding = try parseSingle("a=jump_to_prompt:-1");
try testing.expect(binding.action == .jump_to_prompt);
try testing.expectEqual(@as(i16, -1), binding.action.jump_to_prompt);
}
{
const binding = try parseSingle("a=jump_to_prompt:10");
try testing.expect(binding.action == .jump_to_prompt);
try testing.expectEqual(@as(i16, 10), binding.action.jump_to_prompt);
}
}
test "parse: action with float" {
const testing = std.testing;
// parameter
{
const binding = try parseSingle("a=scroll_page_fractional:-0.5");
try testing.expect(binding.action == .scroll_page_fractional);
try testing.expectEqual(@as(f32, -0.5), binding.action.scroll_page_fractional);
}
{
const binding = try parseSingle("a=scroll_page_fractional:+0.5");
try testing.expect(binding.action == .scroll_page_fractional);
try testing.expectEqual(@as(f32, 0.5), binding.action.scroll_page_fractional);
}
}
test "parse: action with a tuple" {
const testing = std.testing;
// parameter
{
const binding = try parseSingle("a=resize_split:up,10");
try testing.expect(binding.action == .resize_split);
try testing.expectEqual(Action.SplitResizeDirection.up, binding.action.resize_split[0]);
try testing.expectEqual(@as(u16, 10), binding.action.resize_split[1]);
}
// missing parameter
try testing.expectError(Error.InvalidFormat, parseSingle("a=resize_split:up"));
// too many
try testing.expectError(Error.InvalidFormat, parseSingle("a=resize_split:up,10,12"));
// invalid type
try testing.expectError(Error.InvalidFormat, parseSingle("a=resize_split:up,four"));
}
test "sequence iterator" {
const testing = std.testing;
// single character
{
var it: SequenceIterator = .{ .input = "a" };
try testing.expectEqual(Trigger{ .key = .{ .unicode = 'a' } }, (try it.next()).?);
try testing.expect(try it.next() == null);
}
// multi character
{
var it: SequenceIterator = .{ .input = "a>b" };
try testing.expectEqual(Trigger{ .key = .{ .unicode = 'a' } }, (try it.next()).?);
try testing.expectEqual(Trigger{ .key = .{ .unicode = 'b' } }, (try it.next()).?);
try testing.expect(try it.next() == null);
}
// empty
{
var it: SequenceIterator = .{ .input = "" };
try testing.expectError(Error.InvalidFormat, it.next());
}
// empty starting sequence
{
var it: SequenceIterator = .{ .input = ">a" };
try testing.expectError(Error.InvalidFormat, it.next());
}
// empty ending sequence
{
var it: SequenceIterator = .{ .input = "a>" };
try testing.expectEqual(Trigger{ .key = .{ .unicode = 'a' } }, (try it.next()).?);
try testing.expectError(Error.InvalidFormat, it.next());
}
}
test "parse: sequences" {
const testing = std.testing;
// single character
{
var p = try Parser.init("ctrl+a=ignore");
try testing.expectEqual(Parser.Elem{ .binding = .{
.trigger = .{
.mods = .{ .ctrl = true },
.key = .{ .unicode = 'a' },
},
.action = .{ .ignore = {} },
} }, (try p.next()).?);
try testing.expect(try p.next() == null);
}
// sequence
{
var p = try Parser.init("a>b=ignore");
try testing.expectEqual(Parser.Elem{ .leader = .{
.key = .{ .unicode = 'a' },
} }, (try p.next()).?);
try testing.expectEqual(Parser.Elem{ .binding = .{
.trigger = .{
.key = .{ .unicode = 'b' },
},
.action = .{ .ignore = {} },
} }, (try p.next()).?);
try testing.expect(try p.next() == null);
}
}
test "set: parseAndPut typical binding" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "a=new_window");
// Creates forward mapping
{
const action = s.get(.{ .key = .{ .unicode = 'a' } }).?.value_ptr.*.leaf;
try testing.expect(action.action == .new_window);
try testing.expectEqual(Flags{}, action.flags);
}
// Creates reverse mapping
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'a');
}
}
test "set: parseAndPut unconsumed binding" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "unconsumed:a=new_window");
// Creates forward mapping
{
const trigger: Trigger = .{ .key = .{ .unicode = 'a' } };
const action = s.get(trigger).?.value_ptr.*.leaf;
try testing.expect(action.action == .new_window);
try testing.expectEqual(Flags{ .consumed = false }, action.flags);
}
// Creates reverse mapping
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'a');
}
}
test "set: parseAndPut removed binding" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "a=new_window");
try s.parseAndPut(alloc, "a=unbind");
// Creates forward mapping
{
const trigger: Trigger = .{ .key = .{ .unicode = 'a' } };
try testing.expect(s.get(trigger) == null);
}
try testing.expect(s.getTrigger(.{ .new_window = {} }) == null);
}
test "set: parseAndPut sequence" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "a>b=new_window");
var current: *Set = &s;
{
const t: Trigger = .{ .key = .{ .unicode = 'a' } };
const e = current.get(t).?.value_ptr.*;
try testing.expect(e == .leader);
current = e.leader;
}
{
const t: Trigger = .{ .key = .{ .unicode = 'b' } };
const e = current.get(t).?.value_ptr.*;
try testing.expect(e == .leaf);
try testing.expect(e.leaf.action == .new_window);
try testing.expectEqual(Flags{}, e.leaf.flags);
}
}
test "set: parseAndPut sequence with two actions" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "a>b=new_window");
try s.parseAndPut(alloc, "a>c=new_tab");
var current: *Set = &s;
{
const t: Trigger = .{ .key = .{ .unicode = 'a' } };
const e = current.get(t).?.value_ptr.*;
try testing.expect(e == .leader);
current = e.leader;
}
{
const t: Trigger = .{ .key = .{ .unicode = 'b' } };
const e = current.get(t).?.value_ptr.*;
try testing.expect(e == .leaf);
try testing.expect(e.leaf.action == .new_window);
try testing.expectEqual(Flags{}, e.leaf.flags);
}
{
const t: Trigger = .{ .key = .{ .unicode = 'c' } };
const e = current.get(t).?.value_ptr.*;
try testing.expect(e == .leaf);
try testing.expect(e.leaf.action == .new_tab);
try testing.expectEqual(Flags{}, e.leaf.flags);
}
}
test "set: parseAndPut overwrite sequence" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "a>b=new_tab");
try s.parseAndPut(alloc, "a>b=new_window");
var current: *Set = &s;
{
const t: Trigger = .{ .key = .{ .unicode = 'a' } };
const e = current.get(t).?.value_ptr.*;
try testing.expect(e == .leader);
current = e.leader;
}
{
const t: Trigger = .{ .key = .{ .unicode = 'b' } };
const e = current.get(t).?.value_ptr.*;
try testing.expect(e == .leaf);
try testing.expect(e.leaf.action == .new_window);
try testing.expectEqual(Flags{}, e.leaf.flags);
}
}
test "set: parseAndPut overwrite leader" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "a=new_tab");
try s.parseAndPut(alloc, "a>b=new_window");
var current: *Set = &s;
{
const t: Trigger = .{ .key = .{ .unicode = 'a' } };
const e = current.get(t).?.value_ptr.*;
try testing.expect(e == .leader);
current = e.leader;
}
{
const t: Trigger = .{ .key = .{ .unicode = 'b' } };
const e = current.get(t).?.value_ptr.*;
try testing.expect(e == .leaf);
try testing.expect(e.leaf.action == .new_window);
try testing.expectEqual(Flags{}, e.leaf.flags);
}
}
test "set: parseAndPut unbind sequence unbinds leader" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "a>b=new_window");
try s.parseAndPut(alloc, "a>b=unbind");
var current: *Set = &s;
{
const t: Trigger = .{ .key = .{ .unicode = 'a' } };
try testing.expect(current.get(t) == null);
}
}
test "set: parseAndPut unbind sequence unbinds leader if not set" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "a>b=unbind");
var current: *Set = &s;
{
const t: Trigger = .{ .key = .{ .unicode = 'a' } };
try testing.expect(current.get(t) == null);
}
}
test "set: parseAndPut sequence preserves reverse mapping" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "a=new_window");
try s.parseAndPut(alloc, "ctrl+a>b=new_window");
// Creates reverse mapping
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'a');
}
}
test "set: put overwrites sequence" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "ctrl+a>b=new_window");
try s.put(alloc, .{
.mods = .{ .ctrl = true },
.key = .{ .unicode = 'a' },
}, .{ .new_window = {} });
// Creates reverse mapping
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'a');
}
}
test "set: maintains reverse mapping" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.put(alloc, .{ .key = .{ .unicode = 'a' } }, .{ .new_window = {} });
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'a');
}
// should be most recent
try s.put(alloc, .{ .key = .{ .unicode = 'b' } }, .{ .new_window = {} });
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'b');
}
// removal should replace
s.remove(alloc, .{ .key = .{ .unicode = 'b' } });
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'a');
}
}
test "set: performable is not part of reverse mappings" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.put(alloc, .{ .key = .{ .unicode = 'a' } }, .{ .new_window = {} });
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'a');
}
// trigger should be non-performable
try s.putFlags(
alloc,
.{ .key = .{ .unicode = 'b' } },
.{ .new_window = {} },
.{ .performable = true },
);
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'a');
}
// removal of performable should do nothing
s.remove(alloc, .{ .key = .{ .unicode = 'b' } });
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'a');
}
}
test "set: overriding a mapping updates reverse" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.put(alloc, .{ .key = .{ .unicode = 'a' } }, .{ .new_window = {} });
{
const trigger = s.getTrigger(.{ .new_window = {} }).?;
try testing.expect(trigger.key.unicode == 'a');
}
// should be most recent
try s.put(alloc, .{ .key = .{ .unicode = 'a' } }, .{ .new_tab = {} });
{
const trigger = s.getTrigger(.{ .new_window = {} });
try testing.expect(trigger == null);
}
}
test "set: consumed state" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.put(alloc, .{ .key = .{ .unicode = 'a' } }, .{ .new_window = {} });
try testing.expect(s.get(.{ .key = .{ .unicode = 'a' } }).?.value_ptr.* == .leaf);
try testing.expect(s.get(.{ .key = .{ .unicode = 'a' } }).?.value_ptr.*.leaf.flags.consumed);
try s.putFlags(
alloc,
.{ .key = .{ .unicode = 'a' } },
.{ .new_window = {} },
.{ .consumed = false },
);
try testing.expect(s.get(.{ .key = .{ .unicode = 'a' } }).?.value_ptr.* == .leaf);
try testing.expect(!s.get(.{ .key = .{ .unicode = 'a' } }).?.value_ptr.*.leaf.flags.consumed);
try s.put(alloc, .{ .key = .{ .unicode = 'a' } }, .{ .new_window = {} });
try testing.expect(s.get(.{ .key = .{ .unicode = 'a' } }).?.value_ptr.* == .leaf);
try testing.expect(s.get(.{ .key = .{ .unicode = 'a' } }).?.value_ptr.*.leaf.flags.consumed);
}
test "set: getEvent physical" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "ctrl+quote=new_window");
// Physical matches on physical
{
const action = s.getEvent(.{
.key = .quote,
.mods = .{ .ctrl = true },
}).?.value_ptr.*.leaf;
try testing.expect(action.action == .new_window);
}
// Physical does not match on UTF8/codepoint
{
const action = s.getEvent(.{
.key = .key_a,
.mods = .{ .ctrl = true },
.utf8 = "'",
.unshifted_codepoint = '\'',
});
try testing.expect(action == null);
}
}
test "set: getEvent codepoint" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "ctrl+'=new_window");
// Matches on codepoint
{
const action = s.getEvent(.{
.key = .key_a,
.mods = .{ .ctrl = true },
.utf8 = "",
.unshifted_codepoint = '\'',
}).?.value_ptr.*.leaf;
try testing.expect(action.action == .new_window);
}
// Matches on UTF-8
{
const action = s.getEvent(.{
.key = .key_a,
.mods = .{ .ctrl = true },
.utf8 = "'",
}).?.value_ptr.*.leaf;
try testing.expect(action.action == .new_window);
}
// Doesn't match on physical
{
const action = s.getEvent(.{
.key = .key_a,
.mods = .{ .ctrl = true },
});
try testing.expect(action == null);
}
}
test "set: getEvent codepoint case folding" {
const testing = std.testing;
const alloc = testing.allocator;
var s: Set = .{};
defer s.deinit(alloc);
try s.parseAndPut(alloc, "ctrl+A=new_window");
// Lowercase codepoint
{
const action = s.getEvent(.{
.key = .key_j,
.mods = .{ .ctrl = true },
.utf8 = "",
.unshifted_codepoint = 'a',
}).?.value_ptr.*.leaf;
try testing.expect(action.action == .new_window);
}
// Uppercase codepoint
{
const action = s.getEvent(.{
.key = .key_a,
.mods = .{ .ctrl = true },
.utf8 = "",
.unshifted_codepoint = 'A',
}).?.value_ptr.*.leaf;
try testing.expect(action.action == .new_window);
}
// Negative case for sanity
{
const action = s.getEvent(.{
.key = .key_j,
.mods = .{ .ctrl = true },
});
try testing.expect(action == null);
}
}
test "Action: clone" {
const testing = std.testing;
var arena = std.heap.ArenaAllocator.init(testing.allocator);
defer arena.deinit();
const alloc = arena.allocator();
{
var a: Action = .ignore;
const b = try a.clone(alloc);
try testing.expect(b == .ignore);
}
{
var a: Action = .{ .text = "foo" };
const b = try a.clone(alloc);
try testing.expect(b == .text);
}
}
test "parse: increase_font_size" {
const testing = std.testing;
{
const binding = try parseSingle("a=increase_font_size:1.5");
try testing.expect(binding.action == .increase_font_size);
try testing.expectEqual(1.5, binding.action.increase_font_size);
}
}
test "parse: decrease_font_size" {
const testing = std.testing;
{
const binding = try parseSingle("a=decrease_font_size:2.5");
try testing.expect(binding.action == .decrease_font_size);
try testing.expectEqual(2.5, binding.action.decrease_font_size);
}
}
test "parse: reset_font_size" {
const testing = std.testing;
{
const binding = try parseSingle("a=reset_font_size");
try testing.expect(binding.action == .reset_font_size);
}
}
test "parse: set_font_size" {
const testing = std.testing;
{
const binding = try parseSingle("a=set_font_size:13.5");
try testing.expect(binding.action == .set_font_size);
try testing.expectEqual(13.5, binding.action.set_font_size);
}
}