ghostty/src/terminal/Screen.zig

5654 lines
184 KiB
Zig

//! Screen represents the internal storage for a terminal screen, including
//! scrollback. This is implemented as a single continuous ring buffer.
//!
//! Definitions:
//!
//! * Screen - The full screen (active + history).
//! * Active - The area that is the current edit-able screen (the
//! bottom of the scrollback). This is "edit-able" because it is
//! the only part that escape sequences such as set cursor position
//! actually affect.
//! * History - The area that contains the lines prior to the active
//! area. This is the scrollback area. Escape sequences can no longer
//! affect this area.
//! * Viewport - The area that is currently visible to the user. This
//! can be thought of as the current window into the screen.
//!
//! The internal storage of the screen is stored in a circular buffer
//! with roughly the following format:
//!
//! Storage (Circular Buffer)
//! ┌─────────────────────────────────────┐
//! │ ┌─────┐┌─────┐┌─────┐ ┌─────┐ │
//! │ │ Hdr ││Cell ││Cell │ ... │Cell │ │
//! │ │ ││ 0 ││ 1 │ │ N-1 │ │
//! │ └─────┘└─────┘└─────┘ └─────┘ │
//! │ ┌─────┐┌─────┐┌─────┐ ┌─────┐ │
//! │ │ Hdr ││Cell ││Cell │ ... │Cell │ │
//! │ │ ││ 0 ││ 1 │ │ N-1 │ │
//! │ └─────┘└─────┘└─────┘ └─────┘ │
//! │ ┌─────┐┌─────┐┌─────┐ ┌─────┐ │
//! │ │ Hdr ││Cell ││Cell │ ... │Cell │ │
//! │ │ ││ 0 ││ 1 │ │ N-1 │ │
//! │ └─────┘└─────┘└─────┘ └─────┘ │
//! └─────────────────────────────────────┘
//!
//! There are R rows with N columns. Each row has an extra "cell" which is
//! the row header. The row header is used to track metadata about the row.
//! Each cell itself is a union (see StorageCell) of either the header or
//! the cell.
//!
//! The storage is in a circular buffer so that scrollback can be handled
//! without copying rows. The circular buffer is implemented in circ_buf.zig.
//! The top of the circular buffer (index 0) is the top of the screen,
//! i.e. the scrollback if there is a lot of data.
//!
//! The top of the active area (or end of the history area, same thing) is
//! cached in `self.history` and is an offset in rows. This could always be
//! calculated but profiling showed that caching it saves a lot of time in
//! hot loops for minimal memory cost.
const Screen = @This();
const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const utf8proc = @import("utf8proc");
const trace = @import("tracy").trace;
const sgr = @import("sgr.zig");
const color = @import("color.zig");
const point = @import("point.zig");
const CircBuf = @import("circ_buf.zig").CircBuf;
const Selection = @import("Selection.zig");
const fastmem = @import("../fastmem.zig");
const log = std.log.scoped(.screen);
/// Cursor represents the cursor state.
pub const Cursor = struct {
// x, y where the cursor currently exists (0-indexed). This x/y is
// always the offset in the active area.
x: usize = 0,
y: usize = 0,
// pen is the current cell styling to apply to new cells.
pen: Cell = .{ .char = 0 },
// The last column flag (LCF) used to do soft wrapping.
pending_wrap: bool = false,
};
/// This is a single item within the storage buffer. We use a union to
/// have different types of data in a single contiguous buffer.
const StorageCell = union {
header: RowHeader,
cell: Cell,
test {
// log.warn("header={}@{} cell={}@{} storage={}@{}", .{
// @sizeOf(RowHeader),
// @alignOf(RowHeader),
// @sizeOf(Cell),
// @alignOf(Cell),
// @sizeOf(StorageCell),
// @alignOf(StorageCell),
// });
}
comptime {
// We only check this during ReleaseFast because safety checks
// have to be disabled to get this size.
if (!std.debug.runtime_safety) {
// We want to be at most the size of a cell always. We have WAY
// more cells than other fields, so we don't want to pay the cost
// of padding due to other fields.
assert(@sizeOf(Cell) == @sizeOf(StorageCell));
} else {
// Extra u32 for the tag for safety checks. This is subject to
// change depending on the Zig compiler...
assert((@sizeOf(Cell) + @sizeOf(u32)) == @sizeOf(StorageCell));
}
}
};
/// The row header is at the start of every row within the storage buffer.
/// It can store row-specific data.
pub const RowHeader = struct {
pub const Id = u32;
/// The ID of this row, used to uniquely identify this row. The cells
/// are also ID'd by id + cell index (0-indexed). This will wrap around
/// when it reaches the maximum value for the type. For caching purposes,
/// when wrapping happens, all rows in the screen will be marked dirty.
id: Id = 0,
// Packed flags
flags: packed struct {
/// If true, this row is soft-wrapped. The first cell of the next
/// row is a continuous of this row.
wrap: bool = false,
/// True if this row has had changes. It is up to the caller to
/// set this to false. See the methods on Row to see what will set
/// this to true.
dirty: bool = false,
/// True if any cell in this row has a grapheme associated with it.
grapheme: bool = false,
/// True if this row is an active prompt (awaiting input). This is
/// set to false when the semantic prompt events (OSC 133) are received.
/// There are scenarios where the shell may never send this event, so
/// in order to reliably test prompt status, you need to iterate
/// backwards from the cursor to check the current line status going
/// back.
semantic_prompt: SemanticPrompt = .unknown,
} = .{},
/// Semantic prompt type.
pub const SemanticPrompt = enum(u3) {
/// Unknown, the running application didn't tell us for this line.
unknown = 0,
/// This is a prompt line, meaning it only contains the shell prompt.
/// For poorly behaving shells, this may also be the input.
prompt = 1,
/// This line contains the input area. We don't currently track
/// where this actually is in the line, so we just assume it is somewhere.
input = 2,
/// This line is the start of command output.
command = 3,
};
};
/// Cell is a single cell within the screen.
pub const Cell = struct {
/// The primary unicode codepoint for this cell. Most cells (almost all)
/// contain exactly one unicode codepoint. However, it is possible for
/// cells to contain multiple if multiple codepoints are used to create
/// a single grapheme cluster.
///
/// In the case multiple codepoints make up a single grapheme, the
/// additional codepoints can be looked up in the hash map on the
/// Screen. Since multi-codepoints graphemes are rare, we don't want to
/// waste memory for every cell, so we use a side lookup for it.
char: u32 = 0,
/// Foreground and background color. attrs.has_{bg/fg} must be checked
/// to see if these are useful values.
fg: color.RGB = .{},
bg: color.RGB = .{},
/// Underline color.
/// NOTE(mitchellh): This is very rarely set so ideally we wouldn't waste
/// cell space for this. For now its on this struct because it is convenient
/// but we should consider a lookaside table for this.
underline_fg: color.RGB = .{},
/// On/off attributes that can be set
attrs: packed struct {
has_bg: bool = false,
has_fg: bool = false,
bold: bool = false,
italic: bool = false,
faint: bool = false,
blink: bool = false,
inverse: bool = false,
invisible: bool = false,
strikethrough: bool = false,
underline: sgr.Attribute.Underline = .none,
underline_color: bool = false,
/// True if this is a wide character. This char takes up
/// two cells. The following cell ALWAYS is a space.
wide: bool = false,
/// Notes that this only exists to be blank for a preceeding
/// wide character (tail) or following (head).
wide_spacer_tail: bool = false,
wide_spacer_head: bool = false,
/// True if this cell has additional codepoints to form a complete
/// grapheme cluster. If this is true, then the row grapheme flag must
/// also be true. The grapheme code points can be looked up in the
/// screen grapheme map.
grapheme: bool = false,
} = .{},
/// True if the cell should be skipped for drawing
pub fn empty(self: Cell) bool {
// Get our backing integer for our packed struct of attributes
const AttrInt = @Type(.{ .Int = .{
.signedness = .unsigned,
.bits = @bitSizeOf(@TypeOf(self.attrs)),
} });
// We're empty if we have no char AND we have no styling
return self.char == 0 and @as(AttrInt, @bitCast(self.attrs)) == 0;
}
/// The width of the cell.
///
/// This uses the legacy calculation of a per-codepoint width calculation
/// to determine the width. This legacy calculation is incorrect because
/// it doesn't take into account multi-codepoint graphemes.
///
/// The goal of this function is to match the expectation of shells
/// that aren't grapheme aware (at the time of writing this comment: none
/// are grapheme aware). This means it should match wcswidth.
pub fn widthLegacy(self: Cell) u8 {
// Wide is always 2
if (self.attrs.wide) return 2;
// Wide spacers are always 0 because their width is accounted for
// in the wide char.
if (self.attrs.wide_spacer_tail or self.attrs.wide_spacer_head) return 0;
return 1;
}
test "widthLegacy" {
const testing = std.testing;
var c: Cell = .{};
try testing.expectEqual(@as(u16, 1), c.widthLegacy());
c = .{ .attrs = .{ .wide = true } };
try testing.expectEqual(@as(u16, 2), c.widthLegacy());
c = .{ .attrs = .{ .wide_spacer_tail = true } };
try testing.expectEqual(@as(u16, 0), c.widthLegacy());
}
test {
// We use this test to ensure we always get the right size of the attrs
// const cell: Cell = .{ .char = 0 };
// _ = @bitCast(u8, cell.attrs);
// try std.testing.expectEqual(1, @sizeOf(@TypeOf(cell.attrs)));
}
test {
//log.warn("CELL={} bits={} {}", .{ @sizeOf(Cell), @bitSizeOf(Cell), @alignOf(Cell) });
try std.testing.expectEqual(20, @sizeOf(Cell));
}
};
/// A row is a single row in the screen.
pub const Row = struct {
/// The screen this row is part of.
screen: *Screen,
/// Raw internal storage, do NOT write to this, use only the
/// helpers. Writing directly to this can easily mess up state
/// causing future crashes or misrendering.
storage: []StorageCell,
/// Returns the ID for this row. You can turn this into a cell ID
/// by adding the cell offset plus 1 (so it is 1-indexed).
pub inline fn getId(self: Row) RowHeader.Id {
return self.storage[0].header.id;
}
/// Set that this row is soft-wrapped. This doesn't change the contents
/// of this row so the row won't be marked dirty.
pub fn setWrapped(self: Row, v: bool) void {
self.storage[0].header.flags.wrap = v;
}
/// Set a row as dirty or not. Generally you only set a row as NOT dirty.
/// Various Row functions manage flagging dirty to true.
pub fn setDirty(self: Row, v: bool) void {
self.storage[0].header.flags.dirty = v;
}
pub inline fn isDirty(self: Row) bool {
return self.storage[0].header.flags.dirty;
}
/// Set the semantic prompt state for this row.
pub fn setSemanticPrompt(self: Row, p: RowHeader.SemanticPrompt) void {
self.storage[0].header.flags.semantic_prompt = p;
}
/// Retrieve the semantic prompt state for this row.
pub fn getSemanticPrompt(self: Row) RowHeader.SemanticPrompt {
return self.storage[0].header.flags.semantic_prompt;
}
/// Retrieve the header for this row.
pub fn header(self: Row) RowHeader {
return self.storage[0].header;
}
/// Returns the number of cells in this row.
pub fn lenCells(self: Row) usize {
return self.storage.len - 1;
}
/// Returns true if the row only has empty characters. This ignores
/// styling (i.e. styling does not count as non-empty).
pub fn isEmpty(self: Row) bool {
const len = self.storage.len;
for (self.storage[1..len]) |cell| {
if (cell.cell.char != 0) return false;
}
return true;
}
/// Clear the row, making all cells empty.
pub fn clear(self: Row, pen: Cell) void {
var empty_pen = pen;
empty_pen.char = 0;
self.fill(empty_pen);
}
/// Fill the entire row with a copy of a single cell.
pub fn fill(self: Row, cell: Cell) void {
self.fillSlice(cell, 0, self.storage.len - 1);
}
/// Fill a slice of a row.
pub fn fillSlice(self: Row, cell: Cell, start: usize, len: usize) void {
assert(len <= self.storage.len - 1);
assert(!cell.attrs.grapheme); // you can't fill with graphemes
// Always mark the row as dirty for this.
self.storage[0].header.flags.dirty = true;
// If our row has no graphemes, then this is a fast copy
if (!self.storage[0].header.flags.grapheme) {
@memset(self.storage[start + 1 .. len + 1], .{ .cell = cell });
return;
}
// We have graphemes, so we have to clear those first.
for (self.storage[start + 1 .. len + 1], 0..) |*storage_cell, x| {
if (storage_cell.cell.attrs.grapheme) self.clearGraphemes(x);
storage_cell.* = .{ .cell = cell };
}
// We only reset the grapheme flag if we fill the whole row, for now.
// We can improve performance by more correctly setting this but I'm
// going to defer that until we can measure.
if (start == 0 and len == self.storage.len - 1) {
self.storage[0].header.flags.grapheme = false;
}
}
/// Get a single immutable cell.
pub fn getCell(self: Row, x: usize) Cell {
assert(x < self.storage.len - 1);
return self.storage[x + 1].cell;
}
/// Get a pointr to the cell at column x (0-indexed). This always
/// assumes that the cell was modified, notifying the renderer on the
/// next call to re-render this cell. Any change detection to avoid
/// this should be done prior.
pub fn getCellPtr(self: Row, x: usize) *Cell {
assert(x < self.storage.len - 1);
// Always mark the row as dirty for this.
self.storage[0].header.flags.dirty = true;
return &self.storage[x + 1].cell;
}
/// Attach a grapheme codepoint to the given cell.
pub fn attachGrapheme(self: Row, x: usize, cp: u21) !void {
const cell = &self.storage[x + 1].cell;
const key = self.getId() + x + 1;
const gop = try self.screen.graphemes.getOrPut(self.screen.alloc, key);
errdefer if (!gop.found_existing) {
_ = self.screen.graphemes.remove(key);
};
// Our row now has a grapheme
self.storage[0].header.flags.grapheme = true;
// Our row is now dirty
self.storage[0].header.flags.dirty = true;
// If we weren't previously a grapheme and we found an existing value
// it means that it is old grapheme data. Just delete that.
if (!cell.attrs.grapheme and gop.found_existing) {
cell.attrs.grapheme = true;
gop.value_ptr.deinit(self.screen.alloc);
gop.value_ptr.* = .{ .one = cp };
return;
}
// If we didn't have a previous value, attach the single codepoint.
if (!gop.found_existing) {
cell.attrs.grapheme = true;
gop.value_ptr.* = .{ .one = cp };
return;
}
// We have an existing value, promote
assert(cell.attrs.grapheme);
try gop.value_ptr.append(self.screen.alloc, cp);
}
/// Removes all graphemes associated with a cell.
pub fn clearGraphemes(self: Row, x: usize) void {
// Our row is now dirty
self.storage[0].header.flags.dirty = true;
const cell = &self.storage[x + 1].cell;
const key = self.getId() + x + 1;
cell.attrs.grapheme = false;
if (self.screen.graphemes.fetchRemove(key)) |kv| {
kv.value.deinit(self.screen.alloc);
}
}
/// Copy the row src into this row. The row can be from another screen.
pub fn copyRow(self: Row, src: Row) !void {
// If we have graphemes, clear first to unset them.
if (self.storage[0].header.flags.grapheme) self.clear(.{});
// Copy the flags
self.storage[0].header.flags = src.storage[0].header.flags;
// Always mark the row as dirty for this.
self.storage[0].header.flags.dirty = true;
// If the source has no graphemes (likely) then this is fast.
const end = @min(src.storage.len, self.storage.len);
if (!src.storage[0].header.flags.grapheme) {
fastmem.copy(StorageCell, self.storage[1..], src.storage[1..end]);
return;
}
// Source has graphemes, this is slow.
for (src.storage[1..end], 0..) |storage, x| {
self.storage[x + 1] = .{ .cell = storage.cell };
// Copy grapheme data if it exists
if (storage.cell.attrs.grapheme) {
const src_key = src.getId() + x + 1;
const src_data = src.screen.graphemes.get(src_key) orelse continue;
const dst_key = self.getId() + x + 1;
const dst_gop = try self.screen.graphemes.getOrPut(self.screen.alloc, dst_key);
dst_gop.value_ptr.* = try src_data.copy(self.screen.alloc);
self.storage[0].header.flags.grapheme = true;
}
}
}
/// Read-only iterator for the cells in the row.
pub fn cellIterator(self: Row) CellIterator {
return .{ .row = self };
}
/// Read-only iterator for the grapheme codepoints in a cell. This only
/// iterates over the EXTRA GRAPHEME codepoints and not the primary
/// codepoint in cell.char.
pub fn codepointIterator(self: Row, x: usize) CodepointIterator {
const cell = &self.storage[x + 1].cell;
assert(cell.attrs.grapheme);
const key = self.getId() + x + 1;
const data: GraphemeData = self.screen.graphemes.get(key) orelse data: {
// This is probably a bug somewhere in our internal state,
// but we don't want to just hard crash so its easier to just
// have zero codepoints.
log.debug("cell with grapheme flag but no grapheme data", .{});
break :data .{ .zero = {} };
};
return .{ .data = data };
}
};
/// Used to iterate through the rows of a specific region.
pub const RowIterator = struct {
screen: *Screen,
tag: RowIndexTag,
max: usize,
value: usize = 0,
pub fn next(self: *RowIterator) ?Row {
if (self.value >= self.max) return null;
const idx = self.tag.index(self.value);
const res = self.screen.getRow(idx);
self.value += 1;
return res;
}
};
/// Used to iterate through the rows of a specific region.
pub const CellIterator = struct {
row: Row,
i: usize = 0,
pub fn next(self: *CellIterator) ?Cell {
if (self.i >= self.row.storage.len - 1) return null;
const res = self.row.storage[self.i + 1].cell;
self.i += 1;
return res;
}
};
/// Used to iterate through the codepoints of a cell. This only iterates
/// over the extra grapheme codepoints and not the primary codepoint.
pub const CodepointIterator = struct {
data: GraphemeData,
i: usize = 0,
pub fn next(self: *CodepointIterator) ?u21 {
switch (self.data) {
.zero => return null,
.one => |v| {
if (self.i >= 1) return null;
self.i += 1;
return v;
},
.two => |v| {
if (self.i >= v.len) return null;
defer self.i += 1;
return v[self.i];
},
.three => |v| {
if (self.i >= v.len) return null;
defer self.i += 1;
return v[self.i];
},
.four => |v| {
if (self.i >= v.len) return null;
defer self.i += 1;
return v[self.i];
},
.many => |v| {
if (self.i >= v.len) return null;
defer self.i += 1;
return v[self.i];
},
}
}
};
/// RowIndex represents a row within the screen. There are various meanings
/// of a row index and this union represents the available types. For example,
/// when talking about row "0" you may want the first row in the viewport,
/// the first row in the scrollback, or the first row in the active area.
///
/// All row indexes are 0-indexed.
pub const RowIndex = union(RowIndexTag) {
/// The index is from the top of the screen. The screen includes all
/// the history.
screen: usize,
/// The index is from the top of the viewport. Therefore, depending
/// on where the user has scrolled the viewport, "0" is different.
viewport: usize,
/// The index is from the top of the active area. The active area is
/// always "rows" tall, and 0 is the top row. The active area is the
/// "edit-able" area where the terminal cursor is.
active: usize,
/// The index is from the top of the history (scrollback) to just
/// prior to the active area.
history: usize,
/// Convert this row index into a screen offset. This will validate
/// the value so even if it is already a screen value, this may error.
pub fn toScreen(self: RowIndex, screen: *const Screen) RowIndex {
const y = switch (self) {
.screen => |y| y: {
// NOTE for this and others below: Zig is supposed to optimize
// away assert in releasefast but for some reason these were
// not being optimized away. I don't know why. For these asserts
// only, I comptime gate them.
if (std.debug.runtime_safety) assert(y < RowIndexTag.screen.maxLen(screen));
break :y y;
},
.viewport => |y| y: {
if (std.debug.runtime_safety) assert(y < RowIndexTag.viewport.maxLen(screen));
break :y y + screen.viewport;
},
.active => |y| y: {
if (std.debug.runtime_safety) assert(y < RowIndexTag.active.maxLen(screen));
break :y screen.history + y;
},
.history => |y| y: {
if (std.debug.runtime_safety) assert(y < RowIndexTag.history.maxLen(screen));
break :y y;
},
};
return .{ .screen = y };
}
};
/// The tags of RowIndex
pub const RowIndexTag = enum {
screen,
viewport,
active,
history,
/// The max length for a given tag. This is a length, not an index,
/// so it is 1-indexed. If the value is zero, it means that this
/// section of the screen is empty or disabled.
pub inline fn maxLen(self: RowIndexTag, screen: *const Screen) usize {
const tracy = trace(@src());
defer tracy.end();
return switch (self) {
// Screen can be any of the written rows
.screen => screen.rowsWritten(),
// Viewport can be any of the written rows or the max size
// of a viewport.
.viewport => @max(1, @min(screen.rows, screen.rowsWritten())),
// History is all the way up to the top of our active area. If
// we haven't filled our active area, there is no history.
.history => screen.history,
// Active area can be any number of rows. We ignore rows
// written here because this is the only row index that can
// actively grow our rows.
.active => screen.rows,
//TODO .active => @min(rows_written, screen.rows),
};
}
/// Construct a RowIndex from a tag.
pub fn index(self: RowIndexTag, value: usize) RowIndex {
return switch (self) {
.screen => .{ .screen = value },
.viewport => .{ .viewport = value },
.active => .{ .active = value },
.history => .{ .history = value },
};
}
};
/// Stores the extra unicode codepoints that form a complete grapheme
/// cluster alongside a cell. We store this separately from a Cell because
/// grapheme clusters are relatively rare (depending on the language) and
/// we don't want to pay for the full cost all the time.
pub const GraphemeData = union(enum) {
// The named counts allow us to avoid allocators. We do this because
// []u21 is sizeof([4]u21) anyways so if we can store avoid small allocations
// we prefer it. Grapheme clusters are almost always <= 4 codepoints.
zero: void,
one: u21,
two: [2]u21,
three: [3]u21,
four: [4]u21,
many: []u21,
pub fn deinit(self: GraphemeData, alloc: Allocator) void {
switch (self) {
.many => |v| alloc.free(v),
else => {},
}
}
/// Append the codepoint cp to the grapheme data.
pub fn append(self: *GraphemeData, alloc: Allocator, cp: u21) !void {
switch (self.*) {
.zero => self.* = .{ .one = cp },
.one => |v| self.* = .{ .two = .{ v, cp } },
.two => |v| self.* = .{ .three = .{ v[0], v[1], cp } },
.three => |v| self.* = .{ .four = .{ v[0], v[1], v[2], cp } },
.four => |v| {
const many = try alloc.alloc(u21, 5);
fastmem.copy(u21, many, &v);
many[4] = cp;
self.* = .{ .many = many };
},
.many => |v| {
// Note: this is super inefficient, we should use an arraylist
// or something so we have extra capacity.
const many = try alloc.realloc(v, v.len + 1);
many[v.len] = cp;
self.* = .{ .many = many };
},
}
}
pub fn copy(self: GraphemeData, alloc: Allocator) !GraphemeData {
// If we're not many we're not allocated so just copy on stack.
if (self != .many) return self;
// Heap allocated
return GraphemeData{ .many = try alloc.dupe(u21, self.many) };
}
test {
log.warn("Grapheme={}", .{@sizeOf(GraphemeData)});
}
test "append" {
const testing = std.testing;
const alloc = testing.allocator;
var data: GraphemeData = .{ .one = 1 };
defer data.deinit(alloc);
try data.append(alloc, 2);
try testing.expectEqual(GraphemeData{ .two = .{ 1, 2 } }, data);
try data.append(alloc, 3);
try testing.expectEqual(GraphemeData{ .three = .{ 1, 2, 3 } }, data);
try data.append(alloc, 4);
try testing.expectEqual(GraphemeData{ .four = .{ 1, 2, 3, 4 } }, data);
try data.append(alloc, 5);
try testing.expect(data == .many);
try testing.expectEqualSlices(u21, &[_]u21{ 1, 2, 3, 4, 5 }, data.many);
try data.append(alloc, 6);
try testing.expect(data == .many);
try testing.expectEqualSlices(u21, &[_]u21{ 1, 2, 3, 4, 5, 6 }, data.many);
}
comptime {
// We want to keep this at most the size of the tag + []u21 so that
// at most we're paying for the cost of a slice.
//assert(@sizeOf(GraphemeData) == 24);
}
};
// Initialize to header and not a cell so that we can check header.init
// to know if the remainder of the row has been initialized or not.
const StorageBuf = CircBuf(StorageCell, .{ .header = .{} });
/// Stores a mapping of cell ID (row ID + cell offset + 1) to
/// graphemes associated with a cell. To know if a cell has graphemes,
/// check the "grapheme" flag of a cell.
const GraphemeMap = std.AutoHashMapUnmanaged(usize, GraphemeData);
/// The allocator used for all the storage operations
alloc: Allocator,
/// The full set of storage.
storage: StorageBuf,
/// Graphemes associated with our current screen.
graphemes: GraphemeMap = .{},
/// The next ID to assign to a row. The value of this is NOT assigned.
next_row_id: RowHeader.Id = 1,
/// The number of rows and columns in the visible space.
rows: usize,
cols: usize,
/// The maximum number of lines that are available in scrollback. This
/// is in addition to the number of visible rows.
max_scrollback: usize,
/// The row (offset from the top) where the viewport currently is.
viewport: usize,
/// The amount of history (scrollback) that has been written so far. This
/// can be calculated dynamically using the storage buffer but its an
/// extremely hot piece of data so we cache it. Empirically this eliminates
/// millions of function calls and saves seconds under high scroll scenarios
/// (i.e. reading a large file).
history: usize,
/// Each screen maintains its own cursor state.
cursor: Cursor = .{},
/// Saved cursor saved with DECSC (ESC 7).
saved_cursor: Cursor = .{},
/// The selection for this screen (if any).
selection: ?Selection = null,
/// Initialize a new screen.
pub fn init(
alloc: Allocator,
rows: usize,
cols: usize,
max_scrollback: usize,
) !Screen {
// * Our buffer size is preallocated to fit double our visible space
// or the maximum scrollback whichever is smaller.
// * We add +1 to cols to fit the row header
const buf_size = (rows + @min(max_scrollback, rows)) * (cols + 1);
return Screen{
.alloc = alloc,
.storage = try StorageBuf.init(alloc, buf_size),
.rows = rows,
.cols = cols,
.max_scrollback = max_scrollback,
.viewport = 0,
.history = 0,
};
}
pub fn deinit(self: *Screen) void {
self.storage.deinit(self.alloc);
self.deinitGraphemes();
}
fn deinitGraphemes(self: *Screen) void {
var grapheme_it = self.graphemes.valueIterator();
while (grapheme_it.next()) |data| data.deinit(self.alloc);
self.graphemes.deinit(self.alloc);
}
/// Copy the screen portion given by top and bottom into a new screen instance.
/// This clone is meant for read-only access and hasn't been tested for
/// mutability.
pub fn clone(self: *Screen, alloc: Allocator, top: RowIndex, bottom: RowIndex) !Screen {
// Convert our top/bottom to screen coordinates
const top_y = top.toScreen(self).screen;
const bot_y = bottom.toScreen(self).screen;
assert(bot_y >= top_y);
const height = (bot_y - top_y) + 1;
// We also figure out the "max y" we can have based on the number
// of rows written. This is used to prevent from reading out of the
// circular buffer where we might ahve no initialized data yet.
const max_y = max_y: {
const rows_written = self.rowsWritten();
const index = RowIndex{ .active = @min(rows_written -| 1, self.rows - 1) };
break :max_y index.toScreen(self).screen;
};
// The "real" Y value we use is whichever is smaller: the bottom
// requested or the max. This prevents from reading zero data.
// The "real" height is the amount of height of data we can actually
// copy.
const real_y = @min(bot_y, max_y);
const real_height = (real_y - top_y) + 1;
//log.warn("bot={} max={} top={} real={}", .{ bot_y, max_y, top_y, real_y });
// Init a new screen that exactly fits the height. The height is the
// non-real value because we still want the requested height by the
// caller.
var result = try init(alloc, height, self.cols, 0);
errdefer result.deinit();
// Copy some data
result.cursor = self.cursor;
// Get the pointer to our source buffer
const len = real_height * (self.cols + 1);
const src = self.storage.getPtrSlice(top_y * (self.cols + 1), len);
// Get a direct pointer into our storage buffer. This should always be
// one slice because we created a perfectly fitting buffer.
const dst = result.storage.getPtrSlice(0, len);
assert(dst[1].len == 0);
// Perform the copy
fastmem.copy(StorageCell, dst[0], src[0]);
fastmem.copy(StorageCell, dst[0][src[0].len..], src[1]);
// If there are graphemes, we just copy them all
if (self.graphemes.count() > 0) {
// Clone the map
const graphemes = try self.graphemes.clone(alloc);
// Go through all the values and clone the data because it MAY
// (rarely) be allocated.
var it = graphemes.iterator();
while (it.next()) |kv| {
kv.value_ptr.* = try kv.value_ptr.copy(alloc);
}
result.graphemes = graphemes;
}
return result;
}
/// Returns true if the viewport is scrolled to the bottom of the screen.
pub fn viewportIsBottom(self: Screen) bool {
return self.viewport == self.history;
}
/// Shortcut for getRow followed by getCell as a quick way to read a cell.
/// This is particularly useful for quickly reading the cell under a cursor
/// with `getCell(.active, cursor.y, cursor.x)`.
pub fn getCell(self: *Screen, tag: RowIndexTag, y: usize, x: usize) Cell {
return self.getRow(tag.index(y)).getCell(x);
}
/// Shortcut for getRow followed by getCellPtr as a quick way to read a cell.
pub fn getCellPtr(self: *Screen, tag: RowIndexTag, y: usize, x: usize) *Cell {
return self.getRow(tag.index(y)).getCellPtr(x);
}
/// Returns an iterator that can be used to iterate over all of the rows
/// from index zero of the given row index type. This can therefore iterate
/// from row 0 of the active area, history, viewport, etc.
pub fn rowIterator(self: *Screen, tag: RowIndexTag) RowIterator {
const tracy = trace(@src());
defer tracy.end();
return .{
.screen = self,
.tag = tag,
.max = tag.maxLen(self),
};
}
/// Returns the row at the given index. This row is writable, although
/// only the active area should probably be written to.
pub fn getRow(self: *Screen, index: RowIndex) Row {
const tracy = trace(@src());
defer tracy.end();
// Get our offset into storage
const offset = index.toScreen(self).screen * (self.cols + 1);
// Get the slices into the storage. This should never wrap because
// we're perfectly aligned on row boundaries.
const slices = self.storage.getPtrSlice(offset, self.cols + 1);
assert(slices[0].len == self.cols + 1 and slices[1].len == 0);
const row: Row = .{ .screen = self, .storage = slices[0] };
if (row.storage[0].header.id == 0) {
const Id = @TypeOf(self.next_row_id);
const id = self.next_row_id;
self.next_row_id +%= @as(Id, @intCast(self.cols));
// Store the header
row.storage[0].header.id = id;
// We only set dirty and fill if its not dirty. If its dirty
// we assume this row has been written but just hasn't had
// an ID assigned yet.
if (!row.storage[0].header.flags.dirty) {
// Mark that we're dirty since we're a new row
row.storage[0].header.flags.dirty = true;
// We only need to fill with runtime safety because unions are
// tag-checked. Otherwise, the default value of zero will be valid.
if (std.debug.runtime_safety) row.fill(.{});
}
}
return row;
}
/// Copy the row at src to dst.
pub fn copyRow(self: *Screen, dst: RowIndex, src: RowIndex) !void {
// One day we can make this more efficient but for now
// we do the easy thing.
const dst_row = self.getRow(dst);
const src_row = self.getRow(src);
try dst_row.copyRow(src_row);
}
/// Scroll rows in a region up. Rows that go beyond the region
/// top or bottom are deleted, and new rows inserted are blank according
/// to the current pen.
///
/// This does NOT create any new scrollback. This modifies an existing
/// region within the screen (including possibly the scrollback if
/// the top/bottom are within it).
///
/// This can be used to implement terminal scroll regions efficiently.
pub fn scrollRegionUp(self: *Screen, top: RowIndex, bottom: RowIndex, count: usize) void {
const tracy = trace(@src());
defer tracy.end();
// Avoid a lot of work if we're doing nothing.
if (count == 0) return;
// Convert our top/bottom to screen y values. This is the y offset
// in the entire screen buffer.
const top_y = top.toScreen(self).screen;
const bot_y = bottom.toScreen(self).screen;
// If top is outside of the range of bot, we do nothing.
if (top_y >= bot_y) return;
// We can only scroll up to the number of rows in the region. The "+ 1"
// is because our y values are 0-based and count is 1-based.
assert(count <= (bot_y - top_y + 1));
// Get the storage pointer for the full scroll region. We're going to
// be modifying the whole thing so we get it right away.
const height = (bot_y - top_y) + 1;
const len = height * (self.cols + 1);
const slices = self.storage.getPtrSlice(top_y * (self.cols + 1), len);
// The total amount we're going to copy
const total_copy = (height - count) * (self.cols + 1);
// Fast-path is that we have a contigous buffer in our circular buffer.
// In this case we can do some memmoves.
if (slices[1].len == 0) {
const buf = slices[0];
{
// Our copy starts "count" rows below and is the length of
// the remainder of the data. Our destination is the top since
// we're scrolling up.
//
// Note we do NOT need to set any row headers to dirty because
// the row contents are not changing for the row ID.
const dst = buf;
const src_offset = count * (self.cols + 1);
const src = buf[src_offset..];
assert(@intFromPtr(dst.ptr) < @intFromPtr(src.ptr));
fastmem.move(StorageCell, dst, src);
}
{
// Copy in our empties. The destination is the bottom
// count rows. We first fill with the pen values since there
// is a lot more of that.
const dst_offset = total_copy;
const dst = buf[dst_offset..];
@memset(dst, .{ .cell = self.cursor.pen });
// Then we make sure our row headers are zeroed out. We set
// the value to a dirty row header so that the renderer re-draws.
//
// NOTE: we do NOT set a valid row ID here. The next time getRow
// is called it will be initialized. This should work fine as
// far as I can tell. It is important to set dirty so that the
// renderer knows to redraw this.
var i: usize = dst_offset;
while (i < buf.len) : (i += self.cols + 1) {
buf[i] = .{ .header = .{
.flags = .{ .dirty = true },
} };
}
}
return;
}
// If we're split across two buffers this is a "slow" path. This shouldn't
// happen with the "active" area but it appears it does... in the future
// I plan on changing scroll region stuff to make it much faster so for
// now we just deal with this slow path.
// This is the offset where we have to start copying.
const src_offset = count * (self.cols + 1);
// Perform the copy and calculate where we need to start zero-ing.
const zero_offset: [2]usize = if (src_offset < slices[0].len) zero_offset: {
var remaining: usize = len;
// Source starts in the top... so we can copy some from there.
const dst = slices[0];
const src = slices[0][src_offset..];
assert(@intFromPtr(dst.ptr) < @intFromPtr(src.ptr));
fastmem.move(StorageCell, dst, src);
remaining = total_copy - src.len;
if (remaining == 0) break :zero_offset .{ src.len, 0 };
// We have data remaining, which means that we have to grab some
// from the bottom slice.
const dst2 = slices[0][src.len..];
const src2_len = @min(dst2.len, remaining);
const src2 = slices[1][0..src2_len];
fastmem.copy(StorageCell, dst2, src2);
remaining -= src2_len;
if (remaining == 0) break :zero_offset .{ src.len + src2.len, 0 };
// We still have data remaining, which means we copy into the bot.
const dst3 = slices[1];
const src3 = slices[1][src2_len .. src2_len + remaining];
fastmem.move(StorageCell, dst3, src3);
break :zero_offset .{ slices[0].len, src3.len };
} else zero_offset: {
var remaining: usize = len;
// Source is in the bottom, so we copy from there into top.
const bot_src_offset = src_offset - slices[0].len;
const dst = slices[0];
const src = slices[1][bot_src_offset..];
const src_len = @min(dst.len, src.len);
fastmem.copy(StorageCell, dst, src[0..src_len]);
remaining = total_copy - src_len;
if (remaining == 0) break :zero_offset .{ src_len, 0 };
// We have data remaining, this has to go into the bottom.
const dst2 = slices[1];
const src2_offset = bot_src_offset + src_len;
const src2 = slices[1][src2_offset..];
fastmem.move(StorageCell, dst2, src2);
break :zero_offset .{ slices[0].len, src2_offset };
};
// Zero
for (zero_offset, 0..) |offset, i| {
if (offset >= slices[i].len) continue;
const dst = slices[i][offset..];
@memset(dst, .{ .cell = self.cursor.pen });
var j: usize = offset;
while (j < slices[i].len) : (j += self.cols + 1) {
slices[i][j] = .{ .header = .{
.flags = .{ .dirty = true },
} };
}
}
}
/// Returns the offset into the storage buffer that the given row can
/// be found. This assumes valid input and will crash if the input is
/// invalid.
fn rowOffset(self: Screen, index: RowIndex) usize {
// +1 for row header
return index.toScreen(&self).screen * (self.cols + 1);
}
/// Returns the number of rows that have actually been written to the
/// screen. This assumes a row is "written" if getRow was ever called
/// on the row.
fn rowsWritten(self: Screen) usize {
// The number of rows we've actually written into our buffer
// This should always be cleanly divisible since we only request
// data in row chunks from the buffer.
assert(@mod(self.storage.len(), self.cols + 1) == 0);
return self.storage.len() / (self.cols + 1);
}
/// The number of rows our backing storage supports. This should
/// always be self.rows but we use the backing storage as a source of truth.
fn rowsCapacity(self: Screen) usize {
assert(@mod(self.storage.capacity(), self.cols + 1) == 0);
return self.storage.capacity() / (self.cols + 1);
}
/// The maximum possible capacity of the underlying buffer if we reached
/// the max scrollback.
fn maxCapacity(self: Screen) usize {
return (self.rows + self.max_scrollback) * (self.cols + 1);
}
pub const ClearMode = enum {
/// Delete all history. This will also move the viewport area to the top
/// so that the viewport area never contains history. This does NOT
/// change the active area.
history,
/// Clear all the lines above the cursor in the active area. This does
/// not touch history.
above_cursor,
};
/// Clear the screen contents according to the given mode.
pub fn clear(self: *Screen, mode: ClearMode) !void {
switch (mode) {
.history => {
// If there is no history, do nothing.
if (self.history == 0) return;
// Delete all our history
self.storage.deleteOldest(self.history * (self.cols + 1));
self.history = 0;
// Back to the top
self.viewport = 0;
},
.above_cursor => {
// First we copy all the rows from our cursor down to the top
// of the active area.
var y: usize = self.cursor.y;
const y_max = @min(self.rows, self.rowsWritten()) - 1;
const copy_n = (y_max - y) + 1;
while (y <= y_max) : (y += 1) {
const dst_y = y - self.cursor.y;
const dst = self.getRow(.{ .active = dst_y });
const src = self.getRow(.{ .active = y });
try dst.copyRow(src);
}
// Next we want to clear all the rows below the copied amount.
y = copy_n;
while (y <= y_max) : (y += 1) {
const dst = self.getRow(.{ .active = y });
dst.clear(.{});
}
// Move our cursor to the top
self.cursor.y = 0;
// Scroll to the top of the viewport
self.viewport = self.history;
},
}
}
/// Select the line under the given point. This will select across soft-wrapped
/// lines and will omit the leading and trailing whitespace. If the point is
/// over whitespace but the line has non-whitespace characters elsewhere, the
/// line will be selected.
pub fn selectLine(self: *Screen, pt: point.ScreenPoint) ?Selection {
// Whitespace characters for selection purposes
const whitespace = &[_]u32{ 0, ' ', '\t' };
// Impossible to select anything outside of the area we've written.
const y_max = self.rowsWritten() - 1;
if (pt.y > y_max or pt.x >= self.cols) return null;
// The real start of the row is the first row in the soft-wrap.
const start_row: usize = start_row: {
if (pt.y == 0) break :start_row 0;
var y: usize = pt.y - 1;
while (true) {
const current = self.getRow(.{ .screen = y });
if (!current.header().flags.wrap) break :start_row y + 1;
if (y == 0) break :start_row y;
y -= 1;
}
unreachable;
};
// The real end of the row is the final row in the soft-wrap.
const end_row: usize = end_row: {
var y: usize = pt.y;
while (y <= y_max) : (y += 1) {
const current = self.getRow(.{ .screen = y });
if (y == y_max or !current.header().flags.wrap) break :end_row y;
}
unreachable;
};
// Go forward from the start to find the first non-whitespace character.
const start: point.ScreenPoint = start: {
var y: usize = start_row;
while (y <= y_max) : (y += 1) {
const current_row = self.getRow(.{ .screen = y });
var x: usize = 0;
while (x < self.cols) : (x += 1) {
const cell = current_row.getCell(x);
// Empty is whitespace
if (cell.empty()) continue;
// Non-empty means we found it.
const this_whitespace = std.mem.indexOfAny(
u32,
whitespace,
&[_]u32{cell.char},
) != null;
if (this_whitespace) continue;
break :start .{ .x = x, .y = y };
}
}
// There is no start point and therefore no line that can be selected.
return null;
};
// Go backward from the end to find the first non-whitespace character.
const end: point.ScreenPoint = end: {
var y: usize = end_row;
while (true) {
const current_row = self.getRow(.{ .screen = y });
var x: usize = 0;
while (x < self.cols) : (x += 1) {
const real_x = self.cols - x - 1;
const cell = current_row.getCell(real_x);
// Empty or whitespace, ignore.
if (cell.empty()) continue;
const this_whitespace = std.mem.indexOfAny(
u32,
whitespace,
&[_]u32{cell.char},
) != null;
if (this_whitespace) continue;
// Got it
break :end .{ .x = real_x, .y = y };
}
if (y == 0) break;
y -= 1;
}
// There is no start point and therefore no line that can be selected.
return null;
};
return Selection{
.start = start,
.end = end,
};
}
/// Select the word under the given point. A word is any consecutive series
/// of characters that are exclusively whitespace or exclusively non-whitespace.
/// A selection can span multiple physical lines if they are soft-wrapped.
///
/// This will return null if a selection is impossible. The only scenario
/// this happens is if the point pt is outside of the written screen space.
pub fn selectWord(self: *Screen, pt: point.ScreenPoint) ?Selection {
// Boundary characters for selection purposes
const boundary = &[_]u32{ 0, ' ', '\t', '\'', '"' };
// Impossible to select anything outside of the area we've written.
const y_max = self.rowsWritten() - 1;
if (pt.y > y_max) return null;
// Get our row
const row = self.getRow(.{ .screen = pt.y });
const start_cell = row.getCell(pt.x);
// If our cell is empty we can't select a word, because we can't select
// areas where the screen is not yet written.
if (start_cell.empty()) return null;
// Determine if we are a boundary or not to determine what our boundary is.
const expect_boundary = std.mem.indexOfAny(u32, boundary, &[_]u32{start_cell.char}) != null;
// Go forwards to find our end boundary
const end: point.ScreenPoint = boundary: {
var prev: point.ScreenPoint = pt;
var y: usize = pt.y;
var x: usize = pt.x;
while (y <= y_max) : (y += 1) {
const current_row = self.getRow(.{ .screen = y });
// Go through all the remainining cells on this row until
// we reach a boundary condition.
while (x < self.cols) : (x += 1) {
const cell = current_row.getCell(x);
// If we reached an empty cell its always a boundary
if (cell.empty()) break :boundary prev;
// If we do not match our expected set, we hit a boundary
const this_boundary = std.mem.indexOfAny(
u32,
boundary,
&[_]u32{cell.char},
) != null;
if (this_boundary != expect_boundary) break :boundary prev;
// Increase our prev
prev.x = x;
prev.y = y;
}
// If we aren't wrapping, then we're done this is a boundary.
if (!current_row.header().flags.wrap) break :boundary prev;
// If we are wrapping, reset some values and search the next line.
x = 0;
}
break :boundary .{ .x = self.cols - 1, .y = y_max };
};
// Go backwards to find our start boundary
const start: point.ScreenPoint = boundary: {
var current_row = row;
var prev: point.ScreenPoint = pt;
var y: usize = pt.y;
var x: usize = pt.x;
while (true) {
// Go through all the remainining cells on this row until
// we reach a boundary condition.
while (x > 0) : (x -= 1) {
const cell = current_row.getCell(x - 1);
const this_boundary = std.mem.indexOfAny(
u32,
boundary,
&[_]u32{cell.char},
) != null;
if (this_boundary != expect_boundary) break :boundary prev;
// Update our prev
prev.x = x - 1;
prev.y = y;
}
// If we're at the start, we need to check if the previous line wrapped.
// If we are wrapped, we continue searching. If we are not wrapped,
// then we've hit a boundary.
assert(prev.x == 0);
// If we're at the end, we're done!
if (y == 0) break;
// If the previous row did not wrap, then we're done. Otherwise
// we keep searching.
y -= 1;
current_row = self.getRow(.{ .screen = y });
if (!current_row.header().flags.wrap) break :boundary prev;
// Set x to start at the first non-empty cell
x = self.cols;
while (x > 0) : (x -= 1) {
if (!current_row.getCell(x - 1).empty()) break;
}
}
break :boundary .{ .x = 0, .y = 0 };
};
return Selection{
.start = start,
.end = end,
};
}
/// Scroll behaviors for the scroll function.
pub const Scroll = union(enum) {
/// Scroll to the top of the scroll buffer. The first line of the
/// viewport will be the top line of the scroll buffer.
top: void,
/// Scroll to the bottom, where the last line of the viewport
/// will be the last line of the buffer. TODO: are we sure?
bottom: void,
/// Scroll up (negative) or down (positive) some fixed amount.
/// Scrolling direction (up/down) describes the direction the viewport
/// moves, not the direction text moves. This is the colloquial way that
/// scrolling is described: "scroll the page down". This scrolls the
/// screen (potentially in addition to the viewport) and may therefore
/// create more rows if necessary.
screen: isize,
/// This is the same as "screen" but only scrolls the viewport. The
/// delta will be clamped at the current size of the screen and will
/// never create new scrollback.
viewport: isize,
/// Scroll so the given row is in view. If the row is in the viewport,
/// this will change nothing. If the row is outside the viewport, the
/// viewport will change so that this row is at the top of the viewport.
row: RowIndex,
};
/// Scroll the screen by the given behavior. Note that this will always
/// "move" the screen. It is up to the caller to determine if they actually
/// want to do that yet (i.e. are they writing to the end of the screen
/// or not).
pub fn scroll(self: *Screen, behavior: Scroll) !void {
switch (behavior) {
// Setting viewport offset to zero makes row 0 be at self.top
// which is the top!
.top => self.viewport = 0,
// Bottom is the end of the history area (end of history is the
// top of the active area).
.bottom => self.viewport = self.history,
// TODO: deltas greater than the entire scrollback
.screen => |delta| try self.scrollDelta(delta, false),
.viewport => |delta| try self.scrollDelta(delta, true),
// Scroll to a specific row
.row => |idx| self.scrollRow(idx),
}
}
fn scrollRow(self: *Screen, idx: RowIndex) void {
// Convert the given row to a screen point.
const screen_idx = idx.toScreen(self);
const screen_pt: point.ScreenPoint = .{ .y = screen_idx.screen };
// Move the viewport so that the screen point is in view. We do the
// @min here so that we don't scroll down below where our "bottom"
// viewport is.
self.viewport = @min(self.history, screen_pt.y);
assert(screen_pt.inViewport(self));
}
fn scrollDelta(self: *Screen, delta: isize, viewport_only: bool) !void {
const tracy = trace(@src());
defer tracy.end();
// Just in case, to avoid a bunch of stuff below.
if (delta == 0) return;
// If we're scrolling up, then we just subtract and we're done.
// We just clamp at 0 which blocks us from scrolling off the top.
if (delta < 0) {
self.viewport -|= @as(usize, @intCast(-delta));
return;
}
// If we're scrolling only the viewport, then we just add to the viewport.
if (viewport_only) {
self.viewport = @min(
self.history,
self.viewport + @as(usize, @intCast(delta)),
);
return;
}
// Add our delta to our viewport. If we're less than the max currently
// allowed to scroll to the bottom (the end of the history), then we
// have space and we just return.
const start_viewport_bottom = self.viewportIsBottom();
const viewport = self.history + @as(usize, @intCast(delta));
if (viewport <= self.history) return;
// If our viewport is past the top of our history then we potentially need
// to write more blank rows. If our viewport is more than our rows written
// then we expand out to there.
const rows_written = self.rowsWritten();
const viewport_bottom = viewport + self.rows;
if (viewport_bottom <= rows_written) return;
// The number of new rows we need is the number of rows off our
// previous bottom we are growing.
const new_rows_needed = viewport_bottom - rows_written;
// If we can't fit into our capacity but we have space, resize the
// buffer to allocate more scrollback.
const rows_final = rows_written + new_rows_needed;
if (rows_final > self.rowsCapacity()) {
const max_capacity = self.maxCapacity();
if (self.storage.capacity() < max_capacity) {
// The capacity we want to allocate. We take whatever is greater
// of what we actually need and two pages. We don't want to
// allocate one row at a time (common for scrolling) so we do this
// to chunk it.
const needed_capacity = @max(
rows_final * (self.cols + 1),
@min(self.storage.capacity() * 2, max_capacity),
);
// Allocate what we can.
try self.storage.resize(
self.alloc,
@min(max_capacity, needed_capacity),
);
}
}
// If we can't fit our rows into our capacity, we delete some scrollback.
const rows_deleted = if (rows_final > self.rowsCapacity()) deleted: {
const rows_to_delete = rows_final - self.rowsCapacity();
// Fast-path: we have no graphemes.
// Slow-path: we have graphemes, we have to check each row
// we're going to delete to see if they contain graphemes and
// clear the ones that do so we clear memory properly.
if (self.graphemes.count() > 0) {
var y: usize = 0;
while (y < rows_to_delete) : (y += 1) {
const row = self.getRow(.{ .active = y });
if (row.storage[0].header.flags.grapheme) row.clear(.{});
}
}
self.storage.deleteOldest(rows_to_delete * (self.cols + 1));
break :deleted rows_to_delete;
} else 0;
// If we are deleting rows and have a selection, then we need to offset
// the selection by the rows we're deleting.
if (self.selection) |*sel| {
// If we're deleting more rows than our Y values, we also move
// the X over to 0 because we're in the middle of the selection now.
if (rows_deleted > sel.start.y) sel.start.x = 0;
if (rows_deleted > sel.end.y) sel.end.x = 0;
// Remove the deleted rows from both y values. We use saturating
// subtraction so that we can detect when we're at zero.
sel.start.y -|= rows_deleted;
sel.end.y -|= rows_deleted;
// If the selection is now empty, just clear it.
if (sel.empty()) self.selection = null;
}
// If we have more rows than what shows on our screen, we have a
// history boundary.
const rows_written_final = rows_final - rows_deleted;
if (rows_written_final > self.rows) {
self.history = rows_written_final - self.rows;
}
// Ensure we have "written" our last row so that it shows up
_ = self.storage.getPtrSlice(
(rows_written_final - 1) * (self.cols + 1),
self.cols + 1,
);
if (start_viewport_bottom) {
// If our viewport is on the bottom, we always update the viewport
// to the latest so that it remains in view.
self.viewport = self.history;
} else if (rows_deleted > 0) {
// If our viewport is NOT on the bottom, we want to keep our viewport
// where it was so that we don't jump around. However, we need to
// subtract the final rows written if we had to delete rows since
// that changes the viewport offset.
self.viewport -|= rows_deleted;
}
}
/// The options for where you can jump to on the screen.
pub const JumpTarget = union(enum) {
/// Jump forwards (positive) or backwards (negative) a set number of
/// prompts. If the absolute value is greater than the number of prompts
/// in either direction, jump to the furthest prompt.
prompt_delta: isize,
};
/// Jump the viewport to specific location.
pub fn jump(self: *Screen, target: JumpTarget) bool {
return switch (target) {
.prompt_delta => |delta| self.jumpPrompt(delta),
};
}
/// Jump the viewport forwards (positive) or backwards (negative) a set number of
/// prompts (delta). Returns true if the viewport changed and false if no jump
/// occurred.
fn jumpPrompt(self: *Screen, delta: isize) bool {
// If we aren't jumping any prompts then we don't need to do anything.
if (delta == 0) return false;
// The screen y value we start at
const start_y: isize = start_y: {
const idx: RowIndex = .{ .viewport = 0 };
const screen = idx.toScreen(self);
break :start_y @intCast(screen.screen);
};
// The maximum y in the positive direction. Negative is always 0.
const max_y: isize = @intCast(self.rowsWritten() - 1);
// Go line-by-line counting the number of prompts we see.
var step: isize = if (delta > 0) 1 else -1;
var y: isize = start_y + step;
const delta_start: usize = @intCast(if (delta > 0) delta else -delta);
var delta_rem: usize = delta_start;
while (y >= 0 and y <= max_y and delta_rem > 0) : (y += step) {
const row = self.getRow(.{ .screen = @intCast(y) });
switch (row.getSemanticPrompt()) {
.prompt, .input => delta_rem -= 1,
.command, .unknown => {},
}
}
//log.warn("delta={} delta_rem={} start_y={} y={}", .{ delta, delta_rem, start_y, y });
// If we didn't find any, do nothing.
if (delta_rem == delta_start) return false;
// Done! We count the number of lines we changed and scroll.
const y_delta = (y - step) - start_y;
const new_y: usize = @intCast(start_y + y_delta);
const old_viewport = self.viewport;
self.scroll(.{ .row = .{ .screen = new_y } }) catch unreachable;
//log.warn("delta={} y_delta={} start_y={} new_y={}", .{ delta, y_delta, start_y, new_y });
return self.viewport != old_viewport;
}
/// Returns the raw text associated with a selection. This will unwrap
/// soft-wrapped edges. The returned slice is owned by the caller and allocated
/// using alloc, not the allocator associated with the screen (unless they match).
pub fn selectionString(
self: *Screen,
alloc: Allocator,
sel: Selection,
trim: bool,
) ![:0]const u8 {
// Get the slices for the string
const slices = self.selectionSlices(sel);
// We can now know how much space we'll need to store the string. We loop
// over and UTF8-encode and calculate the exact size required. We will be
// off here by at most "newlines" values in the worst case that every
// single line is soft-wrapped.
const chars = chars: {
var count: usize = 0;
const arr = [_][]StorageCell{ slices.top, slices.bot };
for (arr) |slice| {
for (slice, 0..) |cell, i| {
// detect row headers
if (@mod(i, self.cols + 1) == 0) {
// We use each row header as an opportunity to "count"
// a new row, and therefore count a possible newline.
count += 1;
// If we have runtime safety, then we can have invalidly
// tagged cells because all cells are headers by default.
// This isn't an issue in prod builds because the zero values
// we use are correct by default.
if (std.debug.runtime_safety) {
if (cell.header.id == 0) {
@memset(
slice[i + 1 .. i + 1 + self.cols],
.{ .cell = .{} },
);
}
}
continue;
}
var buf: [4]u8 = undefined;
const char = if (cell.cell.char > 0) cell.cell.char else ' ';
count += try std.unicode.utf8Encode(@intCast(char), &buf);
}
}
break :chars count;
};
const buf = try alloc.alloc(u8, chars + 1);
errdefer alloc.free(buf);
// Connect the text from the two slices
const arr = [_][]StorageCell{ slices.top, slices.bot };
var buf_i: usize = 0;
var row_count: usize = 0;
for (arr) |slice| {
var row_start: usize = row_count;
while (row_count < slices.rows) : (row_count += 1) {
const row_i = row_count - row_start;
// Calculate our start index. If we are beyond the length
// of this slice, then its time to move on (we exhausted top).
const start_idx = row_i * (self.cols + 1);
if (start_idx >= slice.len) break;
// Our end index is usually a full row, but if we're the final
// row then we just use the length.
const end_idx = @min(slice.len, start_idx + self.cols + 1);
// We may have to skip some cells from the beginning if we're
// the first row.
var skip: usize = if (row_count == 0) slices.top_offset else 0;
const row: Row = .{ .screen = self, .storage = slice[start_idx..end_idx] };
var it = row.cellIterator();
while (it.next()) |cell| {
if (skip > 0) {
skip -= 1;
continue;
}
// Skip spacers
if (cell.attrs.wide_spacer_head or
cell.attrs.wide_spacer_tail) continue;
const char = if (cell.char > 0) cell.char else ' ';
buf_i += try std.unicode.utf8Encode(@intCast(char), buf[buf_i..]);
}
// If this row is not soft-wrapped, add a newline
if (!row.header().flags.wrap) {
buf[buf_i] = '\n';
buf_i += 1;
}
}
}
// Remove our trailing newline, its never correct.
if (buf[buf_i - 1] == '\n') buf_i -= 1;
// Remove any trailing spaces on lines. We could do optimize this by
// doing this in the loop above but this isn't very hot path code and
// this is simple.
if (trim) {
var it = std.mem.tokenize(u8, buf[0..buf_i], "\n");
buf_i = 0;
while (it.next()) |line| {
const trimmed = std.mem.trimRight(u8, line, " \t");
std.mem.copy(u8, buf[buf_i..], trimmed);
buf_i += trimmed.len;
buf[buf_i] = '\n';
buf_i += 1;
}
// Remove our trailing newline again
if (buf_i > 0) buf_i -= 1;
}
// Add null termination
buf[buf_i] = 0;
// Realloc so our free length is exactly correct
const result = try alloc.realloc(buf, buf_i + 1);
return result[0..buf_i :0];
}
/// Returns the slices that make up the selection, in order. There are at most
/// two parts to handle the ring buffer. If the selection fits in one contiguous
/// slice, then the second slice will have a length of zero.
fn selectionSlices(self: *Screen, sel_raw: Selection) struct {
rows: usize,
// Top offset can be used to determine if a newline is required by
// seeing if the cell index plus the offset cleanly divides by screen cols.
top_offset: usize,
top: []StorageCell,
bot: []StorageCell,
} {
// Note: this function is tested via selectionString
assert(sel_raw.start.y < self.rowsWritten());
assert(sel_raw.end.y < self.rowsWritten());
assert(sel_raw.start.x < self.cols);
assert(sel_raw.end.x < self.cols);
const sel = sel: {
var sel = sel_raw;
// If the end of our selection is a wide char leader, include the
// first part of the next line.
if (sel.end.x == self.cols - 1) {
const row = self.getRow(.{ .screen = sel.end.y });
const cell = row.getCell(sel.end.x);
if (cell.attrs.wide_spacer_head) {
sel.end.y += 1;
sel.end.x = 0;
}
}
// If the start of our selection is a wide char spacer, include the
// wide char.
if (sel.start.x > 0) {
const row = self.getRow(.{ .screen = sel.start.y });
const cell = row.getCell(sel.start.x);
if (cell.attrs.wide_spacer_tail) {
sel.end.x -= 1;
}
}
break :sel sel;
};
// Get the true "top" and "bottom"
const sel_top = sel.topLeft();
const sel_bot = sel.bottomRight();
// We get the slices for the full top and bottom (inclusive).
const sel_top_offset = self.rowOffset(.{ .screen = sel_top.y });
const sel_bot_offset = self.rowOffset(.{ .screen = sel_bot.y });
const slices = self.storage.getPtrSlice(
sel_top_offset,
(sel_bot_offset - sel_top_offset) + (sel_bot.x + 2),
);
// The bottom and top are split into two slices, so we slice to the
// bottom of the storage, then from the top.
return .{
.rows = sel_bot.y - sel_top.y + 1,
.top_offset = sel_top.x,
.top = slices[0],
.bot = slices[1],
};
}
/// Resize the screen without any reflow. In this mode, columns/rows will
/// be truncated as they are shrunk. If they are grown, the new space is filled
/// with zeros.
pub fn resizeWithoutReflow(self: *Screen, rows: usize, cols: usize) !void {
const tracy = trace(@src());
defer tracy.end();
// If we're resizing to the same size, do nothing.
if (self.cols == cols and self.rows == rows) return;
// The number of no-character lines after our cursor. This is used
// to trim those lines on a resize first without generating history.
// This is only done if we don't have history yet.
//
// This matches macOS Terminal.app behavior. I chose to match that
// behavior because it seemed fine in an ocean of differing behavior
// between terminal apps. I'm completely open to changing it as long
// as resize behavior isn't regressed in a user-hostile way.
const trailing_blank_lines = blank: {
// If we aren't changing row length, then don't bother calculating
// because we aren't going to trim.
if (self.rows == rows) break :blank 0;
// If there is history, blank line counting is disabled and
// we generate scrollback. Why? Terminal.app does it, seems... fine.
if (self.history > 0) break :blank 0;
break :blank self.trailingBlankLines();
};
// Make a copy so we can access the old indexes.
var old = self.*;
errdefer self.* = old;
// Change our rows and cols so calculations make sense
self.rows = rows;
self.cols = cols;
// The end of the screen is the rows we wrote minus any blank lines
// we're trimming.
const end_of_screen_y = old.rowsWritten() - trailing_blank_lines;
// Calculate our buffer size. This is going to be either the old data
// with scrollback or the max capacity of our new size. We prefer the old
// length so we can save all the data (ignoring col truncation).
const old_len = @max(end_of_screen_y, rows) * (cols + 1);
const new_max_capacity = self.maxCapacity();
const buf_size = @min(old_len, new_max_capacity);
// Reallocate the storage
self.storage = try StorageBuf.init(self.alloc, buf_size);
errdefer self.storage.deinit(self.alloc);
defer old.storage.deinit(self.alloc);
// Our viewport and history resets to the top because we're going to
// rewrite the screen
self.viewport = 0;
self.history = 0;
// Reset our grapheme map and ensure the old one is deallocated
// on success.
self.graphemes = .{};
errdefer self.deinitGraphemes();
defer old.deinitGraphemes();
// Rewrite all our rows
var y: usize = 0;
for (0..end_of_screen_y) |it_y| {
const old_row = old.getRow(.{ .screen = it_y });
// If we're past the end, scroll
if (y >= self.rows) {
// If we're shrinking rows then its possible we'll trim scrollback
// and we have to account for how much we actually trimmed and
// reflect that in the cursor.
if (self.storage.len() >= self.maxCapacity()) {
old.cursor.y -|= 1;
}
y -= 1;
try self.scroll(.{ .screen = 1 });
}
// Get this row
const new_row = self.getRow(.{ .active = y });
try new_row.copyRow(old_row);
// Next row
y += 1;
}
// Convert our cursor to screen coordinates so we can preserve it.
// The cursor is normally in active coordinates, but by converting to
// screen we can accomodate keeping it on the same place if we retain
// the same scrollback.
const old_cursor_y_screen = RowIndexTag.active.index(old.cursor.y).toScreen(&old).screen;
self.cursor.x = @min(old.cursor.x, self.cols - 1);
self.cursor.y = if (old_cursor_y_screen <= RowIndexTag.screen.maxLen(self))
old_cursor_y_screen -| self.history
else
self.rows - 1;
}
/// Resize the screen. The rows or cols can be bigger or smaller. This
/// function can only be used to resize the viewport. The scrollback size
/// (in lines) can't be changed. But due to the resize, more or less scrollback
/// "space" becomes available due to the width of lines.
///
/// Due to the internal representation of a screen, this usually involves a
/// significant amount of copying compared to any other operations.
///
/// This will trim data if the size is getting smaller. This will reflow the
/// soft wrapped text.
pub fn resize(self: *Screen, rows: usize, cols: usize) !void {
if (self.cols == cols) {
// No resize necessary
if (self.rows == rows) return;
// If we have the same number of columns, text can't possibly
// reflow in any way, so we do the quicker thing and do a resize
// without reflow checks.
try self.resizeWithoutReflow(rows, cols);
return;
}
// If our columns increased, we alloc space for the new column width
// and go through each row and reflow if necessary.
if (cols > self.cols) {
var old = self.*;
errdefer self.* = old;
// Allocate enough to store our screen plus history.
const buf_size = (self.rows + @max(self.history, self.max_scrollback)) * (cols + 1);
self.storage = try StorageBuf.init(self.alloc, buf_size);
errdefer self.storage.deinit(self.alloc);
defer old.storage.deinit(self.alloc);
// Copy grapheme map
self.graphemes = .{};
errdefer self.deinitGraphemes();
defer old.deinitGraphemes();
// Convert our cursor coordinates to screen coordinates because
// we may have to reflow the cursor if the line it is on is unwrapped.
const cursor_pos = (point.Viewport{
.x = old.cursor.x,
.y = old.cursor.y,
}).toScreen(&old);
// Whether we need to move the cursor or not
var new_cursor: ?point.ScreenPoint = null;
// Reset our variables because we're going to reprint the screen.
self.cols = cols;
self.viewport = 0;
self.history = 0;
// Iterate over the screen since we need to check for reflow.
var iter = old.rowIterator(.screen);
var y: usize = 0;
while (iter.next()) |old_row| {
// If we're past the end, scroll
if (y >= self.rows) {
try self.scroll(.{ .screen = 1 });
y -= 1;
}
// We need to check if our cursor was on this line. If so,
// we set the new cursor.
if (cursor_pos.y == iter.value - 1) {
assert(new_cursor == null); // should only happen once
new_cursor = .{ .y = self.history + y, .x = cursor_pos.x };
}
// At this point, we're always at x == 0 so we can just copy
// the row (we know old.cols < self.cols).
var new_row = self.getRow(.{ .active = y });
try new_row.copyRow(old_row);
if (!old_row.header().flags.wrap) {
// If we have no reflow, we attempt to extend any stylized
// cells at the end of the line if there is one.
const len = old_row.lenCells();
const end = new_row.getCell(len - 1);
if ((end.char == 0 or end.char == ' ') and !end.empty()) {
for (len..self.cols) |x| {
const cell = new_row.getCellPtr(x);
cell.* = end;
}
}
y += 1;
continue;
}
// We need to reflow. At this point things get a bit messy.
// The goal is to keep the messiness of reflow down here and
// only reloop when we're back to clean non-wrapped lines.
// Mark the last element as not wrapped
new_row.setWrapped(false);
// We maintain an x coord so that we can set cursors properly
var x: usize = old.cols;
wrapping: while (iter.next()) |wrapped_row| {
// Trim the row from the right so that we ignore all trailing
// empty chars and don't wrap them. We only do this if the
// row is NOT wrapped again because the whitespace would be
// meaningful.
const wrapped_cells = trim: {
var i: usize = old.cols;
if (!wrapped_row.header().flags.wrap) {
while (i > 0) : (i -= 1) if (!wrapped_row.getCell(i - 1).empty()) break;
}
break :trim wrapped_row.storage[1 .. i + 1];
};
var wrapped_i: usize = 0;
while (wrapped_i < wrapped_cells.len) {
// Remaining space in our new row
const new_row_rem = self.cols - x;
// Remaining cells in our wrapped row
const wrapped_cells_rem = wrapped_cells.len - wrapped_i;
// We copy as much as we can into our new row
const copy_len = @min(new_row_rem, wrapped_cells_rem);
// The row doesn't fit, meaning we have to soft-wrap the
// new row but probably at a diff boundary.
fastmem.copy(
StorageCell,
new_row.storage[x + 1 ..],
wrapped_cells[wrapped_i .. wrapped_i + copy_len],
);
// We need to check if our cursor was on this line
// and in the part that WAS copied. If so, we need to move it.
if (cursor_pos.y == iter.value - 1 and
cursor_pos.x < copy_len and
new_cursor == null)
{
new_cursor = .{ .y = self.history + y, .x = x + cursor_pos.x };
}
// We copied the full amount left in this wrapped row.
if (copy_len == wrapped_cells_rem) {
// If this row isn't also wrapped, we're done!
if (!wrapped_row.header().flags.wrap) {
y += 1;
break :wrapping;
}
// Wrapped again!
x += wrapped_cells_rem;
break;
}
// We still need to copy the remainder
wrapped_i += copy_len;
// Move to a new line in our new screen
new_row.setWrapped(true);
y += 1;
x = 0;
// If we're past the end, scroll
if (y >= self.rows) {
y -= 1;
try self.scroll(.{ .screen = 1 });
}
new_row = self.getRow(.{ .active = y });
new_row.setSemanticPrompt(old_row.getSemanticPrompt());
}
}
}
// If we have a new cursor, we need to convert that to a viewport
// point and set it up.
if (new_cursor) |pos| {
const viewport_pos = pos.toViewport(self);
self.cursor.x = viewport_pos.x;
self.cursor.y = viewport_pos.y;
}
}
// We grow rows after cols so that we can do our unwrapping/reflow
// before we do a no-reflow grow.
if (rows > self.rows) try self.resizeWithoutReflow(rows, self.cols);
// If our rows got smaller, we trim the scrollback. We do this after
// handling cols growing so that we can save as many lines as we can.
// We do it before cols shrinking so we can save compute on that operation.
if (rows < self.rows) try self.resizeWithoutReflow(rows, self.cols);
// If our cols got smaller, we have to reflow text. This is the worst
// possible case because we can't do any easy tricks to get reflow,
// we just have to iterate over the screen and "print", wrapping as
// needed.
if (cols < self.cols) {
var old = self.*;
errdefer self.* = old;
// Allocate enough to store our screen plus history.
const buf_size = (self.rows + @max(self.history, self.max_scrollback)) * (cols + 1);
self.storage = try StorageBuf.init(self.alloc, buf_size);
errdefer self.storage.deinit(self.alloc);
defer old.storage.deinit(self.alloc);
// Copy grapheme map
self.graphemes = .{};
errdefer self.deinitGraphemes();
defer old.deinitGraphemes();
// Convert our cursor coordinates to screen coordinates because
// we may have to reflow the cursor if the line it is on is moved.
var cursor_pos = (point.Viewport{
.x = old.cursor.x,
.y = old.cursor.y,
}).toScreen(&old);
// Whether we need to move the cursor or not
var new_cursor: ?point.ScreenPoint = null;
// Reset our variables because we're going to reprint the screen.
self.cols = cols;
self.viewport = 0;
self.history = 0;
// Iterate over the screen since we need to check for reflow. We
// clear all the trailing blank lines so that shells like zsh and
// fish that often clear the display below don't force us to have
// scrollback.
var old_y: usize = 0;
const end_y = RowIndexTag.screen.maxLen(&old) - old.trailingBlankLines();
var y: usize = 0;
while (old_y < end_y) : (old_y += 1) {
const old_row = old.getRow(.{ .screen = old_y });
const old_row_wrapped = old_row.header().flags.wrap;
const trimmed_row = self.trimRowForResizeLessCols(&old, old_row);
// If our y is more than our rows, we need to scroll
if (y >= self.rows) {
try self.scroll(.{ .screen = 1 });
y -= 1;
}
// Fast path: our old row is not wrapped AND our old row fits
// into our new smaller size. In this case, we just do a fast
// copy and move on.
if (!old_row_wrapped and trimmed_row.len <= self.cols) {
// If our cursor is on this line, then set the new cursor.
if (cursor_pos.y == old_y) {
assert(new_cursor == null);
new_cursor = .{ .x = cursor_pos.x, .y = self.history + y };
}
const row = self.getRow(.{ .active = y });
row.setSemanticPrompt(old_row.getSemanticPrompt());
fastmem.copy(
StorageCell,
row.storage[1..],
trimmed_row,
);
y += 1;
continue;
}
// Slow path: the row is wrapped or doesn't fit so we have to
// wrap ourselves. In this case, we basically just "print and wrap"
var row = self.getRow(.{ .active = y });
row.setSemanticPrompt(old_row.getSemanticPrompt());
var x: usize = 0;
var cur_old_row = old_row;
var cur_old_row_wrapped = old_row_wrapped;
var cur_trimmed_row = trimmed_row;
while (true) {
for (cur_trimmed_row, 0..) |cell, old_x| {
// Soft wrap if we have to.
if (x == self.cols) {
row.setWrapped(true);
x = 0;
y += 1;
// Wrapping can cause us to overflow our visible area.
// If so, scroll.
if (y >= self.rows) {
try self.scroll(.{ .screen = 1 });
y -= 1;
}
row = self.getRow(.{ .active = y });
row.setSemanticPrompt(cur_old_row.getSemanticPrompt());
}
// If our cursor is on this char, then set the new cursor.
if (cursor_pos.y == old_y and cursor_pos.x == old_x) {
assert(new_cursor == null);
new_cursor = .{ .x = x, .y = self.history + y };
}
// Write the cell
var new_cell = row.getCellPtr(x);
new_cell.* = cell.cell;
x += 1;
}
// If we're done wrapping, we move on.
if (!cur_old_row_wrapped) {
y += 1;
break;
}
// If the old row is wrapped we continue with the loop with
// the next row.
old_y += 1;
cur_old_row = old.getRow(.{ .screen = old_y });
cur_old_row_wrapped = cur_old_row.header().flags.wrap;
cur_trimmed_row = self.trimRowForResizeLessCols(&old, cur_old_row);
}
}
// If we have a new cursor, we need to convert that to a viewport
// point and set it up.
if (new_cursor) |pos| {
const viewport_pos = pos.toViewport(self);
self.cursor.x = @min(viewport_pos.x, self.cols - 1);
self.cursor.y = @min(viewport_pos.y, self.rows - 1);
} else {
// TODO: why is this necessary? Without this, neovim will
// crash when we shrink the window to the smallest size. We
// never got a test case to cover this.
self.cursor.x = @min(self.cursor.x, self.cols - 1);
self.cursor.y = @min(self.cursor.y, self.rows - 1);
}
}
}
/// Counts the number of trailing lines from the cursor that are blank.
/// This is specifically used for resizing and isn't meant to be a general
/// purpose tool.
fn trailingBlankLines(self: *Screen) usize {
// Start one line below our cursor and continue to the last line
// of the screen or however many rows we have written.
const start = self.cursor.y + 1;
const end = @min(self.rowsWritten(), self.rows);
if (start >= end) return 0;
var blank: usize = 0;
for (0..(end - start)) |i| {
const y = end - i - 1;
const row = self.getRow(.{ .active = y });
if (!row.isEmpty()) break;
blank += 1;
}
return blank;
}
/// When resizing to less columns, this trims the row from the right
/// so we don't unnecessarily wrap. This will freely throw away trailing
/// colored but empty (character) cells. This matches Terminal.app behavior,
/// which isn't strictly correct but seems nice.
fn trimRowForResizeLessCols(self: *Screen, old: *Screen, row: Row) []StorageCell {
assert(old.cols > self.cols);
// We only trim if this isn't a wrapped line. If its a wrapped
// line we need to keep all the empty cells because they are
// meaningful whitespace before our wrap.
if (row.header().flags.wrap) return row.storage[1 .. old.cols + 1];
var i: usize = old.cols;
while (i > 0) : (i -= 1) {
const cell = row.getCell(i - 1);
if (!cell.empty()) {
// If we are beyond our new width and this is just
// an empty-character stylized cell, then we trim it.
if (i > self.cols) {
if (cell.char == 0 or cell.char == ' ') continue;
}
break;
}
}
return row.storage[1 .. i + 1];
}
/// Writes a basic string into the screen for testing. Newlines (\n) separate
/// each row. If a line is longer than the available columns, soft-wrapping
/// will occur. This will automatically handle basic wide chars.
pub fn testWriteString(self: *Screen, text: []const u8) !void {
var y: usize = self.cursor.y;
var x: usize = self.cursor.x;
var grapheme: struct {
x: usize = 0,
cell: ?*Cell = null,
} = .{};
const view = std.unicode.Utf8View.init(text) catch unreachable;
var iter = view.iterator();
while (iter.nextCodepoint()) |c| {
// Explicit newline forces a new row
if (c == '\n') {
y += 1;
x = 0;
grapheme = .{};
continue;
}
// If we're writing past the end of the active area, scroll.
if (y >= self.rows) {
y -= 1;
try self.scroll(.{ .screen = 1 });
}
// Get our row
var row = self.getRow(.{ .active = y });
// NOTE: graphemes are currently disabled
if (false) {
// If we have a previous cell, we check if we're part of a grapheme.
if (grapheme.cell) |prev_cell| {
const grapheme_break = brk: {
var state: i32 = 0;
var cp1 = @as(u21, @intCast(prev_cell.char));
if (prev_cell.attrs.grapheme) {
var it = row.codepointIterator(grapheme.x);
while (it.next()) |cp2| {
assert(!utf8proc.graphemeBreakStateful(
cp1,
cp2,
&state,
));
cp1 = cp2;
}
}
break :brk utf8proc.graphemeBreakStateful(cp1, c, &state);
};
if (!grapheme_break) {
try row.attachGrapheme(grapheme.x, c);
continue;
}
}
}
const width = utf8proc.charwidth(c);
//log.warn("c={x} width={}", .{ c, width });
// Zero-width are attached as grapheme data.
// NOTE: if/when grapheme clustering is ever enabled (above) this
// is not necessary
if (width == 0) {
if (grapheme.cell != null) {
try row.attachGrapheme(grapheme.x, c);
}
continue;
}
// If we're writing past the end, we need to soft wrap.
if (x == self.cols) {
row.setWrapped(true);
y += 1;
x = 0;
if (y >= self.rows) {
y -= 1;
try self.scroll(.{ .screen = 1 });
}
row = self.getRow(.{ .active = y });
}
// If our character is double-width, handle it.
assert(width == 1 or width == 2);
switch (width) {
1 => {
const cell = row.getCellPtr(x);
cell.char = @intCast(c);
grapheme.x = x;
grapheme.cell = cell;
},
2 => {
if (x == self.cols - 1) {
const cell = row.getCellPtr(x);
cell.char = ' ';
cell.attrs.wide_spacer_head = true;
// wrap
row.setWrapped(true);
y += 1;
x = 0;
if (y >= self.rows) {
y -= 1;
try self.scroll(.{ .screen = 1 });
}
row = self.getRow(.{ .active = y });
}
{
const cell = row.getCellPtr(x);
cell.char = @intCast(c);
cell.attrs.wide = true;
grapheme.x = x;
grapheme.cell = cell;
}
{
x += 1;
const cell = row.getCellPtr(x);
cell.char = ' ';
cell.attrs.wide_spacer_tail = true;
}
},
else => unreachable,
}
x += 1;
}
// So the cursor doesn't go off screen
self.cursor.x = @min(x, self.cols - 1);
self.cursor.y = y;
}
/// Turns the screen into a string. Different regions of the screen can
/// be selected using the "tag", i.e. if you want to output the viewport,
/// the scrollback, the full screen, etc.
///
/// This is only useful for testing.
pub fn testString(self: *Screen, alloc: Allocator, tag: RowIndexTag) ![]const u8 {
const buf = try alloc.alloc(u8, self.storage.len() * 4);
var i: usize = 0;
var y: usize = 0;
var rows = self.rowIterator(tag);
while (rows.next()) |row| {
defer y += 1;
if (y > 0) {
buf[i] = '\n';
i += 1;
}
var cells = row.cellIterator();
while (cells.next()) |cell| {
// TODO: handle character after null
if (cell.char > 0) {
i += try std.unicode.utf8Encode(@intCast(cell.char), buf[i..]);
}
}
}
// Never render the final newline
const str = std.mem.trimRight(u8, buf[0..i], "\n");
return try alloc.realloc(buf, str.len);
}
test "Row: isEmpty with no data" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 5, 0);
defer s.deinit();
const row = s.getRow(.{ .active = 0 });
try testing.expect(row.isEmpty());
}
test "Row: isEmpty with a character at the end" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 5, 0);
defer s.deinit();
const row = s.getRow(.{ .active = 0 });
const cell = row.getCellPtr(4);
cell.*.char = 'A';
try testing.expect(!row.isEmpty());
}
test "Row: isEmpty with only styled cells" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 5, 0);
defer s.deinit();
const row = s.getRow(.{ .active = 0 });
for (0..s.cols) |x| {
const cell = row.getCellPtr(x);
cell.*.bg = .{ .r = 0xAA, .g = 0xBB, .b = 0xCC };
cell.*.attrs.has_bg = true;
}
try testing.expect(row.isEmpty());
}
test "Row: clear with graphemes" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 5, 0);
defer s.deinit();
const row = s.getRow(.{ .active = 0 });
try testing.expect(row.getId() > 0);
try testing.expectEqual(@as(usize, 5), row.lenCells());
try testing.expect(!row.header().flags.grapheme);
// Lets add a cell with a grapheme
{
const cell = row.getCellPtr(2);
cell.*.char = 'A';
try row.attachGrapheme(2, 'B');
try testing.expect(cell.attrs.grapheme);
try testing.expect(row.header().flags.grapheme);
try testing.expect(s.graphemes.count() == 1);
}
// Clear the row
row.clear(.{});
try testing.expect(!row.header().flags.grapheme);
try testing.expect(s.graphemes.count() == 0);
}
test "Row: copy row with graphemes in destination" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 5, 0);
defer s.deinit();
// Source row does NOT have graphemes
const row_src = s.getRow(.{ .active = 0 });
{
const cell = row_src.getCellPtr(2);
cell.*.char = 'A';
}
// Destination has graphemes
const row = s.getRow(.{ .active = 1 });
{
const cell = row.getCellPtr(1);
cell.*.char = 'B';
try row.attachGrapheme(1, 'C');
try testing.expect(cell.attrs.grapheme);
try testing.expect(row.header().flags.grapheme);
try testing.expect(s.graphemes.count() == 1);
}
// Copy
try row.copyRow(row_src);
try testing.expect(!row.header().flags.grapheme);
try testing.expect(s.graphemes.count() == 0);
}
test "Row: copy row with graphemes in source" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 5, 0);
defer s.deinit();
// Source row does NOT have graphemes
const row_src = s.getRow(.{ .active = 0 });
{
const cell = row_src.getCellPtr(2);
cell.*.char = 'A';
try row_src.attachGrapheme(2, 'B');
try testing.expect(cell.attrs.grapheme);
try testing.expect(row_src.header().flags.grapheme);
try testing.expect(s.graphemes.count() == 1);
}
// Destination has no graphemes
const row = s.getRow(.{ .active = 1 });
try row.copyRow(row_src);
try testing.expect(row.header().flags.grapheme);
try testing.expect(s.graphemes.count() == 2);
row_src.clear(.{});
try testing.expect(s.graphemes.count() == 1);
}
test "Screen" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 5, 0);
defer s.deinit();
try testing.expect(s.rowsWritten() == 0);
// Sanity check that our test helpers work
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
try testing.expect(s.rowsWritten() == 3);
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Test the row iterator
var count: usize = 0;
var iter = s.rowIterator(.viewport);
while (iter.next()) |row| {
// Rows should be pointer equivalent to getRow
const row_other = s.getRow(.{ .viewport = count });
try testing.expectEqual(row.storage.ptr, row_other.storage.ptr);
count += 1;
}
// Should go through all rows
try testing.expectEqual(@as(usize, 3), count);
// Should be able to easily clear screen
{
var it = s.rowIterator(.viewport);
while (it.next()) |row| row.fill(.{ .char = 'A' });
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("AAAAA\nAAAAA\nAAAAA", contents);
}
}
test "Screen: write graphemes" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 5, 0);
defer s.deinit();
// Sanity check that our test helpers work
var buf: [32]u8 = undefined;
var buf_idx: usize = 0;
buf_idx += try std.unicode.utf8Encode(0x1F44D, buf[buf_idx..]); // Thumbs up plain
buf_idx += try std.unicode.utf8Encode(0x1F44D, buf[buf_idx..]); // Thumbs up plain
buf_idx += try std.unicode.utf8Encode(0x1F3FD, buf[buf_idx..]); // Medium skin tone
// Note the assertions below are NOT the correct way to handle graphemes
// in general, but they're "correct" for historical purposes for terminals.
// For terminals, all double-wide codepoints are counted as part of the
// width.
try s.testWriteString(buf[0..buf_idx]);
try testing.expect(s.rowsWritten() == 2);
try testing.expectEqual(@as(usize, 2), s.cursor.x);
}
test "Screen: write long emoji" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 30, 0);
defer s.deinit();
// Sanity check that our test helpers work
var buf: [32]u8 = undefined;
var buf_idx: usize = 0;
buf_idx += try std.unicode.utf8Encode(0x1F9D4, buf[buf_idx..]); // man: beard
buf_idx += try std.unicode.utf8Encode(0x1F3FB, buf[buf_idx..]); // light skin tone (Fitz 1-2)
buf_idx += try std.unicode.utf8Encode(0x200D, buf[buf_idx..]); // ZWJ
buf_idx += try std.unicode.utf8Encode(0x2642, buf[buf_idx..]); // male sign
buf_idx += try std.unicode.utf8Encode(0xFE0F, buf[buf_idx..]); // emoji representation
// Note the assertions below are NOT the correct way to handle graphemes
// in general, but they're "correct" for historical purposes for terminals.
// For terminals, all double-wide codepoints are counted as part of the
// width.
try s.testWriteString(buf[0..buf_idx]);
try testing.expect(s.rowsWritten() == 1);
try testing.expectEqual(@as(usize, 5), s.cursor.x);
}
test "Screen: scrolling" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
try testing.expect(s.viewportIsBottom());
// Scroll down, should still be bottom
try s.scroll(.{ .screen = 1 });
try testing.expect(s.viewportIsBottom());
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
// Scrolling to the bottom does nothing
try s.scroll(.{ .bottom = {} });
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
}
test "Screen: scroll down from 0" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
// Scrolling up does nothing, but allows it
try s.scroll(.{ .screen = -1 });
try testing.expect(s.viewportIsBottom());
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL", contents);
}
}
test "Screen: scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 1);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
try s.scroll(.{ .screen = 1 });
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
// Scrolling to the bottom
try s.scroll(.{ .bottom = {} });
try testing.expect(s.viewportIsBottom());
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
// Scrolling back should make it visible again
try s.scroll(.{ .screen = -1 });
try testing.expect(!s.viewportIsBottom());
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL", contents);
}
// Scrolling back again should do nothing
try s.scroll(.{ .screen = -1 });
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL", contents);
}
// Scrolling to the bottom
try s.scroll(.{ .bottom = {} });
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
// Scrolling forward with no grow should do nothing
try s.scroll(.{ .viewport = 1 });
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
// Scrolling to the top should work
try s.scroll(.{ .top = {} });
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL", contents);
}
// Should be able to easily clear active area only
var it = s.rowIterator(.active);
while (it.next()) |row| row.clear(.{});
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD", contents);
}
// Scrolling to the bottom
try s.scroll(.{ .bottom = {} });
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("", contents);
}
}
test "Screen: scrollback with large delta" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 3);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n4ABCD\n5EFGH\n6IJKL");
try testing.expect(s.viewportIsBottom());
// Scroll to top
try s.scroll(.{ .top = {} });
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL", contents);
}
// Scroll down a ton
try s.scroll(.{ .viewport = 5 });
try testing.expect(s.viewportIsBottom());
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("4ABCD\n5EFGH\n6IJKL", contents);
}
}
test "Screen: scrollback empty" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 50);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
try s.scroll(.{ .viewport = 1 });
{
// Test our contents
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL", contents);
}
}
test "Screen: scrollback doesn't move viewport if not at bottom" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 3);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n4ABCD\n5EFGH");
// First test: we scroll up by 1, so we're not at the bottom anymore.
try s.scroll(.{ .screen = -1 });
try testing.expect(!s.viewportIsBottom());
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL\n4ABCD", contents);
}
// Next, we scroll back down by 1, this grows the scrollback but we
// shouldn't move.
try s.scroll(.{ .screen = 1 });
try testing.expect(!s.viewportIsBottom());
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL\n4ABCD", contents);
}
// Scroll again, this clears scrollback so we should move viewports
// but still see the same thing since our original view fits.
try s.scroll(.{ .screen = 1 });
try testing.expect(!s.viewportIsBottom());
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL\n4ABCD", contents);
}
// Scroll again, this again goes into scrollback but is now deleting
// what we were looking at. We should see changes.
try s.scroll(.{ .screen = 1 });
try testing.expect(!s.viewportIsBottom());
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("3IJKL\n4ABCD\n5EFGH", contents);
}
}
test "Screen: scrolling moves selection" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
try testing.expect(s.viewportIsBottom());
// Select a single line
s.selection = .{
.start = .{ .x = 0, .y = 1 },
.end = .{ .x = s.cols - 1, .y = 1 },
};
// Scroll down, should still be bottom
try s.scroll(.{ .screen = 1 });
try testing.expect(s.viewportIsBottom());
// Our selection should've moved up
try testing.expectEqual(Selection{
.start = .{ .x = 0, .y = 0 },
.end = .{ .x = s.cols - 1, .y = 0 },
}, s.selection.?);
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
// Scrolling to the bottom does nothing
try s.scroll(.{ .bottom = {} });
// Our selection should've stayed the same
try testing.expectEqual(Selection{
.start = .{ .x = 0, .y = 0 },
.end = .{ .x = s.cols - 1, .y = 0 },
}, s.selection.?);
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
// Scroll up again
try s.scroll(.{ .screen = 1 });
// Our selection should be null because it left the screen.
try testing.expect(s.selection == null);
}
test "Screen: scrolling with scrollback available doesn't move selection" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 1);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
try testing.expect(s.viewportIsBottom());
// Select a single line
s.selection = .{
.start = .{ .x = 0, .y = 1 },
.end = .{ .x = s.cols - 1, .y = 1 },
};
// Scroll down, should still be bottom
try s.scroll(.{ .screen = 1 });
try testing.expect(s.viewportIsBottom());
// Our selection should NOT move since we have scrollback
try testing.expectEqual(Selection{
.start = .{ .x = 0, .y = 1 },
.end = .{ .x = s.cols - 1, .y = 1 },
}, s.selection.?);
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
// Scrolling back should make it visible again
try s.scroll(.{ .screen = -1 });
try testing.expect(!s.viewportIsBottom());
// Our selection should NOT move since we have scrollback
try testing.expectEqual(Selection{
.start = .{ .x = 0, .y = 1 },
.end = .{ .x = s.cols - 1, .y = 1 },
}, s.selection.?);
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL", contents);
}
// Scroll down, this sends us off the scrollback
try s.scroll(.{ .screen = 2 });
// Selection should be gone since we selected a line that went off.
try testing.expect(s.selection == null);
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("3IJKL", contents);
}
}
test "Screen: history region with no scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 1, 5, 0);
defer s.deinit();
// Write a bunch that WOULD invoke scrollback if exists
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "3IJKL";
try testing.expectEqualStrings(expected, contents);
}
// Verify no scrollback
var it = s.rowIterator(.history);
var count: usize = 0;
while (it.next()) |_| count += 1;
try testing.expect(count == 0);
}
test "Screen: history region with scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 1, 5, 2);
defer s.deinit();
// Write a bunch that WOULD invoke scrollback if exists
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "3IJKL";
try testing.expectEqualStrings(expected, contents);
}
{
// Test our contents
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL", contents);
}
{
var contents = try s.testString(alloc, .history);
defer alloc.free(contents);
const expected = "1ABCD\n2EFGH";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: row copy" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
// Copy
try s.scroll(.{ .screen = 1 });
try s.copyRow(.{ .active = 2 }, .{ .active = 0 });
// Test our contents
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL\n2EFGH", contents);
}
test "Screen: clone" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
try testing.expect(s.viewportIsBottom());
{
var s2 = try s.clone(alloc, .{ .active = 1 }, .{ .active = 1 });
defer s2.deinit();
// Test our contents rotated
var contents = try s2.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH", contents);
}
{
var s2 = try s.clone(alloc, .{ .active = 1 }, .{ .active = 2 });
defer s2.deinit();
// Test our contents rotated
var contents = try s2.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
}
test "Screen: clone empty viewport" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
{
var s2 = try s.clone(alloc, .{ .viewport = 0 }, .{ .viewport = 0 });
defer s2.deinit();
// Test our contents rotated
var contents = try s2.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("", contents);
}
}
test "Screen: clone one line viewport" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABC");
{
var s2 = try s.clone(alloc, .{ .viewport = 0 }, .{ .viewport = 0 });
defer s2.deinit();
// Test our contents rotated
var contents = try s2.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABC", contents);
}
}
test "Screen: clone empty active" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
{
var s2 = try s.clone(alloc, .{ .active = 0 }, .{ .active = 0 });
defer s2.deinit();
// Test our contents rotated
var contents = try s2.testString(alloc, .active);
defer alloc.free(contents);
try testing.expectEqualStrings("", contents);
}
}
test "Screen: clone one line active with extra space" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABC");
// Should have 1 line written
try testing.expectEqual(@as(usize, 1), s.rowsWritten());
{
var s2 = try s.clone(alloc, .{ .active = 0 }, .{ .active = s.rows - 1 });
defer s2.deinit();
// Test our contents rotated
var contents = try s2.testString(alloc, .active);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABC", contents);
}
// Should still have no history. A bug was that we were generating history
// in this case which is not good! This was causing resizes to have all
// sorts of problems.
try testing.expectEqual(@as(usize, 1), s.rowsWritten());
}
test "Screen: selectLine" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 10, 10, 0);
defer s.deinit();
try s.testWriteString("ABC DEF\n 123\n456");
// Outside of active area
try testing.expect(s.selectLine(.{ .x = 13, .y = 0 }) == null);
try testing.expect(s.selectLine(.{ .x = 0, .y = 5 }) == null);
// Going forward
{
const sel = s.selectLine(.{ .x = 0, .y = 0 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 7), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// Going backward
{
const sel = s.selectLine(.{ .x = 7, .y = 0 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 7), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// Going forward and backward
{
const sel = s.selectLine(.{ .x = 3, .y = 0 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 7), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// Outside active area
{
const sel = s.selectLine(.{ .x = 9, .y = 0 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 7), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
}
test "Screen: selectLine across soft-wrap" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 10, 5, 0);
defer s.deinit();
try s.testWriteString(" 12 34012 \n 123");
// Going forward
{
const sel = s.selectLine(.{ .x = 1, .y = 0 }).?;
try testing.expectEqual(@as(usize, 1), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 3), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
}
test "Screen: selectLine across soft-wrap ignores blank lines" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 10, 5, 0);
defer s.deinit();
try s.testWriteString(" 12 34012 \n 123");
// Going forward
{
const sel = s.selectLine(.{ .x = 1, .y = 0 }).?;
try testing.expectEqual(@as(usize, 1), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 3), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
// Going backward
{
const sel = s.selectLine(.{ .x = 1, .y = 1 }).?;
try testing.expectEqual(@as(usize, 1), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 3), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
// Going forward and backward
{
const sel = s.selectLine(.{ .x = 3, .y = 0 }).?;
try testing.expectEqual(@as(usize, 1), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 3), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
}
test "Screen: selectLine with scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 2, 5);
defer s.deinit();
try s.testWriteString("1A\n2B\n3C\n4D\n5E");
// Selecting first line
{
const sel = s.selectLine(.{ .x = 0, .y = 0 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 1), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// Selecting last line
{
const sel = s.selectLine(.{ .x = 0, .y = 4 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 4), sel.start.y);
try testing.expectEqual(@as(usize, 1), sel.end.x);
try testing.expectEqual(@as(usize, 4), sel.end.y);
}
}
test "Screen: selectWord" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 10, 10, 0);
defer s.deinit();
try s.testWriteString("ABC DEF\n 123\n456");
// Outside of active area
try testing.expect(s.selectWord(.{ .x = 9, .y = 0 }) == null);
try testing.expect(s.selectWord(.{ .x = 0, .y = 5 }) == null);
// Going forward
{
const sel = s.selectWord(.{ .x = 0, .y = 0 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 2), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// Going backward
{
const sel = s.selectWord(.{ .x = 2, .y = 0 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 2), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// Going forward and backward
{
const sel = s.selectWord(.{ .x = 1, .y = 0 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 2), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// Whitespace
{
const sel = s.selectWord(.{ .x = 3, .y = 0 }).?;
try testing.expectEqual(@as(usize, 3), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 4), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// Whitespace single char
{
const sel = s.selectWord(.{ .x = 0, .y = 1 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 1), sel.start.y);
try testing.expectEqual(@as(usize, 0), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
// End of screen
{
const sel = s.selectWord(.{ .x = 1, .y = 2 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 2), sel.start.y);
try testing.expectEqual(@as(usize, 2), sel.end.x);
try testing.expectEqual(@as(usize, 2), sel.end.y);
}
}
test "Screen: selectWord across soft-wrap" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 10, 5, 0);
defer s.deinit();
try s.testWriteString(" 1234012\n 123");
// Going forward
{
const sel = s.selectWord(.{ .x = 1, .y = 0 }).?;
try testing.expectEqual(@as(usize, 1), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 2), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
// Going backward
{
const sel = s.selectWord(.{ .x = 1, .y = 1 }).?;
try testing.expectEqual(@as(usize, 1), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 2), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
// Going forward and backward
{
const sel = s.selectWord(.{ .x = 3, .y = 0 }).?;
try testing.expectEqual(@as(usize, 1), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 2), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
}
test "Screen: selectWord whitespace across soft-wrap" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 10, 5, 0);
defer s.deinit();
try s.testWriteString("1 1\n 123");
// Going forward
{
const sel = s.selectWord(.{ .x = 1, .y = 0 }).?;
try testing.expectEqual(@as(usize, 1), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 2), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
// Going backward
{
const sel = s.selectWord(.{ .x = 1, .y = 1 }).?;
try testing.expectEqual(@as(usize, 1), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 2), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
// Going forward and backward
{
const sel = s.selectWord(.{ .x = 3, .y = 0 }).?;
try testing.expectEqual(@as(usize, 1), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 2), sel.end.x);
try testing.expectEqual(@as(usize, 1), sel.end.y);
}
}
test "Screen: selectWord with single quote boundary" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 10, 20, 0);
defer s.deinit();
try s.testWriteString(" 'abc' \n123");
// Inside quotes forward
{
const sel = s.selectWord(.{ .x = 2, .y = 0 }).?;
try testing.expectEqual(@as(usize, 2), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 4), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// Inside quotes backward
{
const sel = s.selectWord(.{ .x = 4, .y = 0 }).?;
try testing.expectEqual(@as(usize, 2), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 4), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// Inside quotes bidirectional
{
const sel = s.selectWord(.{ .x = 3, .y = 0 }).?;
try testing.expectEqual(@as(usize, 2), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 4), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
// On quote
// NOTE: this behavior is not ideal, so we can change this one day,
// but I think its also not that important compared to the above.
{
const sel = s.selectWord(.{ .x = 1, .y = 0 }).?;
try testing.expectEqual(@as(usize, 0), sel.start.x);
try testing.expectEqual(@as(usize, 0), sel.start.y);
try testing.expectEqual(@as(usize, 1), sel.end.x);
try testing.expectEqual(@as(usize, 0), sel.end.y);
}
}
test "Screen: scrollRegionUp single" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 4, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n4ABCD");
s.scrollRegionUp(.{ .active = 1 }, .{ .active = 2 }, 1);
{
// Test our contents rotated
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n3IJKL\n\n4ABCD", contents);
}
}
test "Screen: scrollRegionUp same line" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 4, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n4ABCD");
s.scrollRegionUp(.{ .active = 1 }, .{ .active = 1 }, 1);
{
// Test our contents rotated
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL\n4ABCD", contents);
}
}
test "Screen: scrollRegionUp single with pen" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 4, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n4ABCD");
s.cursor.pen = .{ .char = 'X' };
s.scrollRegionUp(.{ .active = 1 }, .{ .active = 2 }, 1);
{
// Test our contents rotated
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n3IJKL\nXXXXX\n4ABCD", contents);
}
}
test "Screen: scrollRegionUp multiple" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 4, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n4ABCD");
s.scrollRegionUp(.{ .active = 1 }, .{ .active = 3 }, 1);
{
// Test our contents rotated
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n3IJKL\n4ABCD", contents);
}
}
test "Screen: scrollRegionUp multiple count" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 4, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n4ABCD");
s.scrollRegionUp(.{ .active = 1 }, .{ .active = 3 }, 2);
{
// Test our contents rotated
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n4ABCD", contents);
}
}
test "Screen: scrollRegionUp fills with pen" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 4, 5, 0);
defer s.deinit();
try s.testWriteString("A\nB\nC\nD");
s.cursor.pen = .{ .char = 'X' };
s.scrollRegionUp(.{ .active = 0 }, .{ .active = 2 }, 1);
{
// Test our contents rotated
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("B\nC\nXXXXX\nD", contents);
}
}
test "Screen: scrollRegionUp buffer wrap" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
// Scroll down, should still be bottom, but should wrap because
// we're out of space.
try s.scroll(.{ .screen = 1 });
s.cursor.x = 0;
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n4ABCD");
// Scroll
s.cursor.pen = .{ .char = 'X' };
s.scrollRegionUp(.{ .screen = 0 }, .{ .screen = 2 }, 1);
{
// Test our contents rotated
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("3IJKL\n4ABCD\nXXXXX", contents);
}
}
test "Screen: scrollRegionUp buffer wrap alternate" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
// Scroll down, should still be bottom, but should wrap because
// we're out of space.
try s.scroll(.{ .screen = 1 });
s.cursor.x = 0;
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n4ABCD");
// Scroll
s.cursor.pen = .{ .char = 'X' };
s.scrollRegionUp(.{ .screen = 0 }, .{ .screen = 2 }, 2);
{
// Test our contents rotated
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("4ABCD\nXXXXX\nXXXXX", contents);
}
}
test "Screen: clear history with no history" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 3);
defer s.deinit();
try s.testWriteString("4ABCD\n5EFGH\n6IJKL");
try testing.expect(s.viewportIsBottom());
try s.clear(.history);
try testing.expect(s.viewportIsBottom());
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("4ABCD\n5EFGH\n6IJKL", contents);
}
{
// Test our contents rotated
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("4ABCD\n5EFGH\n6IJKL", contents);
}
}
test "Screen: clear history" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 3);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n4ABCD\n5EFGH\n6IJKL");
try testing.expect(s.viewportIsBottom());
// Scroll to top
try s.scroll(.{ .top = {} });
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL", contents);
}
try s.clear(.history);
try testing.expect(s.viewportIsBottom());
{
// Test our contents rotated
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("4ABCD\n5EFGH\n6IJKL", contents);
}
{
// Test our contents rotated
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("4ABCD\n5EFGH\n6IJKL", contents);
}
}
test "Screen: clear above cursor" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 10, 10, 3);
defer s.deinit();
try s.testWriteString("4ABCD\n5EFGH\n6IJKL");
try testing.expect(s.viewportIsBottom());
try s.clear(.above_cursor);
try testing.expect(s.viewportIsBottom());
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("6IJKL", contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("6IJKL", contents);
}
try testing.expectEqual(@as(usize, 5), s.cursor.x);
try testing.expectEqual(@as(usize, 0), s.cursor.y);
}
test "Screen: clear above cursor with history" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 10, 3);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n");
try s.testWriteString("4ABCD\n5EFGH\n6IJKL");
try testing.expect(s.viewportIsBottom());
try s.clear(.above_cursor);
try testing.expect(s.viewportIsBottom());
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("6IJKL", contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD\n2EFGH\n3IJKL\n6IJKL", contents);
}
try testing.expectEqual(@as(usize, 5), s.cursor.x);
try testing.expectEqual(@as(usize, 0), s.cursor.y);
}
test "Screen: selectionString basic" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 0, .y = 1 },
.end = .{ .x = 2, .y = 2 },
}, true);
defer alloc.free(contents);
const expected = "2EFGH\n3IJ";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: selectionString trim space" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1AB \n2EFGH\n3IJKL";
try s.testWriteString(str);
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 0, .y = 0 },
.end = .{ .x = 2, .y = 1 },
}, true);
defer alloc.free(contents);
const expected = "1AB\n2EF";
try testing.expectEqualStrings(expected, contents);
}
// No trim
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 0, .y = 0 },
.end = .{ .x = 2, .y = 1 },
}, false);
defer alloc.free(contents);
const expected = "1AB \n2EF";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: selectionString trim empty line" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 5, 0);
defer s.deinit();
const str = "1AB \n\n2EFGH\n3IJKL";
try s.testWriteString(str);
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 0, .y = 0 },
.end = .{ .x = 2, .y = 2 },
}, true);
defer alloc.free(contents);
const expected = "1AB\n\n2EF";
try testing.expectEqualStrings(expected, contents);
}
// No trim
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 0, .y = 0 },
.end = .{ .x = 2, .y = 2 },
}, false);
defer alloc.free(contents);
const expected = "1AB \n \n2EF";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: selectionString soft wrap" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD2EFGH3IJKL";
try s.testWriteString(str);
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 0, .y = 1 },
.end = .{ .x = 2, .y = 2 },
}, true);
defer alloc.free(contents);
const expected = "2EFGH3IJ";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: selectionString wrap around" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
try testing.expect(s.viewportIsBottom());
// Scroll down, should still be bottom, but should wrap because
// we're out of space.
try s.scroll(.{ .screen = 1 });
try testing.expect(s.viewportIsBottom());
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 0, .y = 1 },
.end = .{ .x = 2, .y = 2 },
}, true);
defer alloc.free(contents);
const expected = "2EFGH\n3IJ";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: selectionString wide char" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1A⚡";
try s.testWriteString(str);
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 0, .y = 0 },
.end = .{ .x = 3, .y = 0 },
}, true);
defer alloc.free(contents);
const expected = str;
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 0, .y = 0 },
.end = .{ .x = 2, .y = 0 },
}, true);
defer alloc.free(contents);
const expected = str;
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 3, .y = 0 },
.end = .{ .x = 3, .y = 0 },
}, true);
defer alloc.free(contents);
const expected = "";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: selectionString wide char with header" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABC⚡";
try s.testWriteString(str);
{
var contents = try s.selectionString(alloc, .{
.start = .{ .x = 0, .y = 0 },
.end = .{ .x = 4, .y = 0 },
}, true);
defer alloc.free(contents);
const expected = str;
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: dirty with getCellPtr" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
try testing.expect(s.viewportIsBottom());
// Ensure all are dirty. Clear em.
var iter = s.rowIterator(.viewport);
while (iter.next()) |row| {
try testing.expect(row.isDirty());
row.setDirty(false);
}
// Reset our cursor onto the second row.
s.cursor.x = 0;
s.cursor.y = 1;
try s.testWriteString("foo");
{
const row = s.getRow(.{ .active = 0 });
try testing.expect(!row.isDirty());
}
{
const row = s.getRow(.{ .active = 1 });
try testing.expect(row.isDirty());
}
{
const row = s.getRow(.{ .active = 2 });
try testing.expect(!row.isDirty());
_ = row.getCell(0);
try testing.expect(!row.isDirty());
}
}
test "Screen: dirty with clear, fill, fillSlice, copyRow" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
try testing.expect(s.viewportIsBottom());
// Ensure all are dirty. Clear em.
var iter = s.rowIterator(.viewport);
while (iter.next()) |row| {
try testing.expect(row.isDirty());
row.setDirty(false);
}
{
const row = s.getRow(.{ .active = 0 });
try testing.expect(!row.isDirty());
row.clear(.{});
try testing.expect(row.isDirty());
row.setDirty(false);
}
{
const row = s.getRow(.{ .active = 0 });
try testing.expect(!row.isDirty());
row.fill(.{ .char = 'A' });
try testing.expect(row.isDirty());
row.setDirty(false);
}
{
const row = s.getRow(.{ .active = 0 });
try testing.expect(!row.isDirty());
row.fillSlice(.{ .char = 'A' }, 0, 2);
try testing.expect(row.isDirty());
row.setDirty(false);
}
{
const src = s.getRow(.{ .active = 0 });
const row = s.getRow(.{ .active = 1 });
try testing.expect(!row.isDirty());
try row.copyRow(src);
try testing.expect(!src.isDirty());
try testing.expect(row.isDirty());
row.setDirty(false);
}
}
test "Screen: dirty with graphemes" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL");
try testing.expect(s.viewportIsBottom());
// Ensure all are dirty. Clear em.
var iter = s.rowIterator(.viewport);
while (iter.next()) |row| {
try testing.expect(row.isDirty());
row.setDirty(false);
}
{
const row = s.getRow(.{ .active = 0 });
try testing.expect(!row.isDirty());
try row.attachGrapheme(0, 0xFE0F);
try testing.expect(row.isDirty());
row.setDirty(false);
row.clearGraphemes(0);
try testing.expect(row.isDirty());
row.setDirty(false);
}
}
test "Screen: resize (no reflow) more rows" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
// Clear dirty rows
var iter = s.rowIterator(.viewport);
while (iter.next()) |row| row.setDirty(false);
// Resize
try s.resizeWithoutReflow(10, 5);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Everything should be dirty
iter = s.rowIterator(.viewport);
while (iter.next()) |row| try testing.expect(row.isDirty());
}
test "Screen: resize (no reflow) less rows" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
try s.resizeWithoutReflow(2, 5);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("2EFGH\n3IJKL", contents);
}
}
test "Screen: resize (no reflow) less rows trims blank lines" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD";
try s.testWriteString(str);
// Write only a background color into the remaining rows
for (1..s.rows) |y| {
const row = s.getRow(.{ .active = y });
for (0..s.cols) |x| {
const cell = row.getCellPtr(x);
cell.*.bg = .{ .r = 0xFF, .g = 0, .b = 0 };
cell.*.attrs.has_bg = true;
}
}
// Make sure our cursor is at the end of the first line
s.cursor.x = 4;
s.cursor.y = 0;
const cursor = s.cursor;
try s.resizeWithoutReflow(2, 5);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD", contents);
}
}
test "Screen: resize (no reflow) more rows trims blank lines" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD";
try s.testWriteString(str);
// Write only a background color into the remaining rows
for (1..s.rows) |y| {
const row = s.getRow(.{ .active = y });
for (0..s.cols) |x| {
const cell = row.getCellPtr(x);
cell.*.bg = .{ .r = 0xFF, .g = 0, .b = 0 };
cell.*.attrs.has_bg = true;
}
}
// Make sure our cursor is at the end of the first line
s.cursor.x = 4;
s.cursor.y = 0;
const cursor = s.cursor;
try s.resizeWithoutReflow(7, 5);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings("1ABCD", contents);
}
}
test "Screen: resize (no reflow) more cols" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
try s.resizeWithoutReflow(3, 10);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: resize (no reflow) less cols" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
try s.resizeWithoutReflow(3, 4);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "1ABC\n2EFG\n3IJK";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize (no reflow) more rows with scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 2);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL\n4ABCD\n5EFGH";
try s.testWriteString(str);
try s.resizeWithoutReflow(10, 5);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: resize (no reflow) less rows with scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 2);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL\n4ABCD\n5EFGH";
try s.testWriteString(str);
try s.resizeWithoutReflow(2, 5);
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "2EFGH\n3IJKL\n4ABCD\n5EFGH";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize (no reflow) empty screen" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 5, 5, 0);
defer s.deinit();
try testing.expect(s.rowsWritten() == 0);
try testing.expectEqual(@as(usize, 5), s.rowsCapacity());
try s.resizeWithoutReflow(10, 10);
try testing.expect(s.rowsWritten() == 0);
// This is the primary test for this test, we want to ensure we
// always have at least enough capacity for our rows.
try testing.expectEqual(@as(usize, 10), s.rowsCapacity());
}
test "Screen: resize (no reflow) grapheme copy" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
// Attach graphemes to all the columns
{
var iter = s.rowIterator(.viewport);
while (iter.next()) |row| {
var col: usize = 0;
while (col < s.cols) : (col += 1) {
try row.attachGrapheme(col, 0xFE0F);
}
}
}
// Clear dirty rows
{
var iter = s.rowIterator(.viewport);
while (iter.next()) |row| row.setDirty(false);
}
// Resize
try s.resizeWithoutReflow(10, 5);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Everything should be dirty
{
var iter = s.rowIterator(.viewport);
while (iter.next()) |row| try testing.expect(row.isDirty());
}
}
test "Screen: resize (no reflow) more rows with soft wrapping" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 2, 3);
defer s.deinit();
const str = "1A2B\n3C4E\n5F6G";
try s.testWriteString(str);
// Every second row should be wrapped
{
var y: usize = 0;
while (y < 6) : (y += 1) {
const row = s.getRow(.{ .screen = y });
const wrapped = (y % 2 == 0);
try testing.expectEqual(wrapped, row.header().flags.wrap);
}
}
// Resize
try s.resizeWithoutReflow(10, 2);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "1A\n2B\n3C\n4E\n5F\n6G";
try testing.expectEqualStrings(expected, contents);
}
// Every second row should be wrapped
{
var y: usize = 0;
while (y < 6) : (y += 1) {
const row = s.getRow(.{ .screen = y });
const wrapped = (y % 2 == 0);
try testing.expectEqual(wrapped, row.header().flags.wrap);
}
}
}
test "Screen: resize more rows no scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
const cursor = s.cursor;
try s.resize(10, 5);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: resize more rows with empty scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 10);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
const cursor = s.cursor;
try s.resize(10, 5);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: resize more rows with populated scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 5);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL\n4ABCD\n5EFGH";
try s.testWriteString(str);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "3IJKL\n4ABCD\n5EFGH";
try testing.expectEqualStrings(expected, contents);
}
// Set our cursor to be on the "4"
s.cursor.x = 0;
s.cursor.y = 1;
try testing.expectEqual(@as(u32, '4'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
// Resize
try s.resize(10, 5);
// Cursor should still be on the "4"
try testing.expectEqual(@as(u32, '4'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: resize more rows and cols with wrapping" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 4, 2, 0);
defer s.deinit();
const str = "1A2B\n3C4D";
try s.testWriteString(str);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "1A\n2B\n3C\n4D";
try testing.expectEqualStrings(expected, contents);
}
try s.resize(10, 5);
// Cursor should move due to wrapping
try testing.expectEqual(@as(usize, 3), s.cursor.x);
try testing.expectEqual(@as(usize, 1), s.cursor.y);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: resize more cols no reflow" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
const cursor = s.cursor;
try s.resize(3, 10);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: resize more cols trailing background colors" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1AB";
try s.testWriteString(str);
const cursor = s.cursor;
// Color our cells red
const pen: Cell = .{ .bg = .{ .r = 0xFF }, .attrs = .{ .has_bg = true } };
for (s.cursor.x..s.cols) |x| {
const row = s.getRow(.{ .active = s.cursor.y });
const cell = row.getCellPtr(x);
cell.* = pen;
}
for ((s.cursor.y + 1)..s.rows) |y| {
const row = s.getRow(.{ .active = y });
row.fill(pen);
}
try s.resize(3, 10);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Verify all our trailing cells have the color
for (s.cursor.x..s.cols) |x| {
const row = s.getRow(.{ .active = s.cursor.y });
const cell = row.getCellPtr(x);
try testing.expectEqual(pen, cell.*);
}
for ((s.cursor.y + 1)..s.rows) |y| {
const row = s.getRow(.{ .active = y });
for (0..s.cols) |x| {
const cell = row.getCellPtr(x);
try testing.expectEqual(pen, cell.*);
}
}
}
test "Screen: resize more cols no reflow preserves semantic prompt" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
// Set one of the rows to be a prompt
{
const row = s.getRow(.{ .active = 1 });
row.setSemanticPrompt(.prompt);
}
const cursor = s.cursor;
try s.resize(3, 10);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Our one row should still be a semantic prompt, the others should not.
{
const row = s.getRow(.{ .active = 0 });
try testing.expect(row.getSemanticPrompt() == .unknown);
}
{
const row = s.getRow(.{ .active = 1 });
try testing.expect(row.getSemanticPrompt() == .prompt);
}
{
const row = s.getRow(.{ .active = 2 });
try testing.expect(row.getSemanticPrompt() == .unknown);
}
}
test "Screen: resize more cols grapheme map" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
// Attach graphemes to all the columns
{
var iter = s.rowIterator(.viewport);
while (iter.next()) |row| {
var col: usize = 0;
while (col < s.cols) : (col += 1) {
try row.attachGrapheme(col, 0xFE0F);
}
}
}
const cursor = s.cursor;
try s.resize(3, 10);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: resize more cols with reflow that fits full width" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD2EFGH\n3IJKL";
try s.testWriteString(str);
// Verify we soft wrapped
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "1ABCD\n2EFGH\n3IJKL";
try testing.expectEqualStrings(expected, contents);
}
// Let's put our cursor on row 2, where the soft wrap is
s.cursor.x = 0;
s.cursor.y = 1;
try testing.expectEqual(@as(u32, '2'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
// Resize and verify we undid the soft wrap because we have space now
try s.resize(3, 10);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Our cursor should've moved
try testing.expectEqual(@as(usize, 5), s.cursor.x);
try testing.expectEqual(@as(usize, 0), s.cursor.y);
}
test "Screen: resize more cols with reflow that ends in newline" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 6, 0);
defer s.deinit();
const str = "1ABCD2EFGH\n3IJKL";
try s.testWriteString(str);
// Verify we soft wrapped
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "1ABCD2\nEFGH\n3IJKL";
try testing.expectEqualStrings(expected, contents);
}
// Let's put our cursor on the last row
s.cursor.x = 0;
s.cursor.y = 2;
try testing.expectEqual(@as(u32, '3'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
// Resize and verify we undid the soft wrap because we have space now
try s.resize(3, 10);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Our cursor should still be on the 3
try testing.expectEqual(@as(u32, '3'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
}
test "Screen: resize more cols with reflow that forces more wrapping" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD2EFGH\n3IJKL";
try s.testWriteString(str);
// Let's put our cursor on row 2, where the soft wrap is
s.cursor.x = 0;
s.cursor.y = 1;
try testing.expectEqual(@as(u32, '2'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
// Verify we soft wrapped
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "1ABCD\n2EFGH\n3IJKL";
try testing.expectEqualStrings(expected, contents);
}
// Resize and verify we undid the soft wrap because we have space now
try s.resize(3, 7);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "1ABCD2E\nFGH\n3IJKL";
try testing.expectEqualStrings(expected, contents);
}
// Our cursor should've moved
try testing.expectEqual(@as(usize, 5), s.cursor.x);
try testing.expectEqual(@as(usize, 0), s.cursor.y);
}
test "Screen: resize more cols with reflow that unwraps multiple times" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD2EFGH3IJKL";
try s.testWriteString(str);
// Let's put our cursor on row 2, where the soft wrap is
s.cursor.x = 0;
s.cursor.y = 2;
try testing.expectEqual(@as(u32, '3'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
// Verify we soft wrapped
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "1ABCD\n2EFGH\n3IJKL";
try testing.expectEqualStrings(expected, contents);
}
// Resize and verify we undid the soft wrap because we have space now
try s.resize(3, 15);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "1ABCD2EFGH3IJKL";
try testing.expectEqualStrings(expected, contents);
}
// Our cursor should've moved
try testing.expectEqual(@as(usize, 10), s.cursor.x);
try testing.expectEqual(@as(usize, 0), s.cursor.y);
}
test "Screen: resize more cols with populated scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 5);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL\n4ABCD5EFGH";
try s.testWriteString(str);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "3IJKL\n4ABCD\n5EFGH";
try testing.expectEqualStrings(expected, contents);
}
// // Set our cursor to be on the "5"
s.cursor.x = 0;
s.cursor.y = 2;
try testing.expectEqual(@as(u32, '5'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
// Resize
try s.resize(3, 10);
// Cursor should still be on the "5"
log.warn("cursor={}", .{s.cursor});
try testing.expectEqual(@as(u32, '5'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "2EFGH\n3IJKL\n4ABCD5EFGH";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize more cols with reflow" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 2, 5);
defer s.deinit();
const str = "1ABC\n2DEF\n3ABC\n4DEF";
try s.testWriteString(str);
// Let's put our cursor on row 2, where the soft wrap is
s.cursor.x = 0;
s.cursor.y = 2;
try testing.expectEqual(@as(u32, 'E'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
// Verify we soft wrapped
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "BC\n4D\nEF";
try testing.expectEqualStrings(expected, contents);
}
// Resize and verify we undid the soft wrap because we have space now
try s.resize(3, 7);
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "1ABC\n2DEF\n3ABC\n4DEF";
try testing.expectEqualStrings(expected, contents);
}
// Our cursor should've moved
try testing.expectEqual(@as(usize, 2), s.cursor.x);
try testing.expectEqual(@as(usize, 2), s.cursor.y);
}
test "Screen: resize less rows no scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
s.cursor.x = 0;
s.cursor.y = 0;
const cursor = s.cursor;
try s.resize(1, 5);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "3IJKL";
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "3IJKL";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize less rows moving cursor" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
// Put our cursor on the last line
s.cursor.x = 1;
s.cursor.y = 2;
try testing.expectEqual(@as(u32, 'I'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
// Resize
try s.resize(1, 5);
// Cursor should be on the last line
try testing.expectEqual(@as(usize, 1), s.cursor.x);
try testing.expectEqual(@as(usize, 0), s.cursor.y);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "3IJKL";
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "3IJKL";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize less rows with empty scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 10);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL";
try s.testWriteString(str);
try s.resize(1, 5);
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "3IJKL";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize less rows with populated scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 5);
defer s.deinit();
const str = "1ABCD\n2EFGH\n3IJKL\n4ABCD\n5EFGH";
try s.testWriteString(str);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "3IJKL\n4ABCD\n5EFGH";
try testing.expectEqualStrings(expected, contents);
}
// Resize
try s.resize(1, 5);
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "5EFGH";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize less rows with full scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 3);
defer s.deinit();
const str = "00000\n1ABCD\n2EFGH\n3IJKL\n4ABCD\n5EFGH";
try s.testWriteString(str);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "3IJKL\n4ABCD\n5EFGH";
try testing.expectEqualStrings(expected, contents);
}
const cursor = s.cursor;
try testing.expectEqual(Cursor{ .x = 4, .y = 2 }, cursor);
// Resize
try s.resize(2, 5);
// Cursor should stay in the same relative place (bottom of the
// screen, same character).
try testing.expectEqual(Cursor{ .x = 4, .y = 1 }, s.cursor);
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "1ABCD\n2EFGH\n3IJKL\n4ABCD\n5EFGH";
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "4ABCD\n5EFGH";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize less cols no reflow" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1AB\n2EF\n3IJ";
try s.testWriteString(str);
s.cursor.x = 0;
s.cursor.y = 0;
const cursor = s.cursor;
try s.resize(3, 3);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: resize less cols trailing background colors" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 10, 0);
defer s.deinit();
const str = "1AB";
try s.testWriteString(str);
const cursor = s.cursor;
// Color our cells red
const pen: Cell = .{ .bg = .{ .r = 0xFF }, .attrs = .{ .has_bg = true } };
for (s.cursor.x..s.cols) |x| {
const row = s.getRow(.{ .active = s.cursor.y });
const cell = row.getCellPtr(x);
cell.* = pen;
}
for ((s.cursor.y + 1)..s.rows) |y| {
const row = s.getRow(.{ .active = y });
row.fill(pen);
}
try s.resize(3, 5);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Verify all our trailing cells have the color
for (s.cursor.x..s.cols) |x| {
const row = s.getRow(.{ .active = s.cursor.y });
const cell = row.getCellPtr(x);
try testing.expectEqual(pen, cell.*);
}
}
test "Screen: resize less cols with graphemes" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1AB\n2EF\n3IJ";
try s.testWriteString(str);
// Attach graphemes to all the columns
{
var iter = s.rowIterator(.viewport);
while (iter.next()) |row| {
var col: usize = 0;
while (col < 3) : (col += 1) {
try row.attachGrapheme(col, 0xFE0F);
}
}
}
s.cursor.x = 0;
s.cursor.y = 0;
const cursor = s.cursor;
try s.resize(3, 3);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: resize less cols no reflow preserves semantic prompt" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1AB\n2EF\n3IJ";
try s.testWriteString(str);
// Set one of the rows to be a prompt
{
const row = s.getRow(.{ .active = 1 });
row.setSemanticPrompt(.prompt);
}
s.cursor.x = 0;
s.cursor.y = 0;
const cursor = s.cursor;
try s.resize(3, 3);
// Cursor should not move
try testing.expectEqual(cursor, s.cursor);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Our one row should still be a semantic prompt, the others should not.
{
const row = s.getRow(.{ .active = 0 });
try testing.expect(row.getSemanticPrompt() == .unknown);
}
{
const row = s.getRow(.{ .active = 1 });
try testing.expect(row.getSemanticPrompt() == .prompt);
}
{
const row = s.getRow(.{ .active = 2 });
try testing.expect(row.getSemanticPrompt() == .unknown);
}
}
test "Screen: resize less cols with reflow but row space" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "1ABCD";
try s.testWriteString(str);
// Put our cursor on the end
s.cursor.x = 4;
s.cursor.y = 0;
try testing.expectEqual(@as(u32, 'D'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
try s.resize(3, 3);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "1AB\nCD";
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "1AB\nCD";
try testing.expectEqualStrings(expected, contents);
}
// Cursor should be on the last line
try testing.expectEqual(@as(usize, 1), s.cursor.x);
try testing.expectEqual(@as(usize, 1), s.cursor.y);
}
test "Screen: resize less cols with reflow with trimmed rows" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "3IJKL\n4ABCD\n5EFGH";
try s.testWriteString(str);
try s.resize(3, 3);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "CD\n5EF\nGH";
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "CD\n5EF\nGH";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize less cols with reflow with trimmed rows and scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 1);
defer s.deinit();
const str = "3IJKL\n4ABCD\n5EFGH";
try s.testWriteString(str);
try s.resize(3, 3);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "CD\n5EF\nGH";
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "4AB\nCD\n5EF\nGH";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize less cols with reflow previously wrapped" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 0);
defer s.deinit();
const str = "3IJKL4ABCD5EFGH";
try s.testWriteString(str);
// Check
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "3IJKL\n4ABCD\n5EFGH";
try testing.expectEqualStrings(expected, contents);
}
try s.resize(3, 3);
// {
// var contents = try s.testString(alloc, .viewport);
// defer alloc.free(contents);
// const expected = "CD\n5EF\nGH";
// try testing.expectEqualStrings(expected, contents);
// }
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "ABC\nD5E\nFGH";
try testing.expectEqualStrings(expected, contents);
}
}
test "Screen: resize less cols with reflow and scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 5);
defer s.deinit();
const str = "1A\n2B\n3C\n4D\n5E";
try s.testWriteString(str);
// Put our cursor on the end
s.cursor.x = 1;
s.cursor.y = s.rows - 1;
try testing.expectEqual(@as(u32, 'E'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
try s.resize(3, 3);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "3C\n4D\n5E";
try testing.expectEqualStrings(expected, contents);
}
// Cursor should be on the last line
try testing.expectEqual(@as(usize, 1), s.cursor.x);
try testing.expectEqual(@as(usize, 2), s.cursor.y);
}
test "Screen: resize less cols with reflow previously wrapped and scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 2);
defer s.deinit();
const str = "1ABCD2EFGH3IJKL4ABCD5EFGH";
try s.testWriteString(str);
// Check
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "3IJKL\n4ABCD\n5EFGH";
try testing.expectEqualStrings(expected, contents);
}
// Put our cursor on the end
s.cursor.x = s.cols - 1;
s.cursor.y = s.rows - 1;
try testing.expectEqual(@as(u32, 'H'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
try s.resize(3, 3);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "CD5\nEFG\nH";
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "JKL\n4AB\nCD5\nEFG\nH";
try testing.expectEqualStrings(expected, contents);
}
// Cursor should be on the last line
try testing.expectEqual(@as(u32, 'H'), s.getCell(.active, s.cursor.y, s.cursor.x).char);
try testing.expectEqual(@as(usize, 0), s.cursor.x);
try testing.expectEqual(@as(usize, 2), s.cursor.y);
}
test "Screen: resize more rows, less cols with reflow with scrollback" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 3);
defer s.deinit();
const str = "1ABCD\n2EFGH3IJKL\n4MNOP";
try s.testWriteString(str);
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "1ABCD\n2EFGH\n3IJKL\n4MNOP";
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "2EFGH\n3IJKL\n4MNOP";
try testing.expectEqualStrings(expected, contents);
}
try s.resize(10, 2);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
const expected = "BC\nD\n2E\nFG\nH3\nIJ\nKL\n4M\nNO\nP";
try testing.expectEqualStrings(expected, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
const expected = "1A\nBC\nD\n2E\nFG\nH3\nIJ\nKL\n4M\nNO\nP";
try testing.expectEqualStrings(expected, contents);
}
}
// This seems like it should work fine but for some reason in practice
// in the initial implementation I found this bug! This is a regression
// test for that.
test "Screen: resize more rows then shrink again" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 10);
defer s.deinit();
const str = "1ABC";
try s.testWriteString(str);
// Grow
try s.resize(10, 5);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Shrink
try s.resize(3, 5);
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
// Grow again
try s.resize(10, 5);
{
var contents = try s.testString(alloc, .viewport);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
{
var contents = try s.testString(alloc, .screen);
defer alloc.free(contents);
try testing.expectEqualStrings(str, contents);
}
}
test "Screen: jump zero" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 10);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n");
try s.testWriteString("4ABCD\n5EFGH\n6IJKL");
try testing.expect(s.viewportIsBottom());
// Set semantic prompts
{
const row = s.getRow(.{ .screen = 1 });
row.setSemanticPrompt(.prompt);
}
{
const row = s.getRow(.{ .screen = 5 });
row.setSemanticPrompt(.prompt);
}
try testing.expect(!s.jump(.{ .prompt_delta = 0 }));
try testing.expectEqual(@as(usize, 3), s.viewport);
}
test "Screen: jump to prompt" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try init(alloc, 3, 5, 10);
defer s.deinit();
try s.testWriteString("1ABCD\n2EFGH\n3IJKL\n");
try s.testWriteString("4ABCD\n5EFGH\n6IJKL");
try testing.expect(s.viewportIsBottom());
// Set semantic prompts
{
const row = s.getRow(.{ .screen = 1 });
row.setSemanticPrompt(.prompt);
}
{
const row = s.getRow(.{ .screen = 5 });
row.setSemanticPrompt(.prompt);
}
// Jump back
try testing.expect(s.jump(.{ .prompt_delta = -1 }));
try testing.expectEqual(@as(usize, 1), s.viewport);
// Jump back
try testing.expect(!s.jump(.{ .prompt_delta = -1 }));
try testing.expectEqual(@as(usize, 1), s.viewport);
// Jump forward
try testing.expect(s.jump(.{ .prompt_delta = 1 }));
try testing.expectEqual(@as(usize, 3), s.viewport);
// Jump forward
try testing.expect(!s.jump(.{ .prompt_delta = 1 }));
try testing.expectEqual(@as(usize, 3), s.viewport);
}