ghostty/shaders/cell.v.glsl
2022-10-06 15:45:05 -07:00

236 lines
8.5 KiB
GLSL

#version 330 core
// These are the possible modes that "mode" can be set to. This is
// used to multiplex multiple render modes into a single shader.
//
// NOTE: this must be kept in sync with the fragment shader
const uint MODE_BG = 1u;
const uint MODE_FG = 2u;
const uint MODE_FG_COLOR = 7u;
const uint MODE_CURSOR_RECT = 3u;
const uint MODE_CURSOR_RECT_HOLLOW = 4u;
const uint MODE_CURSOR_BAR = 5u;
const uint MODE_UNDERLINE = 6u;
const uint MODE_STRIKETHROUGH = 8u;
// The grid coordinates (x, y) where x < columns and y < rows
layout (location = 0) in vec2 grid_coord;
// Position of the glyph in the texture.
layout (location = 1) in vec2 glyph_pos;
// Width/height of the glyph
layout (location = 2) in vec2 glyph_size;
// Offset of the top-left corner of the glyph when rendered in a rect.
layout (location = 3) in vec2 glyph_offset;
// The background color for this cell in RGBA (0 to 1.0)
layout (location = 4) in vec4 fg_color_in;
// The background color for this cell in RGBA (0 to 1.0)
layout (location = 5) in vec4 bg_color_in;
// The mode of this shader. The mode determines what fields are used,
// what the output will be, etc. This shader is capable of executing in
// multiple "modes" so that we can share some logic and so that we can draw
// the entire terminal grid in a single GPU pass.
layout (location = 6) in uint mode_in;
// The width in cells of this item.
layout (location = 7) in uint grid_width;
// The background or foreground color for the fragment, depending on
// whether this is a background or foreground pass.
flat out vec4 color;
// The x/y coordinate for the glyph representing the font.
out vec2 glyph_tex_coords;
// The position of the cell top-left corner in screen cords. z and w
// are width and height.
flat out vec2 screen_cell_pos;
// Pass the mode forward to the fragment shader.
flat out uint mode;
uniform sampler2D text;
uniform sampler2D text_color;
uniform vec2 cell_size;
uniform mat4 projection;
uniform float underline_position;
uniform float underline_thickness;
uniform float strikethrough_position;
uniform float strikethrough_thickness;
/********************************************************************
* Modes
*
*-------------------------------------------------------------------
* MODE_BG
*
* In MODE_BG, this shader renders only the background color for the
* cell. This is a simple mode where we generate a simple rectangle
* made up of 4 vertices and then it is filled. In this mode, the output
* "color" is the fill color for the bg.
*
*-------------------------------------------------------------------
* MODE_FG
*
* In MODE_FG, the shader renders the glyph onto this cell and utilizes
* the glyph texture "text". In this mode, the output "color" is the
* fg color to use for the glyph.
*
*/
void main() {
// We always forward our mode unmasked because the fragment
// shader doesn't use any of the masks.
mode = mode_in;
// Top-left cell coordinates converted to world space
// Example: (1,0) with a 30 wide cell is converted to (30,0)
vec2 cell_pos = cell_size * grid_coord;
// Our Z value. For now we just use grid_z directly but we pull it
// out here so the variable name is more uniform to our cell_pos and
// in case we want to do any other math later.
float cell_z = 0.0;
// Turn the cell position into a vertex point depending on the
// gl_VertexID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use gl_VertexID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
vec2 position;
position.x = (gl_VertexID == 0 || gl_VertexID == 1) ? 1. : 0.;
position.y = (gl_VertexID == 0 || gl_VertexID == 3) ? 0. : 1.;
// Scaled for wide chars
vec2 cell_size_scaled = cell_size;
cell_size_scaled.x = cell_size_scaled.x * grid_width;
switch (mode) {
case MODE_BG:
// Calculate the final position of our cell in world space.
// We have to add our cell size since our vertices are offset
// one cell up and to the left. (Do the math to verify yourself)
cell_pos = cell_pos + cell_size_scaled * position;
gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
color = bg_color_in / 255.0;
break;
case MODE_FG:
case MODE_FG_COLOR:
vec2 glyph_offset_calc = glyph_offset;
// If the glyph is larger than our cell, we need to downsample it.
// The "+ 3" here is to give some wiggle room for fonts that are
// BARELY over it.
vec2 glyph_size_downsampled = glyph_size;
if (glyph_size_downsampled.y > cell_size_scaled.y + 2) {
// Magic 0.9 and 1.1 are padding to make emoji look better
glyph_size_downsampled.y = cell_size_scaled.y * 0.9;
glyph_size_downsampled.x = glyph_size.x * (glyph_size_downsampled.y / glyph_size.y);
glyph_offset_calc.y = glyph_offset.y * 1.1 * (glyph_size_downsampled.y / glyph_size.y);
}
// The glyph_offset.y is the y bearing, a y value that when added
// to the baseline is the offset (+y is up). Our grid goes down.
// So we flip it with `cell_size.y - glyph_offset.y`.
glyph_offset_calc.y = cell_size_scaled.y - glyph_offset_calc.y;
// Calculate the final position of the cell.
cell_pos = cell_pos + glyph_size_downsampled * position + glyph_offset_calc;
gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
// We need to convert our texture position and size to normalized
// device coordinates (0 to 1.0) by dividing by the size of the texture.
ivec2 text_size;
switch(mode) {
case MODE_FG:
text_size = textureSize(text, 0);
break;
case MODE_FG_COLOR:
text_size = textureSize(text_color, 0);
break;
}
vec2 glyph_tex_pos = glyph_pos / text_size;
vec2 glyph_tex_size = glyph_size / text_size;
glyph_tex_coords = glyph_tex_pos + glyph_tex_size * position;
// Set our foreground color output
color = fg_color_in / 255.;
break;
case MODE_CURSOR_RECT:
// Same as background since we're taking up the whole cell.
cell_pos = cell_pos + cell_size_scaled * position;
gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
color = bg_color_in / 255.0;
break;
case MODE_CURSOR_RECT_HOLLOW:
// Top-left position of this cell is needed for the hollow rect.
screen_cell_pos = cell_pos;
// Same as background since we're taking up the whole cell.
cell_pos = cell_pos + cell_size_scaled * position;
gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
color = bg_color_in / 255.0;
break;
case MODE_CURSOR_BAR:
// Make the bar a smaller version of our cell
vec2 bar_size = vec2(cell_size.x * 0.2, cell_size.y);
// Same as background since we're taking up the whole cell.
cell_pos = cell_pos + bar_size * position;
gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
color = bg_color_in / 255.0;
break;
case MODE_UNDERLINE:
// Underline Y value is just our thickness
vec2 underline_size = vec2(cell_size_scaled.x, underline_thickness);
// Position the underline where we are told to
vec2 underline_offset = vec2(cell_size_scaled.x, underline_position) ;
// Go to the bottom of the cell, take away the size of the
// underline, and that is our position. We also float it slightly
// above the bottom.
cell_pos = cell_pos + underline_offset - (underline_size * position);
gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
color = fg_color_in / 255.0;
break;
case MODE_STRIKETHROUGH:
// Strikethrough Y value is just our thickness
vec2 strikethrough_size = vec2(cell_size_scaled.x, strikethrough_thickness);
// Position the strikethrough where we are told to
vec2 strikethrough_offset = vec2(cell_size_scaled.x, strikethrough_position) ;
// Go to the bottom of the cell, take away the size of the
// strikethrough, and that is our position. We also float it slightly
// above the bottom.
cell_pos = cell_pos + strikethrough_offset - (strikethrough_size * position);
gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
color = fg_color_in / 255.0;
break;
}
}