mirror of
https://github.com/ghostty-org/ghostty.git
synced 2025-07-14 15:56:13 +03:00
289 lines
9.0 KiB
Zig
289 lines
9.0 KiB
Zig
//! This exposes primitives to draw 2D graphics and export the graphic to
|
|
//! a font atlas.
|
|
const std = @import("std");
|
|
const assert = std.debug.assert;
|
|
const Allocator = std.mem.Allocator;
|
|
const pixman = @import("pixman");
|
|
const font = @import("../main.zig");
|
|
|
|
pub const Point = struct {
|
|
x: i32,
|
|
y: i32,
|
|
};
|
|
|
|
pub const Line = struct {
|
|
p1: Point,
|
|
p2: Point,
|
|
};
|
|
|
|
pub const Box = struct {
|
|
x1: i32,
|
|
y1: i32,
|
|
x2: i32,
|
|
y2: i32,
|
|
|
|
pub fn rect(self: Box) Rect {
|
|
const tl_x = @min(self.x1, self.x2);
|
|
const tl_y = @min(self.y1, self.y2);
|
|
const br_x = @max(self.x1, self.x2);
|
|
const br_y = @max(self.y1, self.y2);
|
|
return .{
|
|
.x = tl_x,
|
|
.y = tl_y,
|
|
.width = @intCast(u32, br_x - tl_x),
|
|
.height = @intCast(u32, br_y - tl_y),
|
|
};
|
|
}
|
|
};
|
|
|
|
pub const Rect = struct {
|
|
x: i32,
|
|
y: i32,
|
|
width: u32,
|
|
height: u32,
|
|
};
|
|
|
|
pub const Triangle = struct {
|
|
p1: Point,
|
|
p2: Point,
|
|
p3: Point,
|
|
};
|
|
|
|
pub const Trapezoid = struct {
|
|
top: i32,
|
|
bottom: i32,
|
|
left: Line,
|
|
right: Line,
|
|
};
|
|
|
|
/// We only use alpha-channel so a pixel can only be "on" or "off".
|
|
pub const Color = enum(u8) {
|
|
on = 255,
|
|
off = 0,
|
|
_,
|
|
|
|
fn pixmanColor(self: Color) pixman.Color {
|
|
// pixman uses u16 for color while our color value is u8 so we
|
|
// scale it up proportionally.
|
|
const max = @intToFloat(f32, std.math.maxInt(u8));
|
|
const max_u16 = @intToFloat(f32, std.math.maxInt(u16));
|
|
const unscaled = @intToFloat(f32, @enumToInt(self));
|
|
const scaled = @floatToInt(u16, (unscaled * max_u16) / max);
|
|
return .{ .red = 0, .green = 0, .blue = 0, .alpha = scaled };
|
|
}
|
|
};
|
|
|
|
/// Composition operations that are supported.
|
|
pub const CompositionOp = enum {
|
|
// Note: more can be added here as needed.
|
|
|
|
destination_out,
|
|
|
|
fn pixmanOp(self: CompositionOp) pixman.Op {
|
|
return switch (self) {
|
|
.destination_out => .out,
|
|
};
|
|
}
|
|
};
|
|
|
|
pub const Canvas = switch (font.options.backend) {
|
|
.web_canvas => WebCanvasImpl,
|
|
else => PixmanImpl,
|
|
};
|
|
|
|
const WebCanvasImpl = struct {};
|
|
|
|
const PixmanImpl = struct {
|
|
/// The underlying image.
|
|
image: *pixman.Image,
|
|
|
|
/// The raw data buffer.
|
|
data: []u32,
|
|
|
|
pub fn init(alloc: Allocator, width: u32, height: u32) !Canvas {
|
|
// Determine the config for our image buffer. The images we draw
|
|
// for boxes are always 8bpp
|
|
const format: pixman.FormatCode = .a8;
|
|
const stride = format.strideForWidth(width);
|
|
const len = @intCast(usize, stride * @intCast(c_int, height));
|
|
|
|
// Allocate our buffer. pixman uses []u32 so we divide our length
|
|
// by 4 since u32 / u8 = 4.
|
|
var data = try alloc.alloc(u32, len / 4);
|
|
errdefer alloc.free(data);
|
|
std.mem.set(u32, data, 0);
|
|
|
|
// Create the image we'll draw to
|
|
const img = try pixman.Image.createBitsNoClear(
|
|
format,
|
|
@intCast(c_int, width),
|
|
@intCast(c_int, height),
|
|
data.ptr,
|
|
stride,
|
|
);
|
|
errdefer _ = img.unref();
|
|
|
|
return Canvas{
|
|
.image = img,
|
|
.data = data,
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: *Canvas, alloc: Allocator) void {
|
|
alloc.free(self.data);
|
|
_ = self.image.unref();
|
|
self.* = undefined;
|
|
}
|
|
|
|
/// Write the data in this drawing to the atlas.
|
|
pub fn writeAtlas(self: *Canvas, alloc: Allocator, atlas: *font.Atlas) !font.Atlas.Region {
|
|
assert(atlas.format == .greyscale);
|
|
|
|
const width = @intCast(u32, self.image.getWidth());
|
|
const height = @intCast(u32, self.image.getHeight());
|
|
const region = try atlas.reserve(alloc, width, height);
|
|
if (region.width > 0 and region.height > 0) {
|
|
const depth = atlas.format.depth();
|
|
|
|
// Convert our []u32 to []u8 since we use 8bpp formats
|
|
const stride = self.image.getStride();
|
|
const data = @alignCast(
|
|
@alignOf(u8),
|
|
@ptrCast([*]u8, self.data.ptr)[0 .. self.data.len * 4],
|
|
);
|
|
|
|
// We can avoid a buffer copy if our atlas width and bitmap
|
|
// width match and the bitmap pitch is just the width (meaning
|
|
// the data is tightly packed).
|
|
const needs_copy = !(width * depth == stride);
|
|
|
|
// If we need to copy the data, we copy it into a temporary buffer.
|
|
const buffer = if (needs_copy) buffer: {
|
|
var temp = try alloc.alloc(u8, width * height * depth);
|
|
var dst_ptr = temp;
|
|
var src_ptr = data.ptr;
|
|
var i: usize = 0;
|
|
while (i < height) : (i += 1) {
|
|
std.mem.copy(u8, dst_ptr, src_ptr[0 .. width * depth]);
|
|
dst_ptr = dst_ptr[width * depth ..];
|
|
src_ptr += @intCast(usize, stride);
|
|
}
|
|
break :buffer temp;
|
|
} else data[0..(width * height * depth)];
|
|
defer if (buffer.ptr != data.ptr) alloc.free(buffer);
|
|
|
|
// Write the glyph information into the atlas
|
|
assert(region.width == width);
|
|
assert(region.height == height);
|
|
atlas.set(region, buffer);
|
|
}
|
|
|
|
return region;
|
|
}
|
|
|
|
/// Draw and fill a rectangle. This is the main primitive for drawing
|
|
/// lines as well (which are just generally skinny rectangles...)
|
|
pub fn rect(self: *Canvas, v: Rect, color: Color) void {
|
|
const boxes = &[_]pixman.Box32{
|
|
.{
|
|
.x1 = @intCast(i32, v.x),
|
|
.y1 = @intCast(i32, v.y),
|
|
.x2 = @intCast(i32, v.x + @intCast(i32, v.width)),
|
|
.y2 = @intCast(i32, v.y + @intCast(i32, v.height)),
|
|
},
|
|
};
|
|
|
|
self.image.fillBoxes(.src, color.pixmanColor(), boxes) catch {};
|
|
}
|
|
|
|
/// Draw and fill a trapezoid.
|
|
pub fn trapezoid(self: *Canvas, t: Trapezoid) void {
|
|
self.image.rasterizeTrapezoid(.{
|
|
.top = pixman.Fixed.init(t.top),
|
|
.bottom = pixman.Fixed.init(t.bottom),
|
|
.left = .{
|
|
.p1 = .{
|
|
.x = pixman.Fixed.init(t.left.p1.x),
|
|
.y = pixman.Fixed.init(t.left.p1.y),
|
|
},
|
|
.p2 = .{
|
|
.x = pixman.Fixed.init(t.left.p2.x),
|
|
.y = pixman.Fixed.init(t.left.p2.y),
|
|
},
|
|
},
|
|
.right = .{
|
|
.p1 = .{
|
|
.x = pixman.Fixed.init(t.right.p1.x),
|
|
.y = pixman.Fixed.init(t.right.p1.y),
|
|
},
|
|
.p2 = .{
|
|
.x = pixman.Fixed.init(t.right.p2.x),
|
|
.y = pixman.Fixed.init(t.right.p2.y),
|
|
},
|
|
},
|
|
}, 0, 0);
|
|
}
|
|
|
|
/// Draw and fill a triangle.
|
|
pub fn triangle(self: *Canvas, t: Triangle, color: Color) void {
|
|
const tris = &[_]pixman.Triangle{
|
|
.{
|
|
.p1 = .{ .x = pixman.Fixed.init(t.p1.x), .y = pixman.Fixed.init(t.p1.y) },
|
|
.p2 = .{ .x = pixman.Fixed.init(t.p2.x), .y = pixman.Fixed.init(t.p2.y) },
|
|
.p3 = .{ .x = pixman.Fixed.init(t.p3.x), .y = pixman.Fixed.init(t.p3.y) },
|
|
},
|
|
};
|
|
|
|
const src = pixman.Image.createSolidFill(color.pixmanColor()) catch return;
|
|
defer _ = src.unref();
|
|
self.image.compositeTriangles(.over, src, .a8, 0, 0, 0, 0, tris);
|
|
}
|
|
|
|
/// Composite one image on another.
|
|
pub fn composite(self: *Canvas, op: CompositionOp, src: *const Canvas, dest: Rect) void {
|
|
self.image.composite(
|
|
op.pixmanOp(),
|
|
src.image,
|
|
null,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
@intCast(i16, dest.x),
|
|
@intCast(i16, dest.y),
|
|
@intCast(u16, dest.width),
|
|
@intCast(u16, dest.height),
|
|
);
|
|
}
|
|
|
|
/// Returns a copy of the raw pixel data in A8 format. The returned value
|
|
/// must be freed by the caller. The returned data always has a stride
|
|
/// exactly equivalent to the width.
|
|
pub fn getData(self: *const Canvas, alloc: Allocator) ![]u8 {
|
|
const width = @intCast(u32, self.image.getWidth());
|
|
const height = @intCast(u32, self.image.getHeight());
|
|
|
|
var result = try alloc.alloc(u8, height * width);
|
|
errdefer alloc.free(result);
|
|
|
|
// We want to convert our []u32 to []u8 since we use an 8bpp format
|
|
var data_u32 = self.image.getData();
|
|
const len_u8 = data_u32.len * 4;
|
|
var real_data = @alignCast(@alignOf(u8), @ptrCast([*]u8, data_u32.ptr)[0..len_u8]);
|
|
const real_stride = self.image.getStride();
|
|
|
|
// Convert our strided data
|
|
var r: u32 = 0;
|
|
while (r < height) : (r += 1) {
|
|
var c: u32 = 0;
|
|
while (c < width) : (c += 1) {
|
|
const src = r * @intCast(usize, real_stride) + c;
|
|
const dst = (r * c) + c;
|
|
result[dst] = real_data[src];
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
};
|