ghostty/shaders/cell.v.glsl
2022-06-28 14:22:25 -07:00

182 lines
6.5 KiB
GLSL

#version 330 core
// These are the possible modes that "mode" can be set to. This is
// used to multiplex multiple render modes into a single shader.
//
// NOTE: this must be kept in sync with the fragment shader
const uint MODE_BG = 1u;
const uint MODE_FG = 2u;
const uint MODE_CURSOR_RECT = 3u;
const uint MODE_CURSOR_RECT_HOLLOW = 4u;
const uint MODE_CURSOR_BAR = 5u;
const uint MODE_UNDERLINE = 6u;
// The grid coordinates (x, y) where x < columns and y < rows
layout (location = 0) in vec2 grid_coord;
// Position of the glyph in the texture.
layout (location = 1) in vec2 glyph_pos;
// Width/height of the glyph
layout (location = 2) in vec2 glyph_size;
// Offset of the top-left corner of the glyph when rendered in a rect.
layout (location = 3) in vec2 glyph_offset;
// The background color for this cell in RGBA (0 to 1.0)
layout (location = 4) in vec4 fg_color_in;
// The background color for this cell in RGBA (0 to 1.0)
layout (location = 5) in vec4 bg_color_in;
// The mode of this shader. The mode determines what fields are used,
// what the output will be, etc. This shader is capable of executing in
// multiple "modes" so that we can share some logic and so that we can draw
// the entire terminal grid in a single GPU pass.
layout (location = 6) in uint mode_in;
// The background or foreground color for the fragment, depending on
// whether this is a background or foreground pass.
flat out vec4 color;
// The x/y coordinate for the glyph representing the font.
out vec2 glyph_tex_coords;
// The position of the cell top-left corner in screen cords. z and w
// are width and height.
flat out vec2 screen_cell_pos;
// Pass the mode forward to the fragment shader.
flat out uint mode;
uniform sampler2D text;
uniform vec2 cell_size;
uniform mat4 projection;
uniform float glyph_baseline;
/********************************************************************
* Modes
*
*-------------------------------------------------------------------
* MODE_BG
*
* In MODE_BG, this shader renders only the background color for the
* cell. This is a simple mode where we generate a simple rectangle
* made up of 4 vertices and then it is filled. In this mode, the output
* "color" is the fill color for the bg.
*
*-------------------------------------------------------------------
* MODE_FG
*
* In MODE_FG, the shader renders the glyph onto this cell and utilizes
* the glyph texture "text". In this mode, the output "color" is the
* fg color to use for the glyph.
*
*/
void main() {
// We always forward our mode
mode = mode_in;
// Top-left cell coordinates converted to world space
// Example: (1,0) with a 30 wide cell is converted to (30,0)
vec2 cell_pos = cell_size * grid_coord;
// Turn the cell position into a vertex point depending on the
// gl_VertexID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use gl_VertexID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
vec2 position;
position.x = (gl_VertexID == 0 || gl_VertexID == 1) ? 1. : 0.;
position.y = (gl_VertexID == 0 || gl_VertexID == 3) ? 0. : 1.;
switch (mode_in) {
case MODE_BG:
// Calculate the final position of our cell in world space.
// We have to add our cell size since our vertices are offset
// one cell up and to the left. (Do the math to verify yourself)
cell_pos = cell_pos + cell_size * position;
gl_Position = projection * vec4(cell_pos, 0.0, 1.0);
color = bg_color_in / 255.0;
break;
case MODE_FG:
// The glyph_offset.y is the y bearing, a y value that when added
// to the baseline is the offset (+y is up). Our grid goes down.
// So we flip it with `cell_size.y - glyph_offset.y`. The glyph_baseline
// uniform sets our line baseline where characters "sit".
vec2 glyph_offset_calc = glyph_offset;
glyph_offset_calc.y = cell_size.y - glyph_offset.y - glyph_baseline;
// Calculate the final position of the cell.
cell_pos = cell_pos + glyph_size * position + glyph_offset_calc;
gl_Position = projection * vec4(cell_pos, 0.0, 1.0);
// We need to convert our texture position and size to normalized
// device coordinates (0 to 1.0) by dividing by the size of the texture.
ivec2 text_size = textureSize(text, 0);
vec2 glyph_tex_pos = glyph_pos / text_size;
vec2 glyph_tex_size = glyph_size / text_size;
glyph_tex_coords = glyph_tex_pos + glyph_tex_size * position;
// Set our foreground color output
color = fg_color_in / 255.;
break;
case MODE_CURSOR_RECT:
// Same as background since we're taking up the whole cell.
cell_pos = cell_pos + cell_size * position;
gl_Position = projection * vec4(cell_pos, 0.0, 1.0);
color = bg_color_in / 255.0;
break;
case MODE_CURSOR_RECT_HOLLOW:
// Top-left position of this cell is needed for the hollow rect.
screen_cell_pos = cell_pos;
// Same as background since we're taking up the whole cell.
cell_pos = cell_pos + cell_size * position;
gl_Position = projection * vec4(cell_pos, 0.0, 1.0);
color = bg_color_in / 255.0;
break;
case MODE_CURSOR_BAR:
// Make the bar a smaller version of our cell
vec2 bar_size = vec2(cell_size.x * 0.2, cell_size.y);
// Same as background since we're taking up the whole cell.
cell_pos = cell_pos + bar_size * position;
gl_Position = projection * vec4(cell_pos, 0.0, 1.0);
color = bg_color_in / 255.0;
break;
case MODE_UNDERLINE:
// Make the underline a smaller version of our cell
// TODO: use real font underline thickness
vec2 underline_size = vec2(cell_size.x, cell_size.y*0.05);
// Position our underline so that it is midway between the glyph
// baseline and the bottom of the cell.
vec2 underline_offset = vec2(cell_size.x, cell_size.y - (glyph_baseline / 2));
// Go to the bottom of the cell, take away the size of the
// underline, and that is our position. We also float it slightly
// above the bottom.
cell_pos = cell_pos + underline_offset - underline_size * position;
gl_Position = projection * vec4(cell_pos, 0.0, 1.0);
color = fg_color_in / 255.0;
break;
}
}