ghostty/src/terminal/kitty/graphics_image.zig

342 lines
11 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const ArenaAllocator = std.heap.ArenaAllocator;
const command = @import("graphics_command.zig");
const log = std.log.scoped(.kitty_gfx);
/// Maximum width or height of an image. Taken directly from Kitty.
const max_dimension = 10000;
/// Maximum size in bytes, taken from Kitty.
const max_size = 400 * 1024 * 1024; // 400MB
/// A chunked image is an image that is in-progress and being constructed
/// using chunks (the "m" parameter in the protocol).
pub const ChunkedImage = struct {
/// The in-progress image. The first chunk must have all the metadata
/// so this comes from that initially.
image: Image,
/// The data that is being built up.
data: std.ArrayListUnmanaged(u8) = .{},
/// Initialize a chunked image from the first image part.
pub fn init(alloc: Allocator, image: Image) !ChunkedImage {
// Copy our initial set of data
var data = try std.ArrayListUnmanaged(u8).initCapacity(alloc, image.data.len * 2);
errdefer data.deinit(alloc);
try data.appendSlice(alloc, image.data);
// Set data to empty so it doesn't get freed.
var result: ChunkedImage = .{ .image = image, .data = data };
result.image.data = "";
return result;
}
pub fn deinit(self: *ChunkedImage, alloc: Allocator) void {
self.image.deinit(alloc);
self.data.deinit(alloc);
}
pub fn destroy(self: *ChunkedImage, alloc: Allocator) void {
self.deinit(alloc);
alloc.destroy(self);
}
/// Complete the chunked image, returning a completed image.
pub fn complete(self: *ChunkedImage, alloc: Allocator) !Image {
var result = self.image;
result.data = try self.data.toOwnedSlice(alloc);
self.image = .{};
return result;
}
};
/// Image represents a single fully loaded image.
pub const Image = struct {
id: u32 = 0,
number: u32 = 0,
width: u32 = 0,
height: u32 = 0,
format: Format = .rgb,
compression: command.Transmission.Compression = .none,
data: []const u8 = "",
pub const Format = enum { rgb, rgba };
pub const Error = error{
InvalidData,
DecompressionFailed,
DimensionsRequired,
DimensionsTooLarge,
UnsupportedFormat,
UnsupportedMedium,
};
/// Debug function to write the data to a file. This is useful for
/// capturing some test data for unit tests.
pub fn debugDump(self: Image) !void {
if (comptime builtin.mode != .Debug) @compileError("debugDump in non-debug");
var buf: [1024]u8 = undefined;
const filename = try std.fmt.bufPrint(
&buf,
"image-{s}-{s}-{d}x{d}-{}.data",
.{
@tagName(self.format),
@tagName(self.compression),
self.width,
self.height,
self.id,
},
);
const cwd = std.fs.cwd();
const f = try cwd.createFile(filename, .{});
defer f.close();
const writer = f.writer();
try writer.writeAll(self.data);
}
/// Decompress the image data in-place.
fn decompress(self: *Image, alloc: Allocator) !void {
return switch (self.compression) {
.none => {},
.zlib_deflate => self.decompressZlib(alloc),
};
}
fn decompressZlib(self: *Image, alloc: Allocator) !void {
// Open our zlib stream
var fbs = std.io.fixedBufferStream(self.data);
var stream = std.compress.zlib.decompressStream(alloc, fbs.reader()) catch |err| {
log.warn("zlib decompression failed: {}", .{err});
return error.DecompressionFailed;
};
defer stream.deinit();
// Write it to an array list
var list = std.ArrayList(u8).init(alloc);
defer list.deinit();
stream.reader().readAllArrayList(&list, max_size) catch |err| {
log.warn("failed to read decompressed data: {}", .{err});
return error.DecompressionFailed;
};
// Swap our data out
alloc.free(self.data);
self.data = "";
self.data = try list.toOwnedSlice();
self.compression = .none;
}
/// Complete the image. This must be called after loading and after
/// being sure the data is complete (not chunked).
pub fn complete(self: *Image, alloc: Allocator) !void {
const bpp: u32 = switch (self.format) {
.rgb => 3,
.rgba => 4,
};
// Validate our dimensions.
if (self.width == 0 or self.height == 0) return error.DimensionsRequired;
if (self.width > max_dimension or self.height > max_dimension) return error.DimensionsTooLarge;
// The data is base64 encoded, we must decode it.
var decoded = decoded: {
const Base64Decoder = std.base64.standard.Decoder;
const size = Base64Decoder.calcSizeForSlice(self.data) catch |err| {
log.warn("failed to calculate base64 decoded size: {}", .{err});
return error.InvalidData;
};
var buf = try alloc.alloc(u8, size);
errdefer alloc.free(buf);
Base64Decoder.decode(buf, self.data) catch |err| {
log.warn("failed to decode base64 data: {}", .{err});
return error.InvalidData;
};
break :decoded buf;
};
// After decoding, we swap the data immediately and free the old.
// This will ensure that we never leak memory.
alloc.free(self.data);
self.data = decoded;
// Decompress the data if it is compressed.
try self.decompress(alloc);
// Data length must be what we expect
const expected_len = self.width * self.height * bpp;
const actual_len = self.data.len;
std.log.warn(
"width={} height={} bpp={} expected_len={} actual_len={}",
.{ self.width, self.height, bpp, expected_len, actual_len },
);
if (actual_len != expected_len) return error.InvalidData;
}
/// Load an image from a transmission. The data in the command will be
/// owned by the image if successful. Note that you still must deinit
/// the command, all the state change will be done internally.
///
/// If the command represents a chunked image then this image will
/// be incomplete. The caller is expected to inspect the command
/// and determine if it is a chunked image.
pub fn load(alloc: Allocator, cmd: *command.Command) !Image {
const t = cmd.transmission().?;
// Load the data
const data = switch (t.medium) {
.direct => cmd.data,
else => {
std.log.warn("unimplemented medium={}", .{t.medium});
return error.UnsupportedMedium;
},
};
// If we loaded an image successfully then we take ownership
// of the command data and we need to make sure to clean up on error.
_ = cmd.toOwnedData();
errdefer if (data.len > 0) alloc.free(data);
const img = switch (t.format) {
.rgb, .rgba => try loadPacked(t, data),
else => return error.UnsupportedFormat,
};
return img;
}
/// Load a package image format, i.e. RGB or RGBA.
fn loadPacked(
t: command.Transmission,
data: []const u8,
) !Image {
return Image{
.id = t.image_id,
.number = t.image_number,
.width = t.width,
.height = t.height,
.compression = t.compression,
.format = switch (t.format) {
.rgb => .rgb,
.rgba => .rgba,
else => unreachable,
},
.data = data,
};
}
pub fn deinit(self: *Image, alloc: Allocator) void {
if (self.data.len > 0) alloc.free(self.data);
}
/// Mostly for logging
pub fn withoutData(self: *const Image) Image {
var copy = self.*;
copy.data = "";
return copy;
}
};
/// Loads test data from a file path and base64 encodes it.
fn testB64(alloc: Allocator, data: []const u8) ![]const u8 {
const B64Encoder = std.base64.standard.Encoder;
var b64 = try alloc.alloc(u8, B64Encoder.calcSize(data.len));
errdefer alloc.free(b64);
return B64Encoder.encode(b64, data);
}
// This specifically tests we ALLOW invalid RGB data because Kitty
// documents that this should work.
test "image load with invalid RGB data" {
const testing = std.testing;
const alloc = testing.allocator;
// <ESC>_Gi=31,s=1,v=1,a=q,t=d,f=24;AAAA<ESC>\
var cmd: command.Command = .{
.control = .{ .transmit = .{
.format = .rgb,
.width = 1,
.height = 1,
.image_id = 31,
} },
.data = try alloc.dupe(u8, "AAAA"),
};
defer cmd.deinit(alloc);
var img = try Image.load(alloc, &cmd);
defer img.deinit(alloc);
}
test "image load with image too wide" {
const testing = std.testing;
const alloc = testing.allocator;
var cmd: command.Command = .{
.control = .{ .transmit = .{
.format = .rgb,
.width = max_dimension + 1,
.height = 1,
.image_id = 31,
} },
.data = try alloc.dupe(u8, "AAAA"),
};
defer cmd.deinit(alloc);
var img = try Image.load(alloc, &cmd);
defer img.deinit(alloc);
try testing.expectError(error.DimensionsTooLarge, img.complete(alloc));
}
test "image load with image too tall" {
const testing = std.testing;
const alloc = testing.allocator;
var cmd: command.Command = .{
.control = .{ .transmit = .{
.format = .rgb,
.height = max_dimension + 1,
.width = 1,
.image_id = 31,
} },
.data = try alloc.dupe(u8, "AAAA"),
};
defer cmd.deinit(alloc);
var img = try Image.load(alloc, &cmd);
defer img.deinit(alloc);
try testing.expectError(error.DimensionsTooLarge, img.complete(alloc));
}
test "image load: rgb, zlib compressed, direct" {
const testing = std.testing;
const alloc = testing.allocator;
var cmd: command.Command = .{
.control = .{ .transmit = .{
.format = .rgb,
.medium = .direct,
.compression = .zlib_deflate,
.height = 96,
.width = 128,
.image_id = 31,
} },
.data = try alloc.dupe(
u8,
@embedFile("testdata/image-rgb-zlib_deflate-128x96-2147483647.data"),
),
};
defer cmd.deinit(alloc);
var img = try Image.load(alloc, &cmd);
defer img.deinit(alloc);
try img.complete(alloc);
// should be decompressed
try testing.expect(img.compression == .none);
}