ghostty/src/renderer/Metal.zig
2024-03-22 20:28:00 -07:00

2162 lines
74 KiB
Zig

//! Renderer implementation for Metal.
//!
//! Open questions:
//!
pub const Metal = @This();
const std = @import("std");
const builtin = @import("builtin");
const glfw = @import("glfw");
const objc = @import("objc");
const macos = @import("macos");
const imgui = @import("imgui");
const glslang = @import("glslang");
const apprt = @import("../apprt.zig");
const configpkg = @import("../config.zig");
const font = @import("../font/main.zig");
const terminal = @import("../terminal/main.zig");
const renderer = @import("../renderer.zig");
const math = @import("../math.zig");
const Surface = @import("../Surface.zig");
const link = @import("link.zig");
const fgMode = @import("cell.zig").fgMode;
const shadertoy = @import("shadertoy.zig");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const ArenaAllocator = std.heap.ArenaAllocator;
const Terminal = terminal.Terminal;
const Health = renderer.Health;
const mtl = @import("metal/api.zig");
const mtl_buffer = @import("metal/buffer.zig");
const mtl_image = @import("metal/image.zig");
const mtl_sampler = @import("metal/sampler.zig");
const mtl_shaders = @import("metal/shaders.zig");
const Image = mtl_image.Image;
const ImageMap = mtl_image.ImageMap;
const Shaders = mtl_shaders.Shaders;
const CellBuffer = mtl_buffer.Buffer(mtl_shaders.Cell);
const ImageBuffer = mtl_buffer.Buffer(mtl_shaders.Image);
const InstanceBuffer = mtl_buffer.Buffer(u16);
const ImagePlacementList = std.ArrayListUnmanaged(mtl_image.Placement);
// Get native API access on certain platforms so we can do more customization.
const glfwNative = glfw.Native(.{
.cocoa = builtin.os.tag == .macos,
});
const log = std.log.scoped(.metal);
/// Allocator that can be used
alloc: std.mem.Allocator,
/// The configuration we need derived from the main config.
config: DerivedConfig,
/// The mailbox for communicating with the window.
surface_mailbox: apprt.surface.Mailbox,
/// Current font metrics defining our grid.
grid_metrics: font.face.Metrics,
/// Current screen size dimensions for this grid. This is set on the first
/// resize event, and is not immediately available.
screen_size: ?renderer.ScreenSize,
/// Explicit padding.
padding: renderer.Options.Padding,
/// True if the window is focused
focused: bool,
/// The actual foreground color. May differ from the config foreground color if
/// changed by a terminal application
foreground_color: terminal.color.RGB,
/// The actual background color. May differ from the config background color if
/// changed by a terminal application
background_color: terminal.color.RGB,
/// The actual cursor color. May differ from the config cursor color if changed
/// by a terminal application
cursor_color: ?terminal.color.RGB,
/// The current frame background color. This is only updated during
/// the updateFrame method.
current_background_color: terminal.color.RGB,
/// The current set of cells to render. This is rebuilt on every frame
/// but we keep this around so that we don't reallocate. Each set of
/// cells goes into a separate shader.
cells_bg: std.ArrayListUnmanaged(mtl_shaders.Cell),
cells: std.ArrayListUnmanaged(mtl_shaders.Cell),
/// The current GPU uniform values.
uniforms: mtl_shaders.Uniforms,
/// The font structures.
font_group: *font.GroupCache,
font_shaper: font.Shaper,
/// The images that we may render.
images: ImageMap = .{},
image_placements: ImagePlacementList = .{},
image_bg_end: u32 = 0,
image_text_end: u32 = 0,
/// Metal state
shaders: Shaders, // Compiled shaders
buf_cells: CellBuffer, // Vertex buffer for cells
buf_cells_bg: CellBuffer, // Vertex buffer for background cells
buf_instance: InstanceBuffer, // MTLBuffer
/// Metal objects
device: objc.Object, // MTLDevice
queue: objc.Object, // MTLCommandQueue
layer: objc.Object, // CAMetalLayer
texture_greyscale: objc.Object, // MTLTexture
texture_color: objc.Object, // MTLTexture
/// Custom shader state. This is only set if we have custom shaders.
custom_shader_state: ?CustomShaderState = null,
/// Health of the last frame. Note that when we do double/triple buffering
/// this will have to be part of the frame state.
health: std.atomic.Value(Health) = .{ .raw = .healthy },
/// Sempahore blocking our in-flight buffer updates. For now this is just
/// one but in the future if we implement double/triple-buffering this
/// will be incremented.
inflight: std.Thread.Semaphore = .{ .permits = 1 },
pub const CustomShaderState = struct {
/// The screen texture that we render the terminal to. If we don't have
/// custom shaders, we render directly to the drawable.
screen_texture: objc.Object, // MTLTexture
sampler: mtl_sampler.Sampler,
uniforms: mtl_shaders.PostUniforms,
/// The first time a frame was drawn. This is used to update the time
/// uniform.
first_frame_time: std.time.Instant,
/// The last time a frame was drawn. This is used to update the time
/// uniform.
last_frame_time: std.time.Instant,
pub fn deinit(self: *CustomShaderState) void {
deinitMTLResource(self.screen_texture);
self.sampler.deinit();
}
};
/// The configuration for this renderer that is derived from the main
/// configuration. This must be exported so that we don't need to
/// pass around Config pointers which makes memory management a pain.
pub const DerivedConfig = struct {
arena: ArenaAllocator,
font_thicken: bool,
font_features: std.ArrayListUnmanaged([:0]const u8),
font_styles: font.Group.StyleStatus,
cursor_color: ?terminal.color.RGB,
cursor_opacity: f64,
cursor_text: ?terminal.color.RGB,
background: terminal.color.RGB,
background_opacity: f64,
foreground: terminal.color.RGB,
selection_background: ?terminal.color.RGB,
selection_foreground: ?terminal.color.RGB,
invert_selection_fg_bg: bool,
min_contrast: f32,
custom_shaders: std.ArrayListUnmanaged([:0]const u8),
links: link.Set,
pub fn init(
alloc_gpa: Allocator,
config: *const configpkg.Config,
) !DerivedConfig {
var arena = ArenaAllocator.init(alloc_gpa);
errdefer arena.deinit();
const alloc = arena.allocator();
// Copy our shaders
const custom_shaders = try config.@"custom-shader".value.list.clone(alloc);
// Copy our font features
const font_features = try config.@"font-feature".list.clone(alloc);
// Get our font styles
var font_styles = font.Group.StyleStatus.initFill(true);
font_styles.set(.bold, config.@"font-style-bold" != .false);
font_styles.set(.italic, config.@"font-style-italic" != .false);
font_styles.set(.bold_italic, config.@"font-style-bold-italic" != .false);
// Our link configs
const links = try link.Set.fromConfig(
alloc,
config.link.links.items,
);
return .{
.background_opacity = @max(0, @min(1, config.@"background-opacity")),
.font_thicken = config.@"font-thicken",
.font_features = font_features,
.font_styles = font_styles,
.cursor_color = if (config.@"cursor-color") |col|
col.toTerminalRGB()
else
null,
.cursor_text = if (config.@"cursor-text") |txt|
txt.toTerminalRGB()
else
null,
.cursor_opacity = @max(0, @min(1, config.@"cursor-opacity")),
.background = config.background.toTerminalRGB(),
.foreground = config.foreground.toTerminalRGB(),
.invert_selection_fg_bg = config.@"selection-invert-fg-bg",
.min_contrast = @floatCast(config.@"minimum-contrast"),
.selection_background = if (config.@"selection-background") |bg|
bg.toTerminalRGB()
else
null,
.selection_foreground = if (config.@"selection-foreground") |bg|
bg.toTerminalRGB()
else
null,
.custom_shaders = custom_shaders,
.links = links,
.arena = arena,
};
}
pub fn deinit(self: *DerivedConfig) void {
const alloc = self.arena.allocator();
self.links.deinit(alloc);
self.arena.deinit();
}
};
/// Returns the hints that we want for this
pub fn glfwWindowHints(config: *const configpkg.Config) glfw.Window.Hints {
return .{
.client_api = .no_api,
.transparent_framebuffer = config.@"background-opacity" < 1,
};
}
/// This is called early right after window creation to setup our
/// window surface as necessary.
pub fn surfaceInit(surface: *apprt.Surface) !void {
_ = surface;
// We don't do anything else here because we want to set everything
// else up during actual initialization.
}
pub fn init(alloc: Allocator, options: renderer.Options) !Metal {
var arena = ArenaAllocator.init(alloc);
defer arena.deinit();
const arena_alloc = arena.allocator();
const ViewInfo = struct {
view: objc.Object,
scaleFactor: f64,
};
// Get the metadata about our underlying view that we'll be rendering to.
const info: ViewInfo = switch (apprt.runtime) {
apprt.glfw => info: {
// Everything in glfw is window-oriented so we grab the backing
// window, then derive everything from that.
const nswindow = objc.Object.fromId(glfwNative.getCocoaWindow(
options.rt_surface.window,
).?);
const contentView = objc.Object.fromId(
nswindow.getProperty(?*anyopaque, "contentView").?,
);
const scaleFactor = nswindow.getProperty(
macos.graphics.c.CGFloat,
"backingScaleFactor",
);
break :info .{
.view = contentView,
.scaleFactor = scaleFactor,
};
},
apprt.embedded => .{
.scaleFactor = @floatCast(options.rt_surface.content_scale.x),
.view = switch (options.rt_surface.platform) {
.macos => |v| v.nsview,
.ios => |v| v.uiview,
},
},
else => @compileError("unsupported apprt for metal"),
};
// Initialize our metal stuff
const device = objc.Object.fromId(mtl.MTLCreateSystemDefaultDevice());
const queue = device.msgSend(objc.Object, objc.sel("newCommandQueue"), .{});
// Get our CAMetalLayer
const layer = switch (builtin.os.tag) {
.macos => layer: {
const CAMetalLayer = objc.getClass("CAMetalLayer").?;
break :layer CAMetalLayer.msgSend(objc.Object, objc.sel("layer"), .{});
},
// iOS is always layer-backed so we don't need to do anything here.
.ios => info.view.getProperty(objc.Object, "layer"),
else => @compileError("unsupported target for Metal"),
};
layer.setProperty("device", device.value);
layer.setProperty("opaque", options.config.background_opacity >= 1);
layer.setProperty("displaySyncEnabled", false); // disable v-sync
// Make our view layer-backed with our Metal layer. On iOS views are
// always layer backed so we don't need to do this. But on iOS the
// caller MUST be sure to set the layerClass to CAMetalLayer.
if (comptime builtin.os.tag == .macos) {
info.view.setProperty("layer", layer.value);
info.view.setProperty("wantsLayer", true);
// The layer gravity is set to top-left so that when we resize
// the view, the contents aren't stretched before a redraw.
layer.setProperty("contentsGravity", macos.animation.kCAGravityTopLeft);
}
// Ensure that our metal layer has a content scale set to match the
// scale factor of the window. This avoids magnification issues leading
// to blurry rendering.
layer.setProperty("contentsScale", info.scaleFactor);
// Get our cell metrics based on a regular font ascii 'M'. Why 'M'?
// Doesn't matter, any normal ASCII will do we're just trying to make
// sure we use the regular font.
const metrics = metrics: {
const index = (try options.font_group.indexForCodepoint(alloc, 'M', .regular, .text)).?;
const face = try options.font_group.group.faceFromIndex(index);
break :metrics face.metrics;
};
log.debug("cell dimensions={}", .{metrics});
// Set the sprite font up
options.font_group.group.sprite = font.sprite.Face{
.width = metrics.cell_width,
.height = metrics.cell_height,
.thickness = metrics.underline_thickness *
@as(u32, if (options.config.font_thicken) 2 else 1),
.underline_position = metrics.underline_position,
};
// Create the font shaper. We initially create a shaper that can support
// a width of 160 which is a common width for modern screens to help
// avoid allocations later.
var font_shaper = try font.Shaper.init(alloc, .{
.features = options.config.font_features.items,
});
errdefer font_shaper.deinit();
// Vertex buffers
var buf_cells = try CellBuffer.init(device, 160 * 160);
errdefer buf_cells.deinit();
var buf_cells_bg = try CellBuffer.init(device, 160 * 160);
errdefer buf_cells_bg.deinit();
var buf_instance = try InstanceBuffer.initFill(device, &.{
0, 1, 3, // Top-left triangle
1, 2, 3, // Bottom-right triangle
});
errdefer buf_instance.deinit();
// Load our custom shaders
const custom_shaders: []const [:0]const u8 = shadertoy.loadFromFiles(
arena_alloc,
options.config.custom_shaders.items,
.msl,
) catch |err| err: {
log.warn("error loading custom shaders err={}", .{err});
break :err &.{};
};
// If we have custom shaders then setup our state
var custom_shader_state: ?CustomShaderState = state: {
if (custom_shaders.len == 0) break :state null;
// Build our sampler for our texture
var sampler = try mtl_sampler.Sampler.init(device);
errdefer sampler.deinit();
break :state .{
// Resolution and screen texture will be fixed up by first
// call to setScreenSize. This happens before any draw call.
.screen_texture = undefined,
.sampler = sampler,
.uniforms = .{
.resolution = .{ 0, 0, 1 },
.time = 1,
.time_delta = 1,
.frame_rate = 1,
.frame = 1,
.channel_time = [1][4]f32{.{ 0, 0, 0, 0 }} ** 4,
.channel_resolution = [1][4]f32{.{ 0, 0, 0, 0 }} ** 4,
.mouse = .{ 0, 0, 0, 0 },
.date = .{ 0, 0, 0, 0 },
.sample_rate = 1,
},
.first_frame_time = try std.time.Instant.now(),
.last_frame_time = try std.time.Instant.now(),
};
};
errdefer if (custom_shader_state) |*state| state.deinit();
// Initialize our shaders
var shaders = try Shaders.init(alloc, device, custom_shaders);
errdefer shaders.deinit(alloc);
// Font atlas textures
const texture_greyscale = try initAtlasTexture(device, &options.font_group.atlas_greyscale);
const texture_color = try initAtlasTexture(device, &options.font_group.atlas_color);
return Metal{
.alloc = alloc,
.config = options.config,
.surface_mailbox = options.surface_mailbox,
.grid_metrics = metrics,
.screen_size = null,
.padding = options.padding,
.focused = true,
.foreground_color = options.config.foreground,
.background_color = options.config.background,
.cursor_color = options.config.cursor_color,
.current_background_color = options.config.background,
// Render state
.cells_bg = .{},
.cells = .{},
.uniforms = .{
.projection_matrix = undefined,
.cell_size = undefined,
.strikethrough_position = @floatFromInt(metrics.strikethrough_position),
.strikethrough_thickness = @floatFromInt(metrics.strikethrough_thickness),
.min_contrast = options.config.min_contrast,
},
// Fonts
.font_group = options.font_group,
.font_shaper = font_shaper,
// Shaders
.shaders = shaders,
.buf_cells = buf_cells,
.buf_cells_bg = buf_cells_bg,
.buf_instance = buf_instance,
// Metal stuff
.device = device,
.queue = queue,
.layer = layer,
.texture_greyscale = texture_greyscale,
.texture_color = texture_color,
.custom_shader_state = custom_shader_state,
};
}
pub fn deinit(self: *Metal) void {
// If we have inflight buffers, wait for completion. This ensures that
// any pending GPU operations are completed before we start deallocating
// everything. This is important because our completion callbacks access
// "self"
self.inflight.wait();
self.cells.deinit(self.alloc);
self.cells_bg.deinit(self.alloc);
self.font_shaper.deinit();
self.config.deinit();
{
var it = self.images.iterator();
while (it.next()) |kv| kv.value_ptr.image.deinit(self.alloc);
self.images.deinit(self.alloc);
}
self.image_placements.deinit(self.alloc);
self.buf_cells_bg.deinit();
self.buf_cells.deinit();
self.buf_instance.deinit();
deinitMTLResource(self.texture_greyscale);
deinitMTLResource(self.texture_color);
self.queue.msgSend(void, objc.sel("release"), .{});
if (self.custom_shader_state) |*state| state.deinit();
self.shaders.deinit(self.alloc);
self.* = undefined;
}
/// This is called just prior to spinning up the renderer thread for
/// final main thread setup requirements.
pub fn finalizeSurfaceInit(self: *Metal, surface: *apprt.Surface) !void {
_ = self;
_ = surface;
// Metal doesn't have to do anything here. OpenGL has to do things
// like release the context but Metal doesn't have anything like that.
}
/// Callback called by renderer.Thread when it begins.
pub fn threadEnter(self: *const Metal, surface: *apprt.Surface) !void {
_ = self;
_ = surface;
// Metal requires no per-thread state.
}
/// Callback called by renderer.Thread when it exits.
pub fn threadExit(self: *const Metal) void {
_ = self;
// Metal requires no per-thread state.
}
/// True if our renderer has animations so that a higher frequency
/// timer is used.
pub fn hasAnimations(self: *const Metal) bool {
return self.custom_shader_state != null;
}
/// Returns the grid size for a given screen size. This is safe to call
/// on any thread.
fn gridSize(self: *Metal) ?renderer.GridSize {
const screen_size = self.screen_size orelse return null;
return renderer.GridSize.init(
screen_size.subPadding(self.padding.explicit),
.{
.width = self.grid_metrics.cell_width,
.height = self.grid_metrics.cell_height,
},
);
}
/// Callback when the focus changes for the terminal this is rendering.
///
/// Must be called on the render thread.
pub fn setFocus(self: *Metal, focus: bool) !void {
self.focused = focus;
}
/// Set the new font size.
///
/// Must be called on the render thread.
pub fn setFontSize(self: *Metal, size: font.face.DesiredSize) !void {
log.info("set font size={}", .{size});
// Set our new size, this will also reset our font atlas.
try self.font_group.setSize(size);
// Recalculate our metrics
const metrics = metrics: {
const index = (try self.font_group.indexForCodepoint(self.alloc, 'M', .regular, .text)).?;
const face = try self.font_group.group.faceFromIndex(index);
break :metrics face.metrics;
};
// Update our uniforms
self.uniforms = .{
.projection_matrix = self.uniforms.projection_matrix,
.cell_size = .{
@floatFromInt(metrics.cell_width),
@floatFromInt(metrics.cell_height),
},
.strikethrough_position = @floatFromInt(metrics.strikethrough_position),
.strikethrough_thickness = @floatFromInt(metrics.strikethrough_thickness),
.min_contrast = self.uniforms.min_contrast,
};
// Recalculate our cell size. If it is the same as before, then we do
// nothing since the grid size couldn't have possibly changed.
if (std.meta.eql(self.grid_metrics, metrics)) return;
self.grid_metrics = metrics;
// Set the sprite font up
self.font_group.group.sprite = font.sprite.Face{
.width = metrics.cell_width,
.height = metrics.cell_height,
.thickness = metrics.underline_thickness * @as(u32, if (self.config.font_thicken) 2 else 1),
.underline_position = metrics.underline_position,
};
// Notify the window that the cell size changed.
_ = self.surface_mailbox.push(.{
.cell_size = .{
.width = metrics.cell_width,
.height = metrics.cell_height,
},
}, .{ .forever = {} });
}
/// Update the frame data.
pub fn updateFrame(
self: *Metal,
surface: *apprt.Surface,
state: *renderer.State,
cursor_blink_visible: bool,
) !void {
_ = surface;
// Data we extract out of the critical area.
const Critical = struct {
bg: terminal.color.RGB,
screen: terminal.Screen,
mouse: renderer.State.Mouse,
preedit: ?renderer.State.Preedit,
cursor_style: ?renderer.CursorStyle,
color_palette: terminal.color.Palette,
};
// Update all our data as tightly as possible within the mutex.
var critical: Critical = critical: {
state.mutex.lock();
defer state.mutex.unlock();
// If we're in a synchronized output state, we pause all rendering.
if (state.terminal.modes.get(.synchronized_output)) {
log.debug("synchronized output started, skipping render", .{});
return;
}
// Swap bg/fg if the terminal is reversed
const bg = self.background_color;
const fg = self.foreground_color;
defer {
self.background_color = bg;
self.foreground_color = fg;
}
if (state.terminal.modes.get(.reverse_colors)) {
self.background_color = fg;
self.foreground_color = bg;
}
// We used to share terminal state, but we've since learned through
// analysis that it is faster to copy the terminal state than to
// hold the lock while rebuilding GPU cells.
var screen_copy = try state.terminal.screen.clone(
self.alloc,
.{ .viewport = .{} },
null,
);
errdefer screen_copy.deinit();
// Whether to draw our cursor or not.
const cursor_style = renderer.cursorStyle(
state,
self.focused,
cursor_blink_visible,
);
// Get our preedit state
const preedit: ?renderer.State.Preedit = preedit: {
if (cursor_style == null) break :preedit null;
const p = state.preedit orelse break :preedit null;
break :preedit try p.clone(self.alloc);
};
errdefer if (preedit) |p| p.deinit(self.alloc);
// If we have Kitty graphics data, we enter a SLOW SLOW SLOW path.
// We only do this if the Kitty image state is dirty meaning only if
// it changes.
// TODO(paged-terminal)
if (false) {
if (state.terminal.screen.kitty_images.dirty) {
try self.prepKittyGraphics(state.terminal);
}
}
break :critical .{
.bg = self.background_color,
.screen = screen_copy,
.mouse = state.mouse,
.preedit = preedit,
.cursor_style = cursor_style,
.color_palette = state.terminal.color_palette.colors,
};
};
defer {
critical.screen.deinit();
if (critical.preedit) |p| p.deinit(self.alloc);
}
// Build our GPU cells
try self.rebuildCells(
&critical.screen,
critical.mouse,
critical.preedit,
critical.cursor_style,
&critical.color_palette,
);
// Update our background color
self.current_background_color = critical.bg;
// Go through our images and see if we need to setup any textures.
{
var image_it = self.images.iterator();
while (image_it.next()) |kv| {
switch (kv.value_ptr.image) {
.ready => {},
.pending_grey_alpha,
.pending_rgb,
.pending_rgba,
.replace_grey_alpha,
.replace_rgb,
.replace_rgba,
=> try kv.value_ptr.image.upload(self.alloc, self.device),
.unload_pending,
.unload_replace,
.unload_ready,
=> {
kv.value_ptr.image.deinit(self.alloc);
self.images.removeByPtr(kv.key_ptr);
},
}
}
}
}
/// Draw the frame to the screen.
pub fn drawFrame(self: *Metal, surface: *apprt.Surface) !void {
_ = surface;
// Wait for a buffer to be available.
self.inflight.wait();
errdefer self.inflight.post();
// If we have custom shaders, update the animation time.
if (self.custom_shader_state) |*state| {
const now = std.time.Instant.now() catch state.first_frame_time;
const since_ns: f32 = @floatFromInt(now.since(state.first_frame_time));
const delta_ns: f32 = @floatFromInt(now.since(state.last_frame_time));
state.uniforms.time = since_ns / std.time.ns_per_s;
state.uniforms.time_delta = delta_ns / std.time.ns_per_s;
state.last_frame_time = now;
}
// @autoreleasepool {}
const pool = objc.AutoreleasePool.init();
defer pool.deinit();
// Get our drawable (CAMetalDrawable)
const drawable = self.layer.msgSend(objc.Object, objc.sel("nextDrawable"), .{});
// Get our screen texture. If we don't have a dedicated screen texture
// then we just use the drawable texture.
const screen_texture = if (self.custom_shader_state) |state|
state.screen_texture
else tex: {
const texture = drawable.msgSend(objc.c.id, objc.sel("texture"), .{});
break :tex objc.Object.fromId(texture);
};
// If our font atlas changed, sync the texture data
if (self.font_group.atlas_greyscale.modified) {
try syncAtlasTexture(self.device, &self.font_group.atlas_greyscale, &self.texture_greyscale);
self.font_group.atlas_greyscale.modified = false;
}
if (self.font_group.atlas_color.modified) {
try syncAtlasTexture(self.device, &self.font_group.atlas_color, &self.texture_color);
self.font_group.atlas_color.modified = false;
}
// Command buffer (MTLCommandBuffer)
const buffer = self.queue.msgSend(objc.Object, objc.sel("commandBuffer"), .{});
{
// MTLRenderPassDescriptor
const desc = desc: {
const MTLRenderPassDescriptor = objc.getClass("MTLRenderPassDescriptor").?;
const desc = MTLRenderPassDescriptor.msgSend(
objc.Object,
objc.sel("renderPassDescriptor"),
.{},
);
// Set our color attachment to be our drawable surface.
const attachments = objc.Object.fromId(desc.getProperty(?*anyopaque, "colorAttachments"));
{
const attachment = attachments.msgSend(
objc.Object,
objc.sel("objectAtIndexedSubscript:"),
.{@as(c_ulong, 0)},
);
// Texture is a property of CAMetalDrawable but if you run
// Ghostty in XCode in debug mode it returns a CaptureMTLDrawable
// which ironically doesn't implement CAMetalDrawable as a
// property so we just send a message.
//const texture = drawable.msgSend(objc.c.id, objc.sel("texture"), .{});
attachment.setProperty("loadAction", @intFromEnum(mtl.MTLLoadAction.clear));
attachment.setProperty("storeAction", @intFromEnum(mtl.MTLStoreAction.store));
attachment.setProperty("texture", screen_texture.value);
attachment.setProperty("clearColor", mtl.MTLClearColor{
.red = @as(f32, @floatFromInt(self.current_background_color.r)) / 255,
.green = @as(f32, @floatFromInt(self.current_background_color.g)) / 255,
.blue = @as(f32, @floatFromInt(self.current_background_color.b)) / 255,
.alpha = self.config.background_opacity,
});
}
break :desc desc;
};
// MTLRenderCommandEncoder
const encoder = buffer.msgSend(
objc.Object,
objc.sel("renderCommandEncoderWithDescriptor:"),
.{desc.value},
);
defer encoder.msgSend(void, objc.sel("endEncoding"), .{});
// Draw background images first
try self.drawImagePlacements(encoder, self.image_placements.items[0..self.image_bg_end]);
// Then draw background cells
try self.drawCells(encoder, &self.buf_cells_bg, self.cells_bg);
// Then draw images under text
try self.drawImagePlacements(encoder, self.image_placements.items[self.image_bg_end..self.image_text_end]);
// Then draw fg cells
try self.drawCells(encoder, &self.buf_cells, self.cells);
// Then draw remaining images
try self.drawImagePlacements(encoder, self.image_placements.items[self.image_text_end..]);
}
// If we have custom shaders AND we have a screen texture, then we
// render the custom shaders.
if (self.custom_shader_state) |state| {
// MTLRenderPassDescriptor
const desc = desc: {
const MTLRenderPassDescriptor = objc.getClass("MTLRenderPassDescriptor").?;
const desc = MTLRenderPassDescriptor.msgSend(
objc.Object,
objc.sel("renderPassDescriptor"),
.{},
);
// Set our color attachment to be our drawable surface.
const attachments = objc.Object.fromId(desc.getProperty(?*anyopaque, "colorAttachments"));
{
const attachment = attachments.msgSend(
objc.Object,
objc.sel("objectAtIndexedSubscript:"),
.{@as(c_ulong, 0)},
);
// Texture is a property of CAMetalDrawable but if you run
// Ghostty in XCode in debug mode it returns a CaptureMTLDrawable
// which ironically doesn't implement CAMetalDrawable as a
// property so we just send a message.
const texture = drawable.msgSend(objc.c.id, objc.sel("texture"), .{});
attachment.setProperty("loadAction", @intFromEnum(mtl.MTLLoadAction.clear));
attachment.setProperty("storeAction", @intFromEnum(mtl.MTLStoreAction.store));
attachment.setProperty("texture", texture);
attachment.setProperty("clearColor", mtl.MTLClearColor{
.red = 0,
.green = 0,
.blue = 0,
.alpha = 1,
});
}
break :desc desc;
};
// MTLRenderCommandEncoder
const encoder = buffer.msgSend(
objc.Object,
objc.sel("renderCommandEncoderWithDescriptor:"),
.{desc.value},
);
defer encoder.msgSend(void, objc.sel("endEncoding"), .{});
for (self.shaders.post_pipelines) |pipeline| {
try self.drawPostShader(encoder, pipeline, &state);
}
}
buffer.msgSend(void, objc.sel("presentDrawable:"), .{drawable.value});
// Create our block to register for completion updates. This is used
// so we can detect failures. The block is deallocated by the objC
// runtime on success.
const block = try CompletionBlock.init(.{ .self = self }, &bufferCompleted);
errdefer block.deinit();
buffer.msgSend(void, objc.sel("addCompletedHandler:"), .{block.context});
buffer.msgSend(void, objc.sel("commit"), .{});
}
/// This is the block type used for the addCompletedHandler call.back.
const CompletionBlock = objc.Block(struct { self: *Metal }, .{
objc.c.id, // MTLCommandBuffer
}, void);
/// This is the callback called by the CompletionBlock invocation for
/// addCompletedHandler.
///
/// Note: this is USUALLY called on a separate thread because the renderer
/// thread and the Apple event loop threads are usually different. Therefore,
/// we need to be mindful of thread safety here.
fn bufferCompleted(
block: *const CompletionBlock.Context,
buffer_id: objc.c.id,
) callconv(.C) void {
const self = block.self;
const buffer = objc.Object.fromId(buffer_id);
// Get our command buffer status. If it is anything other than error
// then we don't care and just return right away. We're looking for
// errors so that we can log them.
const status = buffer.getProperty(mtl.MTLCommandBufferStatus, "status");
const health: Health = switch (status) {
.@"error" => .unhealthy,
else => .healthy,
};
// If our health value hasn't changed, then we do nothing. We don't
// do a cmpxchg here because strict atomicity isn't important.
if (self.health.load(.seq_cst) != health) {
self.health.store(health, .seq_cst);
// Our health value changed, so we notify the surface so that it
// can do something about it.
_ = self.surface_mailbox.push(.{
.renderer_health = health,
}, .{ .forever = {} });
}
// Always release our semaphore
self.inflight.post();
}
fn drawPostShader(
self: *Metal,
encoder: objc.Object,
pipeline: objc.Object,
state: *const CustomShaderState,
) !void {
_ = self;
// Use our custom shader pipeline
encoder.msgSend(
void,
objc.sel("setRenderPipelineState:"),
.{pipeline.value},
);
// Set our sampler
encoder.msgSend(
void,
objc.sel("setFragmentSamplerState:atIndex:"),
.{ state.sampler.sampler.value, @as(c_ulong, 0) },
);
// Set our uniforms
encoder.msgSend(
void,
objc.sel("setFragmentBytes:length:atIndex:"),
.{
@as(*const anyopaque, @ptrCast(&state.uniforms)),
@as(c_ulong, @sizeOf(@TypeOf(state.uniforms))),
@as(c_ulong, 0),
},
);
// Screen texture
encoder.msgSend(
void,
objc.sel("setFragmentTexture:atIndex:"),
.{
state.screen_texture.value,
@as(c_ulong, 0),
},
);
// Draw!
encoder.msgSend(
void,
objc.sel("drawPrimitives:vertexStart:vertexCount:"),
.{
@intFromEnum(mtl.MTLPrimitiveType.triangle_strip),
@as(c_ulong, 0),
@as(c_ulong, 4),
},
);
}
fn drawImagePlacements(
self: *Metal,
encoder: objc.Object,
placements: []const mtl_image.Placement,
) !void {
if (placements.len == 0) return;
// Use our image shader pipeline
encoder.msgSend(
void,
objc.sel("setRenderPipelineState:"),
.{self.shaders.image_pipeline.value},
);
// Set our uniform, which is the only shared buffer
encoder.msgSend(
void,
objc.sel("setVertexBytes:length:atIndex:"),
.{
@as(*const anyopaque, @ptrCast(&self.uniforms)),
@as(c_ulong, @sizeOf(@TypeOf(self.uniforms))),
@as(c_ulong, 1),
},
);
for (placements) |placement| {
try self.drawImagePlacement(encoder, placement);
}
}
fn drawImagePlacement(
self: *Metal,
encoder: objc.Object,
p: mtl_image.Placement,
) !void {
// Look up the image
const image = self.images.get(p.image_id) orelse {
log.warn("image not found for placement image_id={}", .{p.image_id});
return;
};
// Get the texture
const texture = switch (image.image) {
.ready => |t| t,
else => {
log.warn("image not ready for placement image_id={}", .{p.image_id});
return;
},
};
// Create our vertex buffer, which is always exactly one item.
// future(mitchellh): we can group rendering multiple instances of a single image
const Buffer = mtl_buffer.Buffer(mtl_shaders.Image);
var buf = try Buffer.initFill(self.device, &.{.{
.grid_pos = .{
@as(f32, @floatFromInt(p.x)),
@as(f32, @floatFromInt(p.y)),
},
.cell_offset = .{
@as(f32, @floatFromInt(p.cell_offset_x)),
@as(f32, @floatFromInt(p.cell_offset_y)),
},
.source_rect = .{
@as(f32, @floatFromInt(p.source_x)),
@as(f32, @floatFromInt(p.source_y)),
@as(f32, @floatFromInt(p.source_width)),
@as(f32, @floatFromInt(p.source_height)),
},
.dest_size = .{
@as(f32, @floatFromInt(p.width)),
@as(f32, @floatFromInt(p.height)),
},
}});
defer buf.deinit();
// Set our buffer
encoder.msgSend(
void,
objc.sel("setVertexBuffer:offset:atIndex:"),
.{ buf.buffer.value, @as(c_ulong, 0), @as(c_ulong, 0) },
);
// Set our texture
encoder.msgSend(
void,
objc.sel("setVertexTexture:atIndex:"),
.{
texture.value,
@as(c_ulong, 0),
},
);
encoder.msgSend(
void,
objc.sel("setFragmentTexture:atIndex:"),
.{
texture.value,
@as(c_ulong, 0),
},
);
// Draw!
encoder.msgSend(
void,
objc.sel("drawIndexedPrimitives:indexCount:indexType:indexBuffer:indexBufferOffset:instanceCount:"),
.{
@intFromEnum(mtl.MTLPrimitiveType.triangle),
@as(c_ulong, 6),
@intFromEnum(mtl.MTLIndexType.uint16),
self.buf_instance.buffer.value,
@as(c_ulong, 0),
@as(c_ulong, 1),
},
);
// log.debug("drawImagePlacement: {}", .{p});
}
/// Loads some set of cell data into our buffer and issues a draw call.
/// This expects all the Metal command encoder state to be setup.
///
/// Future: when we move to multiple shaders, this will go away and
/// we'll have a draw call per-shader.
fn drawCells(
self: *Metal,
encoder: objc.Object,
buf: *CellBuffer,
cells: std.ArrayListUnmanaged(mtl_shaders.Cell),
) !void {
if (cells.items.len == 0) return;
try buf.sync(self.device, cells.items);
// Use our shader pipeline
encoder.msgSend(
void,
objc.sel("setRenderPipelineState:"),
.{self.shaders.cell_pipeline.value},
);
// Set our buffers
encoder.msgSend(
void,
objc.sel("setVertexBytes:length:atIndex:"),
.{
@as(*const anyopaque, @ptrCast(&self.uniforms)),
@as(c_ulong, @sizeOf(@TypeOf(self.uniforms))),
@as(c_ulong, 1),
},
);
encoder.msgSend(
void,
objc.sel("setFragmentTexture:atIndex:"),
.{
self.texture_greyscale.value,
@as(c_ulong, 0),
},
);
encoder.msgSend(
void,
objc.sel("setFragmentTexture:atIndex:"),
.{
self.texture_color.value,
@as(c_ulong, 1),
},
);
encoder.msgSend(
void,
objc.sel("setVertexBuffer:offset:atIndex:"),
.{ buf.buffer.value, @as(c_ulong, 0), @as(c_ulong, 0) },
);
encoder.msgSend(
void,
objc.sel("drawIndexedPrimitives:indexCount:indexType:indexBuffer:indexBufferOffset:instanceCount:"),
.{
@intFromEnum(mtl.MTLPrimitiveType.triangle),
@as(c_ulong, 6),
@intFromEnum(mtl.MTLIndexType.uint16),
self.buf_instance.buffer.value,
@as(c_ulong, 0),
@as(c_ulong, cells.items.len),
},
);
}
/// This goes through the Kitty graphic placements and accumulates the
/// placements we need to render on our viewport. It also ensures that
/// the visible images are loaded on the GPU.
fn prepKittyGraphics(
self: *Metal,
t: *terminal.Terminal,
) !void {
const storage = &t.screen.kitty_images;
defer storage.dirty = false;
// We always clear our previous placements no matter what because
// we rebuild them from scratch.
self.image_placements.clearRetainingCapacity();
// Go through our known images and if there are any that are no longer
// in use then mark them to be freed.
//
// This never conflicts with the below because a placement can't
// reference an image that doesn't exist.
{
var it = self.images.iterator();
while (it.next()) |kv| {
if (storage.imageById(kv.key_ptr.*) == null) {
kv.value_ptr.image.markForUnload();
}
}
}
// The top-left and bottom-right corners of our viewport in screen
// points. This lets us determine offsets and containment of placements.
const top = (terminal.point.Viewport{}).toScreen(&t.screen);
const bot = (terminal.point.Viewport{
.x = t.screen.cols - 1,
.y = t.screen.rows - 1,
}).toScreen(&t.screen);
// Go through the placements and ensure the image is loaded on the GPU.
var it = storage.placements.iterator();
while (it.next()) |kv| {
// Find the image in storage
const p = kv.value_ptr;
const image = storage.imageById(kv.key_ptr.image_id) orelse {
log.warn(
"missing image for placement, ignoring image_id={}",
.{kv.key_ptr.image_id},
);
continue;
};
// If the selection isn't within our viewport then skip it.
const rect = p.rect(image, t);
if (rect.top_left.y > bot.y) continue;
if (rect.bottom_right.y < top.y) continue;
// If the top left is outside the viewport we need to calc an offset
// so that we render (0, 0) with some offset for the texture.
const offset_y: u32 = if (rect.top_left.y < t.screen.viewport) offset_y: {
const offset_cells = t.screen.viewport - rect.top_left.y;
const offset_pixels = offset_cells * self.grid_metrics.cell_height;
break :offset_y @intCast(offset_pixels);
} else 0;
// We need to prep this image for upload if it isn't in the cache OR
// it is in the cache but the transmit time doesn't match meaning this
// image is different.
const gop = try self.images.getOrPut(self.alloc, kv.key_ptr.image_id);
if (!gop.found_existing or
gop.value_ptr.transmit_time.order(image.transmit_time) != .eq)
{
// Copy the data into the pending state.
const data = try self.alloc.dupe(u8, image.data);
errdefer self.alloc.free(data);
// Store it in the map
const pending: Image.Pending = .{
.width = image.width,
.height = image.height,
.data = data.ptr,
};
const new_image: Image = switch (image.format) {
.grey_alpha => .{ .pending_grey_alpha = pending },
.rgb => .{ .pending_rgb = pending },
.rgba => .{ .pending_rgba = pending },
.png => unreachable, // should be decoded by now
};
if (!gop.found_existing) {
gop.value_ptr.* = .{
.image = new_image,
.transmit_time = undefined,
};
} else {
try gop.value_ptr.image.markForReplace(
self.alloc,
new_image,
);
}
gop.value_ptr.transmit_time = image.transmit_time;
}
// Convert our screen point to a viewport point
const viewport = p.point.toViewport(&t.screen);
// Calculate the source rectangle
const source_x = @min(image.width, p.source_x);
const source_y = @min(image.height, p.source_y + offset_y);
const source_width = if (p.source_width > 0)
@min(image.width - source_x, p.source_width)
else
image.width;
const source_height = if (p.source_height > 0)
@min(image.height, p.source_height)
else
image.height -| offset_y;
// Calculate the width/height of our image.
const dest_width = if (p.columns > 0) p.columns * self.grid_metrics.cell_width else source_width;
const dest_height = if (p.rows > 0) p.rows * self.grid_metrics.cell_height else source_height;
// Accumulate the placement
if (image.width > 0 and image.height > 0) {
try self.image_placements.append(self.alloc, .{
.image_id = kv.key_ptr.image_id,
.x = @intCast(p.point.x),
.y = @intCast(viewport.y),
.z = p.z,
.width = dest_width,
.height = dest_height,
.cell_offset_x = p.x_offset,
.cell_offset_y = p.y_offset,
.source_x = source_x,
.source_y = source_y,
.source_width = source_width,
.source_height = source_height,
});
}
}
// Sort the placements by their Z value.
std.mem.sortUnstable(
mtl_image.Placement,
self.image_placements.items,
{},
struct {
fn lessThan(
ctx: void,
lhs: mtl_image.Placement,
rhs: mtl_image.Placement,
) bool {
_ = ctx;
return lhs.z < rhs.z or (lhs.z == rhs.z and lhs.image_id < rhs.image_id);
}
}.lessThan,
);
// Find our indices
self.image_bg_end = 0;
self.image_text_end = 0;
const bg_limit = std.math.minInt(i32) / 2;
for (self.image_placements.items, 0..) |p, i| {
if (self.image_bg_end == 0 and p.z >= bg_limit) {
self.image_bg_end = @intCast(i);
}
if (self.image_text_end == 0 and p.z >= 0) {
self.image_text_end = @intCast(i);
}
}
if (self.image_text_end == 0) {
self.image_text_end = @intCast(self.image_placements.items.len);
}
}
/// Update the configuration.
pub fn changeConfig(self: *Metal, config: *DerivedConfig) !void {
// On configuration change we always reset our font group. There
// are a variety of configurations that can change font settings
// so to be safe we just always reset it. This has a performance hit
// when its not necessary but config reloading shouldn't be so
// common to cause a problem.
self.font_group.reset();
self.font_group.group.styles = config.font_styles;
self.font_group.atlas_greyscale.clear();
self.font_group.atlas_color.clear();
// We always redo the font shaper in case font features changed. We
// could check to see if there was an actual config change but this is
// easier and rare enough to not cause performance issues.
{
var font_shaper = try font.Shaper.init(self.alloc, .{
.features = config.font_features.items,
});
errdefer font_shaper.deinit();
self.font_shaper.deinit();
self.font_shaper = font_shaper;
}
// Set our new minimum contrast
self.uniforms.min_contrast = config.min_contrast;
// Set our new colors
self.background_color = config.background;
self.foreground_color = config.foreground;
self.cursor_color = config.cursor_color;
self.config.deinit();
self.config = config.*;
}
/// Resize the screen.
pub fn setScreenSize(
self: *Metal,
dim: renderer.ScreenSize,
pad: renderer.Padding,
) !void {
// Store our sizes
self.screen_size = dim;
self.padding.explicit = pad;
// Recalculate the rows/columns. This can't fail since we just set
// the screen size above.
const grid_size = self.gridSize().?;
// Determine if we need to pad the window. For "auto" padding, we take
// the leftover amounts on the right/bottom that don't fit a full grid cell
// and we split them equal across all boundaries.
const padding = if (self.padding.balance)
renderer.Padding.balanced(
dim,
grid_size,
.{
.width = self.grid_metrics.cell_width,
.height = self.grid_metrics.cell_height,
},
)
else
self.padding.explicit;
const padded_dim = dim.subPadding(padding);
// Set the size of the drawable surface to the bounds
self.layer.setProperty("drawableSize", macos.graphics.Size{
.width = @floatFromInt(dim.width),
.height = @floatFromInt(dim.height),
});
// Setup our uniforms
const old = self.uniforms;
self.uniforms = .{
.projection_matrix = math.ortho2d(
-1 * @as(f32, @floatFromInt(padding.left)),
@floatFromInt(padded_dim.width + padding.right),
@floatFromInt(padded_dim.height + padding.bottom),
-1 * @as(f32, @floatFromInt(padding.top)),
),
.cell_size = .{
@floatFromInt(self.grid_metrics.cell_width),
@floatFromInt(self.grid_metrics.cell_height),
},
.strikethrough_position = old.strikethrough_position,
.strikethrough_thickness = old.strikethrough_thickness,
.min_contrast = old.min_contrast,
};
// Reset our buffer sizes so that we free memory when the screen shrinks.
// This could be made more clever by only doing this when the screen
// shrinks but the performance cost really isn't that much.
self.cells.clearAndFree(self.alloc);
self.cells_bg.clearAndFree(self.alloc);
// If we have custom shaders then we update the state
if (self.custom_shader_state) |*state| {
// Only free our previous texture if this isn't our first
// time setting the custom shader state.
if (state.uniforms.resolution[0] > 0) {
deinitMTLResource(state.screen_texture);
}
state.uniforms.resolution = .{
@floatFromInt(dim.width),
@floatFromInt(dim.height),
1,
};
state.screen_texture = screen_texture: {
// This texture is the size of our drawable but supports being a
// render target AND reading so that the custom shaders can read from it.
const desc = init: {
const Class = objc.getClass("MTLTextureDescriptor").?;
const id_alloc = Class.msgSend(objc.Object, objc.sel("alloc"), .{});
const id_init = id_alloc.msgSend(objc.Object, objc.sel("init"), .{});
break :init id_init;
};
desc.setProperty("pixelFormat", @intFromEnum(mtl.MTLPixelFormat.bgra8unorm));
desc.setProperty("width", @as(c_ulong, @intCast(dim.width)));
desc.setProperty("height", @as(c_ulong, @intCast(dim.height)));
desc.setProperty(
"usage",
@intFromEnum(mtl.MTLTextureUsage.render_target) |
@intFromEnum(mtl.MTLTextureUsage.shader_read) |
@intFromEnum(mtl.MTLTextureUsage.shader_write),
);
// If we fail to create the texture, then we just don't have a screen
// texture and our custom shaders won't run.
const id = self.device.msgSend(
?*anyopaque,
objc.sel("newTextureWithDescriptor:"),
.{desc},
) orelse return error.MetalFailed;
break :screen_texture objc.Object.fromId(id);
};
}
log.debug("screen size screen={} grid={}, cell_width={} cell_height={}", .{ dim, grid_size, self.grid_metrics.cell_width, self.grid_metrics.cell_height });
}
/// Sync all the CPU cells with the GPU state (but still on the CPU here).
/// This builds all our "GPUCells" on this struct, but doesn't send them
/// down to the GPU yet.
fn rebuildCells(
self: *Metal,
screen: *terminal.Screen,
mouse: renderer.State.Mouse,
preedit: ?renderer.State.Preedit,
cursor_style_: ?renderer.CursorStyle,
color_palette: *const terminal.color.Palette,
) !void {
const rows_usize: usize = @intCast(screen.pages.rows);
const cols_usize: usize = @intCast(screen.pages.cols);
// Bg cells at most will need space for the visible screen size
self.cells_bg.clearRetainingCapacity();
try self.cells_bg.ensureTotalCapacity(
self.alloc,
rows_usize * cols_usize,
);
// Over-allocate just to ensure we don't allocate again during loops.
self.cells.clearRetainingCapacity();
try self.cells.ensureTotalCapacity(
self.alloc,
// * 3 for glyph + underline + strikethrough for each cell
// + 1 for cursor
(rows_usize * cols_usize * 3) + 1,
);
// Create an arena for all our temporary allocations while rebuilding
var arena = ArenaAllocator.init(self.alloc);
defer arena.deinit();
const arena_alloc = arena.allocator();
_ = arena_alloc;
_ = mouse;
// Create our match set for the links.
// TODO(paged-terminal)
// var link_match_set: link.MatchSet = if (mouse.point) |mouse_pt| try self.config.links.matchSet(
// arena_alloc,
// screen,
// mouse_pt,
// mouse.mods,
// ) else .{};
// Determine our x/y range for preedit. We don't want to render anything
// here because we will render the preedit separately.
const preedit_range: ?struct {
y: usize,
x: [2]usize,
cp_offset: usize,
} = if (preedit) |preedit_v| preedit: {
const range = preedit_v.range(screen.cursor.x, screen.pages.cols - 1);
break :preedit .{
.y = screen.cursor.y,
.x = .{ range.start, range.end },
.cp_offset = range.cp_offset,
};
} else null;
// This is the cell that has [mode == .fg] and is underneath our cursor.
// We keep track of it so that we can invert the colors so the character
// remains visible.
var cursor_cell: ?mtl_shaders.Cell = null;
// Build each cell
var row_it = screen.pages.rowIterator(.right_down, .{ .viewport = .{} }, null);
var y: usize = 0;
while (row_it.next()) |row| {
defer y += 1;
// True if this is the row with our cursor. There are a lot of conditions
// here because the reasons we need to know this are primarily to invert.
//
// - If we aren't drawing the cursor then we don't need to change our rendering.
// - If the cursor is not visible, then we don't need to change rendering.
// - If the cursor style is not a box, then we don't need to change
// rendering because it'll never fully overlap a glyph.
// - If the viewport is not at the bottom, then we don't need to
// change rendering because the cursor is not visible.
// (NOTE: this may not be fully correct, we may be scrolled
// slightly up and the cursor may be visible)
// - If this y doesn't match our cursor y then we don't need to
// change rendering.
//
const cursor_row = if (cursor_style_) |cursor_style|
cursor_style == .block and
screen.viewportIsBottom() and
y == screen.cursor.y
else
false;
// True if we want to do font shaping around the cursor. We want to
// do font shaping as long as the cursor is enabled.
const shape_cursor = screen.viewportIsBottom() and
y == screen.cursor.y;
// If this is the row with our cursor, then we may have to modify
// the cell with the cursor.
const start_i: usize = self.cells.items.len;
defer if (cursor_row) {
// If we're on a wide spacer tail, then we want to look for
// the previous cell.
const screen_cell = row.cells(.all)[screen.cursor.x];
const x = screen.cursor.x - @intFromBool(screen_cell.wide == .spacer_tail);
for (self.cells.items[start_i..]) |cell| {
if (cell.grid_pos[0] == @as(f32, @floatFromInt(x)) and
(cell.mode == .fg or cell.mode == .fg_color))
{
cursor_cell = cell;
break;
}
}
};
// We need to get this row's selection if there is one for proper
// run splitting.
const row_selection = sel: {
const sel = screen.selection orelse break :sel null;
const pin = screen.pages.pin(.{ .viewport = .{ .y = y } }) orelse
break :sel null;
break :sel sel.containedRow(screen, pin) orelse null;
};
// Split our row into runs and shape each one.
var iter = self.font_shaper.runIterator(
self.font_group,
screen,
row,
row_selection,
if (shape_cursor) screen.cursor.x else null,
);
while (try iter.next(self.alloc)) |run| {
for (try self.font_shaper.shape(run)) |shaper_cell| {
// If this cell falls within our preedit range then we skip it.
// We do this so we don't have conflicting data on the same
// cell.
if (preedit_range) |range| {
if (range.y == y and
shaper_cell.x >= range.x[0] and
shaper_cell.x <= range.x[1])
{
continue;
}
}
// It this cell is within our hint range then we need to
// underline it.
const cell: terminal.Pin = cell: {
var copy = row;
copy.x = shaper_cell.x;
break :cell copy;
// TODO(paged-terminal)
// // If our links contain this cell then we want to
// // underline it.
// if (link_match_set.orderedContains(.{
// .x = shaper_cell.x,
// .y = y,
// })) {
// cell.attrs.underline = .single;
// }
};
if (self.updateCell(
screen,
cell,
color_palette,
shaper_cell,
run,
shaper_cell.x,
y,
)) |update| {
assert(update);
} else |err| {
log.warn("error building cell, will be invalid x={} y={}, err={}", .{
shaper_cell.x,
y,
err,
});
}
}
}
}
// Add the cursor at the end so that it overlays everything. If we have
// a cursor cell then we invert the colors on that and add it in so
// that we can always see it.
if (cursor_style_) |cursor_style| cursor_style: {
// If we have a preedit, we try to render the preedit text on top
// of the cursor.
if (preedit) |preedit_v| {
const range = preedit_range.?;
var x = range.x[0];
for (preedit_v.codepoints[range.cp_offset..]) |cp| {
self.addPreeditCell(cp, x, range.y) catch |err| {
log.warn("error building preedit cell, will be invalid x={} y={}, err={}", .{
x,
range.y,
err,
});
};
x += if (cp.wide) 2 else 1;
}
// Preedit hides the cursor
break :cursor_style;
}
_ = self.addCursor(screen, cursor_style);
if (cursor_cell) |*cell| {
if (cell.mode == .fg) {
cell.color = if (self.config.cursor_text) |txt|
.{ txt.r, txt.g, txt.b, 255 }
else
.{ self.background_color.r, self.background_color.g, self.background_color.b, 255 };
}
self.cells.appendAssumeCapacity(cell.*);
}
}
// Some debug mode safety checks
if (std.debug.runtime_safety) {
for (self.cells_bg.items) |cell| assert(cell.mode == .bg);
for (self.cells.items) |cell| assert(cell.mode != .bg);
}
}
fn updateCell(
self: *Metal,
screen: *const terminal.Screen,
cell_pin: terminal.Pin,
palette: *const terminal.color.Palette,
shaper_cell: font.shape.Cell,
shaper_run: font.shape.TextRun,
x: usize,
y: usize,
) !bool {
const BgFg = struct {
/// Background is optional because in un-inverted mode
/// it may just be equivalent to the default background in
/// which case we do nothing to save on GPU render time.
bg: ?terminal.color.RGB,
/// Fg is always set to some color, though we may not render
/// any fg if the cell is empty or has no attributes like
/// underline.
fg: terminal.color.RGB,
};
// True if this cell is selected
const selected: bool = if (screen.selection) |sel|
sel.contains(screen, cell_pin)
else
false;
const rac = cell_pin.rowAndCell();
const cell = rac.cell;
const style = cell_pin.style(cell);
// The colors for the cell.
const colors: BgFg = colors: {
// The normal cell result
const cell_res: BgFg = if (!style.flags.inverse) .{
// In normal mode, background and fg match the cell. We
// un-optionalize the fg by defaulting to our fg color.
.bg = style.bg(cell, palette),
.fg = style.fg(palette) orelse self.foreground_color,
} else .{
// In inverted mode, the background MUST be set to something
// (is never null) so it is either the fg or default fg. The
// fg is either the bg or default background.
.bg = style.fg(palette) orelse self.foreground_color,
.fg = style.bg(cell, palette) orelse self.background_color,
};
// If we are selected, we our colors are just inverted fg/bg
const selection_res: ?BgFg = if (selected) .{
.bg = if (self.config.invert_selection_fg_bg)
cell_res.fg
else
self.config.selection_background orelse self.foreground_color,
.fg = if (self.config.invert_selection_fg_bg)
cell_res.bg orelse self.background_color
else
self.config.selection_foreground orelse self.background_color,
} else null;
// If the cell is "invisible" then we just make fg = bg so that
// the cell is transparent but still copy-able.
const res: BgFg = selection_res orelse cell_res;
if (style.flags.invisible) {
break :colors BgFg{
.bg = res.bg,
.fg = res.bg orelse self.background_color,
};
}
break :colors res;
};
// Alpha multiplier
const alpha: u8 = if (style.flags.faint) 175 else 255;
// If the cell has a background, we always draw it.
const bg: [4]u8 = if (colors.bg) |rgb| bg: {
// Determine our background alpha. If we have transparency configured
// then this is dynamic depending on some situations. This is all
// in an attempt to make transparency look the best for various
// situations. See inline comments.
const bg_alpha: u8 = bg_alpha: {
const default: u8 = 255;
if (self.config.background_opacity >= 1) break :bg_alpha default;
// If we're selected, we do not apply background opacity
if (selected) break :bg_alpha default;
// If we're reversed, do not apply background opacity
if (style.flags.inverse) break :bg_alpha default;
// If we have a background and its not the default background
// then we apply background opacity
if (style.bg(cell, palette) != null and !rgb.eql(self.background_color)) {
break :bg_alpha default;
}
// We apply background opacity.
var bg_alpha: f64 = @floatFromInt(default);
bg_alpha *= self.config.background_opacity;
bg_alpha = @ceil(bg_alpha);
break :bg_alpha @intFromFloat(bg_alpha);
};
self.cells_bg.appendAssumeCapacity(.{
.mode = .bg,
.grid_pos = .{ @as(f32, @floatFromInt(x)), @as(f32, @floatFromInt(y)) },
.cell_width = cell.gridWidth(),
.color = .{ rgb.r, rgb.g, rgb.b, bg_alpha },
.bg_color = .{ 0, 0, 0, 0 },
});
break :bg .{ rgb.r, rgb.g, rgb.b, bg_alpha };
} else .{
self.current_background_color.r,
self.current_background_color.g,
self.current_background_color.b,
@intFromFloat(@max(0, @min(255, @round(self.config.background_opacity * 255)))),
};
// If the cell has a character, draw it
if (cell.hasText()) fg: {
// Render
const glyph = try self.font_group.renderGlyph(
self.alloc,
shaper_run.font_index,
shaper_cell.glyph_index orelse break :fg,
.{
.grid_metrics = self.grid_metrics,
.thicken = self.config.font_thicken,
},
);
const mode: mtl_shaders.Cell.Mode = switch (try fgMode(
&self.font_group.group,
cell_pin,
shaper_run,
)) {
.normal => .fg,
.color => .fg_color,
.constrained => .fg_constrained,
};
self.cells.appendAssumeCapacity(.{
.mode = mode,
.grid_pos = .{ @as(f32, @floatFromInt(x)), @as(f32, @floatFromInt(y)) },
.cell_width = cell.gridWidth(),
.color = .{ colors.fg.r, colors.fg.g, colors.fg.b, alpha },
.bg_color = bg,
.glyph_pos = .{ glyph.atlas_x, glyph.atlas_y },
.glyph_size = .{ glyph.width, glyph.height },
.glyph_offset = .{
glyph.offset_x + shaper_cell.x_offset,
glyph.offset_y + shaper_cell.y_offset,
},
});
}
if (style.flags.underline != .none) {
const sprite: font.Sprite = switch (style.flags.underline) {
.none => unreachable,
.single => .underline,
.double => .underline_double,
.dotted => .underline_dotted,
.dashed => .underline_dashed,
.curly => .underline_curly,
};
const glyph = try self.font_group.renderGlyph(
self.alloc,
font.sprite_index,
@intFromEnum(sprite),
.{
.cell_width = if (cell.wide == .wide) 2 else 1,
.grid_metrics = self.grid_metrics,
},
);
const color = style.underlineColor(palette) orelse colors.fg;
self.cells.appendAssumeCapacity(.{
.mode = .fg,
.grid_pos = .{ @as(f32, @floatFromInt(x)), @as(f32, @floatFromInt(y)) },
.cell_width = cell.gridWidth(),
.color = .{ color.r, color.g, color.b, alpha },
.bg_color = bg,
.glyph_pos = .{ glyph.atlas_x, glyph.atlas_y },
.glyph_size = .{ glyph.width, glyph.height },
.glyph_offset = .{ glyph.offset_x, glyph.offset_y },
});
}
if (style.flags.strikethrough) {
self.cells.appendAssumeCapacity(.{
.mode = .strikethrough,
.grid_pos = .{ @as(f32, @floatFromInt(x)), @as(f32, @floatFromInt(y)) },
.cell_width = cell.gridWidth(),
.color = .{ colors.fg.r, colors.fg.g, colors.fg.b, alpha },
.bg_color = bg,
});
}
return true;
}
fn addCursor(
self: *Metal,
screen: *terminal.Screen,
cursor_style: renderer.CursorStyle,
) ?*const mtl_shaders.Cell {
// Add the cursor. We render the cursor over the wide character if
// we're on the wide characer tail.
const wide, const x = cell: {
// The cursor goes over the screen cursor position.
const cell = screen.cursor.page_cell;
if (cell.wide != .spacer_tail or screen.cursor.x == 0)
break :cell .{ cell.wide == .wide, screen.cursor.x };
// If we're part of a wide character, we move the cursor back to
// the actual character.
const prev_cell = screen.cursorCellLeft(1);
break :cell .{ prev_cell.wide == .wide, screen.cursor.x - 1 };
};
const color = self.cursor_color orelse self.foreground_color;
const alpha: u8 = if (!self.focused) 255 else alpha: {
const alpha = 255 * self.config.cursor_opacity;
break :alpha @intFromFloat(@ceil(alpha));
};
const sprite: font.Sprite = switch (cursor_style) {
.block => .cursor_rect,
.block_hollow => .cursor_hollow_rect,
.bar => .cursor_bar,
.underline => .underline,
};
const glyph = self.font_group.renderGlyph(
self.alloc,
font.sprite_index,
@intFromEnum(sprite),
.{
.cell_width = if (wide) 2 else 1,
.grid_metrics = self.grid_metrics,
},
) catch |err| {
log.warn("error rendering cursor glyph err={}", .{err});
return null;
};
self.cells.appendAssumeCapacity(.{
.mode = .fg,
.grid_pos = .{
@as(f32, @floatFromInt(x)),
@as(f32, @floatFromInt(screen.cursor.y)),
},
.cell_width = if (wide) 2 else 1,
.color = .{ color.r, color.g, color.b, alpha },
.bg_color = .{ 0, 0, 0, 0 },
.glyph_pos = .{ glyph.atlas_x, glyph.atlas_y },
.glyph_size = .{ glyph.width, glyph.height },
.glyph_offset = .{ glyph.offset_x, glyph.offset_y },
});
return &self.cells.items[self.cells.items.len - 1];
}
fn addPreeditCell(
self: *Metal,
cp: renderer.State.Preedit.Codepoint,
x: usize,
y: usize,
) !void {
// Preedit is rendered inverted
const bg = self.foreground_color;
const fg = self.background_color;
// Get the font for this codepoint.
const font_index = if (self.font_group.indexForCodepoint(
self.alloc,
@intCast(cp.codepoint),
.regular,
.text,
)) |index| index orelse return else |_| return;
// Get the font face so we can get the glyph
const face = self.font_group.group.faceFromIndex(font_index) catch |err| {
log.warn("error getting face for font_index={} err={}", .{ font_index, err });
return;
};
// Use the face to now get the glyph index
const glyph_index = face.glyphIndex(@intCast(cp.codepoint)) orelse return;
// Render the glyph for our preedit text
const glyph = self.font_group.renderGlyph(
self.alloc,
font_index,
glyph_index,
.{ .grid_metrics = self.grid_metrics },
) catch |err| {
log.warn("error rendering preedit glyph err={}", .{err});
return;
};
// Add our opaque background cell
self.cells_bg.appendAssumeCapacity(.{
.mode = .bg,
.grid_pos = .{ @as(f32, @floatFromInt(x)), @as(f32, @floatFromInt(y)) },
.cell_width = if (cp.wide) 2 else 1,
.color = .{ bg.r, bg.g, bg.b, 255 },
.bg_color = .{ bg.r, bg.g, bg.b, 255 },
});
// Add our text
self.cells.appendAssumeCapacity(.{
.mode = .fg,
.grid_pos = .{ @as(f32, @floatFromInt(x)), @as(f32, @floatFromInt(y)) },
.cell_width = if (cp.wide) 2 else 1,
.color = .{ fg.r, fg.g, fg.b, 255 },
.bg_color = .{ bg.r, bg.g, bg.b, 255 },
.glyph_pos = .{ glyph.atlas_x, glyph.atlas_y },
.glyph_size = .{ glyph.width, glyph.height },
.glyph_offset = .{ glyph.offset_x, glyph.offset_y },
});
}
/// Sync the atlas data to the given texture. This copies the bytes
/// associated with the atlas to the given texture. If the atlas no longer
/// fits into the texture, the texture will be resized.
fn syncAtlasTexture(device: objc.Object, atlas: *const font.Atlas, texture: *objc.Object) !void {
const width = texture.getProperty(c_ulong, "width");
if (atlas.size > width) {
// Free our old texture
deinitMTLResource(texture.*);
// Reallocate
texture.* = try initAtlasTexture(device, atlas);
}
texture.msgSend(
void,
objc.sel("replaceRegion:mipmapLevel:withBytes:bytesPerRow:"),
.{
mtl.MTLRegion{
.origin = .{ .x = 0, .y = 0, .z = 0 },
.size = .{
.width = @intCast(atlas.size),
.height = @intCast(atlas.size),
.depth = 1,
},
},
@as(c_ulong, 0),
@as(*const anyopaque, atlas.data.ptr),
@as(c_ulong, atlas.format.depth() * atlas.size),
},
);
}
/// Initialize a MTLTexture object for the given atlas.
fn initAtlasTexture(device: objc.Object, atlas: *const font.Atlas) !objc.Object {
// Determine our pixel format
const pixel_format: mtl.MTLPixelFormat = switch (atlas.format) {
.greyscale => .r8unorm,
.rgba => .bgra8unorm,
else => @panic("unsupported atlas format for Metal texture"),
};
// Create our descriptor
const desc = init: {
const Class = objc.getClass("MTLTextureDescriptor").?;
const id_alloc = Class.msgSend(objc.Object, objc.sel("alloc"), .{});
const id_init = id_alloc.msgSend(objc.Object, objc.sel("init"), .{});
break :init id_init;
};
// Set our properties
desc.setProperty("pixelFormat", @intFromEnum(pixel_format));
desc.setProperty("width", @as(c_ulong, @intCast(atlas.size)));
desc.setProperty("height", @as(c_ulong, @intCast(atlas.size)));
// Xcode tells us that this texture should be shared mode on
// aarch64. This configuration is not supported on x86_64 so
// we only set it on aarch64.
if (comptime builtin.target.cpu.arch == .aarch64) {
desc.setProperty(
"storageMode",
@as(c_ulong, mtl.MTLResourceStorageModeShared),
);
}
// Initialize
const id = device.msgSend(
?*anyopaque,
objc.sel("newTextureWithDescriptor:"),
.{desc},
) orelse return error.MetalFailed;
return objc.Object.fromId(id);
}
/// Deinitialize a metal resource (buffer, texture, etc.) and free the
/// memory associated with it.
fn deinitMTLResource(obj: objc.Object) void {
obj.msgSend(void, objc.sel("release"), .{});
}