ghostty/src/apprt/embedded.zig
Mitchell Hashimoto 984d123fe4 macos: support configuration via CLI arguments
This makes it so `zig build run` can take arguments such as
`--config-default-files=false` or any other configuration. Previously,
it only accepted commands such as `+version`.

Incidentally, this also makes it so that the app in general can now take
configuration arguments via the CLI if it is launched as a new instance
via `open`. For example:

    open -n Ghostty.app --args --config-default-files=false

This previously didn't work. This is kind of cool.

To make this work, the libghostty C API was modified so that
initialization requires the CLI args, and there is a new C API to try to
execute an action if it was set.
2025-07-05 21:31:23 -07:00

2139 lines
69 KiB
Zig

//! Application runtime for the embedded version of Ghostty. The embedded
//! version is when Ghostty is embedded within a parent host application,
//! rather than owning the application lifecycle itself. This is used for
//! example for the macOS build of Ghostty so that we can use a native
//! Swift+XCode-based application.
const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const objc = @import("objc");
const apprt = @import("../apprt.zig");
const font = @import("../font/main.zig");
const input = @import("../input.zig");
const internal_os = @import("../os/main.zig");
const renderer = @import("../renderer.zig");
const terminal = @import("../terminal/main.zig");
const CoreApp = @import("../App.zig");
const CoreInspector = @import("../inspector/main.zig").Inspector;
const CoreSurface = @import("../Surface.zig");
const configpkg = @import("../config.zig");
const Config = configpkg.Config;
const log = std.log.scoped(.embedded_window);
pub const resourcesDir = internal_os.resourcesDir;
pub const App = struct {
/// Because we only expect the embedding API to be used in embedded
/// environments, the options are extern so that we can expose it
/// directly to a C callconv and not pay for any translation costs.
///
/// C type: ghostty_runtime_config_s
pub const Options = extern struct {
/// These are just aliases to make the function signatures below
/// more obvious what values will be sent.
const AppUD = ?*anyopaque;
const SurfaceUD = ?*anyopaque;
/// Userdata that is passed to all the callbacks.
userdata: AppUD = null,
/// True if the selection clipboard is supported.
supports_selection_clipboard: bool = false,
/// Callback called to wakeup the event loop. This should trigger
/// a full tick of the app loop.
wakeup: *const fn (AppUD) callconv(.c) void,
/// Callback called to handle an action.
action: *const fn (*App, apprt.Target.C, apprt.Action.C) callconv(.c) bool,
/// Read the clipboard value. The return value must be preserved
/// by the host until the next call. If there is no valid clipboard
/// value then this should return null.
read_clipboard: *const fn (SurfaceUD, c_int, *apprt.ClipboardRequest) callconv(.c) void,
/// This may be called after a read clipboard call to request
/// confirmation that the clipboard value is safe to read. The embedder
/// must call complete_clipboard_request with the given request.
confirm_read_clipboard: *const fn (
SurfaceUD,
[*:0]const u8,
*apprt.ClipboardRequest,
apprt.ClipboardRequestType,
) callconv(.c) void,
/// Write the clipboard value.
write_clipboard: *const fn (SurfaceUD, [*:0]const u8, c_int, bool) callconv(.c) void,
/// Close the current surface given by this function.
close_surface: ?*const fn (SurfaceUD, bool) callconv(.c) void = null,
};
/// This is the key event sent for ghostty_surface_key and
/// ghostty_app_key.
pub const KeyEvent = struct {
action: input.Action,
mods: input.Mods,
consumed_mods: input.Mods,
keycode: u32,
text: ?[:0]const u8,
unshifted_codepoint: u32,
composing: bool,
/// Convert a libghostty key event into a core key event.
fn core(self: KeyEvent) ?input.KeyEvent {
const text: []const u8 = if (self.text) |v| v else "";
const unshifted_codepoint: u21 = std.math.cast(
u21,
self.unshifted_codepoint,
) orelse 0;
// We want to get the physical unmapped key to process keybinds.
const physical_key = keycode: for (input.keycodes.entries) |entry| {
if (entry.native == self.keycode) break :keycode entry.key;
} else .unidentified;
// Build our final key event
return .{
.action = self.action,
.key = physical_key,
.mods = self.mods,
.consumed_mods = self.consumed_mods,
.composing = self.composing,
.utf8 = text,
.unshifted_codepoint = unshifted_codepoint,
};
}
};
core_app: *CoreApp,
opts: Options,
keymap: input.Keymap,
/// The configuration for the app. This is owned by this structure.
config: Config,
pub fn init(
self: *App,
core_app: *CoreApp,
config: *const Config,
opts: Options,
) !void {
// We have to clone the config.
const alloc = core_app.alloc;
var config_clone = try config.clone(alloc);
errdefer config_clone.deinit();
var keymap = try input.Keymap.init();
errdefer keymap.deinit();
self.* = .{
.core_app = core_app,
.config = config_clone,
.opts = opts,
.keymap = keymap,
};
}
pub fn terminate(self: *App) void {
self.keymap.deinit();
self.config.deinit();
}
/// Returns true if there are any global keybinds in the configuration.
pub fn hasGlobalKeybinds(self: *const App) bool {
var it = self.config.keybind.set.bindings.iterator();
while (it.next()) |entry| {
switch (entry.value_ptr.*) {
.leader => {},
.leaf => |leaf| if (leaf.flags.global) return true,
}
}
return false;
}
/// The target of a key event. This is used to determine some subtly
/// different behavior between app and surface key events.
pub const KeyTarget = union(enum) {
app,
surface: *Surface,
};
/// See CoreApp.focusEvent
pub fn focusEvent(self: *App, focused: bool) void {
self.core_app.focusEvent(focused);
}
/// See CoreApp.keyEvent.
pub fn keyEvent(
self: *App,
target: KeyTarget,
event: KeyEvent,
) !bool {
// Convert our C key event into a Zig one.
const input_event: input.KeyEvent = event.core() orelse
return false;
// Invoke the core Ghostty logic to handle this input.
const effect: CoreSurface.InputEffect = switch (target) {
.app => if (self.core_app.keyEvent(
self,
input_event,
)) .consumed else .ignored,
.surface => |surface| try surface.core_surface.keyCallback(
input_event,
),
};
return switch (effect) {
.closed => true,
.ignored => false,
.consumed => true,
};
}
/// This should be called whenever the keyboard layout was changed.
pub fn reloadKeymap(self: *App) !void {
// Reload the keymap
try self.keymap.reload();
}
/// Loads the keyboard layout.
///
/// Kind of expensive so this should be avoided if possible. When I say
/// "kind of expensive" I mean that its not something you probably want
/// to run on every keypress.
pub fn keyboardLayout(self: *const App) input.KeyboardLayout {
// We only support keyboard layout detection on macOS.
if (comptime builtin.os.tag != .macos) return .unknown;
// Any layout larger than this is not something we can handle.
var buf: [256]u8 = undefined;
const id = self.keymap.sourceId(&buf) catch |err| {
comptime assert(@TypeOf(err) == error{OutOfMemory});
return .unknown;
};
return input.KeyboardLayout.mapAppleId(id) orelse .unknown;
}
pub fn wakeup(self: *const App) void {
self.opts.wakeup(self.opts.userdata);
}
pub fn wait(self: *const App) !void {
_ = self;
}
/// Create a new surface for the app.
fn newSurface(self: *App, opts: Surface.Options) !*Surface {
// Grab a surface allocation because we're going to need it.
var surface = try self.core_app.alloc.create(Surface);
errdefer self.core_app.alloc.destroy(surface);
// Create the surface
try surface.init(self, opts);
errdefer surface.deinit();
return surface;
}
/// Close the given surface.
pub fn closeSurface(self: *App, surface: *Surface) void {
surface.deinit();
self.core_app.alloc.destroy(surface);
}
pub fn redrawSurface(self: *App, surface: *Surface) void {
_ = self;
_ = surface;
// No-op, we use a threaded interface so we're constantly drawing.
}
pub fn redrawInspector(self: *App, surface: *Surface) void {
_ = self;
surface.queueInspectorRender();
}
/// Perform a given action. Returns `true` if the action was able to be
/// performed, `false` otherwise.
pub fn performAction(
self: *App,
target: apprt.Target,
comptime action: apprt.Action.Key,
value: apprt.Action.Value(action),
) !bool {
// Special case certain actions before they are sent to the
// embedded apprt.
self.performPreAction(target, action, value);
log.debug("dispatching action target={s} action={} value={}", .{
@tagName(target),
action,
value,
});
return self.opts.action(
self,
target.cval(),
@unionInit(apprt.Action, @tagName(action), value).cval(),
);
}
fn performPreAction(
self: *App,
target: apprt.Target,
comptime action: apprt.Action.Key,
value: apprt.Action.Value(action),
) void {
// Special case certain actions before they are sent to the embedder
switch (action) {
.set_title => switch (target) {
.app => {},
.surface => |surface| {
// Dupe the title so that we can store it. If we get an allocation
// error we just ignore it, since this only breaks a few minor things.
const alloc = self.core_app.alloc;
if (surface.rt_surface.title) |v| alloc.free(v);
surface.rt_surface.title = alloc.dupeZ(u8, value.title) catch null;
},
},
.config_change => switch (target) {
.surface => {},
// For app updates, we update our core config. We need to
// clone it because the caller owns the param.
.app => if (value.config.clone(self.core_app.alloc)) |config| {
self.config.deinit();
self.config = config;
} else |err| {
log.err("error updating app config err={}", .{err});
},
},
else => {},
}
}
};
/// Platform-specific configuration for libghostty.
pub const Platform = union(PlatformTag) {
macos: MacOS,
ios: IOS,
// If our build target for libghostty is not darwin then we do
// not include macos support at all.
pub const MacOS = if (builtin.target.os.tag.isDarwin()) struct {
/// The view to render the surface on.
nsview: objc.Object,
} else void;
pub const IOS = if (builtin.target.os.tag.isDarwin()) struct {
/// The view to render the surface on.
uiview: objc.Object,
} else void;
// The C ABI compatible version of this union. The tag is expected
// to be stored elsewhere.
pub const C = extern union {
macos: extern struct {
nsview: ?*anyopaque,
},
ios: extern struct {
uiview: ?*anyopaque,
},
};
/// Initialize a Platform a tag and configuration from the C ABI.
pub fn init(tag_int: c_int, c_platform: C) !Platform {
const tag = try std.meta.intToEnum(PlatformTag, tag_int);
return switch (tag) {
.macos => if (MacOS != void) macos: {
const config = c_platform.macos;
const nsview = objc.Object.fromId(config.nsview orelse
break :macos error.NSViewMustBeSet);
break :macos .{ .macos = .{ .nsview = nsview } };
} else error.UnsupportedPlatform,
.ios => if (IOS != void) ios: {
const config = c_platform.ios;
const uiview = objc.Object.fromId(config.uiview orelse
break :ios error.UIViewMustBeSet);
break :ios .{ .ios = .{ .uiview = uiview } };
} else error.UnsupportedPlatform,
};
}
};
pub const PlatformTag = enum(c_int) {
// "0" is reserved for invalid so we can detect unset values
// from the C API.
macos = 1,
ios = 2,
};
pub const EnvVar = extern struct {
/// The name of the environment variable.
key: [*:0]const u8,
/// The value of the environment variable.
value: [*:0]const u8,
};
pub const Surface = struct {
app: *App,
platform: Platform,
userdata: ?*anyopaque = null,
core_surface: CoreSurface,
content_scale: apprt.ContentScale,
size: apprt.SurfaceSize,
cursor_pos: apprt.CursorPos,
inspector: ?*Inspector = null,
/// The current title of the surface. The embedded apprt saves this so
/// that getTitle works without the implementer needing to save it.
title: ?[:0]const u8 = null,
/// Surface initialization options.
pub const Options = extern struct {
/// The platform that this surface is being initialized for and
/// the associated platform-specific configuration.
platform_tag: c_int = 0,
platform: Platform.C = undefined,
/// Userdata passed to some of the callbacks.
userdata: ?*anyopaque = null,
/// The scale factor of the screen.
scale_factor: f64 = 1,
/// The font size to inherit. If 0, default font size will be used.
font_size: f32 = 0,
/// The working directory to load into.
working_directory: ?[*:0]const u8 = null,
/// The command to run in the new surface. If this is set then
/// the "wait-after-command" option is also automatically set to true,
/// since this is used for scripting.
///
/// This command always run in a shell (e.g. via `/bin/sh -c`),
/// despite Ghostty allowing directly executed commands via config.
/// This is a legacy thing and we should probably change it in the
/// future once we have a concrete use case.
command: ?[*:0]const u8 = null,
/// Extra environment variables to set for the surface.
env_vars: ?[*]EnvVar = null,
env_var_count: usize = 0,
/// Input to send to the command after it is started.
initial_input: ?[*:0]const u8 = null,
};
pub fn init(self: *Surface, app: *App, opts: Options) !void {
self.* = .{
.app = app,
.platform = try .init(opts.platform_tag, opts.platform),
.userdata = opts.userdata,
.core_surface = undefined,
.content_scale = .{
.x = @floatCast(opts.scale_factor),
.y = @floatCast(opts.scale_factor),
},
.size = .{ .width = 800, .height = 600 },
.cursor_pos = .{ .x = -1, .y = -1 },
};
// Add ourselves to the list of surfaces on the app.
try app.core_app.addSurface(self);
errdefer app.core_app.deleteSurface(self);
// Shallow copy the config so that we can modify it.
var config = try apprt.surface.newConfig(app.core_app, &app.config);
defer config.deinit();
// If we have a working directory from the options then we set it.
if (opts.working_directory) |c_wd| {
const wd = std.mem.sliceTo(c_wd, 0);
if (wd.len > 0) wd: {
var dir = std.fs.openDirAbsolute(wd, .{}) catch |err| {
log.warn(
"error opening requested working directory dir={s} err={}",
.{ wd, err },
);
break :wd;
};
defer dir.close();
const stat = dir.stat() catch |err| {
log.warn(
"failed to stat requested working directory dir={s} err={}",
.{ wd, err },
);
break :wd;
};
if (stat.kind != .directory) {
log.warn(
"requested working directory is not a directory dir={s}",
.{wd},
);
break :wd;
}
config.@"working-directory" = wd;
}
}
// If we have a command from the options then we set it.
if (opts.command) |c_command| {
const cmd = std.mem.sliceTo(c_command, 0);
if (cmd.len > 0) {
config.command = .{ .shell = cmd };
config.@"wait-after-command" = true;
}
}
// Apply any environment variables that were requested.
if (opts.env_var_count > 0) {
const alloc = config.arenaAlloc();
for (opts.env_vars.?[0..opts.env_var_count]) |env_var| {
const key = std.mem.sliceTo(env_var.key, 0);
const value = std.mem.sliceTo(env_var.value, 0);
try config.env.map.put(
alloc,
try alloc.dupeZ(u8, key),
try alloc.dupeZ(u8, value),
);
}
}
// If we have an initial input then we set it.
if (opts.initial_input) |c_input| {
const alloc = config.arenaAlloc();
config.input.list.clearRetainingCapacity();
try config.input.list.append(
alloc,
.{ .raw = try alloc.dupeZ(u8, std.mem.sliceTo(
c_input,
0,
)) },
);
}
// Initialize our surface right away. We're given a view that is
// ready to use.
try self.core_surface.init(
app.core_app.alloc,
&config,
app.core_app,
app,
self,
);
errdefer self.core_surface.deinit();
// If our options requested a specific font-size, set that.
if (opts.font_size != 0) {
var font_size = self.core_surface.font_size;
font_size.points = opts.font_size;
try self.core_surface.setFontSize(font_size);
}
}
pub fn deinit(self: *Surface) void {
// Shut down our inspector
self.freeInspector();
// Free our title
if (self.title) |v| self.app.core_app.alloc.free(v);
// Remove ourselves from the list of known surfaces in the app.
self.app.core_app.deleteSurface(self);
// Clean up our core surface so that all the rendering and IO stop.
self.core_surface.deinit();
}
/// Initialize the inspector instance. A surface can only have one
/// inspector at any given time, so this will return the previous inspector
/// if it was already initialized.
pub fn initInspector(self: *Surface) !*Inspector {
if (self.inspector) |v| return v;
const alloc = self.app.core_app.alloc;
const inspector = try alloc.create(Inspector);
errdefer alloc.destroy(inspector);
inspector.* = try .init(self);
self.inspector = inspector;
return inspector;
}
pub fn freeInspector(self: *Surface) void {
if (self.inspector) |v| {
v.deinit();
self.app.core_app.alloc.destroy(v);
self.inspector = null;
}
}
pub fn close(self: *const Surface, process_alive: bool) void {
const func = self.app.opts.close_surface orelse {
log.info("runtime embedder does not support closing a surface", .{});
return;
};
func(self.userdata, process_alive);
}
pub fn getContentScale(self: *const Surface) !apprt.ContentScale {
return self.content_scale;
}
pub fn getSize(self: *const Surface) !apprt.SurfaceSize {
return self.size;
}
pub fn getTitle(self: *Surface) ?[:0]const u8 {
return self.title;
}
pub fn supportsClipboard(
self: *const Surface,
clipboard_type: apprt.Clipboard,
) bool {
return switch (clipboard_type) {
.standard => true,
.selection, .primary => self.app.opts.supports_selection_clipboard,
};
}
pub fn clipboardRequest(
self: *Surface,
clipboard_type: apprt.Clipboard,
state: apprt.ClipboardRequest,
) !void {
// We need to allocate to get a pointer to store our clipboard request
// so that it is stable until the read_clipboard callback and call
// complete_clipboard_request. This sucks but clipboard requests aren't
// high throughput so it's probably fine.
const alloc = self.app.core_app.alloc;
const state_ptr = try alloc.create(apprt.ClipboardRequest);
errdefer alloc.destroy(state_ptr);
state_ptr.* = state;
self.app.opts.read_clipboard(
self.userdata,
@intCast(@intFromEnum(clipboard_type)),
state_ptr,
);
}
fn completeClipboardRequest(
self: *Surface,
str: [:0]const u8,
state: *apprt.ClipboardRequest,
confirmed: bool,
) void {
const alloc = self.app.core_app.alloc;
// Attempt to complete the request, but we may request
// confirmation.
self.core_surface.completeClipboardRequest(
state.*,
str,
confirmed,
) catch |err| switch (err) {
error.UnsafePaste,
error.UnauthorizedPaste,
=> {
self.app.opts.confirm_read_clipboard(
self.userdata,
str.ptr,
state,
state.*,
);
return;
},
else => log.err("error completing clipboard request err={}", .{err}),
};
// We don't defer this because the clipboard confirmation route
// preserves the clipboard request.
alloc.destroy(state);
}
pub fn setClipboardString(
self: *const Surface,
val: [:0]const u8,
clipboard_type: apprt.Clipboard,
confirm: bool,
) !void {
self.app.opts.write_clipboard(
self.userdata,
val.ptr,
@intCast(@intFromEnum(clipboard_type)),
confirm,
);
}
pub fn setShouldClose(self: *Surface) void {
_ = self;
}
pub fn shouldClose(self: *const Surface) bool {
_ = self;
return false;
}
pub fn getCursorPos(self: *const Surface) !apprt.CursorPos {
return self.cursor_pos;
}
pub fn refresh(self: *Surface) void {
self.core_surface.refreshCallback() catch |err| {
log.err("error in refresh callback err={}", .{err});
return;
};
}
pub fn draw(self: *Surface) void {
self.core_surface.draw() catch |err| {
log.err("error in draw err={}", .{err});
return;
};
}
pub fn updateContentScale(self: *Surface, x: f64, y: f64) void {
// We are an embedded API so the caller can send us all sorts of
// garbage. We want to make sure that the float values are valid
// and we don't want to support fractional scaling below 1.
const x_scaled = @max(1, if (std.math.isNan(x)) 1 else x);
const y_scaled = @max(1, if (std.math.isNan(y)) 1 else y);
self.content_scale = .{
.x = @floatCast(x_scaled),
.y = @floatCast(y_scaled),
};
self.core_surface.contentScaleCallback(self.content_scale) catch |err| {
log.err("error in content scale callback err={}", .{err});
return;
};
}
pub fn updateSize(self: *Surface, width: u32, height: u32) void {
// Runtimes sometimes generate superfluous resize events even
// if the size did not actually change (SwiftUI). We check
// that the size actually changed from what we last recorded
// since resizes are expensive.
if (self.size.width == width and self.size.height == height) return;
self.size = .{
.width = width,
.height = height,
};
// Call the primary callback.
self.core_surface.sizeCallback(self.size) catch |err| {
log.err("error in size callback err={}", .{err});
return;
};
}
pub fn colorSchemeCallback(self: *Surface, scheme: apprt.ColorScheme) void {
self.core_surface.colorSchemeCallback(scheme) catch |err| {
log.err("error setting color scheme err={}", .{err});
return;
};
}
pub fn mouseButtonCallback(
self: *Surface,
action: input.MouseButtonState,
button: input.MouseButton,
mods: input.Mods,
) bool {
return self.core_surface.mouseButtonCallback(action, button, mods) catch |err| {
log.err("error in mouse button callback err={}", .{err});
return false;
};
}
pub fn mousePressureCallback(
self: *Surface,
stage: input.MousePressureStage,
pressure: f64,
) void {
self.core_surface.mousePressureCallback(stage, pressure) catch |err| {
log.err("error in mouse pressure callback err={}", .{err});
return;
};
}
pub fn scrollCallback(
self: *Surface,
xoff: f64,
yoff: f64,
mods: input.ScrollMods,
) void {
self.core_surface.scrollCallback(xoff, yoff, mods) catch |err| {
log.err("error in scroll callback err={}", .{err});
return;
};
}
pub fn cursorPosCallback(
self: *Surface,
x: f64,
y: f64,
mods: input.Mods,
) void {
// Convert our unscaled x/y to scaled.
self.cursor_pos = self.cursorPosToPixels(.{
.x = @floatCast(x),
.y = @floatCast(y),
}) catch |err| {
log.err(
"error converting cursor pos to scaled pixels in cursor pos callback err={}",
.{err},
);
return;
};
self.core_surface.cursorPosCallback(self.cursor_pos, mods) catch |err| {
log.err("error in cursor pos callback err={}", .{err});
return;
};
}
pub fn preeditCallback(self: *Surface, preedit_: ?[]const u8) void {
_ = self.core_surface.preeditCallback(preedit_) catch |err| {
log.err("error in preedit callback err={}", .{err});
return;
};
}
pub fn textCallback(self: *Surface, text: []const u8) void {
_ = self.core_surface.textCallback(text) catch |err| {
log.err("error in key callback err={}", .{err});
return;
};
}
pub fn focusCallback(self: *Surface, focused: bool) void {
self.core_surface.focusCallback(focused) catch |err| {
log.err("error in focus callback err={}", .{err});
return;
};
}
pub fn occlusionCallback(self: *Surface, visible: bool) void {
self.core_surface.occlusionCallback(visible) catch |err| {
log.err("error in occlusion callback err={}", .{err});
return;
};
}
fn queueInspectorRender(self: *Surface) void {
_ = self.app.performAction(
.{ .surface = &self.core_surface },
.render_inspector,
{},
) catch |err| {
log.err("error rendering the inspector err={}", .{err});
return;
};
}
pub fn newSurfaceOptions(self: *const Surface) apprt.Surface.Options {
const font_size: f32 = font_size: {
if (!self.app.config.@"window-inherit-font-size") break :font_size 0;
break :font_size self.core_surface.font_size.points;
};
return .{
.font_size = font_size,
};
}
pub fn defaultTermioEnv(self: *const Surface) !std.process.EnvMap {
const alloc = self.app.core_app.alloc;
var env = try internal_os.getEnvMap(alloc);
errdefer env.deinit();
if (comptime builtin.target.os.tag.isDarwin()) {
if (env.get("__XCODE_BUILT_PRODUCTS_DIR_PATHS") != null) {
env.remove("__XCODE_BUILT_PRODUCTS_DIR_PATHS");
env.remove("__XPC_DYLD_LIBRARY_PATH");
env.remove("DYLD_FRAMEWORK_PATH");
env.remove("DYLD_INSERT_LIBRARIES");
env.remove("DYLD_LIBRARY_PATH");
env.remove("LD_LIBRARY_PATH");
env.remove("SECURITYSESSIONID");
env.remove("XPC_SERVICE_NAME");
}
// Remove this so that running `ghostty` within Ghostty works.
env.remove("GHOSTTY_MAC_LAUNCH_SOURCE");
// If we were launched from the desktop then we want to
// remove the LANGUAGE env var so that we don't inherit
// our translation settings for Ghostty. If we aren't from
// the desktop then we didn't set our LANGUAGE var so we
// don't need to remove it.
switch (self.app.config.@"launched-from".?) {
.desktop => env.remove("LANGUAGE"),
.dbus, .systemd, .cli => {},
}
}
return env;
}
/// The cursor position from the host directly is in screen coordinates but
/// all our interface works in pixels.
fn cursorPosToPixels(self: *const Surface, pos: apprt.CursorPos) !apprt.CursorPos {
const scale = try self.getContentScale();
return .{ .x = pos.x * scale.x, .y = pos.y * scale.y };
}
};
/// Inspector is the state required for the terminal inspector. A terminal
/// inspector is 1:1 with a Surface.
pub const Inspector = struct {
const cimgui = @import("cimgui");
surface: *Surface,
ig_ctx: *cimgui.c.ImGuiContext,
backend: ?Backend = null,
content_scale: f64 = 1,
/// Our previous instant used to calculate delta time for animations.
instant: ?std.time.Instant = null,
const Backend = enum {
metal,
pub fn deinit(self: Backend) void {
switch (self) {
.metal => if (builtin.target.os.tag.isDarwin()) cimgui.ImGui_ImplMetal_Shutdown(),
}
}
};
pub fn init(surface: *Surface) !Inspector {
const ig_ctx = cimgui.c.igCreateContext(null) orelse return error.OutOfMemory;
errdefer cimgui.c.igDestroyContext(ig_ctx);
cimgui.c.igSetCurrentContext(ig_ctx);
const io: *cimgui.c.ImGuiIO = cimgui.c.igGetIO();
io.BackendPlatformName = "ghostty_embedded";
// Setup our core inspector
CoreInspector.setup();
surface.core_surface.activateInspector() catch |err| {
log.err("failed to activate inspector err={}", .{err});
};
return .{
.surface = surface,
.ig_ctx = ig_ctx,
};
}
pub fn deinit(self: *Inspector) void {
self.surface.core_surface.deactivateInspector();
cimgui.c.igSetCurrentContext(self.ig_ctx);
if (self.backend) |v| v.deinit();
cimgui.c.igDestroyContext(self.ig_ctx);
}
/// Queue a render for the next frame.
pub fn queueRender(self: *Inspector) void {
self.surface.queueInspectorRender();
}
/// Initialize the inspector for a metal backend.
pub fn initMetal(self: *Inspector, device: objc.Object) bool {
defer device.msgSend(void, objc.sel("release"), .{});
cimgui.c.igSetCurrentContext(self.ig_ctx);
if (self.backend) |v| {
v.deinit();
self.backend = null;
}
if (!cimgui.ImGui_ImplMetal_Init(device.value)) {
log.warn("failed to initialize metal backend", .{});
return false;
}
self.backend = .metal;
log.debug("initialized metal backend", .{});
return true;
}
pub fn renderMetal(
self: *Inspector,
command_buffer: objc.Object,
desc: objc.Object,
) !void {
defer {
command_buffer.msgSend(void, objc.sel("release"), .{});
desc.msgSend(void, objc.sel("release"), .{});
}
assert(self.backend == .metal);
//log.debug("render", .{});
// Setup our imgui frame. We need to render multiple frames to ensure
// ImGui completes all its state processing. I don't know how to fix
// this.
for (0..2) |_| {
cimgui.ImGui_ImplMetal_NewFrame(desc.value);
try self.newFrame();
cimgui.c.igNewFrame();
// Build our UI
render: {
const surface = &self.surface.core_surface;
const inspector = surface.inspector orelse break :render;
inspector.render();
}
// Render
cimgui.c.igRender();
}
// MTLRenderCommandEncoder
const encoder = command_buffer.msgSend(
objc.Object,
objc.sel("renderCommandEncoderWithDescriptor:"),
.{desc.value},
);
defer encoder.msgSend(void, objc.sel("endEncoding"), .{});
cimgui.ImGui_ImplMetal_RenderDrawData(
cimgui.c.igGetDrawData(),
command_buffer.value,
encoder.value,
);
}
pub fn updateContentScale(self: *Inspector, x: f64, y: f64) void {
_ = y;
cimgui.c.igSetCurrentContext(self.ig_ctx);
// Cache our scale because we use it for cursor position calculations.
self.content_scale = x;
// Setup a new style and scale it appropriately.
const style = cimgui.c.ImGuiStyle_ImGuiStyle();
defer cimgui.c.ImGuiStyle_destroy(style);
cimgui.c.ImGuiStyle_ScaleAllSizes(style, @floatCast(x));
const active_style = cimgui.c.igGetStyle();
active_style.* = style.*;
}
pub fn updateSize(self: *Inspector, width: u32, height: u32) void {
cimgui.c.igSetCurrentContext(self.ig_ctx);
const io: *cimgui.c.ImGuiIO = cimgui.c.igGetIO();
io.DisplaySize = .{ .x = @floatFromInt(width), .y = @floatFromInt(height) };
}
pub fn mouseButtonCallback(
self: *Inspector,
action: input.MouseButtonState,
button: input.MouseButton,
mods: input.Mods,
) void {
_ = mods;
self.queueRender();
cimgui.c.igSetCurrentContext(self.ig_ctx);
const io: *cimgui.c.ImGuiIO = cimgui.c.igGetIO();
const imgui_button = switch (button) {
.left => cimgui.c.ImGuiMouseButton_Left,
.middle => cimgui.c.ImGuiMouseButton_Middle,
.right => cimgui.c.ImGuiMouseButton_Right,
else => return, // unsupported
};
cimgui.c.ImGuiIO_AddMouseButtonEvent(io, imgui_button, action == .press);
}
pub fn scrollCallback(
self: *Inspector,
xoff: f64,
yoff: f64,
mods: input.ScrollMods,
) void {
_ = mods;
self.queueRender();
cimgui.c.igSetCurrentContext(self.ig_ctx);
const io: *cimgui.c.ImGuiIO = cimgui.c.igGetIO();
cimgui.c.ImGuiIO_AddMouseWheelEvent(
io,
@floatCast(xoff),
@floatCast(yoff),
);
}
pub fn cursorPosCallback(self: *Inspector, x: f64, y: f64) void {
self.queueRender();
cimgui.c.igSetCurrentContext(self.ig_ctx);
const io: *cimgui.c.ImGuiIO = cimgui.c.igGetIO();
cimgui.c.ImGuiIO_AddMousePosEvent(
io,
@floatCast(x * self.content_scale),
@floatCast(y * self.content_scale),
);
}
pub fn focusCallback(self: *Inspector, focused: bool) void {
self.queueRender();
cimgui.c.igSetCurrentContext(self.ig_ctx);
const io: *cimgui.c.ImGuiIO = cimgui.c.igGetIO();
cimgui.c.ImGuiIO_AddFocusEvent(io, focused);
}
pub fn textCallback(self: *Inspector, text: [:0]const u8) void {
self.queueRender();
cimgui.c.igSetCurrentContext(self.ig_ctx);
const io: *cimgui.c.ImGuiIO = cimgui.c.igGetIO();
cimgui.c.ImGuiIO_AddInputCharactersUTF8(io, text.ptr);
}
pub fn keyCallback(
self: *Inspector,
action: input.Action,
key: input.Key,
mods: input.Mods,
) !void {
self.queueRender();
cimgui.c.igSetCurrentContext(self.ig_ctx);
const io: *cimgui.c.ImGuiIO = cimgui.c.igGetIO();
// Update all our modifiers
cimgui.c.ImGuiIO_AddKeyEvent(io, cimgui.c.ImGuiKey_LeftShift, mods.shift);
cimgui.c.ImGuiIO_AddKeyEvent(io, cimgui.c.ImGuiKey_LeftCtrl, mods.ctrl);
cimgui.c.ImGuiIO_AddKeyEvent(io, cimgui.c.ImGuiKey_LeftAlt, mods.alt);
cimgui.c.ImGuiIO_AddKeyEvent(io, cimgui.c.ImGuiKey_LeftSuper, mods.super);
// Send our keypress
if (key.imguiKey()) |imgui_key| {
cimgui.c.ImGuiIO_AddKeyEvent(
io,
imgui_key,
action == .press or action == .repeat,
);
}
}
fn newFrame(self: *Inspector) !void {
const io: *cimgui.c.ImGuiIO = cimgui.c.igGetIO();
// Determine our delta time
const now = try std.time.Instant.now();
io.DeltaTime = if (self.instant) |prev| delta: {
const since_ns = now.since(prev);
const since_s: f32 = @floatFromInt(since_ns / std.time.ns_per_s);
break :delta @max(0.00001, since_s);
} else (1 / 60);
self.instant = now;
}
};
// C API
pub const CAPI = struct {
const global = &@import("../global.zig").state;
/// This is the same as Surface.KeyEvent but this is the raw C API version.
const KeyEvent = extern struct {
action: input.Action,
mods: c_int,
consumed_mods: c_int,
keycode: u32,
text: ?[*:0]const u8,
unshifted_codepoint: u32,
composing: bool,
/// Convert to Zig key event.
fn keyEvent(self: KeyEvent) App.KeyEvent {
return .{
.action = self.action,
.mods = @bitCast(@as(
input.Mods.Backing,
@truncate(@as(c_uint, @bitCast(self.mods))),
)),
.consumed_mods = @bitCast(@as(
input.Mods.Backing,
@truncate(@as(c_uint, @bitCast(self.consumed_mods))),
)),
.keycode = self.keycode,
.text = if (self.text) |ptr| std.mem.sliceTo(ptr, 0) else null,
.unshifted_codepoint = self.unshifted_codepoint,
.composing = self.composing,
};
}
};
const SurfaceSize = extern struct {
columns: u16,
rows: u16,
width_px: u32,
height_px: u32,
cell_width_px: u32,
cell_height_px: u32,
};
// ghostty_text_s
const Text = extern struct {
tl_px_x: f64,
tl_px_y: f64,
offset_start: u32,
offset_len: u32,
text: ?[*:0]const u8,
text_len: usize,
pub fn deinit(self: *Text) void {
if (self.text) |ptr| {
global.alloc.free(ptr[0..self.text_len :0]);
}
}
};
// ghostty_point_s
const Point = extern struct {
tag: Tag,
coord_tag: CoordTag,
x: u32,
y: u32,
const Tag = enum(c_int) {
active = 0,
viewport = 1,
screen = 2,
history = 3,
};
const CoordTag = enum(c_int) {
exact = 0,
top_left = 1,
bottom_right = 2,
};
fn pin(
self: Point,
screen: *const terminal.Screen,
) ?terminal.Pin {
// The core point tag.
const tag: terminal.point.Tag = switch (self.tag) {
inline else => |tag| @field(
terminal.point.Tag,
@tagName(tag),
),
};
// Clamp our point to the screen bounds.
const clamped_x = @min(self.x, screen.pages.cols -| 1);
const clamped_y = @min(self.y, screen.pages.rows -| 1);
return switch (self.coord_tag) {
// Exact coordinates require a specific pin.
.exact => exact: {
const pt_x = std.math.cast(
terminal.size.CellCountInt,
clamped_x,
) orelse std.math.maxInt(terminal.size.CellCountInt);
const pt: terminal.Point = switch (tag) {
inline else => |v| @unionInit(
terminal.Point,
@tagName(v),
.{ .x = pt_x, .y = clamped_y },
),
};
break :exact screen.pages.pin(pt) orelse null;
},
.top_left => screen.pages.getTopLeft(tag),
.bottom_right => screen.pages.getBottomRight(tag),
};
}
};
// ghostty_selection_s
const Selection = extern struct {
tl: Point,
br: Point,
rectangle: bool,
fn core(
self: Selection,
screen: *const terminal.Screen,
) ?terminal.Selection {
return .{
.bounds = .{ .untracked = .{
.start = self.tl.pin(screen) orelse return null,
.end = self.br.pin(screen) orelse return null,
} },
.rectangle = self.rectangle,
};
}
};
// Reference the conditional exports based on target platform
// so they're included in the C API.
comptime {
if (builtin.target.os.tag.isDarwin()) {
_ = Darwin;
}
}
/// Create a new app.
export fn ghostty_app_new(
opts: *const apprt.runtime.App.Options,
config: *const Config,
) ?*App {
return app_new_(opts, config) catch |err| {
log.err("error initializing app err={}", .{err});
return null;
};
}
fn app_new_(
opts: *const apprt.runtime.App.Options,
config: *const Config,
) !*App {
const core_app = try CoreApp.create(global.alloc);
errdefer core_app.destroy();
// Create our runtime app
var app = try global.alloc.create(App);
errdefer global.alloc.destroy(app);
try app.init(core_app, config, opts.*);
errdefer app.terminate();
return app;
}
/// Tick the event loop. This should be called whenever the "wakeup"
/// callback is invoked for the runtime.
export fn ghostty_app_tick(v: *App) void {
v.core_app.tick(v) catch |err| {
log.err("error app tick err={}", .{err});
};
}
/// Return the userdata associated with the app.
export fn ghostty_app_userdata(v: *App) ?*anyopaque {
return v.opts.userdata;
}
export fn ghostty_app_free(v: *App) void {
const core_app = v.core_app;
v.terminate();
global.alloc.destroy(v);
core_app.destroy();
}
/// Update the focused state of the app.
export fn ghostty_app_set_focus(
app: *App,
focused: bool,
) void {
app.focusEvent(focused);
}
/// Notify the app of a global keypress capture. This will return
/// true if the key was captured by the app, in which case the caller
/// should not process the key.
export fn ghostty_app_key(
app: *App,
event: KeyEvent,
) bool {
return app.keyEvent(.app, event.keyEvent()) catch |err| {
log.warn("error processing key event err={}", .{err});
return false;
};
}
/// Returns true if the given key event would trigger a binding
/// if it were sent to the surface right now. The "right now"
/// is important because things like trigger sequences are only
/// valid until the next key event.
export fn ghostty_app_key_is_binding(
app: *App,
event: KeyEvent,
) bool {
const core_event = event.keyEvent().core() orelse {
log.warn("error processing key event", .{});
return false;
};
return app.core_app.keyEventIsBinding(app, core_event);
}
/// Notify the app that the keyboard was changed. This causes the
/// keyboard layout to be reloaded from the OS.
export fn ghostty_app_keyboard_changed(v: *App) void {
v.reloadKeymap() catch |err| {
log.err("error reloading keyboard map err={}", .{err});
return;
};
}
/// Open the configuration.
export fn ghostty_app_open_config(v: *App) void {
_ = v.performAction(.app, .open_config, {}) catch |err| {
log.err("error reloading config err={}", .{err});
return;
};
}
/// Update the configuration to the provided config. This will propagate
/// to all surfaces as well.
export fn ghostty_app_update_config(
v: *App,
config: *const Config,
) void {
v.core_app.updateConfig(v, config) catch |err| {
log.err("error updating config err={}", .{err});
return;
};
}
/// Returns true if the app needs to confirm quitting.
export fn ghostty_app_needs_confirm_quit(v: *App) bool {
return v.core_app.needsConfirmQuit();
}
/// Returns true if the app has global keybinds.
export fn ghostty_app_has_global_keybinds(v: *App) bool {
return v.hasGlobalKeybinds();
}
/// Update the color scheme of the app.
export fn ghostty_app_set_color_scheme(v: *App, scheme_raw: c_int) void {
const scheme = std.meta.intToEnum(apprt.ColorScheme, scheme_raw) catch {
log.warn(
"invalid color scheme to ghostty_surface_set_color_scheme value={}",
.{scheme_raw},
);
return;
};
v.core_app.colorSchemeEvent(v, scheme) catch |err| {
log.err("error setting color scheme err={}", .{err});
return;
};
}
/// Returns initial surface options.
export fn ghostty_surface_config_new() apprt.Surface.Options {
return .{};
}
/// Create a new surface as part of an app.
export fn ghostty_surface_new(
app: *App,
opts: *const apprt.Surface.Options,
) ?*Surface {
return surface_new_(app, opts) catch |err| {
log.err("error initializing surface err={}", .{err});
return null;
};
}
fn surface_new_(
app: *App,
opts: *const apprt.Surface.Options,
) !*Surface {
return try app.newSurface(opts.*);
}
export fn ghostty_surface_free(ptr: *Surface) void {
ptr.app.closeSurface(ptr);
}
/// Returns the userdata associated with the surface.
export fn ghostty_surface_userdata(surface: *Surface) ?*anyopaque {
return surface.userdata;
}
/// Returns the app associated with a surface.
export fn ghostty_surface_app(surface: *Surface) *App {
return surface.app;
}
/// Returns the config to use for surfaces that inherit from this one.
export fn ghostty_surface_inherited_config(surface: *Surface) Surface.Options {
return surface.newSurfaceOptions();
}
/// Update the configuration to the provided config for only this surface.
export fn ghostty_surface_update_config(
surface: *Surface,
config: *const Config,
) void {
surface.core_surface.updateConfig(config) catch |err| {
log.err("error updating config err={}", .{err});
return;
};
}
/// Returns true if the surface needs to confirm quitting.
export fn ghostty_surface_needs_confirm_quit(surface: *Surface) bool {
return surface.core_surface.needsConfirmQuit();
}
/// Returns true if the surface process has exited.
export fn ghostty_surface_process_exited(surface: *Surface) bool {
return surface.core_surface.child_exited;
}
/// Returns true if the surface has a selection.
export fn ghostty_surface_has_selection(surface: *Surface) bool {
return surface.core_surface.hasSelection();
}
/// Same as ghostty_surface_read_text but reads from the user selection,
/// if any.
export fn ghostty_surface_read_selection(
surface: *Surface,
result: *Text,
) bool {
const core_surface = &surface.core_surface;
core_surface.renderer_state.mutex.lock();
defer core_surface.renderer_state.mutex.unlock();
// If we don't have a selection, do nothing.
const core_sel = core_surface.io.terminal.screen.selection orelse return false;
// Read the text from the selection.
return readTextLocked(surface, core_sel, result);
}
/// Read some arbitrary text from the surface.
///
/// This is an expensive operation so it shouldn't be called too
/// often. We recommend that callers cache the result and throttle
/// calls to this function.
export fn ghostty_surface_read_text(
surface: *Surface,
sel: Selection,
result: *Text,
) bool {
surface.core_surface.renderer_state.mutex.lock();
defer surface.core_surface.renderer_state.mutex.unlock();
const core_sel = sel.core(
&surface.core_surface.renderer_state.terminal.screen,
) orelse return false;
return readTextLocked(surface, core_sel, result);
}
fn readTextLocked(
surface: *Surface,
core_sel: terminal.Selection,
result: *Text,
) bool {
const core_surface = &surface.core_surface;
// Get our text directly from the core surface.
const text = core_surface.dumpTextLocked(
global.alloc,
core_sel,
) catch |err| {
log.warn("error reading text err={}", .{err});
return false;
};
const vp: CoreSurface.Text.Viewport = text.viewport orelse .{
.tl_px_x = -1,
.tl_px_y = -1,
.offset_start = 0,
.offset_len = 0,
};
result.* = .{
.tl_px_x = vp.tl_px_x,
.tl_px_y = vp.tl_px_y,
.offset_start = vp.offset_start,
.offset_len = vp.offset_len,
.text = text.text.ptr,
.text_len = text.text.len,
};
return true;
}
export fn ghostty_surface_free_text(ptr: *Text) void {
ptr.deinit();
}
/// Tell the surface that it needs to schedule a render
export fn ghostty_surface_refresh(surface: *Surface) void {
surface.refresh();
}
/// Tell the surface that it needs to schedule a render
/// call as soon as possible (NOW if possible).
export fn ghostty_surface_draw(surface: *Surface) void {
surface.draw();
}
/// Update the size of a surface. This will trigger resize notifications
/// to the pty and the renderer.
export fn ghostty_surface_set_size(surface: *Surface, w: u32, h: u32) void {
surface.updateSize(w, h);
}
/// Return the size information a surface has.
export fn ghostty_surface_size(surface: *Surface) SurfaceSize {
const grid_size = surface.core_surface.size.grid();
return .{
.columns = grid_size.columns,
.rows = grid_size.rows,
.width_px = surface.core_surface.size.screen.width,
.height_px = surface.core_surface.size.screen.height,
.cell_width_px = surface.core_surface.size.cell.width,
.cell_height_px = surface.core_surface.size.cell.height,
};
}
/// Update the color scheme of the surface.
export fn ghostty_surface_set_color_scheme(surface: *Surface, scheme_raw: c_int) void {
const scheme = std.meta.intToEnum(apprt.ColorScheme, scheme_raw) catch {
log.warn(
"invalid color scheme to ghostty_surface_set_color_scheme value={}",
.{scheme_raw},
);
return;
};
surface.colorSchemeCallback(scheme);
}
/// Update the content scale of the surface.
export fn ghostty_surface_set_content_scale(surface: *Surface, x: f64, y: f64) void {
surface.updateContentScale(x, y);
}
/// Update the focused state of a surface.
export fn ghostty_surface_set_focus(surface: *Surface, focused: bool) void {
surface.focusCallback(focused);
}
/// Update the occlusion state of a surface.
export fn ghostty_surface_set_occlusion(surface: *Surface, visible: bool) void {
surface.occlusionCallback(visible);
}
/// Filter the mods if necessary. This handles settings such as
/// `macos-option-as-alt`. The filtered mods should be used for
/// key translation but should NOT be sent back via the `_key`
/// function -- the original mods should be used for that.
export fn ghostty_surface_key_translation_mods(
surface: *Surface,
mods_raw: c_int,
) c_int {
const mods: input.Mods = @bitCast(@as(
input.Mods.Backing,
@truncate(@as(c_uint, @bitCast(mods_raw))),
));
const result = mods.translation(
surface.core_surface.config.macos_option_as_alt orelse
surface.app.keyboardLayout().detectOptionAsAlt(),
);
return @intCast(@as(input.Mods.Backing, @bitCast(result)));
}
/// Returns the current possible commands for a surface
/// in the output parameter. The memory is owned by libghostty
/// and doesn't need to be freed.
export fn ghostty_surface_commands(
surface: *Surface,
out: *[*]const input.Command.C,
len: *usize,
) void {
// In the future we may use this information to filter
// some commands.
_ = surface;
const commands = input.command.defaultsC;
out.* = commands.ptr;
len.* = commands.len;
}
/// Send this for raw keypresses (i.e. the keyDown event on macOS).
/// This will handle the keymap translation and send the appropriate
/// key and char events.
export fn ghostty_surface_key(
surface: *Surface,
event: KeyEvent,
) bool {
return surface.app.keyEvent(
.{ .surface = surface },
event.keyEvent(),
) catch |err| {
log.warn("error processing key event err={}", .{err});
return false;
};
}
/// Returns true if the given key event would trigger a binding
/// if it were sent to the surface right now. The "right now"
/// is important because things like trigger sequences are only
/// valid until the next key event.
export fn ghostty_surface_key_is_binding(
surface: *Surface,
event: KeyEvent,
) bool {
const core_event = event.keyEvent().core() orelse {
log.warn("error processing key event", .{});
return false;
};
return surface.core_surface.keyEventIsBinding(core_event);
}
/// Send raw text to the terminal. This is treated like a paste
/// so this isn't useful for sending escape sequences. For that,
/// individual key input should be used.
export fn ghostty_surface_text(
surface: *Surface,
ptr: [*]const u8,
len: usize,
) void {
surface.textCallback(ptr[0..len]);
}
/// Set the preedit text for the surface. This is used for IME
/// composition. If the length is 0, then the preedit text is cleared.
export fn ghostty_surface_preedit(
surface: *Surface,
ptr: [*]const u8,
len: usize,
) void {
surface.preeditCallback(if (len == 0) null else ptr[0..len]);
}
/// Returns true if the surface currently has mouse capturing
/// enabled.
export fn ghostty_surface_mouse_captured(surface: *Surface) bool {
return surface.core_surface.mouseCaptured();
}
/// Tell the surface that it needs to schedule a render
export fn ghostty_surface_mouse_button(
surface: *Surface,
action: input.MouseButtonState,
button: input.MouseButton,
mods: c_int,
) bool {
return surface.mouseButtonCallback(
action,
button,
@bitCast(@as(
input.Mods.Backing,
@truncate(@as(c_uint, @bitCast(mods))),
)),
);
}
/// Update the mouse position within the view.
export fn ghostty_surface_mouse_pos(
surface: *Surface,
x: f64,
y: f64,
mods: c_int,
) void {
surface.cursorPosCallback(
x,
y,
@bitCast(@as(
input.Mods.Backing,
@truncate(@as(c_uint, @bitCast(mods))),
)),
);
}
export fn ghostty_surface_mouse_scroll(
surface: *Surface,
x: f64,
y: f64,
scroll_mods: c_int,
) void {
surface.scrollCallback(
x,
y,
@bitCast(@as(u8, @truncate(@as(c_uint, @bitCast(scroll_mods))))),
);
}
export fn ghostty_surface_mouse_pressure(
surface: *Surface,
stage_raw: u32,
pressure: f64,
) void {
const stage = std.meta.intToEnum(
input.MousePressureStage,
stage_raw,
) catch {
log.warn(
"invalid mouse pressure stage value={}",
.{stage_raw},
);
return;
};
surface.mousePressureCallback(stage, pressure);
}
export fn ghostty_surface_ime_point(surface: *Surface, x: *f64, y: *f64) void {
const pos = surface.core_surface.imePoint();
x.* = pos.x;
y.* = pos.y;
}
/// Request that the surface become closed. This will go through the
/// normal trigger process that a close surface input binding would.
export fn ghostty_surface_request_close(ptr: *Surface) void {
ptr.core_surface.close();
}
/// Request that the surface split in the given direction.
export fn ghostty_surface_split(ptr: *Surface, direction: apprt.action.SplitDirection) void {
_ = ptr.app.performAction(
.{ .surface = &ptr.core_surface },
.new_split,
direction,
) catch |err| {
log.err("error creating new split err={}", .{err});
return;
};
}
/// Focus on the next split (if any).
export fn ghostty_surface_split_focus(
ptr: *Surface,
direction: apprt.action.GotoSplit,
) void {
_ = ptr.app.performAction(
.{ .surface = &ptr.core_surface },
.goto_split,
direction,
) catch |err| {
log.err("error creating new split err={}", .{err});
return;
};
}
/// Resize the current split by moving the split divider in the given
/// direction. `direction` specifies which direction the split divider will
/// move relative to the focused split. `amount` is a fractional value
/// between 0 and 1 that specifies by how much the divider will move.
export fn ghostty_surface_split_resize(
ptr: *Surface,
direction: apprt.action.ResizeSplit.Direction,
amount: u16,
) void {
_ = ptr.app.performAction(
.{ .surface = &ptr.core_surface },
.resize_split,
.{ .direction = direction, .amount = amount },
) catch |err| {
log.err("error resizing split err={}", .{err});
return;
};
}
/// Equalize the size of all splits in the current window.
export fn ghostty_surface_split_equalize(ptr: *Surface) void {
_ = ptr.app.performAction(
.{ .surface = &ptr.core_surface },
.equalize_splits,
{},
) catch |err| {
log.err("error equalizing splits err={}", .{err});
return;
};
}
/// Invoke an action on the surface.
export fn ghostty_surface_binding_action(
ptr: *Surface,
action_ptr: [*]const u8,
action_len: usize,
) bool {
const action_str = action_ptr[0..action_len];
const action = input.Binding.Action.parse(action_str) catch |err| {
log.err("error parsing binding action action={s} err={}", .{ action_str, err });
return false;
};
return ptr.core_surface.performBindingAction(action) catch |err| {
log.err("error performing binding action action={} err={}", .{ action, err });
return false;
};
}
/// Complete a clipboard read request started via the read callback.
/// This can only be called once for a given request. Once it is called
/// with a request the request pointer will be invalidated.
export fn ghostty_surface_complete_clipboard_request(
ptr: *Surface,
str: [*:0]const u8,
state: *apprt.ClipboardRequest,
confirmed: bool,
) void {
ptr.completeClipboardRequest(
std.mem.sliceTo(str, 0),
state,
confirmed,
);
}
export fn ghostty_surface_inspector(ptr: *Surface) ?*Inspector {
return ptr.initInspector() catch |err| {
log.err("error initializing inspector err={}", .{err});
return null;
};
}
export fn ghostty_inspector_free(ptr: *Surface) void {
ptr.freeInspector();
}
export fn ghostty_inspector_set_size(ptr: *Inspector, w: u32, h: u32) void {
ptr.updateSize(w, h);
}
export fn ghostty_inspector_set_content_scale(ptr: *Inspector, x: f64, y: f64) void {
ptr.updateContentScale(x, y);
}
export fn ghostty_inspector_mouse_button(
ptr: *Inspector,
action: input.MouseButtonState,
button: input.MouseButton,
mods: c_int,
) void {
ptr.mouseButtonCallback(
action,
button,
@bitCast(@as(
input.Mods.Backing,
@truncate(@as(c_uint, @bitCast(mods))),
)),
);
}
export fn ghostty_inspector_mouse_pos(ptr: *Inspector, x: f64, y: f64) void {
ptr.cursorPosCallback(x, y);
}
export fn ghostty_inspector_mouse_scroll(
ptr: *Inspector,
x: f64,
y: f64,
scroll_mods: c_int,
) void {
ptr.scrollCallback(
x,
y,
@bitCast(@as(u8, @truncate(@as(c_uint, @bitCast(scroll_mods))))),
);
}
export fn ghostty_inspector_key(
ptr: *Inspector,
action: input.Action,
key: input.Key,
c_mods: c_int,
) void {
ptr.keyCallback(
action,
key,
@bitCast(@as(
input.Mods.Backing,
@truncate(@as(c_uint, @bitCast(c_mods))),
)),
) catch |err| {
log.err("error processing key event err={}", .{err});
return;
};
}
export fn ghostty_inspector_text(
ptr: *Inspector,
str: [*:0]const u8,
) void {
ptr.textCallback(std.mem.sliceTo(str, 0));
}
export fn ghostty_inspector_set_focus(ptr: *Inspector, focused: bool) void {
ptr.focusCallback(focused);
}
/// Sets the window background blur on macOS to the desired value.
/// I do this in Zig as an extern function because I don't know how to
/// call these functions in Swift.
///
/// This uses an undocumented, non-public API because this is what
/// every terminal appears to use, including Terminal.app.
export fn ghostty_set_window_background_blur(
app: *App,
window: *anyopaque,
) void {
// This is only supported on macOS
if (comptime builtin.target.os.tag != .macos) return;
const config = &app.config;
// Do nothing if we don't have background transparency enabled
if (config.@"background-opacity" >= 1.0) return;
const nswindow = objc.Object.fromId(window);
_ = CGSSetWindowBackgroundBlurRadius(
CGSDefaultConnectionForThread(),
nswindow.msgSend(usize, objc.sel("windowNumber"), .{}),
@intCast(config.@"background-blur".cval()),
);
}
/// See ghostty_set_window_background_blur
extern "c" fn CGSSetWindowBackgroundBlurRadius(*anyopaque, usize, c_int) i32;
extern "c" fn CGSDefaultConnectionForThread() *anyopaque;
// Darwin-only C APIs.
const Darwin = struct {
export fn ghostty_surface_set_display_id(ptr: *Surface, display_id: u32) void {
const surface = &ptr.core_surface;
_ = surface.renderer_thread.mailbox.push(
.{ .macos_display_id = display_id },
.{ .forever = {} },
);
surface.renderer_thread.wakeup.notify() catch {};
}
/// This returns a CTFontRef that should be used for quicklook
/// highlighted text. This is always the primary font in use
/// regardless of the selected text. If coretext is not in use
/// then this will return nothing.
export fn ghostty_surface_quicklook_font(ptr: *Surface) ?*anyopaque {
// For non-CoreText we just return null.
if (comptime font.options.backend != .coretext) {
return null;
}
// We'll need content scale so fail early if we can't get it.
const content_scale = ptr.getContentScale() catch return null;
// Get the shared font grid. We acquire a read lock to
// read the font face. It should not be deferred since
// we're loading the primary face.
const grid = ptr.core_surface.renderer.font_grid;
grid.lock.lockShared();
defer grid.lock.unlockShared();
const collection = &grid.resolver.collection;
const face = collection.getFace(.{}) catch return null;
// We need to unscale the content scale. We apply the
// content scale to our font stack because we are rendering
// at 1x but callers of this should be using scaled or apply
// scale themselves.
const size: f32 = size: {
const num = face.font.copyAttribute(.size) orelse
break :size 12;
defer num.release();
var v: f32 = 12;
_ = num.getValue(.float, &v);
break :size v;
};
const copy = face.font.copyWithAttributes(
size / content_scale.y,
null,
null,
) catch return null;
return copy;
}
/// This returns the selected word for quicklook. This will populate
/// the buffer with the word under the cursor and the selection
/// info so that quicklook can be rendered.
///
/// This does not modify the selection active on the surface (if any).
export fn ghostty_surface_quicklook_word(
ptr: *Surface,
result: *Text,
) bool {
const surface = &ptr.core_surface;
surface.renderer_state.mutex.lock();
defer surface.renderer_state.mutex.unlock();
// Get our word selection
const sel = sel: {
const screen = &surface.renderer_state.terminal.screen;
const pos = try ptr.getCursorPos();
const pt_viewport = surface.posToViewport(pos.x, pos.y);
const pin = screen.pages.pin(.{
.viewport = .{
.x = pt_viewport.x,
.y = pt_viewport.y,
},
}) orelse {
if (comptime std.debug.runtime_safety) unreachable;
return false;
};
break :sel surface.io.terminal.screen.selectWord(pin) orelse return false;
};
// Read the selection
return readTextLocked(ptr, sel, result);
}
export fn ghostty_inspector_metal_init(ptr: *Inspector, device: objc.c.id) bool {
return ptr.initMetal(.fromId(device));
}
export fn ghostty_inspector_metal_render(
ptr: *Inspector,
command_buffer: objc.c.id,
descriptor: objc.c.id,
) void {
return ptr.renderMetal(
.fromId(command_buffer),
.fromId(descriptor),
) catch |err| {
log.err("error rendering inspector err={}", .{err});
return;
};
}
export fn ghostty_inspector_metal_shutdown(ptr: *Inspector) void {
if (ptr.backend) |v| {
v.deinit();
ptr.backend = null;
}
}
};
};