ghostty/src/apprt/gtk/Surface.zig
2025-07-11 22:56:21 -05:00

2534 lines
84 KiB
Zig

/// A surface represents one drawable terminal surface. The surface may be
/// attached to a window or it may be some other kind of surface. This struct
/// is meant to be generic to all scenarios.
const Surface = @This();
const std = @import("std");
const adw = @import("adw");
const gtk = @import("gtk");
const gdk = @import("gdk");
const glib = @import("glib");
const gio = @import("gio");
const gobject = @import("gobject");
const Allocator = std.mem.Allocator;
const build_config = @import("../../build_config.zig");
const build_options = @import("build_options");
const configpkg = @import("../../config.zig");
const apprt = @import("../../apprt.zig");
const font = @import("../../font/main.zig");
const i18n = @import("../../os/main.zig").i18n;
const input = @import("../../input.zig");
const renderer = @import("../../renderer.zig");
const terminal = @import("../../terminal/main.zig");
const CoreSurface = @import("../../Surface.zig");
const internal_os = @import("../../os/main.zig");
const App = @import("App.zig");
const Split = @import("Split.zig");
const Tab = @import("Tab.zig");
const Window = @import("Window.zig");
const Menu = @import("menu.zig").Menu;
const ClipboardConfirmationWindow = @import("ClipboardConfirmationWindow.zig");
const ResizeOverlay = @import("ResizeOverlay.zig");
const URLWidget = @import("URLWidget.zig");
const CloseDialog = @import("CloseDialog.zig");
const inspectorpkg = @import("inspector.zig");
const gtk_key = @import("key.zig");
const Builder = @import("Builder.zig");
const adw_version = @import("adw_version.zig");
const log = std.log.scoped(.gtk_surface);
pub const Options = struct {
/// The parent surface to inherit settings such as font size, working
/// directory, etc. from.
parent: ?*CoreSurface = null,
};
/// The container that this surface is directly attached to.
pub const Container = union(enum) {
/// The surface is not currently attached to anything. This means
/// that the GLArea has been created and potentially initialized
/// but the widget is currently floating and not part of any parent.
none: void,
/// Directly attached to a tab. (i.e. no splits)
tab_: *Tab,
/// A split within a split hierarchy. The key determines the
/// position of the split within the parent split.
split_tl: *Elem,
split_br: *Elem,
/// The side of the split.
pub const SplitSide = enum { top_left, bottom_right };
/// Elem is the possible element of any container. A container can
/// hold both a surface and a split. Any valid container should
/// have an Elem value so that it can be properly used with
/// splits.
pub const Elem = union(enum) {
/// A surface is a leaf element of the split -- a terminal
/// surface.
surface: *Surface,
/// A split is a nested split within a split. This lets you
/// for example have a horizontal split with a vertical split
/// on the left side (amongst all other possible
/// combinations).
split: *Split,
/// Returns the GTK widget to add to the paned for the given
/// element
pub fn widget(self: Elem) *gtk.Widget {
return switch (self) {
.surface => |s| s.primaryWidget(),
.split => |s| s.paned.as(gtk.Widget),
};
}
pub fn containerPtr(self: Elem) *Container {
return switch (self) {
.surface => |s| &s.container,
.split => |s| &s.container,
};
}
pub fn deinit(self: Elem, alloc: Allocator) void {
switch (self) {
.surface => |s| s.unref(),
.split => |s| s.destroy(alloc),
}
}
pub fn grabFocus(self: Elem) void {
switch (self) {
.surface => |s| s.grabFocus(),
.split => |s| s.grabFocus(),
}
}
pub fn equalize(self: Elem) f64 {
return switch (self) {
.surface => 1,
.split => |s| s.equalize(),
};
}
/// The last surface in this container in the direction specified.
/// Direction must be "top_left" or "bottom_right".
pub fn deepestSurface(self: Elem, side: SplitSide) ?*Surface {
return switch (self) {
.surface => |s| s,
.split => |s| (switch (side) {
.top_left => s.top_left,
.bottom_right => s.bottom_right,
}).deepestSurface(side),
};
}
};
/// Returns the window that this surface is attached to.
pub fn window(self: Container) ?*Window {
return switch (self) {
.none => null,
.tab_ => |v| v.window,
.split_tl, .split_br => split: {
const s = self.split() orelse break :split null;
break :split s.container.window();
},
};
}
/// Returns the tab container if it exists.
pub fn tab(self: Container) ?*Tab {
return switch (self) {
.none => null,
.tab_ => |v| v,
.split_tl, .split_br => split: {
const s = self.split() orelse break :split null;
break :split s.container.tab();
},
};
}
/// Returns the split containing this surface (if any).
pub fn split(self: Container) ?*Split {
return switch (self) {
.none, .tab_ => null,
.split_tl => |ptr| @fieldParentPtr("top_left", ptr),
.split_br => |ptr| @fieldParentPtr("bottom_right", ptr),
};
}
/// The side that we are in the split.
pub fn splitSide(self: Container) ?SplitSide {
return switch (self) {
.none, .tab_ => null,
.split_tl => .top_left,
.split_br => .bottom_right,
};
}
/// Returns the first split with the given orientation, walking upwards in
/// the tree.
pub fn firstSplitWithOrientation(
self: Container,
orientation: Split.Orientation,
) ?*Split {
return switch (self) {
.none, .tab_ => null,
.split_tl, .split_br => split: {
const s = self.split() orelse break :split null;
if (s.orientation == orientation) break :split s;
break :split s.container.firstSplitWithOrientation(orientation);
},
};
}
/// Replace the container's element with this element. This is
/// used by children to modify their parents to for example change
/// from a surface to a split or a split back to a surface or
/// a split to a nested split and so on.
pub fn replace(self: Container, elem: Elem) void {
// Move the element into the container
switch (self) {
.none => {},
.tab_ => |t| t.replaceElem(elem),
inline .split_tl, .split_br => |ptr| {
const s = self.split().?;
s.replace(ptr, elem);
},
}
// Update the reverse reference to the container
elem.containerPtr().* = self;
}
/// Remove ourselves from the container. This is used by
/// children to effectively notify they're container that
/// all children at this level are exiting.
pub fn remove(self: Container) void {
switch (self) {
.none => {},
.tab_ => |t| t.remove(),
.split_tl => self.split().?.removeTopLeft(),
.split_br => self.split().?.removeBottomRight(),
}
}
};
/// Whether the surface has been realized or not yet. When a surface is
/// "realized" it means that the OpenGL context is ready and the core
/// surface has been initialized.
realized: bool = false,
/// The config to use to initialize a surface.
init_config: InitConfig,
/// The GUI container that this surface has been attached to. This
/// dictates some behaviors such as new splits, etc.
container: Container = .{ .none = {} },
/// The app we're part of
app: *App,
/// The overlay, this is the primary widget
overlay: *gtk.Overlay,
/// Our GTK area
gl_area: *gtk.GLArea,
/// If non-null this is the widget on the overlay that shows the URL.
url_widget: ?URLWidget = null,
/// The overlay that shows resizing information.
resize_overlay: ResizeOverlay = undefined,
/// Whether or not the current surface is zoomed in (see `toggle_split_zoom`).
zoomed_in: bool = false,
/// If non-null this is the widget on the overlay which dims the surface when it is unfocused
unfocused_widget: ?*gtk.Widget = null,
/// Any active cursor we may have
cursor: ?*gdk.Cursor = null,
/// Our title. The raw value of the title. This will be kept up to date and
/// .title will be updated if we have focus.
/// When set the text in this buf will be null-terminated, because we need to
/// pass it to GTK.
title_text: ?[:0]const u8 = null,
/// The title of the surface as reported by the terminal. If it is null, the
/// title reported by the terminal is currently being used. If the title was
/// manually overridden by the user, this will be set to a non-null value
/// representing the default terminal title.
title_from_terminal: ?[:0]const u8 = null,
/// Our current working directory. We use this value for setting tooltips in
/// the headerbar subtitle if we have focus. When set, the text in this buf
/// will be null-terminated because we need to pass it to GTK.
pwd: ?[:0]const u8 = null,
/// The timer used to delay title updates in order to prevent flickering.
update_title_timer: ?c_uint = null,
/// The core surface backing this surface
core_surface: CoreSurface,
/// The font size to use for this surface once realized.
font_size: ?font.face.DesiredSize = null,
/// Cached metrics about the surface from GTK callbacks.
size: apprt.SurfaceSize,
cursor_pos: apprt.CursorPos,
/// Inspector state.
inspector: ?*inspectorpkg.Inspector = null,
/// Key input states. See gtkKeyPressed for detailed descriptions.
in_keyevent: IMKeyEvent = .false,
im_context: *gtk.IMMulticontext,
im_composing: bool = false,
im_buf: [128]u8 = undefined,
im_len: u7 = 0,
/// The surface-specific cgroup path. See App.transient_cgroup_path for
/// details on what this is.
cgroup_path: ?[]const u8 = null,
/// Our context menu.
context_menu: Menu(Surface, "context_menu", false),
/// True when we have a precision scroll in progress
precision_scroll: bool = false,
/// Flag indicating whether the surface is in secure input mode.
is_secure_input: bool = false,
/// The state of the key event while we're doing IM composition.
/// See gtkKeyPressed for detailed descriptions.
pub const IMKeyEvent = enum {
/// Not in a key event.
false,
/// In a key event but im_composing was either true or false
/// prior to the calling IME processing. This is important to
/// work around different input methods calling commit and
/// preedit end in a different order.
composing,
not_composing,
};
/// Configuration used for initializing the surface. We have to copy some
/// data since initialization is delayed with GTK (on realize).
pub const InitConfig = struct {
parent: bool = false,
pwd: ?[]const u8 = null,
pub fn init(
alloc: Allocator,
app: *App,
opts: Options,
) Allocator.Error!InitConfig {
const parent = opts.parent orelse return .{};
const pwd: ?[]const u8 = if (app.config.@"window-inherit-working-directory")
try parent.pwd(alloc)
else
null;
errdefer if (pwd) |p| alloc.free(p);
return .{
.parent = true,
.pwd = pwd,
};
}
pub fn deinit(self: *InitConfig, alloc: Allocator) void {
if (self.pwd) |pwd| alloc.free(pwd);
}
};
pub fn create(alloc: Allocator, app: *App, opts: Options) !*Surface {
var surface = try alloc.create(Surface);
errdefer alloc.destroy(surface);
try surface.init(app, opts);
return surface;
}
pub fn init(self: *Surface, app: *App, opts: Options) !void {
const gl_area = gtk.GLArea.new();
const gl_area_widget = gl_area.as(gtk.Widget);
// Create an overlay so we can layer the GL area with other widgets.
const overlay = gtk.Overlay.new();
errdefer overlay.unref();
const overlay_widget = overlay.as(gtk.Widget);
overlay.setChild(gl_area_widget);
// Overlay is not focusable, but the GL area is.
overlay_widget.setFocusable(0);
overlay_widget.setFocusOnClick(0);
// We grab the floating reference to the primary widget. This allows the
// widget tree to be moved around i.e. between a split, a tab, etc.
// without having to be really careful about ordering to
// prevent a destroy.
//
// This is unref'd in the unref() method that's called by the
// self.container through Elem.deinit.
_ = overlay.as(gobject.Object).refSink();
errdefer overlay.unref();
// We want the gl area to expand to fill the parent container.
gl_area_widget.setHexpand(1);
gl_area_widget.setVexpand(1);
// Various other GL properties
gl_area_widget.setCursorFromName("text");
gl_area.setRequiredVersion(
renderer.OpenGL.MIN_VERSION_MAJOR,
renderer.OpenGL.MIN_VERSION_MINOR,
);
gl_area.setHasStencilBuffer(0);
gl_area.setHasDepthBuffer(0);
gl_area.setUseEs(0);
// Key event controller will tell us about raw keypress events.
const ec_key = gtk.EventControllerKey.new();
errdefer ec_key.unref();
overlay_widget.addController(ec_key.as(gtk.EventController));
errdefer overlay_widget.removeController(ec_key.as(gtk.EventController));
// Focus controller will tell us about focus enter/exit events
const ec_focus = gtk.EventControllerFocus.new();
errdefer ec_focus.unref();
overlay_widget.addController(ec_focus.as(gtk.EventController));
errdefer overlay_widget.removeController(ec_focus.as(gtk.EventController));
// Create a second key controller so we can receive the raw
// key-press events BEFORE the input method gets them.
const ec_key_press = gtk.EventControllerKey.new();
errdefer ec_key_press.unref();
overlay_widget.addController(ec_key_press.as(gtk.EventController));
errdefer overlay_widget.removeController(ec_key_press.as(gtk.EventController));
// Clicks
const gesture_click = gtk.GestureClick.new();
errdefer gesture_click.unref();
gesture_click.as(gtk.GestureSingle).setButton(0);
overlay_widget.addController(gesture_click.as(gtk.EventController));
errdefer overlay_widget.removeController(gesture_click.as(gtk.EventController));
// Mouse movement
const ec_motion = gtk.EventControllerMotion.new();
errdefer ec_motion.unref();
overlay_widget.addController(ec_motion.as(gtk.EventController));
errdefer overlay_widget.removeController(ec_motion.as(gtk.EventController));
// Scroll events
const ec_scroll = gtk.EventControllerScroll.new(.flags_both_axes);
errdefer ec_scroll.unref();
overlay_widget.addController(ec_scroll.as(gtk.EventController));
errdefer overlay_widget.removeController(ec_scroll.as(gtk.EventController));
// The input method context that we use to translate key events into
// characters. This doesn't have an event key controller attached because
// we call it manually from our own key controller.
const im_context = gtk.IMMulticontext.new();
errdefer im_context.unref();
// The GL area has to be focusable so that it can receive events
gl_area_widget.setFocusable(1);
gl_area_widget.setFocusOnClick(1);
// Set up to handle items being dropped on our surface. Files can be dropped
// from Nautilus and strings can be dropped from many programs.
const drop_target = gtk.DropTarget.new(gobject.ext.types.invalid, .flags_copy);
errdefer drop_target.unref();
// The order of the types matters.
var drop_target_types = [_]gobject.Type{
gdk.FileList.getGObjectType(),
gio.File.getGObjectType(),
gobject.ext.types.string,
};
drop_target.setGtypes(&drop_target_types, drop_target_types.len);
overlay_widget.addController(drop_target.as(gtk.EventController));
errdefer overlay_widget.removeController(drop_target.as(gtk.EventController));
// Inherit the parent's font size if we have a parent.
const font_size: ?font.face.DesiredSize = font_size: {
if (!app.config.@"window-inherit-font-size") break :font_size null;
const parent = opts.parent orelse break :font_size null;
break :font_size parent.font_size;
};
// If the parent has a transient cgroup, then we're creating cgroups
// for each surface if we can. We need to create a child cgroup.
const cgroup_path: ?[]const u8 = cgroup: {
const base = app.transient_cgroup_base orelse break :cgroup null;
// For the unique group name we use the self pointer. This may
// not be a good idea for security reasons but not sure yet. We
// may want to change this to something else eventually to be safe.
var buf: [256]u8 = undefined;
const name = std.fmt.bufPrint(
&buf,
"surfaces/{X}.scope",
.{@intFromPtr(self)},
) catch unreachable;
// Create the cgroup. If it fails, no big deal... just ignore.
internal_os.cgroup.create(base, name, null) catch |err| {
log.err("failed to create surface cgroup err={}", .{err});
break :cgroup null;
};
// Success, save the cgroup path.
break :cgroup std.fmt.allocPrint(
app.core_app.alloc,
"{s}/{s}",
.{ base, name },
) catch null;
};
errdefer if (cgroup_path) |path| app.core_app.alloc.free(path);
// Build our initialization config
const init_config = try InitConfig.init(app.core_app.alloc, app, opts);
errdefer init_config.deinit(app.core_app.alloc);
// Build our result
self.* = .{
.app = app,
.container = .{ .none = {} },
.overlay = overlay,
.gl_area = gl_area,
.resize_overlay = undefined,
.title_text = null,
.core_surface = undefined,
.font_size = font_size,
.init_config = init_config,
.size = .{ .width = 800, .height = 600 },
.cursor_pos = .{ .x = -1, .y = -1 },
.im_context = im_context,
.cgroup_path = cgroup_path,
.context_menu = undefined,
};
errdefer self.* = undefined;
// initialize the context menu
self.context_menu.init(self);
self.context_menu.setParent(overlay.as(gtk.Widget));
// initialize the resize overlay
self.resize_overlay.init(self, &app.config);
// Set our default mouse shape
try self.setMouseShape(.text);
// GL events
_ = gtk.Widget.signals.realize.connect(
gl_area,
*Surface,
gtkRealize,
self,
.{},
);
_ = gtk.Widget.signals.unrealize.connect(
gl_area,
*Surface,
gtkUnrealize,
self,
.{},
);
_ = gtk.Widget.signals.destroy.connect(
gl_area,
*Surface,
gtkDestroy,
self,
.{},
);
_ = gtk.GLArea.signals.render.connect(
gl_area,
*Surface,
gtkRender,
self,
.{},
);
_ = gtk.GLArea.signals.resize.connect(
gl_area,
*Surface,
gtkResize,
self,
.{},
);
_ = gtk.EventControllerKey.signals.key_pressed.connect(
ec_key_press,
*Surface,
gtkKeyPressed,
self,
.{},
);
_ = gtk.EventControllerKey.signals.key_released.connect(
ec_key_press,
*Surface,
gtkKeyReleased,
self,
.{},
);
_ = gtk.EventControllerFocus.signals.enter.connect(
ec_focus,
*Surface,
gtkFocusEnter,
self,
.{},
);
_ = gtk.EventControllerFocus.signals.leave.connect(
ec_focus,
*Surface,
gtkFocusLeave,
self,
.{},
);
_ = gtk.GestureClick.signals.pressed.connect(
gesture_click,
*Surface,
gtkMouseDown,
self,
.{},
);
_ = gtk.GestureClick.signals.released.connect(
gesture_click,
*Surface,
gtkMouseUp,
self,
.{},
);
_ = gtk.EventControllerMotion.signals.motion.connect(
ec_motion,
*Surface,
gtkMouseMotion,
self,
.{},
);
_ = gtk.EventControllerMotion.signals.leave.connect(
ec_motion,
*Surface,
gtkMouseLeave,
self,
.{},
);
_ = gtk.EventControllerScroll.signals.scroll.connect(
ec_scroll,
*Surface,
gtkMouseScroll,
self,
.{},
);
_ = gtk.EventControllerScroll.signals.scroll_begin.connect(
ec_scroll,
*Surface,
gtkMouseScrollPrecisionBegin,
self,
.{},
);
_ = gtk.EventControllerScroll.signals.scroll_end.connect(
ec_scroll,
*Surface,
gtkMouseScrollPrecisionEnd,
self,
.{},
);
_ = gtk.IMContext.signals.preedit_start.connect(
im_context,
*Surface,
gtkInputPreeditStart,
self,
.{},
);
_ = gtk.IMContext.signals.preedit_changed.connect(
im_context,
*Surface,
gtkInputPreeditChanged,
self,
.{},
);
_ = gtk.IMContext.signals.preedit_end.connect(
im_context,
*Surface,
gtkInputPreeditEnd,
self,
.{},
);
_ = gtk.IMContext.signals.commit.connect(
im_context,
*Surface,
gtkInputCommit,
self,
.{},
);
_ = gtk.DropTarget.signals.drop.connect(
drop_target,
*Surface,
gtkDrop,
self,
.{},
);
}
fn realize(self: *Surface) !void {
// If this surface has already been realized, then we don't need to
// reinitialize. This can happen if a surface is moved from one GDK
// surface to another (i.e. a tab is pulled out into a window).
if (self.realized) {
// If we have no OpenGL state though, we do need to reinitialize.
// We allow the renderer to figure that out, and then queue a draw.
try self.core_surface.renderer.displayRealized();
self.redraw();
return;
}
// Add ourselves to the list of surfaces on the app.
try self.app.core_app.addSurface(self);
errdefer self.app.core_app.deleteSurface(self);
// Get our new surface config
var config = try apprt.surface.newConfig(self.app.core_app, &self.app.config);
defer config.deinit();
if (self.init_config.pwd) |pwd| {
// If we have a working directory we want, then we force that.
config.@"working-directory" = pwd;
} else if (!self.init_config.parent) {
// A hack, see the "parent_surface" field for more information.
config.@"working-directory" = self.app.config.@"working-directory";
}
// Initialize our surface now that we have the stable pointer.
try self.core_surface.init(
self.app.core_app.alloc,
&config,
self.app.core_app,
self.app,
self,
);
errdefer self.core_surface.deinit();
// If we have a font size we want, set that now
if (self.font_size) |size| {
try self.core_surface.setFontSize(size);
}
// Note we're realized
self.realized = true;
}
pub fn deinit(self: *Surface) void {
self.init_config.deinit(self.app.core_app.alloc);
if (self.title_text) |title| self.app.core_app.alloc.free(title);
if (self.title_from_terminal) |title| self.app.core_app.alloc.free(title);
if (self.pwd) |pwd| self.app.core_app.alloc.free(pwd);
// We don't allocate anything if we aren't realized.
if (!self.realized) return;
// Delete our inspector if we have one
self.controlInspector(.hide);
// Remove ourselves from the list of known surfaces in the app.
self.app.core_app.deleteSurface(self);
// Clean up our core surface so that all the rendering and IO stop.
self.core_surface.deinit();
self.core_surface = undefined;
// Remove the cgroup if we have one. We do this after deiniting the core
// surface to ensure all processes have exited.
if (self.cgroup_path) |path| {
internal_os.cgroup.remove(path) catch |err| {
// We don't want this to be fatal in any way so we just log
// and continue. A dangling empty cgroup is not a big deal
// and this should be rare.
log.warn(
"failed to remove cgroup for surface path={s} err={}",
.{ path, err },
);
};
self.app.core_app.alloc.free(path);
}
// Free all our GTK stuff
//
// Note we don't do anything with the "unfocused_overlay" because
// it is attached to the overlay which by this point has been destroyed
// and therefore the unfocused_overlay has been destroyed as well.
self.im_context.unref();
if (self.cursor) |cursor| cursor.unref();
if (self.update_title_timer) |timer| _ = glib.Source.remove(timer);
self.resize_overlay.deinit();
}
/// Update our local copy of any configuration that we use.
pub fn updateConfig(self: *Surface, config: *const configpkg.Config) !void {
self.resize_overlay.updateConfig(config);
}
// unref removes the long-held reference to the gl_area and kicks off the
// deinit/destroy process for this surface.
pub fn unref(self: *Surface) void {
self.overlay.unref();
}
pub fn destroy(self: *Surface, alloc: Allocator) void {
self.deinit();
alloc.destroy(self);
}
pub fn primaryWidget(self: *Surface) *gtk.Widget {
return self.overlay.as(gtk.Widget);
}
fn render(self: *Surface) !void {
try self.core_surface.renderer.drawFrame(true);
}
/// Called by core surface to get the cgroup.
pub fn cgroup(self: *const Surface) ?[]const u8 {
return self.cgroup_path;
}
/// Queue the inspector to render if we have one.
pub fn queueInspectorRender(self: *Surface) void {
if (self.inspector) |v| v.queueRender();
}
/// Invalidate the surface so that it forces a redraw on the next tick.
pub fn redraw(self: *Surface) void {
self.gl_area.queueRender();
}
/// Close this surface.
pub fn close(self: *Surface, process_active: bool) void {
self.closeWithConfirmation(process_active, .{ .surface = self });
}
/// Close this surface.
pub fn closeWithConfirmation(self: *Surface, process_active: bool, target: CloseDialog.Target) void {
self.setSplitZoom(false);
if (!process_active) {
self.container.remove();
return;
}
CloseDialog.show(target) catch |err| {
log.err("failed to open close dialog={}", .{err});
};
}
pub fn controlInspector(
self: *Surface,
mode: apprt.action.Inspector,
) void {
const show = switch (mode) {
.toggle => self.inspector == null,
.show => true,
.hide => false,
};
if (!show) {
if (self.inspector) |v| {
v.close();
self.inspector = null;
}
return;
}
// If we already have an inspector, we don't need to show anything.
if (self.inspector != null) return;
self.inspector = inspectorpkg.Inspector.create(
self,
.{ .window = {} },
) catch |err| {
log.err("failed to control inspector err={}", .{err});
return;
};
}
pub fn setShouldClose(self: *Surface) void {
_ = self;
}
pub fn shouldClose(self: *const Surface) bool {
_ = self;
return false;
}
pub fn getContentScale(self: *const Surface) !apprt.ContentScale {
const gtk_scale: f32 = scale: {
const widget = self.gl_area.as(gtk.Widget);
// Future: detect GTK version 4.12+ and use gdk_surface_get_scale so we
// can support fractional scaling.
const scale = widget.getScaleFactor();
if (scale <= 0) {
log.warn("gtk_widget_get_scale_factor returned a non-positive number: {}", .{scale});
break :scale 1.0;
}
break :scale @floatFromInt(scale);
};
// Also scale using font-specific DPI, which is often exposed to the user
// via DE accessibility settings (see https://docs.gtk.org/gtk4/class.Settings.html).
const xft_dpi_scale = xft_scale: {
// gtk-xft-dpi is font DPI multiplied by 1024. See
// https://docs.gtk.org/gtk4/property.Settings.gtk-xft-dpi.html
const settings = gtk.Settings.getDefault() orelse break :xft_scale 1.0;
var value = std.mem.zeroes(gobject.Value);
defer value.unset();
_ = value.init(gobject.ext.typeFor(c_int));
settings.as(gobject.Object).getProperty("gtk-xft-dpi", &value);
const gtk_xft_dpi = value.getInt();
// Use a value of 1.0 for the XFT DPI scale if the setting is <= 0
// See:
// https://gitlab.gnome.org/GNOME/libadwaita/-/commit/a7738a4d269bfdf4d8d5429ca73ccdd9b2450421
// https://gitlab.gnome.org/GNOME/libadwaita/-/commit/9759d3fd81129608dd78116001928f2aed974ead
if (gtk_xft_dpi <= 0) {
log.warn("gtk-xft-dpi was not set, using default value", .{});
break :xft_scale 1.0;
}
// As noted above gtk-xft-dpi is multiplied by 1024, so we divide by
// 1024, then divide by the default value (96) to derive a scale. Note
// gtk-xft-dpi can be fractional, so we use floating point math here.
const xft_dpi: f32 = @as(f32, @floatFromInt(gtk_xft_dpi)) / 1024.0;
break :xft_scale xft_dpi / 96.0;
};
const scale = gtk_scale * xft_dpi_scale;
return .{ .x = scale, .y = scale };
}
pub fn getSize(self: *const Surface) !apprt.SurfaceSize {
return self.size;
}
pub fn setInitialWindowSize(self: *const Surface, width: u32, height: u32) !void {
// If we've already become realized once then we ignore this
// request. The apprt initial_size action should only modify
// the physical size of the window during initialization.
// Subsequent actions are only informative in case we want to
// implement a "return to default size" action later.
if (self.realized) return;
// If we are within a split, do not set the size.
if (self.container.split() != null) return;
// This operation only makes sense if we're within a window view
// hierarchy and we're the first tab in the window.
const window = self.container.window() orelse return;
if (window.notebook.nPages() > 1) return;
const gtk_window = window.window.as(gtk.Window);
// Note: this doesn't properly take into account the window decorations.
// I'm not currently sure how to do that.
gtk_window.setDefaultSize(@intCast(width), @intCast(height));
}
pub fn setSizeLimits(self: *const Surface, min: apprt.SurfaceSize, max_: ?apprt.SurfaceSize) !void {
// There's no support for setting max size at the moment.
_ = max_;
// If we are within a split, do not set the size.
if (self.container.split() != null) return;
// This operation only makes sense if we're within a window view
// hierarchy and we're the first tab in the window.
const window = self.container.window() orelse return;
if (window.notebook.nPages() > 1) return;
const widget = window.window.as(gtk.Widget);
// Note: this doesn't properly take into account the window decorations.
// I'm not currently sure how to do that.
widget.setSizeRequest(@intCast(min.width), @intCast(min.height));
}
pub fn grabFocus(self: *Surface) void {
if (self.container.tab()) |tab| {
// If any other surface was focused and zoomed in, set it to non zoomed in
// so that self can grab focus.
if (tab.focus_child) |focus_child| {
if (focus_child.zoomed_in and focus_child != self) {
focus_child.setSplitZoom(false);
}
}
tab.focus_child = self;
}
_ = self.gl_area.as(gtk.Widget).grabFocus();
self.updateTitleLabels();
}
fn updateTitleLabels(self: *Surface) void {
// If we have no title, then we have nothing to update.
const title = self.getTitle() orelse return;
// If we have a tab and are the focused child, then we have to update the tab
if (self.container.tab()) |tab| {
if (tab.focus_child == self) tab.setTitleText(title);
}
// If we have a window and are focused, then we have to update the window title.
if (self.container.window()) |window| {
const widget = self.gl_area.as(gtk.Widget);
if (widget.isFocus() != 0) {
// Changing the title somehow unhides our cursor.
// https://github.com/ghostty-org/ghostty/issues/1419
// I don't know a way around this yet. I've tried re-hiding the
// cursor after setting the title but it doesn't work, I think
// due to some gtk event loop things...
window.setTitle(title);
}
}
}
const zoom_title_prefix = "🔍 ";
pub const SetTitleSource = enum { user, terminal };
pub fn setTitle(self: *Surface, slice: [:0]const u8, source: SetTitleSource) !void {
const alloc = self.app.core_app.alloc;
// Always allocate with the "🔍 " at the beginning and slice accordingly
// is the surface is zoomed in or not.
const copy: [:0]const u8 = copy: {
const new_title = try alloc.allocSentinel(u8, zoom_title_prefix.len + slice.len, 0);
@memcpy(new_title[0..zoom_title_prefix.len], zoom_title_prefix);
@memcpy(new_title[zoom_title_prefix.len..], slice);
break :copy new_title;
};
errdefer alloc.free(copy);
// The user has overridden the title
// We only want to update the terminal provided title so that it can be restored to the most recent state.
if (self.title_from_terminal != null and source == .terminal) {
alloc.free(self.title_from_terminal.?);
self.title_from_terminal = copy;
return;
}
if (self.title_text) |old| alloc.free(old);
self.title_text = copy;
// delay the title update to prevent flickering
if (self.update_title_timer) |timer| {
if (glib.Source.remove(timer) == 0) {
log.warn("unable to remove update title timer", .{});
}
self.update_title_timer = null;
}
self.update_title_timer = glib.timeoutAdd(75, updateTitleTimerExpired, self);
}
fn updateTitleTimerExpired(ud: ?*anyopaque) callconv(.c) c_int {
const self: *Surface = @ptrCast(@alignCast(ud.?));
self.updateTitleLabels();
self.update_title_timer = null;
return 0;
}
pub fn getTitle(self: *Surface) ?[:0]const u8 {
if (self.title_text) |title_text| {
return self.resolveTitle(title_text);
}
return null;
}
pub fn getTerminalTitle(self: *Surface) ?[:0]const u8 {
if (self.title_from_terminal) |title_text| {
return self.resolveTitle(title_text);
}
return null;
}
fn resolveTitle(self: *Surface, title: [:0]const u8) [:0]const u8 {
return if (self.zoomed_in)
title
else
title[zoom_title_prefix.len..];
}
pub fn promptTitle(self: *Surface) !void {
if (!adw_version.atLeast(1, 5, 0)) return;
const window = self.container.window() orelse return;
var builder = Builder.init("prompt-title-dialog", 1, 5);
defer builder.deinit();
const entry = builder.getObject(gtk.Entry, "title_entry").?;
entry.getBuffer().setText(self.getTitle() orelse "", -1);
const dialog = builder.getObject(adw.AlertDialog, "prompt_title_dialog").?;
dialog.choose(window.window.as(gtk.Widget), null, gtkPromptTitleResponse, self);
}
/// Set the current working directory of the surface.
///
/// In addition, update the tab's tooltip text, and if we are the focused child,
/// update the subtitle of the containing window.
pub fn setPwd(self: *Surface, pwd: [:0]const u8) !void {
if (self.container.tab()) |tab| {
tab.setTooltipText(pwd);
if (tab.focus_child == self) {
if (self.container.window()) |window| {
if (self.app.config.@"window-subtitle" == .@"working-directory") window.setSubtitle(pwd);
}
}
}
const alloc = self.app.core_app.alloc;
// Failing to set the surface's current working directory is not a big
// deal since we just used our slice parameter which is the same value.
if (self.pwd) |old| alloc.free(old);
self.pwd = alloc.dupeZ(u8, pwd) catch null;
}
pub fn setMouseShape(
self: *Surface,
shape: terminal.MouseShape,
) !void {
const name: [:0]const u8 = switch (shape) {
.default => "default",
.help => "help",
.pointer => "pointer",
.context_menu => "context-menu",
.progress => "progress",
.wait => "wait",
.cell => "cell",
.crosshair => "crosshair",
.text => "text",
.vertical_text => "vertical-text",
.alias => "alias",
.copy => "copy",
.no_drop => "no-drop",
.move => "move",
.not_allowed => "not-allowed",
.grab => "grab",
.grabbing => "grabbing",
.all_scroll => "all-scroll",
.col_resize => "col-resize",
.row_resize => "row-resize",
.n_resize => "n-resize",
.e_resize => "e-resize",
.s_resize => "s-resize",
.w_resize => "w-resize",
.ne_resize => "ne-resize",
.nw_resize => "nw-resize",
.se_resize => "se-resize",
.sw_resize => "sw-resize",
.ew_resize => "ew-resize",
.ns_resize => "ns-resize",
.nesw_resize => "nesw-resize",
.nwse_resize => "nwse-resize",
.zoom_in => "zoom-in",
.zoom_out => "zoom-out",
};
const cursor = gdk.Cursor.newFromName(name.ptr, null) orelse {
log.warn("unsupported cursor name={s}", .{name});
return;
};
errdefer cursor.unref();
// Set our new cursor. We only do this if the cursor we currently
// have is NOT set to "none" because setting the cursor causes it
// to become visible again.
const widget = self.gl_area.as(gtk.Widget);
if (widget.getCursor() != self.app.cursor_none) {
widget.setCursor(cursor);
}
// Free our existing cursor
if (self.cursor) |old| old.unref();
self.cursor = cursor;
}
/// Set the visibility of the mouse cursor.
pub fn setMouseVisibility(self: *Surface, visible: bool) void {
// Note in there that self.cursor or cursor_none may be null. That's
// not a problem because NULL is a valid argument for set cursor
// which means to just use the parent value.
const widget = self.gl_area.as(gtk.Widget);
if (visible) {
widget.setCursor(self.cursor);
return;
}
// Set our new cursor to the app "none" cursor
widget.setCursor(self.app.cursor_none);
}
pub fn mouseOverLink(self: *Surface, uri_: ?[]const u8) void {
const uri = uri_ orelse {
if (self.url_widget) |*widget| {
widget.deinit(self.overlay);
self.url_widget = null;
}
return;
};
// We need a null-terminated string
const alloc = self.app.core_app.alloc;
const uriZ = alloc.dupeZ(u8, uri) catch return;
defer alloc.free(uriZ);
// If we have a URL widget already just change the text.
if (self.url_widget) |widget| {
widget.setText(uriZ);
return;
}
self.url_widget = .init(self.overlay, uriZ);
}
pub fn supportsClipboard(
self: *const Surface,
clipboard_type: apprt.Clipboard,
) bool {
_ = self;
return switch (clipboard_type) {
.standard,
.selection,
.primary,
=> true,
};
}
pub fn clipboardRequest(
self: *Surface,
clipboard_type: apprt.Clipboard,
state: apprt.ClipboardRequest,
) !void {
// We allocate for userdata for the clipboard request. Not ideal but
// clipboard requests aren't common so probably not a big deal.
const alloc = self.app.core_app.alloc;
const ud_ptr = try alloc.create(ClipboardRequest);
errdefer alloc.destroy(ud_ptr);
ud_ptr.* = .{ .self = self, .state = state };
// Start our async request
const clipboard = getClipboard(self.gl_area.as(gtk.Widget), clipboard_type) orelse return;
clipboard.readTextAsync(null, gtkClipboardRead, ud_ptr);
}
pub fn setClipboardString(
self: *Surface,
val: [:0]const u8,
clipboard_type: apprt.Clipboard,
confirm: bool,
) !void {
if (!confirm) {
const clipboard = getClipboard(self.gl_area.as(gtk.Widget), clipboard_type) orelse return;
clipboard.setText(val);
// We only toast if we are copying to the standard clipboard.
if (clipboard_type == .standard and
self.app.config.@"app-notifications".@"clipboard-copy")
{
if (self.container.window()) |window|
window.sendToast(i18n._("Copied to clipboard"));
}
return;
}
ClipboardConfirmationWindow.create(
self.app,
val,
&self.core_surface,
.{ .osc_52_write = clipboard_type },
self.is_secure_input,
) catch |window_err| {
log.err("failed to create clipboard confirmation window err={}", .{window_err});
};
}
const ClipboardRequest = struct {
self: *Surface,
state: apprt.ClipboardRequest,
};
fn gtkClipboardRead(
source: ?*gobject.Object,
res: *gio.AsyncResult,
ud: ?*anyopaque,
) callconv(.c) void {
const clipboard = gobject.ext.cast(gdk.Clipboard, source orelse return) orelse return;
const req: *ClipboardRequest = @ptrCast(@alignCast(ud orelse return));
const self = req.self;
const alloc = self.app.core_app.alloc;
defer alloc.destroy(req);
var gerr: ?*glib.Error = null;
const cstr_ = clipboard.readTextFinish(res, &gerr);
if (gerr) |err| {
defer err.free();
log.warn("failed to read clipboard err={s}", .{err.f_message orelse "(no message)"});
return;
}
const cstr = cstr_ orelse return;
defer glib.free(cstr);
const str = std.mem.sliceTo(cstr, 0);
self.core_surface.completeClipboardRequest(
req.state,
str,
false,
) catch |err| switch (err) {
error.UnsafePaste,
error.UnauthorizedPaste,
=> {
// Create a dialog and ask the user if they want to paste anyway.
ClipboardConfirmationWindow.create(
self.app,
str,
&self.core_surface,
req.state,
self.is_secure_input,
) catch |window_err| {
log.err("failed to create clipboard confirmation window err={}", .{window_err});
};
return;
},
else => log.err("failed to complete clipboard request err={}", .{err}),
};
}
fn getClipboard(widget: *gtk.Widget, clipboard: apprt.Clipboard) ?*gdk.Clipboard {
return switch (clipboard) {
.standard => widget.getClipboard(),
.selection, .primary => widget.getPrimaryClipboard(),
};
}
pub fn getCursorPos(self: *const Surface) !apprt.CursorPos {
return self.cursor_pos;
}
pub fn showDesktopNotification(
self: *Surface,
title: []const u8,
body: []const u8,
) !void {
// Set a default title if we don't already have one
const t = switch (title.len) {
0 => "Ghostty",
else => title,
};
const notification = gio.Notification.new(t);
defer notification.unref();
notification.setBody(body);
const icon = gio.ThemedIcon.new(build_config.bundle_id);
defer icon.unref();
notification.setIcon(icon);
const pointer = glib.Variant.newUint64(@intFromPtr(&self.core_surface));
notification.setDefaultActionAndTargetValue("app.present-surface", pointer);
const app = self.app.app.as(gio.Application);
// We set the notification ID to the body content. If the content is the
// same, this notification may replace a previous notification
app.sendNotification(body.ptr, notification);
}
fn gtkRealize(gl_area: *gtk.GLArea, self: *Surface) callconv(.c) void {
log.debug("gl surface realized", .{});
// We need to make the context current so we can call GL functions.
gl_area.makeCurrent();
if (gl_area.getError()) |err| {
log.err("surface failed to realize: {s}", .{err.f_message orelse "(no message)"});
log.warn("this error is usually due to a driver or gtk bug", .{});
log.warn("this is a common cause of this issue: https://gitlab.gnome.org/GNOME/gtk/-/issues/4950", .{});
return;
}
// realize means that our OpenGL context is ready, so we can now
// initialize the core surface which will setup the renderer.
self.realize() catch |err| {
// TODO: we need to destroy the GL area here.
log.err("surface failed to realize: {}", .{err});
return;
};
// When we have a realized surface, we also attach our input method context.
// We do this here instead of init because this allows us to release the ref
// to the GLArea when we unrealized.
self.im_context.as(gtk.IMContext).setClientWidget(self.overlay.as(gtk.Widget));
}
/// This is called when the underlying OpenGL resources must be released.
/// This is usually due to the OpenGL area changing GDK surfaces.
fn gtkUnrealize(gl_area: *gtk.GLArea, self: *Surface) callconv(.c) void {
log.debug("gl surface unrealized", .{});
// See gtkRealize for why we do this here.
self.im_context.as(gtk.IMContext).setClientWidget(null);
// There is no guarantee that our GLArea context is current
// when unrealize is emitted, so we need to make it current.
gl_area.makeCurrent();
if (gl_area.getError()) |err| {
// I don't know a scenario this can happen, but it means
// we probably leaked memory because displayUnrealized
// below frees resources that aren't specifically OpenGL
// related. I didn't make the OpenGL renderer handle this
// scenario because I don't know if its even possible
// under valid circumstances, so let's log.
log.warn(
"gl_area_make_current failed in unrealize msg={s}",
.{err.f_message orelse "(no message)"},
);
log.warn("OpenGL resources and memory likely leaked", .{});
return;
} else {
self.core_surface.renderer.displayUnrealized();
}
}
/// render signal
fn gtkRender(_: *gtk.GLArea, _: *gdk.GLContext, self: *Surface) callconv(.c) c_int {
self.render() catch |err| {
log.err("surface failed to render: {}", .{err});
return 0;
};
return 1;
}
/// resize signal
fn gtkResize(gl_area: *gtk.GLArea, width: c_int, height: c_int, self: *Surface) callconv(.c) void {
// Some debug output to help understand what GTK is telling us.
{
const scale_factor = scale: {
const widget = gl_area.as(gtk.Widget);
break :scale widget.getScaleFactor();
};
const window_scale_factor = scale: {
const window = self.container.window() orelse break :scale 0;
const gtk_window = window.window.as(gtk.Window);
const gtk_native = gtk_window.as(gtk.Native);
const gdk_surface = gtk_native.getSurface() orelse break :scale 0;
break :scale gdk_surface.getScaleFactor();
};
log.debug("gl resize width={} height={} scale={} window_scale={}", .{
width,
height,
scale_factor,
window_scale_factor,
});
}
self.size = .{
.width = @intCast(width),
.height = @intCast(height),
};
// We also update the content scale because there is no signal for
// content scale change and it seems to trigger a resize event.
if (self.getContentScale()) |scale| {
self.core_surface.contentScaleCallback(scale) catch |err| {
log.err("error in content scale callback err={}", .{err});
return;
};
} else |_| {}
// Call the primary callback.
if (self.realized) {
self.core_surface.sizeCallback(self.size) catch |err| {
log.err("error in size callback err={}", .{err});
return;
};
if (self.container.window()) |window| {
window.winproto.resizeEvent() catch |err| {
log.warn("failed to notify window protocol of resize={}", .{err});
};
}
self.resize_overlay.maybeShow();
}
}
/// "destroy" signal for surface
fn gtkDestroy(_: *gtk.GLArea, self: *Surface) callconv(.c) void {
log.debug("gl destroy", .{});
const alloc = self.app.core_app.alloc;
self.deinit();
alloc.destroy(self);
}
/// Scale x/y by the GDK device scale.
fn scaledCoordinates(
self: *const Surface,
x: f64,
y: f64,
) struct {
x: f64,
y: f64,
} {
const gl_are_widget = self.gl_area.as(gtk.Widget);
const scale_factor: f64 = @floatFromInt(
gl_are_widget.getScaleFactor(),
);
return .{
.x = x * scale_factor,
.y = y * scale_factor,
};
}
fn gtkMouseDown(
gesture: *gtk.GestureClick,
_: c_int,
x: f64,
y: f64,
self: *Surface,
) callconv(.c) void {
const event = gesture.as(gtk.EventController).getCurrentEvent() orelse return;
const gtk_mods = event.getModifierState();
const button = translateMouseButton(gesture.as(gtk.GestureSingle).getCurrentButton());
const mods = gtk_key.translateMods(gtk_mods);
// If we don't have focus, grab it.
const gl_area_widget = self.gl_area.as(gtk.Widget);
if (gl_area_widget.hasFocus() == 0) {
self.grabFocus();
}
const consumed = self.core_surface.mouseButtonCallback(.press, button, mods) catch |err| {
log.err("error in key callback err={}", .{err});
return;
};
// If a right click isn't consumed, mouseButtonCallback selects the hovered
// word and returns false. We can use this to handle the context menu
// opening under normal scenarios.
if (!consumed and button == .right) {
self.context_menu.popupAt(@intFromFloat(x), @intFromFloat(y));
}
}
fn gtkMouseUp(
gesture: *gtk.GestureClick,
_: c_int,
_: f64,
_: f64,
self: *Surface,
) callconv(.c) void {
const event = gesture.as(gtk.EventController).getCurrentEvent() orelse return;
const gtk_mods = event.getModifierState();
const button = translateMouseButton(gesture.as(gtk.GestureSingle).getCurrentButton());
const mods = gtk_key.translateMods(gtk_mods);
_ = self.core_surface.mouseButtonCallback(.release, button, mods) catch |err| {
log.err("error in key callback err={}", .{err});
return;
};
}
fn gtkMouseMotion(
ec: *gtk.EventControllerMotion,
x: f64,
y: f64,
self: *Surface,
) callconv(.c) void {
const event = ec.as(gtk.EventController).getCurrentEvent() orelse return;
const scaled = self.scaledCoordinates(x, y);
const pos: apprt.CursorPos = .{
.x = @floatCast(scaled.x),
.y = @floatCast(scaled.y),
};
// There seem to be at least two cases where GTK issues a mouse motion
// event without the cursor actually moving:
// 1. GLArea is resized under the mouse. This has the unfortunate
// side effect of causing focus to potentially change when
// `focus-follows-mouse` is enabled.
// 2. The window title is updated. This can cause the mouse to unhide
// incorrectly when hide-mouse-when-typing is enabled.
// To prevent incorrect behavior, we'll only grab focus and
// continue with callback logic if the cursor has actually moved.
const is_cursor_still = @abs(self.cursor_pos.x - pos.x) < 1 and
@abs(self.cursor_pos.y - pos.y) < 1;
if (!is_cursor_still) {
// If we don't have focus, and we want it, grab it.
const gl_area_widget = self.gl_area.as(gtk.Widget);
if (gl_area_widget.hasFocus() == 0 and self.app.config.@"focus-follows-mouse") {
self.grabFocus();
}
// Our pos changed, update
self.cursor_pos = pos;
// Get our modifiers
const gtk_mods = event.getModifierState();
const mods = gtk_key.translateMods(gtk_mods);
self.core_surface.cursorPosCallback(self.cursor_pos, mods) catch |err| {
log.err("error in cursor pos callback err={}", .{err});
return;
};
}
}
fn gtkMouseLeave(
ec_motion: *gtk.EventControllerMotion,
self: *Surface,
) callconv(.c) void {
const event = ec_motion.as(gtk.EventController).getCurrentEvent() orelse return;
// Get our modifiers
const gtk_mods = event.getModifierState();
const mods = gtk_key.translateMods(gtk_mods);
self.core_surface.cursorPosCallback(.{ .x = -1, .y = -1 }, mods) catch |err| {
log.err("error in cursor pos callback err={}", .{err});
return;
};
}
fn gtkMouseScrollPrecisionBegin(
_: *gtk.EventControllerScroll,
self: *Surface,
) callconv(.c) void {
self.precision_scroll = true;
}
fn gtkMouseScrollPrecisionEnd(
_: *gtk.EventControllerScroll,
self: *Surface,
) callconv(.c) void {
self.precision_scroll = false;
}
fn gtkMouseScroll(
_: *gtk.EventControllerScroll,
x: f64,
y: f64,
self: *Surface,
) callconv(.c) c_int {
const scaled = self.scaledCoordinates(x, y);
// GTK doesn't support any of the scroll mods.
const scroll_mods: input.ScrollMods = .{ .precision = self.precision_scroll };
// Multiply precision scrolls by 10 to get a better response from touchpad scrolling
const multiplier: f64 = if (self.precision_scroll) 10.0 else 1.0;
self.core_surface.scrollCallback(
// We invert because we apply natural scrolling to the values.
// This behavior has existed for years without Linux users complaining
// but I suspect we'll have to make this configurable in the future
// or read a system setting.
scaled.x * -1 * multiplier,
scaled.y * -1 * multiplier,
scroll_mods,
) catch |err| {
log.err("error in scroll callback err={}", .{err});
return 0;
};
return 1;
}
fn gtkKeyPressed(
ec_key: *gtk.EventControllerKey,
keyval: c_uint,
keycode: c_uint,
gtk_mods: gdk.ModifierType,
self: *Surface,
) callconv(.c) c_int {
return @intFromBool(self.keyEvent(
.press,
ec_key,
keyval,
keycode,
gtk_mods,
));
}
fn gtkKeyReleased(
ec_key: *gtk.EventControllerKey,
keyval: c_uint,
keycode: c_uint,
state: gdk.ModifierType,
self: *Surface,
) callconv(.c) void {
_ = self.keyEvent(
.release,
ec_key,
keyval,
keycode,
state,
);
}
/// Key press event (press or release).
///
/// At a high level, we want to construct an `input.KeyEvent` and
/// pass that to `keyCallback`. At a low level, this is more complicated
/// than it appears because we need to construct all of this information
/// and its not given to us.
///
/// For all events, we run the GdkEvent through the input method context.
/// This allows the input method to capture the event and trigger
/// callbacks such as preedit, commit, etc.
///
/// There are a couple important aspects to the prior paragraph: we must
/// send ALL events through the input method context. This is because
/// input methods use both key press and key release events to determine
/// the state of the input method. For example, fcitx uses key release
/// events on modifiers (i.e. ctrl+shift) to switch the input method.
///
/// We set some state to note we're in a key event (self.in_keyevent)
/// because some of the input method callbacks change behavior based on
/// this state. For example, we don't want to send character events
/// like "a" via the input "commit" event if we're actively processing
/// a keypress because we'd lose access to the keycode information.
/// However, a "commit" event may still happen outside of a keypress
/// event from e.g. a tablet or on-screen keyboard.
///
/// Finally, we take all of the information in order to determine if we have
/// a unicode character or if we have to map the keyval to a code to
/// get the underlying logical key, etc.
///
/// Then we can emit the keyCallback.
pub fn keyEvent(
self: *Surface,
action: input.Action,
ec_key: *gtk.EventControllerKey,
keyval: c_uint,
keycode: c_uint,
gtk_mods: gdk.ModifierType,
) bool {
// log.warn("GTKIM: keyEvent action={}", .{action});
const event = ec_key.as(gtk.EventController).getCurrentEvent() orelse return false;
const key_event = gobject.ext.cast(gdk.KeyEvent, event) orelse return false;
// The block below is all related to input method handling. See the function
// comment for some high level details and then the comments within
// the block for more specifics.
{
// This can trigger an input method so we need to notify the im context
// where the cursor is so it can render the dropdowns in the correct
// place.
const ime_point = self.core_surface.imePoint();
self.im_context.as(gtk.IMContext).setCursorLocation(&.{
.f_x = @intFromFloat(ime_point.x),
.f_y = @intFromFloat(ime_point.y),
.f_width = 1,
.f_height = 1,
});
// We note that we're in a keypress because we want some logic to
// depend on this. For example, we don't want to send character events
// like "a" via the input "commit" event if we're actively processing
// a keypress because we'd lose access to the keycode information.
//
// We have to maintain some additional state here of whether we
// were composing because different input methods call the callbacks
// in different orders. For example, ibus calls commit THEN preedit
// end but simple calls preedit end THEN commit.
self.in_keyevent = if (self.im_composing) .composing else .not_composing;
defer self.in_keyevent = .false;
// Pass the event through the input method which returns true if handled.
// Confusingly, not all events handled by the input method result
// in this returning true so we have to maintain some additional
// state about whether we were composing or not to determine if
// we should proceed with key encoding.
//
// Cases where the input method does not mark the event as handled:
//
// - If we change the input method via keypress while we have preedit
// text, the input method will commit the pending text but will not
// mark it as handled. We use the `.composing` state to detect
// this case.
//
// - If we switch input methods (i.e. via ctrl+shift with fcitx),
// the input method will handle the key release event but will not
// mark it as handled. I don't know any way to detect this case so
// it will result in a key event being sent to the key callback.
// For Kitty text encoding, this will result in modifiers being
// triggered despite being technically consumed. At the time of
// writing, both Kitty and Alacritty have the same behavior. I
// know of no way to fix this.
const im_handled = self.im_context.as(gtk.IMContext).filterKeypress(event) != 0;
// log.warn("GTKIM: im_handled={} im_len={} im_composing={}", .{
// im_handled,
// self.im_len,
// self.im_composing,
// });
// If the input method handled the event, you would think we would
// never proceed with key encoding for Ghostty but that is not the
// case. Input methods will handle basic character encoding like
// typing "a" and we want to associate that with the key event.
// So we have to check additional state to determine if we exit.
if (im_handled) {
// If we are composing then we're in a preedit state and do
// not want to encode any keys. For example: type a deadkey
// such as single quote on a US international keyboard layout.
if (self.im_composing) return true;
// If we were composing and now we're not it means that we committed
// the text. We also don't want to encode a key event for this.
// Example: enable Japanese input method, press "konn" and then
// press enter. The final enter should not be encoded and "konn"
// (in hiragana) should be written as "こん".
if (self.in_keyevent == .composing) return true;
// Not composing and our input method buffer is empty. This could
// mean that the input method reacted to this event by activating
// an onscreen keyboard or something equivalent. We don't know.
// But the input method handled it and didn't give us text so
// we will just assume we should not encode this. This handles a
// real scenario when ibus starts the emoji input method
// (super+.).
if (self.im_len == 0) return true;
}
// At this point, for the sake of explanation of internal state:
// it is possible that im_len > 0 and im_composing == false. This
// means that we received a commit event from the input method that
// we want associated with the key event. This is common: its how
// basic character translation for simple inputs like "a" work.
}
// We always reset the length of the im buffer. There's only one scenario
// we reach this point with im_len > 0 and that's if we received a commit
// event from the input method. We don't want to keep that state around
// since we've handled it here.
defer self.im_len = 0;
// Get the keyvals for this event.
const keyval_unicode = gdk.keyvalToUnicode(keyval);
const keyval_unicode_unshifted: u21 = gtk_key.keyvalUnicodeUnshifted(
self.gl_area.as(gtk.Widget),
key_event,
keycode,
);
// We want to get the physical unmapped key to process physical keybinds.
// (These are keybinds explicitly marked as requesting physical mapping).
const physical_key = keycode: for (input.keycodes.entries) |entry| {
if (entry.native == keycode) break :keycode entry.key;
} else .unidentified;
// Get our modifier for the event
const mods: input.Mods = gtk_key.eventMods(
event,
physical_key,
gtk_mods,
action,
&self.app.winproto,
);
// Get our consumed modifiers
const consumed_mods: input.Mods = consumed: {
const T = @typeInfo(gdk.ModifierType);
std.debug.assert(T.@"struct".layout == .@"packed");
const I = T.@"struct".backing_integer.?;
const masked = @as(I, @bitCast(key_event.getConsumedModifiers())) & @as(I, gdk.MODIFIER_MASK);
break :consumed gtk_key.translateMods(@bitCast(masked));
};
// log.debug("key pressed key={} keyval={x} physical_key={} composing={} text_len={} mods={}", .{
// key,
// keyval,
// physical_key,
// self.im_composing,
// self.im_len,
// mods,
// });
// If we have no UTF-8 text, we try to convert our keyval to
// a text value. We have to do this because GTK will not process
// "Ctrl+Shift+1" (on US keyboards) as "Ctrl+!" but instead as "".
// But the keyval is set correctly so we can at least extract that.
if (self.im_len == 0 and keyval_unicode > 0) im: {
if (std.math.cast(u21, keyval_unicode)) |cp| {
// We don't want to send control characters as IM
// text. Control characters are handled already by
// the encoder directly.
if (cp < 0x20) break :im;
if (std.unicode.utf8Encode(cp, &self.im_buf)) |len| {
self.im_len = len;
} else |_| {}
}
}
// Invoke the core Ghostty logic to handle this input.
const effect = self.core_surface.keyCallback(.{
.action = action,
.key = physical_key,
.mods = mods,
.consumed_mods = consumed_mods,
.composing = self.im_composing,
.utf8 = self.im_buf[0..self.im_len],
.unshifted_codepoint = keyval_unicode_unshifted,
}) catch |err| {
log.err("error in key callback err={}", .{err});
return false;
};
switch (effect) {
.closed => return true,
.ignored => {},
.consumed => if (action == .press or action == .repeat) {
// If we were in the composing state then we reset our context.
// We do NOT want to reset if we're not in the composing state
// because there is other IME state that we want to preserve,
// such as quotation mark ordering for Chinese input.
if (self.im_composing) {
self.im_context.as(gtk.IMContext).reset();
self.core_surface.preeditCallback(null) catch {};
}
return true;
},
}
return false;
}
fn gtkInputPreeditStart(
_: *gtk.IMMulticontext,
self: *Surface,
) callconv(.c) void {
// log.warn("GTKIM: preedit start", .{});
// Start our composing state for the input method and reset our
// input buffer to empty.
self.im_composing = true;
self.im_len = 0;
}
fn gtkInputPreeditChanged(
ctx: *gtk.IMMulticontext,
self: *Surface,
) callconv(.c) void {
// Any preedit change should mark that we're composing. Its possible this
// is false using fcitx5-hangul and typing "dkssud<space>" ("안녕"). The
// second "s" results in a "commit" for "안" which sets composing to false,
// but then immediately sends a preedit change for the next symbol. With
// composing set to false we won't commit this text. Therefore, we must
// ensure it is set here.
self.im_composing = true;
// Get our pre-edit string that we'll use to show the user.
var buf: [*:0]u8 = undefined;
ctx.as(gtk.IMContext).getPreeditString(&buf, null, null);
defer glib.free(buf);
const str = std.mem.sliceTo(buf, 0);
// Update our preedit state in Ghostty core
// log.warn("GTKIM: preedit change str={s}", .{str});
self.core_surface.preeditCallback(str) catch |err| {
log.err("error in preedit callback err={}", .{err});
};
}
fn gtkInputPreeditEnd(
_: *gtk.IMMulticontext,
self: *Surface,
) callconv(.c) void {
// log.warn("GTKIM: preedit end", .{});
// End our composing state for GTK, allowing us to commit the text.
self.im_composing = false;
// End our preedit state in Ghostty core
self.core_surface.preeditCallback(null) catch |err| {
log.err("error in preedit callback err={}", .{err});
};
}
fn gtkInputCommit(
_: *gtk.IMMulticontext,
bytes: [*:0]u8,
self: *Surface,
) callconv(.c) void {
const str = std.mem.sliceTo(bytes, 0);
// log.debug("GTKIM: input commit composing={} keyevent={} str={s}", .{
// self.im_composing,
// self.in_keyevent,
// str,
// });
// We need to handle commit specially if we're in a key event.
// Specifically, GTK will send us a commit event for basic key
// encodings like "a" (on a US layout keyboard). We don't want
// to treat this as IME committed text because we want to associate
// it with a key event (i.e. "a" key press).
switch (self.in_keyevent) {
// If we're not in a key event then this commit is from
// some other source (i.e. on-screen keyboard, tablet, etc.)
// and we want to commit the text to the core surface.
.false => {},
// If we're in a composing state and in a key event then this
// key event is resulting in a commit of multiple keypresses
// and we don't want to encode it alongside the keypress.
.composing => {},
// If we're not composing then this commit is just a normal
// key encoding and we want our key event to handle it so
// that Ghostty can be aware of the key event alongside
// the text.
.not_composing => {
if (str.len > self.im_buf.len) {
log.warn("not enough buffer space for input method commit", .{});
return;
}
// Copy our committed text to the buffer
@memcpy(self.im_buf[0..str.len], str);
self.im_len = @intCast(str.len);
// log.debug("input commit len={}", .{self.im_len});
return;
},
}
// If we reach this point from above it means we're composing OR
// not in a keypress. In either case, we want to commit the text
// given to us because that's what GTK is asking us to do. If we're
// not in a keypress it means that this commit came via a non-keyboard
// event (i.e. on-screen keyboard, tablet of some kind, etc.).
// Committing ends composing state
self.im_composing = false;
// End our preedit state. Well-behaved input methods do this for us
// by triggering a preedit-end event but some do not (ibus 1.5.29).
self.core_surface.preeditCallback(null) catch |err| {
log.err("error in preedit callback err={}", .{err});
};
// Send the text to the core surface, associated with no key (an
// invalid key, which should produce no PTY encoding).
_ = self.core_surface.keyCallback(.{
.action = .press,
.key = .unidentified,
.mods = .{},
.consumed_mods = .{},
.composing = false,
.utf8 = str,
}) catch |err| {
log.warn("error in key callback err={}", .{err});
return;
};
}
fn gtkFocusEnter(_: *gtk.EventControllerFocus, self: *Surface) callconv(.c) void {
if (!self.realized) return;
// Notify our IM context
self.im_context.as(gtk.IMContext).focusIn();
// Remove the unfocused widget overlay, if we have one
if (self.unfocused_widget) |widget| {
self.overlay.removeOverlay(widget);
self.unfocused_widget = null;
}
if (self.pwd) |pwd| {
if (self.container.window()) |window| {
if (self.app.config.@"window-subtitle" == .@"working-directory") window.setSubtitle(pwd);
}
}
// Notify our surface
self.core_surface.focusCallback(true) catch |err| {
log.err("error in focus callback err={}", .{err});
return;
};
}
fn gtkFocusLeave(_: *gtk.EventControllerFocus, self: *Surface) callconv(.c) void {
if (!self.realized) return;
// Notify our IM context
self.im_context.as(gtk.IMContext).focusOut();
// We only try dimming the surface if we are a split
switch (self.container) {
.split_br,
.split_tl,
=> self.dimSurface(),
else => {},
}
self.core_surface.focusCallback(false) catch |err| {
log.err("error in focus callback err={}", .{err});
return;
};
}
/// Adds the unfocused_widget to the overlay. If the unfocused_widget has
/// already been added, this is a no-op.
pub fn dimSurface(self: *Surface) void {
_ = self.container.window() orelse {
log.warn("dimSurface invalid for container={}", .{self.container});
return;
};
// Don't dim surface if context menu is open.
// This means we got unfocused due to it opening.
if (self.context_menu.isVisible()) return;
// If there's already an unfocused_widget do nothing;
if (self.unfocused_widget) |_| return;
self.unfocused_widget = unfocused_widget: {
const drawing_area = gtk.DrawingArea.new();
const unfocused_widget = drawing_area.as(gtk.Widget);
unfocused_widget.addCssClass("unfocused-split");
self.overlay.addOverlay(unfocused_widget);
break :unfocused_widget unfocused_widget;
};
}
fn translateMouseButton(button: c_uint) input.MouseButton {
return switch (button) {
1 => .left,
2 => .middle,
3 => .right,
4 => .four,
5 => .five,
6 => .six,
7 => .seven,
8 => .eight,
9 => .nine,
10 => .ten,
11 => .eleven,
else => .unknown,
};
}
pub fn present(self: *Surface) void {
if (self.container.window()) |window| {
if (self.container.tab()) |tab| {
if (window.notebook.getTabPosition(tab)) |position|
_ = window.notebook.gotoNthTab(position);
}
window.window.as(gtk.Window).present();
}
self.grabFocus();
}
fn detachFromSplit(self: *Surface) void {
const split = self.container.split() orelse return;
switch (self.container.splitSide() orelse unreachable) {
.top_left => split.detachTopLeft(),
.bottom_right => split.detachBottomRight(),
}
}
fn attachToSplit(self: *Surface) void {
const split = self.container.split() orelse return;
split.updateChildren();
}
pub fn setSplitZoom(self: *Surface, new_split_zoom: bool) void {
if (new_split_zoom == self.zoomed_in) return;
const tab = self.container.tab() orelse return;
const tab_widget = tab.elem.widget();
const surface_widget = self.primaryWidget();
if (new_split_zoom) {
self.detachFromSplit();
tab.box.remove(tab_widget);
tab.box.append(surface_widget);
} else {
tab.box.remove(surface_widget);
self.attachToSplit();
tab.box.append(tab_widget);
}
self.zoomed_in = new_split_zoom;
self.grabFocus();
}
pub fn toggleSplitZoom(self: *Surface) void {
self.setSplitZoom(!self.zoomed_in);
}
/// Handle items being dropped on our surface.
fn gtkDrop(
_: *gtk.DropTarget,
value: *gobject.Value,
_: f64,
_: f64,
self: *Surface,
) callconv(.c) c_int {
const alloc = self.app.core_app.alloc;
if (g_value_holds(value, gdk.FileList.getGObjectType())) {
var data = std.ArrayList(u8).init(alloc);
defer data.deinit();
var shell_escape_writer: internal_os.ShellEscapeWriter(std.ArrayList(u8).Writer) = .{
.child_writer = data.writer(),
};
const writer = shell_escape_writer.writer();
const unboxed = value.getBoxed() orelse return 0;
const fl: *gdk.FileList = @ptrCast(@alignCast(unboxed));
var list: ?*glib.SList = fl.getFiles();
while (list) |item| : (list = item.f_next) {
const file: *gio.File = @ptrCast(@alignCast(item.f_data orelse continue));
const path = file.getPath() orelse continue;
writer.writeAll(std.mem.span(path)) catch |err| {
log.err("unable to write path to buffer: {}", .{err});
continue;
};
writer.writeAll("\n") catch |err| {
log.err("unable to write to buffer: {}", .{err});
continue;
};
}
const string = data.toOwnedSliceSentinel(0) catch |err| {
log.err("unable to convert to a slice: {}", .{err});
return 0;
};
defer alloc.free(string);
self.doPaste(string);
return 1;
}
if (g_value_holds(value, gio.File.getGObjectType())) {
const object = value.getObject() orelse return 0;
const file = gobject.ext.cast(gio.File, object) orelse return 0;
const path = file.getPath() orelse return 0;
var data = std.ArrayList(u8).init(alloc);
defer data.deinit();
var shell_escape_writer: internal_os.ShellEscapeWriter(std.ArrayList(u8).Writer) = .{
.child_writer = data.writer(),
};
const writer = shell_escape_writer.writer();
writer.writeAll(std.mem.span(path)) catch |err| {
log.err("unable to write path to buffer: {}", .{err});
return 0;
};
writer.writeAll("\n") catch |err| {
log.err("unable to write to buffer: {}", .{err});
return 0;
};
const string = data.toOwnedSliceSentinel(0) catch |err| {
log.err("unable to convert to a slice: {}", .{err});
return 0;
};
defer alloc.free(string);
self.doPaste(string);
return 1;
}
if (g_value_holds(value, gobject.ext.types.string)) {
if (value.getString()) |string| {
const text = std.mem.span(string);
if (text.len > 0) self.doPaste(text);
}
return 1;
}
return 1;
}
fn doPaste(self: *Surface, data: [:0]const u8) void {
if (data.len == 0) return;
self.core_surface.completeClipboardRequest(.paste, data, false) catch |err| switch (err) {
error.UnsafePaste,
error.UnauthorizedPaste,
=> {
ClipboardConfirmationWindow.create(
self.app,
data,
&self.core_surface,
.paste,
self.is_secure_input,
) catch |window_err| {
log.err("failed to create clipboard confirmation window err={}", .{window_err});
};
},
error.OutOfMemory,
error.NoSpaceLeft,
=> log.err("failed to complete clipboard request err={}", .{err}),
};
}
pub fn defaultTermioEnv(self: *Surface) !std.process.EnvMap {
const alloc = self.app.core_app.alloc;
var env = try internal_os.getEnvMap(alloc);
errdefer env.deinit();
// Don't leak these GTK environment variables to child processes.
env.remove("GDK_DEBUG");
env.remove("GDK_DISABLE");
env.remove("GSK_RENDERER");
// Remove some environment variables that are set when Ghostty is launched
// from a `.desktop` file, by D-Bus activation, or systemd.
env.remove("GIO_LAUNCHED_DESKTOP_FILE");
env.remove("GIO_LAUNCHED_DESKTOP_FILE_PID");
env.remove("DBUS_STARTER_ADDRESS");
env.remove("DBUS_STARTER_BUS_TYPE");
env.remove("INVOCATION_ID");
env.remove("JOURNAL_STREAM");
env.remove("NOTIFY_SOCKET");
// Unset environment varies set by snaps if we're running in a snap.
// This allows Ghostty to further launch additional snaps.
if (env.get("SNAP")) |_| {
env.remove("SNAP");
env.remove("DRIRC_CONFIGDIR");
env.remove("__EGL_EXTERNAL_PLATFORM_CONFIG_DIRS");
env.remove("__EGL_VENDOR_LIBRARY_DIRS");
env.remove("LD_LIBRARY_PATH");
env.remove("LIBGL_DRIVERS_PATH");
env.remove("LIBVA_DRIVERS_PATH");
env.remove("VK_LAYER_PATH");
env.remove("XLOCALEDIR");
env.remove("GDK_PIXBUF_MODULEDIR");
env.remove("GDK_PIXBUF_MODULE_FILE");
env.remove("GTK_PATH");
}
if (self.container.window()) |window| {
// On some window protocols we might want to add specific
// environment variables to subprocesses, such as WINDOWID on X11.
try window.winproto.addSubprocessEnv(&env);
}
return env;
}
/// Check a GValue to see what's type its wrapping. This is equivalent to GTK's
/// `G_VALUE_HOLDS` macro but Zig's C translator does not like it.
fn g_value_holds(value_: ?*gobject.Value, g_type: gobject.Type) bool {
if (value_) |value| {
if (value.f_g_type == g_type) return true;
return gobject.typeCheckValueHolds(value, g_type) != 0;
}
return false;
}
fn gtkPromptTitleResponse(source_object: ?*gobject.Object, result: *gio.AsyncResult, ud: ?*anyopaque) callconv(.c) void {
if (!adw_version.supportsDialogs()) return;
const dialog = gobject.ext.cast(adw.AlertDialog, source_object.?).?;
const self: *Surface = @ptrCast(@alignCast(ud));
const response = dialog.chooseFinish(result);
if (std.mem.orderZ(u8, "ok", response) == .eq) {
const title_entry = gobject.ext.cast(gtk.Entry, dialog.getExtraChild().?).?;
const title = std.mem.span(title_entry.getBuffer().getText());
// if the new title is empty and the user has set the title previously, restore the terminal provided title
if (title.len == 0) {
if (self.getTerminalTitle()) |terminal_title| {
self.setTitle(terminal_title, .user) catch |err| {
log.err("failed to set title={}", .{err});
};
self.app.core_app.alloc.free(self.title_from_terminal.?);
self.title_from_terminal = null;
}
} else if (title.len > 0) {
// if this is the first time the user is setting the title, save the current terminal provided title
if (self.title_from_terminal == null and self.title_text != null) {
self.title_from_terminal = self.app.core_app.alloc.dupeZ(u8, self.title_text.?) catch |err| switch (err) {
error.OutOfMemory => {
log.err("failed to allocate memory for title={}", .{err});
return;
},
};
}
self.setTitle(title, .user) catch |err| {
log.err("failed to set title={}", .{err});
};
}
}
}
pub fn setSecureInput(self: *Surface, value: apprt.action.SecureInput) void {
switch (value) {
.on => self.is_secure_input = true,
.off => self.is_secure_input = false,
.toggle => self.is_secure_input = !self.is_secure_input,
}
}
pub fn ringBell(self: *Surface) !void {
const features = self.app.config.@"bell-features";
const window = self.container.window() orelse {
log.warn("failed to ring bell: surface is not attached to any window", .{});
return;
};
// System beep
if (features.system) system: {
const surface = window.window.as(gtk.Native).getSurface() orelse break :system;
surface.beep();
}
if (features.audio) audio: {
// Play a user-specified audio file.
const pathname, const required = switch (self.app.config.@"bell-audio-path" orelse break :audio) {
.optional => |path| .{ path, false },
.required => |path| .{ path, true },
};
const volume = std.math.clamp(self.app.config.@"bell-audio-volume", 0.0, 1.0);
std.debug.assert(std.fs.path.isAbsolute(pathname));
const media_file = gtk.MediaFile.newForFilename(pathname);
if (required) {
_ = gobject.Object.signals.notify.connect(
media_file,
?*anyopaque,
gtkStreamError,
null,
.{ .detail = "error" },
);
}
_ = gobject.Object.signals.notify.connect(
media_file,
?*anyopaque,
gtkStreamEnded,
null,
.{ .detail = "ended" },
);
const media_stream = media_file.as(gtk.MediaStream);
media_stream.setVolume(volume);
media_stream.play();
}
if (features.attention) {
// Request user attention
window.winproto.setUrgent(true) catch |err| {
log.err("failed to request user attention={}", .{err});
};
}
// Mark tab as needing attention
if (self.container.tab()) |tab| tab: {
const page = window.notebook.getTabPage(tab) orelse break :tab;
// Need attention if we're not the currently selected tab
if (page.getSelected() == 0) page.setNeedsAttention(@intFromBool(true));
}
}
/// Handle a stream that is in an error state.
fn gtkStreamError(media_file: *gtk.MediaFile, _: *gobject.ParamSpec, _: ?*anyopaque) callconv(.c) void {
const path = path: {
const file = media_file.getFile() orelse break :path null;
break :path file.getPath();
};
defer if (path) |p| glib.free(p);
const media_stream = media_file.as(gtk.MediaStream);
const err = media_stream.getError() orelse return;
log.warn("error playing bell from {s}: {s} {d} {s}", .{
path orelse "<<unknown>>",
glib.quarkToString(err.f_domain),
err.f_code,
err.f_message orelse "",
});
}
/// Stream is finished, release the memory.
fn gtkStreamEnded(media_file: *gtk.MediaFile, _: *gobject.ParamSpec, _: ?*anyopaque) callconv(.c) void {
media_file.unref();
}
/// Show native GUI element with a notification that the child process has
/// closed. Return `true` if we are able to show the GUI notification, and
/// `false` if we are not.
pub fn showChildExited(self: *Surface, info: apprt.surface.Message.ChildExited) error{}!bool {
if (!adw_version.supportsBanner()) return false;
const warning_text = if (info.exit_code == 0)
i18n._("Process exited normally. Press any key to close the terminal.")
else
i18n._("Process exited abnormally. Press any key to close the terminal.");
const banner = adw.Banner.new(warning_text);
banner.setRevealed(1);
const banner_widget = banner.as(gtk.Widget);
banner_widget.setHalign(.fill);
banner_widget.setValign(.end);
if (info.exit_code == 0)
banner_widget.addCssClass("child_exited_normally")
else
banner_widget.addCssClass("child_exited_abnormally");
self.overlay.addOverlay(banner_widget);
return true;
}