Mitchell Hashimoto 7aa2e2b24f renderer: some tweaks
2024-10-02 15:44:06 -07:00

430 lines
13 KiB
Metal

#include <metal_stdlib>
using namespace metal;
enum Padding : uint8_t {
EXTEND_LEFT = 1u,
EXTEND_RIGHT = 2u,
EXTEND_UP = 4u,
EXTEND_DOWN = 8u,
};
struct Uniforms {
float4x4 projection_matrix;
float2 cell_size;
ushort2 grid_size;
float4 grid_padding;
uint8_t padding_extend;
float min_contrast;
ushort2 cursor_pos;
uchar4 cursor_color;
bool cursor_wide;
};
//-------------------------------------------------------------------
// Color Functions
//-------------------------------------------------------------------
#pragma mark - Colors
// https://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef
float luminance_component(float c) {
if (c <= 0.03928f) {
return c / 12.92f;
} else {
return pow((c + 0.055f) / 1.055f, 2.4f);
}
}
float relative_luminance(float3 color) {
color.r = luminance_component(color.r);
color.g = luminance_component(color.g);
color.b = luminance_component(color.b);
float3 weights = float3(0.2126f, 0.7152f, 0.0722f);
return dot(color, weights);
}
// https://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef
float contrast_ratio(float3 color1, float3 color2) {
float l1 = relative_luminance(color1);
float l2 = relative_luminance(color2);
return (max(l1, l2) + 0.05f) / (min(l1, l2) + 0.05f);
}
// Return the fg if the contrast ratio is greater than min, otherwise
// return a color that satisfies the contrast ratio. Currently, the color
// is always white or black, whichever has the highest contrast ratio.
float4 contrasted_color(float min, float4 fg, float4 bg) {
float3 fg_premult = fg.rgb * fg.a;
float3 bg_premult = bg.rgb * bg.a;
float ratio = contrast_ratio(fg_premult, bg_premult);
if (ratio < min) {
float white_ratio = contrast_ratio(float3(1.0f), bg_premult);
float black_ratio = contrast_ratio(float3(0.0f), bg_premult);
if (white_ratio > black_ratio) {
return float4(1.0f);
} else {
return float4(0.0f, 0.0f, 0.0f, 1.0f);
}
}
return fg;
}
//-------------------------------------------------------------------
// Full Screen Vertex Shader
//-------------------------------------------------------------------
#pragma mark - Full Screen Vertex Shader
struct FullScreenVertexOut {
float4 position [[position]];
};
vertex FullScreenVertexOut full_screen_vertex(
uint vid [[vertex_id]]
) {
FullScreenVertexOut out;
float4 position;
position.x = (vid == 2) ? 3.0 : -1.0;
position.y = (vid == 0) ? -3.0 : 1.0;
position.zw = 1.0;
// Single triangle is clipped to viewport.
//
// X <- vid == 0: (-1, -3)
// |\
// | \
// | \
// |###\
// |#+# \ `+` is (0, 0). `#`s are viewport area.
// |### \
// X------X <- vid == 2: (3, 1)
// ^
// vid == 1: (-1, 1)
out.position = position;
return out;
}
//-------------------------------------------------------------------
// Cell Background Shader
//-------------------------------------------------------------------
#pragma mark - Cell BG Shader
fragment float4 cell_bg_fragment(
FullScreenVertexOut in [[stage_in]],
constant uchar4 *cells [[buffer(0)]],
constant Uniforms& uniforms [[buffer(1)]]
) {
int2 grid_pos = int2(floor((in.position.xy - uniforms.grid_padding.wx) / uniforms.cell_size));
// Clamp x position, extends edge bg colors in to padding on sides.
if (grid_pos.x < 0) {
if (uniforms.padding_extend & EXTEND_LEFT) {
grid_pos.x = 0;
} else {
return float4(0.0);
}
} else if (grid_pos.x > uniforms.grid_size.x - 1) {
if (uniforms.padding_extend & EXTEND_RIGHT) {
grid_pos.x = uniforms.grid_size.x - 1;
} else {
return float4(0.0);
}
}
// Clamp y position if we should extend, otherwise discard if out of bounds.
if (grid_pos.y < 0) {
if (uniforms.padding_extend & EXTEND_UP) {
grid_pos.y = 0;
} else {
return float4(0.0);
}
} else if (grid_pos.y > uniforms.grid_size.y - 1) {
if (uniforms.padding_extend & EXTEND_DOWN) {
grid_pos.y = uniforms.grid_size.y - 1;
} else {
return float4(0.0);
}
}
// Retrieve color for cell and return it.
return float4(cells[grid_pos.y * uniforms.grid_size.x + grid_pos.x]) / 255.0;
}
//-------------------------------------------------------------------
// Cell Text Shader
//-------------------------------------------------------------------
#pragma mark - Cell Text Shader
// The possible modes that a cell fg entry can take.
enum CellTextMode : uint8_t {
MODE_TEXT = 1u,
MODE_TEXT_CONSTRAINED = 2u,
MODE_TEXT_COLOR = 3u,
MODE_TEXT_CURSOR = 4u,
MODE_TEXT_POWERLINE = 5u,
};
struct CellTextVertexIn {
// The position of the glyph in the texture (x, y)
uint2 glyph_pos [[attribute(0)]];
// The size of the glyph in the texture (w, h)
uint2 glyph_size [[attribute(1)]];
// The left and top bearings for the glyph (x, y)
int2 bearings [[attribute(2)]];
// The grid coordinates (x, y) where x < columns and y < rows
ushort2 grid_pos [[attribute(3)]];
// The color of the rendered text glyph.
uchar4 color [[attribute(4)]];
// The mode for this cell.
uint8_t mode [[attribute(5)]];
// The width to constrain the glyph to, in cells, or 0 for no constraint.
uint8_t constraint_width [[attribute(6)]];
};
struct CellTextVertexOut {
float4 position [[position]];
uint8_t mode;
float4 color;
float2 tex_coord;
};
vertex CellTextVertexOut cell_text_vertex(
uint vid [[vertex_id]],
CellTextVertexIn in [[stage_in]],
constant Uniforms& uniforms [[buffer(1)]],
constant uchar4 *bg_colors [[buffer(2)]]
) {
// Convert the grid x, y into world space x, y by accounting for cell size
float2 cell_pos = uniforms.cell_size * float2(in.grid_pos);
// Turn the cell position into a vertex point depending on the
// vertex ID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use vertex ID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
float2 corner;
corner.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f;
corner.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f;
CellTextVertexOut out;
out.mode = in.mode;
out.color = float4(in.color) / 255.0f;
// === Grid Cell ===
// +X
// 0,0--...->
// |
// . offset.x = bearings.x
// +Y. .|.
// . | |
// | cell_pos -> +-------+ _.
// v ._| |_. _|- offset.y = cell_size.y - bearings.y
// | | .###. | |
// | | #...# | |
// glyph_size.y -+ | ##### | |
// | | #.... | +- bearings.y
// |_| .#### | |
// | |_|
// +-------+
// |_._|
// |
// glyph_size.x
//
// In order to get the top left of the glyph, we compute an offset based on
// the bearings. The Y bearing is the distance from the bottom of the cell
// to the top of the glyph, so we subtract it from the cell height to get
// the y offset. The X bearing is the distance from the left of the cell
// to the left of the glyph, so it works as the x offset directly.
float2 size = float2(in.glyph_size);
float2 offset = float2(in.bearings);
offset.y = uniforms.cell_size.y - offset.y;
// If we're constrained then we need to scale the glyph.
// We also always constrain colored glyphs since we should have
// their scaled cell size exactly correct.
if (in.mode == MODE_TEXT_CONSTRAINED || in.mode == MODE_TEXT_COLOR) {
float max_width = uniforms.cell_size.x * in.constraint_width;
if (size.x > max_width) {
float new_y = size.y * (max_width / size.x);
offset.y += (size.y - new_y) / 2;
size.y = new_y;
size.x = max_width;
}
}
// Calculate the final position of the cell which uses our glyph size
// and glyph offset to create the correct bounding box for the glyph.
cell_pos = cell_pos + size * corner + offset;
out.position =
uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
// Calculate the texture coordinate in pixels. This is NOT normalized
// (between 0.0 and 1.0), and does not need to be, since the texture will
// be sampled with pixel coordinate mode.
out.tex_coord = float2(in.glyph_pos) + float2(in.glyph_size) * corner;
// If we have a minimum contrast, we need to check if we need to
// change the color of the text to ensure it has enough contrast
// with the background.
// We only apply this adjustment to "normal" text with MODE_TEXT,
// since we want color glyphs to appear in their original color
// and Powerline glyphs to be unaffected (else parts of the line would
// have different colors as some parts are displayed via background colors).
if (uniforms.min_contrast > 1.0f && in.mode == MODE_TEXT) {
float4 bg_color = float4(bg_colors[in.grid_pos.y * uniforms.grid_size.x + in.grid_pos.x]) / 255.0f;
out.color = contrasted_color(uniforms.min_contrast, out.color, bg_color);
}
// If this cell is the cursor cell, then we need to change the color.
if (
in.mode != MODE_TEXT_CURSOR &&
(
in.grid_pos.x == uniforms.cursor_pos.x ||
uniforms.cursor_wide &&
in.grid_pos.x == uniforms.cursor_pos.x + 1
) &&
in.grid_pos.y == uniforms.cursor_pos.y
) {
out.color = float4(uniforms.cursor_color) / 255.0f;
}
return out;
}
fragment float4 cell_text_fragment(
CellTextVertexOut in [[stage_in]],
texture2d<float> textureGrayscale [[texture(0)]],
texture2d<float> textureColor [[texture(1)]]
) {
constexpr sampler textureSampler(
coord::pixel,
address::clamp_to_edge,
filter::nearest
);
switch (in.mode) {
default:
case MODE_TEXT_CURSOR:
case MODE_TEXT_CONSTRAINED:
case MODE_TEXT_POWERLINE:
case MODE_TEXT: {
// We premult the alpha to our whole color since our blend function
// uses One/OneMinusSourceAlpha to avoid blurry edges.
// We first premult our given color.
float4 premult = float4(in.color.rgb * in.color.a, in.color.a);
// Then premult the texture color
float a = textureGrayscale.sample(textureSampler, in.tex_coord).r;
premult = premult * a;
return premult;
}
case MODE_TEXT_COLOR: {
return textureColor.sample(textureSampler, in.tex_coord);
}
}
}
//-------------------------------------------------------------------
// Image Shader
//-------------------------------------------------------------------
#pragma mark - Image Shader
struct ImageVertexIn {
// The grid coordinates (x, y) where x < columns and y < rows where
// the image will be rendered. It will be rendered from the top left.
float2 grid_pos [[attribute(0)]];
// Offset in pixels from the top-left of the cell to make the top-left
// corner of the image.
float2 cell_offset [[attribute(1)]];
// The source rectangle of the texture to sample from.
float4 source_rect [[attribute(2)]];
// The final width/height of the image in pixels.
float2 dest_size [[attribute(3)]];
};
struct ImageVertexOut {
float4 position [[position]];
float2 tex_coord;
};
vertex ImageVertexOut image_vertex(
uint vid [[vertex_id]],
ImageVertexIn in [[stage_in]],
texture2d<uint> image [[texture(0)]],
constant Uniforms& uniforms [[buffer(1)]]
) {
// The size of the image in pixels
float2 image_size = float2(image.get_width(), image.get_height());
// Turn the image position into a vertex point depending on the
// vertex ID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use vertex ID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
float2 corner;
corner.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f;
corner.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f;
// The texture coordinates start at our source x/y, then add the width/height
// as enabled by our instance id, then normalize to [0, 1]
float2 tex_coord = in.source_rect.xy;
tex_coord += in.source_rect.zw * corner;
tex_coord /= image_size;
ImageVertexOut out;
// The position of our image starts at the top-left of the grid cell and
// adds the source rect width/height components.
float2 image_pos = (uniforms.cell_size * in.grid_pos) + in.cell_offset;
image_pos += in.dest_size * corner;
out.position =
uniforms.projection_matrix * float4(image_pos.x, image_pos.y, 0.0f, 1.0f);
out.tex_coord = tex_coord;
return out;
}
fragment float4 image_fragment(
ImageVertexOut in [[stage_in]],
texture2d<uint> image [[texture(0)]]
) {
constexpr sampler textureSampler(address::clamp_to_edge, filter::linear);
// Ehhhhh our texture is in RGBA8Uint but our color attachment is
// BGRA8Unorm. So we need to convert it. We should really be converting
// our texture to BGRA8Unorm.
uint4 rgba = image.sample(textureSampler, in.tex_coord);
// Convert to float4 and premultiply the alpha. We should also probably
// premultiply the alpha in the texture.
float4 result = float4(rgba) / 255.0f;
result.rgb *= result.a;
return result;
}