178 lines
5.8 KiB
Metal

using namespace metal;
// The possible modes that a shader can take.
enum Mode : uint8_t {
MODE_BG = 1u,
MODE_FG = 2u,
MODE_FG_COLOR = 7u,
MODE_STRIKETHROUGH = 8u,
};
struct Uniforms {
float4x4 projection_matrix;
float2 cell_size;
float strikethrough_position;
float strikethrough_thickness;
};
struct VertexIn {
// The mode for this cell.
uint8_t mode [[ attribute(0) ]];
// The grid coordinates (x, y) where x < columns and y < rows
float2 grid_pos [[ attribute(1) ]];
// The width of the cell in cells (i.e. 2 for double-wide).
uint8_t cell_width [[ attribute(6) ]];
// The color. For BG modes, this is the bg color, for FG modes this is
// the text color. For styles, this is the color of the style.
uchar4 color [[ attribute(5) ]];
// The fields below are present only when rendering text.
// The position of the glyph in the texture (x,y)
uint2 glyph_pos [[ attribute(2) ]];
// The size of the glyph in the texture (w,h)
uint2 glyph_size [[ attribute(3) ]];
// The left and top bearings for the glyph (x,y)
int2 glyph_offset [[ attribute(4) ]];
};
struct VertexOut {
float4 position [[ position ]];
float2 cell_size;
uint8_t mode;
float4 color;
float2 tex_coord;
};
vertex VertexOut uber_vertex(
unsigned int vid [[ vertex_id ]],
VertexIn input [[ stage_in ]],
constant Uniforms &uniforms [[ buffer(1) ]]
) {
// Convert the grid x,y into world space x, y by accounting for cell size
float2 cell_pos = uniforms.cell_size * input.grid_pos;
// Scaled cell size for the cell width
float2 cell_size_scaled = uniforms.cell_size;
cell_size_scaled.x = cell_size_scaled.x * input.cell_width;
// Turn the cell position into a vertex point depending on the
// vertex ID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use vertex ID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
float2 position;
position.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f;
position.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f;
VertexOut out;
out.mode = input.mode;
out.cell_size = uniforms.cell_size;
out.color = float4(input.color) / 255.0f;
switch (input.mode) {
case MODE_BG:
// Calculate the final position of our cell in world space.
// We have to add our cell size since our vertices are offset
// one cell up and to the left. (Do the math to verify yourself)
cell_pos = cell_pos + cell_size_scaled * position;
out.position = uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
break;
case MODE_FG:
case MODE_FG_COLOR: {
float2 glyph_size = float2(input.glyph_size);
float2 glyph_offset = float2(input.glyph_offset);
// If the glyph is larger than our cell, we need to downsample it.
// The "+ 3" here is to give some wiggle room for fonts that are
// BARELY over it.
float2 glyph_size_downsampled = glyph_size;
if (glyph_size_downsampled.y > cell_size_scaled.y + 2) {
// Magic 0.9 and 1.1 are padding to make emoji look better
glyph_size_downsampled.y = cell_size_scaled.y * 0.9;
glyph_size_downsampled.x = glyph_size.x * (glyph_size_downsampled.y / glyph_size.y);
glyph_offset.y = glyph_offset.y * 1.1 * (glyph_size_downsampled.y / glyph_size.y);
}
// The glyph_offset.y is the y bearing, a y value that when added
// to the baseline is the offset (+y is up). Our grid goes down.
// So we flip it with `cell_size.y - glyph_offset.y`.
glyph_offset.y = cell_size_scaled.y - glyph_offset.y;
// Calculate the final position of the cell which uses our glyph size
// and glyph offset to create the correct bounding box for the glyph.
cell_pos = cell_pos + glyph_size_downsampled * position + glyph_offset;
out.position = uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
// Calculate the texture coordinate in pixels. This is NOT normalized
// (between 0.0 and 1.0) and must be done in the fragment shader.
out.tex_coord = float2(input.glyph_pos) + float2(input.glyph_size) * position;
break;
}
case MODE_STRIKETHROUGH: {
// Strikethrough Y value is just our thickness
float2 strikethrough_size = float2(cell_size_scaled.x, uniforms.strikethrough_thickness);
// Position the strikethrough where we are told to
float2 strikethrough_offset = float2(cell_size_scaled.x, uniforms.strikethrough_position);
// Go to the bottom of the cell, take away the size of the
// strikethrough, and that is our position. We also float it slightly
// above the bottom.
cell_pos = cell_pos + strikethrough_offset - (strikethrough_size * position);
out.position = uniforms.projection_matrix * float4(cell_pos, 0.0f, 1.0);
break;
}
}
return out;
}
fragment float4 uber_fragment(
VertexOut in [[ stage_in ]],
texture2d<float> textureGreyscale [[ texture(0) ]],
texture2d<float> textureColor [[ texture(1) ]]
) {
constexpr sampler textureSampler(address::clamp_to_edge, filter::linear);
switch (in.mode) {
case MODE_BG:
return in.color;
case MODE_FG: {
// Normalize the texture coordinates to [0,1]
float2 size = float2(textureGreyscale.get_width(), textureGreyscale.get_height());
float2 coord = in.tex_coord / size;
// We premult the alpha to our whole color since our blend function
// uses One/OneMinusSourceAlpha to avoid blurry edges.
float a = textureGreyscale.sample(textureSampler, coord).r;
return in.color * a;
}
case MODE_FG_COLOR: {
// Normalize the texture coordinates to [0,1]
float2 size = float2(textureColor.get_width(), textureColor.get_height());
float2 coord = in.tex_coord / size;
return textureColor.sample(textureSampler, coord);
}
case MODE_STRIKETHROUGH:
return in.color;
}
}