ghostty/src/bench/codepoint-width.zig
2024-02-10 22:20:24 -05:00

205 lines
5.7 KiB
Zig

//! This benchmark tests the throughput of codepoint width calculation.
//! This is a common operation in terminal character printing and the
//! motivating factor to write this benchmark was discovering that our
//! codepoint width function was 30% of the runtime of every character
//! print.
//!
//! This will consume all of the available stdin, so you should run it
//! with `head` in a pipe to restrict. For example, to test ASCII input:
//!
//! bench-stream --mode=gen-ascii | head -c 50M | bench-codepoint-width --mode=ziglyph
//!
const std = @import("std");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const ArenaAllocator = std.heap.ArenaAllocator;
const ziglyph = @import("ziglyph");
const cli = @import("../cli.zig");
const simd = @import("../simd/main.zig");
const table = @import("../unicode/main.zig").table;
const UTF8Decoder = @import("../terminal/UTF8Decoder.zig");
const Args = struct {
mode: Mode = .noop,
/// The size for read buffers. Doesn't usually need to be changed. The
/// main point is to make this runtime known so we can avoid compiler
/// optimizations.
@"buffer-size": usize = 4096,
/// This is set by the CLI parser for deinit.
_arena: ?ArenaAllocator = null,
pub fn deinit(self: *Args) void {
if (self._arena) |arena| arena.deinit();
self.* = undefined;
}
};
const Mode = enum {
/// The baseline mode copies the data from the fd into a buffer. This
/// is used to show the minimal overhead of reading the fd into memory
/// and establishes a baseline for the other modes.
noop,
/// libc wcwidth
wcwidth,
/// Use ziglyph library to calculate the display width of each codepoint.
ziglyph,
/// Our SIMD implementation.
simd,
/// Test our lookup table implementation.
table,
};
pub const std_options: std.Options = .{
.log_level = .debug,
};
pub fn main() !void {
// We want to use the c allocator because it is much faster than GPA.
const alloc = std.heap.c_allocator;
// Parse our args
var args: Args = .{};
defer args.deinit();
{
var iter = try std.process.argsWithAllocator(alloc);
defer iter.deinit();
try cli.args.parse(Args, alloc, &args, &iter);
}
const reader = std.io.getStdIn().reader();
const buf = try alloc.alloc(u8, args.@"buffer-size");
// Handle the modes that do not depend on terminal state first.
switch (args.mode) {
.noop => try benchNoop(reader, buf),
.wcwidth => try benchWcwidth(reader, buf),
.ziglyph => try benchZiglyph(reader, buf),
.simd => try benchSimd(reader, buf),
.table => try benchTable(reader, buf),
}
}
noinline fn benchNoop(
reader: anytype,
buf: []u8,
) !void {
var d: UTF8Decoder = .{};
while (true) {
const n = try reader.read(buf);
if (n == 0) break;
// Using stream.next directly with a for loop applies a naive
// scalar approach.
for (buf[0..n]) |c| {
_ = d.next(c);
}
}
}
extern "c" fn wcwidth(c: u32) c_int;
noinline fn benchWcwidth(
reader: anytype,
buf: []u8,
) !void {
var d: UTF8Decoder = .{};
while (true) {
const n = try reader.read(buf);
if (n == 0) break;
// Using stream.next directly with a for loop applies a naive
// scalar approach.
for (buf[0..n]) |c| {
const cp_, const consumed = d.next(c);
assert(consumed);
if (cp_) |cp| {
const width = wcwidth(cp);
// Write the width to the buffer to avoid it being compiled away
buf[0] = @intCast(width);
}
}
}
}
noinline fn benchTable(
reader: anytype,
buf: []u8,
) !void {
var d: UTF8Decoder = .{};
while (true) {
const n = try reader.read(buf);
if (n == 0) break;
// Using stream.next directly with a for loop applies a naive
// scalar approach.
for (buf[0..n]) |c| {
const cp_, const consumed = d.next(c);
assert(consumed);
if (cp_) |cp| {
// This is the same trick we do in terminal.zig so we
// keep it here.
const width = if (cp <= 0xFF) 1 else table.get(@intCast(cp)).width;
// Write the width to the buffer to avoid it being compiled away
buf[0] = @intCast(width);
}
}
}
}
noinline fn benchZiglyph(
reader: anytype,
buf: []u8,
) !void {
var d: UTF8Decoder = .{};
while (true) {
const n = try reader.read(buf);
if (n == 0) break;
// Using stream.next directly with a for loop applies a naive
// scalar approach.
for (buf[0..n]) |c| {
const cp_, const consumed = d.next(c);
assert(consumed);
if (cp_) |cp| {
const width = ziglyph.display_width.codePointWidth(cp, .half);
// Write the width to the buffer to avoid it being compiled away
buf[0] = @intCast(width);
}
}
}
}
noinline fn benchSimd(
reader: anytype,
buf: []u8,
) !void {
var d: UTF8Decoder = .{};
while (true) {
const n = try reader.read(buf);
if (n == 0) break;
// Using stream.next directly with a for loop applies a naive
// scalar approach.
for (buf[0..n]) |c| {
const cp_, const consumed = d.next(c);
assert(consumed);
if (cp_) |cp| {
const width = simd.codepointWidth(cp);
// Write the width to the buffer to avoid it being compiled away
buf[0] = @intCast(width);
}
}
}
}