ghostty/src/terminal/search.zig
Mitchell Hashimoto 50b36c5d86 comments
2024-12-04 12:38:40 -08:00

865 lines
31 KiB
Zig

//! Search functionality for the terminal.
//!
//! At the time of writing this comment, this is a **work in progress**.
//!
//! Search at the time of writing is implemented using a simple
//! boyer-moore-horspool algorithm. The suboptimal part of the implementation
//! is that we need to encode each terminal page into a text buffer in order
//! to apply BMH to it. This is because the terminal page is not laid out
//! in a flat text form.
//!
//! To minimize memory usage, we use a sliding window to search for the
//! needle. The sliding window only keeps the minimum amount of page data
//! in memory to search for a needle (i.e. `needle.len - 1` bytes of overlap
//! between terminal pages).
//!
//! Future work:
//!
//! - PageListSearch on a PageList concurrently with another thread
//! - Handle pruned pages in a PageList to ensure we don't keep references
//! - Repeat search a changing active area of the screen
//! - Reverse search so that more recent matches are found first
//!
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const CircBuf = @import("../datastruct/main.zig").CircBuf;
const terminal = @import("main.zig");
const point = terminal.point;
const Page = terminal.Page;
const PageList = terminal.PageList;
const Pin = PageList.Pin;
const Selection = terminal.Selection;
const Screen = terminal.Screen;
/// Searches for a term in a PageList structure.
///
/// At the time of writing, this does not support searching a pagelist
/// simultaneously as its being used by another thread. This will be resolved
/// in the future.
pub const PageListSearch = struct {
/// The list we're searching.
list: *PageList,
/// The sliding window of page contents and nodes to search.
window: SlidingWindow,
/// Initialize the page list search.
///
/// The needle is not copied and must be kept alive for the duration
/// of the search operation.
pub fn init(
alloc: Allocator,
list: *PageList,
needle: []const u8,
) Allocator.Error!PageListSearch {
var window = try SlidingWindow.init(alloc, needle);
errdefer window.deinit(alloc);
return .{
.list = list,
.window = window,
};
}
pub fn deinit(self: *PageListSearch, alloc: Allocator) void {
self.window.deinit(alloc);
}
/// Find the next match for the needle in the pagelist. This returns
/// null when there are no more matches.
pub fn next(
self: *PageListSearch,
alloc: Allocator,
) Allocator.Error!?Selection {
// Try to search for the needle in the window. If we find a match
// then we can return that and we're done.
if (self.window.next()) |sel| return sel;
// Get our next node. If we have a value in our window then we
// can determine the next node. If we don't, we've never setup the
// window so we use our first node.
var node_: ?*PageList.List.Node = if (self.window.meta.last()) |meta|
meta.node.next
else
self.list.pages.first;
// Add one pagelist node at a time, look for matches, and repeat
// until we find a match or we reach the end of the pagelist.
// This append then next pattern limits memory usage of the window.
while (node_) |node| : (node_ = node.next) {
try self.window.append(alloc, node);
if (self.window.next()) |sel| return sel;
}
// We've reached the end of the pagelist, no matches.
return null;
}
};
/// Searches page nodes via a sliding window. The sliding window maintains
/// the invariant that data isn't pruned until (1) we've searched it and
/// (2) we've accounted for overlaps across pages to fit the needle.
///
/// The sliding window is first initialized empty. Pages are then appended
/// in the order to search them. If you're doing a reverse search then the
/// pages should be appended in reverse order and the needle should be
/// reversed.
///
/// All appends grow the window. The window is only pruned when a searc
/// is done (positive or negative match) via `next()`.
///
/// To avoid unnecessary memory growth, the recommended usage is to
/// call `next()` until it returns null and then `append` the next page
/// and repeat the process. This will always maintain the minimum
/// required memory to search for the needle.
const SlidingWindow = struct {
/// The data buffer is a circular buffer of u8 that contains the
/// encoded page text that we can use to search for the needle.
data: DataBuf,
/// The meta buffer is a circular buffer that contains the metadata
/// about the pages we're searching. This usually isn't that large
/// so callers must iterate through it to find the offset to map
/// data to meta.
meta: MetaBuf,
/// Offset into data for our current state. This handles the
/// situation where our search moved through meta[0] but didn't
/// do enough to prune it.
data_offset: usize = 0,
/// The needle we're searching for. Does not own the memory.
needle: []const u8,
/// A buffer to store the overlap search data. This is used to search
/// overlaps between pages where the match starts on one page and
/// ends on another. The length is always `needle.len * 2`.
overlap_buf: []u8,
const DataBuf = CircBuf(u8, 0);
const MetaBuf = CircBuf(Meta, undefined);
const Meta = struct {
node: *PageList.List.Node,
cell_map: Page.CellMap,
pub fn deinit(self: *Meta) void {
self.cell_map.deinit();
}
};
pub fn init(
alloc: Allocator,
needle: []const u8,
) Allocator.Error!SlidingWindow {
var data = try DataBuf.init(alloc, 0);
errdefer data.deinit(alloc);
var meta = try MetaBuf.init(alloc, 0);
errdefer meta.deinit(alloc);
const overlap_buf = try alloc.alloc(u8, needle.len * 2);
errdefer alloc.free(overlap_buf);
return .{
.data = data,
.meta = meta,
.needle = needle,
.overlap_buf = overlap_buf,
};
}
pub fn deinit(self: *SlidingWindow, alloc: Allocator) void {
alloc.free(self.overlap_buf);
self.data.deinit(alloc);
var meta_it = self.meta.iterator(.forward);
while (meta_it.next()) |meta| meta.deinit();
self.meta.deinit(alloc);
}
/// Clear all data but retain allocated capacity.
pub fn clearAndRetainCapacity(self: *SlidingWindow) void {
var meta_it = self.meta.iterator(.forward);
while (meta_it.next()) |meta| meta.deinit();
self.meta.clear();
self.data.clear();
self.data_offset = 0;
}
/// Search the window for the next occurrence of the needle. As
/// the window moves, the window will prune itself while maintaining
/// the invariant that the window is always big enough to contain
/// the needle.
pub fn next(self: *SlidingWindow) ?Selection {
const slices = slices: {
// If we have less data then the needle then we can't possibly match
const data_len = self.data.len();
if (data_len < self.needle.len) return null;
break :slices self.data.getPtrSlice(
self.data_offset,
data_len - self.data_offset,
);
};
// Search the first slice for the needle.
if (std.mem.indexOf(u8, slices[0], self.needle)) |idx| {
return self.selection(idx, self.needle.len);
}
// Search the overlap buffer for the needle.
if (slices[0].len > 0 and slices[1].len > 0) overlap: {
// Get up to needle.len - 1 bytes from each side (as much as
// we can) and store it in the overlap buffer.
const prefix: []const u8 = prefix: {
const len = @min(slices[0].len, self.needle.len - 1);
const idx = slices[0].len - len;
break :prefix slices[0][idx..];
};
const suffix: []const u8 = suffix: {
const len = @min(slices[1].len, self.needle.len - 1);
break :suffix slices[1][0..len];
};
const overlap_len = prefix.len + suffix.len;
assert(overlap_len <= self.overlap_buf.len);
@memcpy(self.overlap_buf[0..prefix.len], prefix);
@memcpy(self.overlap_buf[prefix.len..overlap_len], suffix);
// Search the overlap
const idx = std.mem.indexOf(
u8,
self.overlap_buf[0..overlap_len],
self.needle,
) orelse break :overlap;
// We found a match in the overlap buffer. We need to map the
// index back to the data buffer in order to get our selection.
return self.selection(
slices[0].len - prefix.len + idx,
self.needle.len,
);
}
// Search the last slice for the needle.
if (std.mem.indexOf(u8, slices[1], self.needle)) |idx| {
return self.selection(slices[0].len + idx, self.needle.len);
}
// No match. We keep `needle.len - 1` bytes available to
// handle the future overlap case.
var meta_it = self.meta.iterator(.reverse);
prune: {
var saved: usize = 0;
while (meta_it.next()) |meta| {
const needed = self.needle.len - 1 - saved;
if (meta.cell_map.items.len >= needed) {
// We save up to this meta. We set our data offset
// to exactly where it needs to be to continue
// searching.
self.data_offset = meta.cell_map.items.len - needed;
break;
}
saved += meta.cell_map.items.len;
} else {
// If we exited the while loop naturally then we
// never got the amount we needed and so there is
// nothing to prune.
assert(saved < self.needle.len - 1);
break :prune;
}
const prune_count = self.meta.len() - meta_it.idx;
if (prune_count == 0) {
// This can happen if we need to save up to the first
// meta value to retain our window.
break :prune;
}
// We can now delete all the metas up to but NOT including
// the meta we found through meta_it.
meta_it = self.meta.iterator(.forward);
var prune_data_len: usize = 0;
for (0..prune_count) |_| {
const meta = meta_it.next().?;
prune_data_len += meta.cell_map.items.len;
meta.deinit();
}
self.meta.deleteOldest(prune_count);
self.data.deleteOldest(prune_data_len);
}
// Our data offset now moves to needle.len - 1 from the end so
// that we can handle the overlap case.
self.data_offset = self.data.len() - self.needle.len + 1;
self.assertIntegrity();
return null;
}
/// Return a selection for the given start and length into the data
/// buffer and also prune the data/meta buffers if possible up to
/// this start index.
///
/// The start index is assumed to be relative to the offset. i.e.
/// index zero is actually at `self.data[self.data_offset]`. The
/// selection will account for the offset.
fn selection(
self: *SlidingWindow,
start_offset: usize,
len: usize,
) Selection {
const start = start_offset + self.data_offset;
assert(start < self.data.len());
assert(start + len <= self.data.len());
// meta_consumed is the number of bytes we've consumed in the
// data buffer up to and NOT including the meta where we've
// found our pin. This is important because it tells us the
// amount of data we can safely deleted from self.data since
// we can't partially delete a meta block's data. (The partial
// amount is represented by self.data_offset).
var meta_it = self.meta.iterator(.forward);
var meta_consumed: usize = 0;
const tl: Pin = pin(&meta_it, &meta_consumed, start);
// Store the information required to prune later. We store this
// now because we only want to prune up to our START so we can
// find overlapping matches.
const tl_meta_idx = meta_it.idx - 1;
const tl_meta_consumed = meta_consumed;
// We have to seek back so that we reinspect our current
// iterator value again in case the start and end are in the
// same segment.
meta_it.seekBy(-1);
const br: Pin = pin(&meta_it, &meta_consumed, start + len - 1);
assert(meta_it.idx >= 1);
// Our offset into the current meta block is the start index
// minus the amount of data fully consumed. We then add one
// to move one past the match so we don't repeat it.
self.data_offset = start - tl_meta_consumed + 1;
// meta_it.idx is br's meta index plus one (because the iterator
// moves one past the end; we call next() one last time). So
// we compare against one to check that the meta that we matched
// in has prior meta blocks we can prune.
if (tl_meta_idx > 0) {
// Deinit all our memory in the meta blocks prior to our
// match.
const meta_count = tl_meta_idx;
meta_it.reset();
for (0..meta_count) |_| meta_it.next().?.deinit();
if (comptime std.debug.runtime_safety) {
assert(meta_it.idx == meta_count);
assert(meta_it.next().?.node == tl.node);
}
self.meta.deleteOldest(meta_count);
// Delete all the data up to our current index.
assert(tl_meta_consumed > 0);
self.data.deleteOldest(tl_meta_consumed);
}
self.assertIntegrity();
return Selection.init(tl, br, false);
}
/// Convert a data index into a pin.
///
/// The iterator and offset are both expected to be passed by
/// pointer so that the pin can be efficiently called for multiple
/// indexes (in order). See selection() for an example.
///
/// Precondition: the index must be within the data buffer.
fn pin(
it: *MetaBuf.Iterator,
offset: *usize,
idx: usize,
) Pin {
while (it.next()) |meta| {
// meta_i is the index we expect to find the match in the
// cell map within this meta if it contains it.
const meta_i = idx - offset.*;
if (meta_i >= meta.cell_map.items.len) {
// This meta doesn't contain the match. This means we
// can also prune this set of data because we only look
// forward.
offset.* += meta.cell_map.items.len;
continue;
}
// We found the meta that contains the start of the match.
const map = meta.cell_map.items[meta_i];
return .{
.node = meta.node,
.y = map.y,
.x = map.x,
};
}
// Unreachable because it is a precondition that the index is
// within the data buffer.
unreachable;
}
/// Add a new node to the sliding window. This will always grow
/// the sliding window; data isn't pruned until it is consumed
/// via a search (via next()).
pub fn append(
self: *SlidingWindow,
alloc: Allocator,
node: *PageList.List.Node,
) Allocator.Error!void {
// Initialize our metadata for the node.
var meta: Meta = .{
.node = node,
.cell_map = Page.CellMap.init(alloc),
};
errdefer meta.deinit();
// This is suboptimal but we need to encode the page once to
// temporary memory, and then copy it into our circular buffer.
// In the future, we should benchmark and see if we can encode
// directly into the circular buffer.
var encoded: std.ArrayListUnmanaged(u8) = .{};
defer encoded.deinit(alloc);
// Encode the page into the buffer.
const page: *const Page = &meta.node.data;
_ = page.encodeUtf8(
encoded.writer(alloc),
.{ .cell_map = &meta.cell_map },
) catch {
// writer uses anyerror but the only realistic error on
// an ArrayList is out of memory.
return error.OutOfMemory;
};
assert(meta.cell_map.items.len == encoded.items.len);
// Ensure our buffers are big enough to store what we need.
try self.data.ensureUnusedCapacity(alloc, encoded.items.len);
try self.meta.ensureUnusedCapacity(alloc, 1);
// Append our new node to the circular buffer.
try self.data.appendSlice(encoded.items);
try self.meta.append(meta);
self.assertIntegrity();
}
fn assertIntegrity(self: *const SlidingWindow) void {
if (comptime !std.debug.runtime_safety) return;
// Integrity check: verify our data matches our metadata exactly.
var meta_it = self.meta.iterator(.forward);
var data_len: usize = 0;
while (meta_it.next()) |m| data_len += m.cell_map.items.len;
assert(data_len == self.data.len());
// Integrity check: verify our data offset is within bounds.
assert(self.data_offset < self.data.len());
}
};
test "PageListSearch single page" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try Screen.init(alloc, 80, 24, 0);
defer s.deinit();
try s.testWriteString("hello. boo! hello. boo!");
try testing.expect(s.pages.pages.first == s.pages.pages.last);
var search = try PageListSearch.init(alloc, &s.pages, "boo!");
defer search.deinit(alloc);
// We should be able to find two matches.
{
const sel = (try search.next(alloc)).?;
try testing.expectEqual(point.Point{ .active = .{
.x = 7,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.start()).?);
try testing.expectEqual(point.Point{ .active = .{
.x = 10,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.end()).?);
}
{
const sel = (try search.next(alloc)).?;
try testing.expectEqual(point.Point{ .active = .{
.x = 19,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.start()).?);
try testing.expectEqual(point.Point{ .active = .{
.x = 22,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.end()).?);
}
try testing.expect((try search.next(alloc)) == null);
try testing.expect((try search.next(alloc)) == null);
}
test "SlidingWindow empty on init" {
const testing = std.testing;
const alloc = testing.allocator;
var w = try SlidingWindow.init(alloc, "boo!");
defer w.deinit(alloc);
try testing.expectEqual(0, w.data.len());
try testing.expectEqual(0, w.meta.len());
}
test "SlidingWindow single append" {
const testing = std.testing;
const alloc = testing.allocator;
var w = try SlidingWindow.init(alloc, "boo!");
defer w.deinit(alloc);
var s = try Screen.init(alloc, 80, 24, 0);
defer s.deinit();
try s.testWriteString("hello. boo! hello. boo!");
// We want to test single-page cases.
try testing.expect(s.pages.pages.first == s.pages.pages.last);
const node: *PageList.List.Node = s.pages.pages.first.?;
try w.append(alloc, node);
// We should be able to find two matches.
{
const sel = w.next().?;
try testing.expectEqual(point.Point{ .active = .{
.x = 7,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.start()).?);
try testing.expectEqual(point.Point{ .active = .{
.x = 10,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.end()).?);
}
{
const sel = w.next().?;
try testing.expectEqual(point.Point{ .active = .{
.x = 19,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.start()).?);
try testing.expectEqual(point.Point{ .active = .{
.x = 22,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.end()).?);
}
try testing.expect(w.next() == null);
try testing.expect(w.next() == null);
}
test "SlidingWindow single append no match" {
const testing = std.testing;
const alloc = testing.allocator;
var w = try SlidingWindow.init(alloc, "nope!");
defer w.deinit(alloc);
var s = try Screen.init(alloc, 80, 24, 0);
defer s.deinit();
try s.testWriteString("hello. boo! hello. boo!");
// We want to test single-page cases.
try testing.expect(s.pages.pages.first == s.pages.pages.last);
const node: *PageList.List.Node = s.pages.pages.first.?;
try w.append(alloc, node);
// No matches
try testing.expect(w.next() == null);
try testing.expect(w.next() == null);
// Should still keep the page
try testing.expectEqual(1, w.meta.len());
}
test "SlidingWindow two pages" {
const testing = std.testing;
const alloc = testing.allocator;
var w = try SlidingWindow.init(alloc, "boo!");
defer w.deinit(alloc);
var s = try Screen.init(alloc, 80, 24, 1000);
defer s.deinit();
// Fill up the first page. The final bytes in the first page
// are "boo!"
const first_page_rows = s.pages.pages.first.?.data.capacity.rows;
for (0..first_page_rows - 1) |_| try s.testWriteString("\n");
for (0..s.pages.cols - 4) |_| try s.testWriteString("x");
try s.testWriteString("boo!");
try testing.expect(s.pages.pages.first == s.pages.pages.last);
try s.testWriteString("\n");
try testing.expect(s.pages.pages.first != s.pages.pages.last);
try s.testWriteString("hello. boo!");
// Add both pages
const node: *PageList.List.Node = s.pages.pages.first.?;
try w.append(alloc, node);
try w.append(alloc, node.next.?);
// Search should find two matches
{
const sel = w.next().?;
try testing.expectEqual(point.Point{ .active = .{
.x = 76,
.y = 22,
} }, s.pages.pointFromPin(.active, sel.start()).?);
try testing.expectEqual(point.Point{ .active = .{
.x = 79,
.y = 22,
} }, s.pages.pointFromPin(.active, sel.end()).?);
}
{
const sel = w.next().?;
try testing.expectEqual(point.Point{ .active = .{
.x = 7,
.y = 23,
} }, s.pages.pointFromPin(.active, sel.start()).?);
try testing.expectEqual(point.Point{ .active = .{
.x = 10,
.y = 23,
} }, s.pages.pointFromPin(.active, sel.end()).?);
}
try testing.expect(w.next() == null);
try testing.expect(w.next() == null);
}
test "SlidingWindow two pages match across boundary" {
const testing = std.testing;
const alloc = testing.allocator;
var w = try SlidingWindow.init(alloc, "hello, world");
defer w.deinit(alloc);
var s = try Screen.init(alloc, 80, 24, 1000);
defer s.deinit();
// Fill up the first page. The final bytes in the first page
// are "boo!"
const first_page_rows = s.pages.pages.first.?.data.capacity.rows;
for (0..first_page_rows - 1) |_| try s.testWriteString("\n");
for (0..s.pages.cols - 4) |_| try s.testWriteString("x");
try s.testWriteString("hell");
try testing.expect(s.pages.pages.first == s.pages.pages.last);
try s.testWriteString("o, world!");
try testing.expect(s.pages.pages.first != s.pages.pages.last);
// Add both pages
const node: *PageList.List.Node = s.pages.pages.first.?;
try w.append(alloc, node);
try w.append(alloc, node.next.?);
// Search should find a match
{
const sel = w.next().?;
try testing.expectEqual(point.Point{ .active = .{
.x = 76,
.y = 22,
} }, s.pages.pointFromPin(.active, sel.start()).?);
try testing.expectEqual(point.Point{ .active = .{
.x = 7,
.y = 23,
} }, s.pages.pointFromPin(.active, sel.end()).?);
}
try testing.expect(w.next() == null);
try testing.expect(w.next() == null);
// We shouldn't prune because we don't have enough space
try testing.expectEqual(2, w.meta.len());
}
test "SlidingWindow two pages no match prunes first page" {
const testing = std.testing;
const alloc = testing.allocator;
var w = try SlidingWindow.init(alloc, "nope!");
defer w.deinit(alloc);
var s = try Screen.init(alloc, 80, 24, 1000);
defer s.deinit();
// Fill up the first page. The final bytes in the first page
// are "boo!"
const first_page_rows = s.pages.pages.first.?.data.capacity.rows;
for (0..first_page_rows - 1) |_| try s.testWriteString("\n");
for (0..s.pages.cols - 4) |_| try s.testWriteString("x");
try s.testWriteString("boo!");
try testing.expect(s.pages.pages.first == s.pages.pages.last);
try s.testWriteString("\n");
try testing.expect(s.pages.pages.first != s.pages.pages.last);
try s.testWriteString("hello. boo!");
// Add both pages
const node: *PageList.List.Node = s.pages.pages.first.?;
try w.append(alloc, node);
try w.append(alloc, node.next.?);
// Search should find nothing
try testing.expect(w.next() == null);
try testing.expect(w.next() == null);
// We should've pruned our page because the second page
// has enough text to contain our needle.
try testing.expectEqual(1, w.meta.len());
}
test "SlidingWindow two pages no match keeps both pages" {
const testing = std.testing;
const alloc = testing.allocator;
var s = try Screen.init(alloc, 80, 24, 1000);
defer s.deinit();
// Fill up the first page. The final bytes in the first page
// are "boo!"
const first_page_rows = s.pages.pages.first.?.data.capacity.rows;
for (0..first_page_rows - 1) |_| try s.testWriteString("\n");
for (0..s.pages.cols - 4) |_| try s.testWriteString("x");
try s.testWriteString("boo!");
try testing.expect(s.pages.pages.first == s.pages.pages.last);
try s.testWriteString("\n");
try testing.expect(s.pages.pages.first != s.pages.pages.last);
try s.testWriteString("hello. boo!");
// Imaginary needle for search. Doesn't match!
var needle_list = std.ArrayList(u8).init(alloc);
defer needle_list.deinit();
try needle_list.appendNTimes('x', first_page_rows * s.pages.cols);
const needle: []const u8 = needle_list.items;
var w = try SlidingWindow.init(alloc, needle);
defer w.deinit(alloc);
// Add both pages
const node: *PageList.List.Node = s.pages.pages.first.?;
try w.append(alloc, node);
try w.append(alloc, node.next.?);
// Search should find nothing
try testing.expect(w.next() == null);
try testing.expect(w.next() == null);
// No pruning because both pages are needed to fit needle.
try testing.expectEqual(2, w.meta.len());
}
test "SlidingWindow single append across circular buffer boundary" {
const testing = std.testing;
const alloc = testing.allocator;
var w = try SlidingWindow.init(alloc, "abc");
defer w.deinit(alloc);
var s = try Screen.init(alloc, 80, 24, 0);
defer s.deinit();
try s.testWriteString("XXXXXXXXXXXXXXXXXXXboo!XXXXX");
// We are trying to break a circular buffer boundary so the way we
// do this is to duplicate the data then do a failing search. This
// will cause the first page to be pruned. The next time we append we'll
// put it in the middle of the circ buffer. We assert this so that if
// our implementation changes our test will fail.
try testing.expect(s.pages.pages.first == s.pages.pages.last);
const node: *PageList.List.Node = s.pages.pages.first.?;
try w.append(alloc, node);
try w.append(alloc, node);
{
// No wrap around yet
const slices = w.data.getPtrSlice(0, w.data.len());
try testing.expect(slices[0].len > 0);
try testing.expect(slices[1].len == 0);
}
// Search non-match, prunes page
try testing.expect(w.next() == null);
try testing.expectEqual(1, w.meta.len());
// Change the needle, just needs to be the same length (not a real API)
w.needle = "boo";
// Add new page, now wraps
try w.append(alloc, node);
{
const slices = w.data.getPtrSlice(0, w.data.len());
try testing.expect(slices[0].len > 0);
try testing.expect(slices[1].len > 0);
}
{
const sel = w.next().?;
try testing.expectEqual(point.Point{ .active = .{
.x = 19,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.start()).?);
try testing.expectEqual(point.Point{ .active = .{
.x = 21,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.end()).?);
}
try testing.expect(w.next() == null);
}
test "SlidingWindow single append match on boundary" {
const testing = std.testing;
const alloc = testing.allocator;
var w = try SlidingWindow.init(alloc, "abcd");
defer w.deinit(alloc);
var s = try Screen.init(alloc, 80, 24, 0);
defer s.deinit();
try s.testWriteString("o!XXXXXXXXXXXXXXXXXXXbo");
// We are trying to break a circular buffer boundary so the way we
// do this is to duplicate the data then do a failing search. This
// will cause the first page to be pruned. The next time we append we'll
// put it in the middle of the circ buffer. We assert this so that if
// our implementation changes our test will fail.
try testing.expect(s.pages.pages.first == s.pages.pages.last);
const node: *PageList.List.Node = s.pages.pages.first.?;
try w.append(alloc, node);
try w.append(alloc, node);
{
// No wrap around yet
const slices = w.data.getPtrSlice(0, w.data.len());
try testing.expect(slices[0].len > 0);
try testing.expect(slices[1].len == 0);
}
// Search non-match, prunes page
try testing.expect(w.next() == null);
try testing.expectEqual(1, w.meta.len());
// Change the needle, just needs to be the same length (not a real API)
w.needle = "boo!";
// Add new page, now wraps
try w.append(alloc, node);
{
const slices = w.data.getPtrSlice(0, w.data.len());
try testing.expect(slices[0].len > 0);
try testing.expect(slices[1].len > 0);
}
{
const sel = w.next().?;
try testing.expectEqual(point.Point{ .active = .{
.x = 21,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.start()).?);
try testing.expectEqual(point.Point{ .active = .{
.x = 1,
.y = 0,
} }, s.pages.pointFromPin(.active, sel.end()).?);
}
try testing.expect(w.next() == null);
}