ghostty/src/renderer/shaders/cell.v.glsl
Qwerasd 4ca6413ec9 renderer: do not constrain color glyphs
There is no reason to and I do not know where this assumption came from.
It's very possible for a colored glyph to (intentionally!) exceed the
cell bounds, and we shouldn't be stopping this...
2024-12-19 11:21:57 -05:00

259 lines
9.4 KiB
GLSL

#version 330 core
// These are the possible modes that "mode" can be set to. This is
// used to multiplex multiple render modes into a single shader.
//
// NOTE: this must be kept in sync with the fragment shader
const uint MODE_BG = 1u;
const uint MODE_FG = 2u;
const uint MODE_FG_CONSTRAINED = 3u;
const uint MODE_FG_COLOR = 7u;
const uint MODE_FG_POWERLINE = 15u;
// The grid coordinates (x, y) where x < columns and y < rows
layout (location = 0) in vec2 grid_coord;
// Position of the glyph in the texture.
layout (location = 1) in vec2 glyph_pos;
// Width/height of the glyph
layout (location = 2) in vec2 glyph_size;
// Offset of the top-left corner of the glyph when rendered in a rect.
layout (location = 3) in vec2 glyph_offset;
// The color for this cell in RGBA (0 to 1.0). Background or foreground
// depends on mode.
layout (location = 4) in vec4 color_in;
// Only set for MODE_FG, this is the background color of the FG text.
// This is used to detect minimal contrast for the text.
layout (location = 5) in vec4 bg_color_in;
// The mode of this shader. The mode determines what fields are used,
// what the output will be, etc. This shader is capable of executing in
// multiple "modes" so that we can share some logic and so that we can draw
// the entire terminal grid in a single GPU pass.
layout (location = 6) in uint mode_in;
// The width in cells of this item.
layout (location = 7) in uint grid_width;
// The background or foreground color for the fragment, depending on
// whether this is a background or foreground pass.
flat out vec4 color;
// The x/y coordinate for the glyph representing the font.
out vec2 glyph_tex_coords;
// The position of the cell top-left corner in screen cords. z and w
// are width and height.
flat out vec2 screen_cell_pos;
// Pass the mode forward to the fragment shader.
flat out uint mode;
uniform sampler2D text;
uniform sampler2D text_color;
uniform vec2 cell_size;
uniform vec2 grid_size;
uniform vec4 grid_padding;
uniform bool padding_vertical_top;
uniform bool padding_vertical_bottom;
uniform mat4 projection;
uniform float min_contrast;
/********************************************************************
* Modes
*
*-------------------------------------------------------------------
* MODE_BG
*
* In MODE_BG, this shader renders only the background color for the
* cell. This is a simple mode where we generate a simple rectangle
* made up of 4 vertices and then it is filled. In this mode, the output
* "color" is the fill color for the bg.
*
*-------------------------------------------------------------------
* MODE_FG
*
* In MODE_FG, the shader renders the glyph onto this cell and utilizes
* the glyph texture "text". In this mode, the output "color" is the
* fg color to use for the glyph.
*
*/
//-------------------------------------------------------------------
// Color Functions
//-------------------------------------------------------------------
// https://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef
float luminance_component(float c) {
if (c <= 0.03928) {
return c / 12.92;
} else {
return pow((c + 0.055) / 1.055, 2.4);
}
}
float relative_luminance(vec3 color) {
vec3 color_adjusted = vec3(
luminance_component(color.r),
luminance_component(color.g),
luminance_component(color.b)
);
vec3 weights = vec3(0.2126, 0.7152, 0.0722);
return dot(color_adjusted, weights);
}
// https://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef
float contrast_ratio(vec3 color1, vec3 color2) {
float luminance1 = relative_luminance(color1) + 0.05;
float luminance2 = relative_luminance(color2) + 0.05;
return max(luminance1, luminance2) / min(luminance1, luminance2);
}
// Return the fg if the contrast ratio is greater than min, otherwise
// return a color that satisfies the contrast ratio. Currently, the color
// is always white or black, whichever has the highest contrast ratio.
vec4 contrasted_color(float min_ratio, vec4 fg, vec4 bg) {
vec3 fg_premult = fg.rgb * fg.a;
vec3 bg_premult = bg.rgb * bg.a;
float ratio = contrast_ratio(fg_premult, bg_premult);
if (ratio < min_ratio) {
float white_ratio = contrast_ratio(vec3(1.0, 1.0, 1.0), bg_premult);
float black_ratio = contrast_ratio(vec3(0.0, 0.0, 0.0), bg_premult);
if (white_ratio > black_ratio) {
return vec4(1.0, 1.0, 1.0, fg.a);
} else {
return vec4(0.0, 0.0, 0.0, fg.a);
}
}
return fg;
}
//-------------------------------------------------------------------
// Main
//-------------------------------------------------------------------
void main() {
// We always forward our mode unmasked because the fragment
// shader doesn't use any of the masks.
mode = mode_in;
// Top-left cell coordinates converted to world space
// Example: (1,0) with a 30 wide cell is converted to (30,0)
vec2 cell_pos = cell_size * grid_coord;
// Our Z value. For now we just use grid_z directly but we pull it
// out here so the variable name is more uniform to our cell_pos and
// in case we want to do any other math later.
float cell_z = 0.0;
// Turn the cell position into a vertex point depending on the
// gl_VertexID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use gl_VertexID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
vec2 position;
position.x = (gl_VertexID == 0 || gl_VertexID == 1) ? 1. : 0.;
position.y = (gl_VertexID == 0 || gl_VertexID == 3) ? 0. : 1.;
// Scaled for wide chars
vec2 cell_size_scaled = cell_size;
cell_size_scaled.x = cell_size_scaled.x * grid_width;
switch (mode) {
case MODE_BG:
// If we're at the edge of the grid, we add our padding to the background
// to extend it. Note: grid_padding is top/right/bottom/left.
if (grid_coord.y == 0 && padding_vertical_top) {
cell_pos.y -= grid_padding.r;
cell_size_scaled.y += grid_padding.r;
} else if (grid_coord.y == grid_size.y - 1 && padding_vertical_bottom) {
cell_size_scaled.y += grid_padding.b;
}
if (grid_coord.x == 0) {
cell_pos.x -= grid_padding.a;
cell_size_scaled.x += grid_padding.a;
} else if (grid_coord.x == grid_size.x - 1) {
cell_size_scaled.x += grid_padding.g;
}
// Calculate the final position of our cell in world space.
// We have to add our cell size since our vertices are offset
// one cell up and to the left. (Do the math to verify yourself)
cell_pos = cell_pos + cell_size_scaled * position;
gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
color = color_in / 255.0;
break;
case MODE_FG:
case MODE_FG_CONSTRAINED:
case MODE_FG_COLOR:
case MODE_FG_POWERLINE:
vec2 glyph_offset_calc = glyph_offset;
// The glyph_offset.y is the y bearing, a y value that when added
// to the baseline is the offset (+y is up). Our grid goes down.
// So we flip it with `cell_size.y - glyph_offset.y`.
glyph_offset_calc.y = cell_size_scaled.y - glyph_offset_calc.y;
// If this is a constrained mode, we need to constrain it!
vec2 glyph_size_calc = glyph_size;
if (mode == MODE_FG_CONSTRAINED) {
if (glyph_size.x > cell_size_scaled.x) {
float new_y = glyph_size.y * (cell_size_scaled.x / glyph_size.x);
glyph_offset_calc.y = glyph_offset_calc.y + ((glyph_size.y - new_y) / 2);
glyph_size_calc.y = new_y;
glyph_size_calc.x = cell_size_scaled.x;
}
}
// Calculate the final position of the cell.
cell_pos = cell_pos + (glyph_size_calc * position) + glyph_offset_calc;
gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
// We need to convert our texture position and size to normalized
// device coordinates (0 to 1.0) by dividing by the size of the texture.
ivec2 text_size;
switch(mode) {
case MODE_FG_CONSTRAINED:
case MODE_FG_POWERLINE:
case MODE_FG:
text_size = textureSize(text, 0);
break;
case MODE_FG_COLOR:
text_size = textureSize(text_color, 0);
break;
}
vec2 glyph_tex_pos = glyph_pos / text_size;
vec2 glyph_tex_size = glyph_size / text_size;
glyph_tex_coords = glyph_tex_pos + glyph_tex_size * position;
// If we have a minimum contrast, we need to check if we need to
// change the color of the text to ensure it has enough contrast
// with the background.
// We only apply this adjustment to "normal" text with MODE_FG,
// since we want color glyphs to appear in their original color
// and Powerline glyphs to be unaffected (else parts of the line would
// have different colors as some parts are displayed via background colors).
vec4 color_final = color_in / 255.0;
if (min_contrast > 1.0 && mode == MODE_FG) {
vec4 bg_color = bg_color_in / 255.0;
color_final = contrasted_color(min_contrast, color_final, bg_color);
}
color = color_final;
break;
}
}