ghostty/src/Surface.zig
Mitchell Hashimoto 3564dd5e7e stylistic changes
2023-11-06 08:47:09 -08:00

2625 lines
95 KiB
Zig

//! Surface represents a single terminal "surface". A terminal surface is
//! a minimal "widget" where the terminal is drawn and responds to events
//! such as keyboard and mouse. Each surface also creates and owns its pty
//! session.
//!
//! The word "surface" is used because it is left to the higher level
//! application runtime to determine if the surface is a window, a tab,
//! a split, a preview pane in a larger window, etc. This struct doesn't care:
//! it just draws and responds to events. The events come from the application
//! runtime so the runtime can determine when and how those are delivered
//! (i.e. with focus, without focus, and so on).
const Surface = @This();
const apprt = @import("apprt.zig");
pub const Mailbox = apprt.surface.Mailbox;
pub const Message = apprt.surface.Message;
const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const ArenaAllocator = std.heap.ArenaAllocator;
const renderer = @import("renderer.zig");
const termio = @import("termio.zig");
const objc = @import("objc");
const imgui = @import("imgui");
const Pty = @import("Pty.zig");
const font = @import("font/main.zig");
const Command = @import("Command.zig");
const trace = @import("tracy").trace;
const terminal = @import("terminal/main.zig");
const configpkg = @import("config.zig");
const input = @import("input.zig");
const App = @import("App.zig");
const internal_os = @import("os/main.zig");
const inspector = @import("inspector/main.zig");
const log = std.log.scoped(.surface);
// The renderer implementation to use.
const Renderer = renderer.Renderer;
/// Allocator
alloc: Allocator,
/// The app that this surface is attached to.
app: *App,
/// The windowing system surface and app.
rt_app: *apprt.runtime.App,
rt_surface: *apprt.runtime.Surface,
/// The font structures
font_lib: font.Library,
font_group: *font.GroupCache,
font_size: font.face.DesiredSize,
/// The renderer for this surface.
renderer: Renderer,
/// The render state
renderer_state: renderer.State,
/// The renderer thread manager
renderer_thread: renderer.Thread,
/// The actual thread
renderer_thr: std.Thread,
/// Mouse state.
mouse: Mouse,
/// The terminal IO handler.
io: termio.Impl,
io_thread: termio.Thread,
io_thr: std.Thread,
/// Terminal inspector
inspector: ?*inspector.Inspector = null,
/// All the cached sizes since we need them at various times.
screen_size: renderer.ScreenSize,
grid_size: renderer.GridSize,
cell_size: renderer.CellSize,
/// Explicit padding due to configuration
padding: renderer.Padding,
/// The configuration derived from the main config. We "derive" it so that
/// we don't have a shared pointer hanging around that we need to worry about
/// the lifetime of. This makes updating config at runtime easier.
config: DerivedConfig,
/// This is set to true if our IO thread notifies us our child exited.
/// This is used to determine if we need to confirm, hold open, etc.
child_exited: bool = false,
/// Mouse state for the surface.
const Mouse = struct {
/// The last tracked mouse button state by button.
click_state: [input.MouseButton.max]input.MouseButtonState = .{.release} ** input.MouseButton.max,
/// The last mods state when the last mouse button (whatever it was) was
/// pressed or release.
mods: input.Mods = .{},
/// The point at which the left mouse click happened. This is in screen
/// coordinates so that scrolling preserves the location.
left_click_point: terminal.point.ScreenPoint = .{},
/// The starting xpos/ypos of the left click. Note that if scrolling occurs,
/// these will point to different "cells", but the xpos/ypos will stay
/// stable during scrolling relative to the surface.
left_click_xpos: f64 = 0,
left_click_ypos: f64 = 0,
/// The count of clicks to count double and triple clicks and so on.
/// The left click time was the last time the left click was done. This
/// is always set on the first left click.
left_click_count: u8 = 0,
left_click_time: std.time.Instant = undefined,
/// The last x/y sent for mouse reports.
event_point: ?terminal.point.Viewport = null,
/// Pending scroll amounts for high-precision scrolls
pending_scroll_x: f64 = 0,
pending_scroll_y: f64 = 0,
/// True if the mouse is hidden
hidden: bool = false,
};
/// The configuration that a surface has, this is copied from the main
/// Config struct usually to prevent sharing a single value.
const DerivedConfig = struct {
arena: ArenaAllocator,
/// For docs for these, see the associated config they are derived from.
original_font_size: u8,
keybind: configpkg.Keybinds,
clipboard_read: bool,
clipboard_write: bool,
clipboard_trim_trailing_spaces: bool,
clipboard_paste_protection: bool,
copy_on_select: configpkg.CopyOnSelect,
confirm_close_surface: bool,
mouse_interval: u64,
mouse_hide_while_typing: bool,
mouse_shift_capture: configpkg.MouseShiftCapture,
macos_non_native_fullscreen: configpkg.NonNativeFullscreen,
macos_option_as_alt: configpkg.OptionAsAlt,
vt_kam_allowed: bool,
window_padding_x: u32,
window_padding_y: u32,
window_padding_balance: bool,
title: ?[:0]const u8,
pub fn init(alloc_gpa: Allocator, config: *const configpkg.Config) !DerivedConfig {
var arena = ArenaAllocator.init(alloc_gpa);
errdefer arena.deinit();
const alloc = arena.allocator();
return .{
.original_font_size = config.@"font-size",
.keybind = try config.keybind.clone(alloc),
.clipboard_read = config.@"clipboard-read",
.clipboard_write = config.@"clipboard-write",
.clipboard_trim_trailing_spaces = config.@"clipboard-trim-trailing-spaces",
.clipboard_paste_protection = config.@"clipboard-paste-protection",
.copy_on_select = config.@"copy-on-select",
.confirm_close_surface = config.@"confirm-close-surface",
.mouse_interval = config.@"click-repeat-interval" * 1_000_000, // 500ms
.mouse_hide_while_typing = config.@"mouse-hide-while-typing",
.mouse_shift_capture = config.@"mouse-shift-capture",
.macos_non_native_fullscreen = config.@"macos-non-native-fullscreen",
.macos_option_as_alt = config.@"macos-option-as-alt",
.vt_kam_allowed = config.@"vt-kam-allowed",
.window_padding_x = config.@"window-padding-x",
.window_padding_y = config.@"window-padding-y",
.window_padding_balance = config.@"window-padding-balance",
.title = config.title,
// Assignments happen sequentially so we have to do this last
// so that the memory is captured from allocs above.
.arena = arena,
};
}
pub fn deinit(self: *DerivedConfig) void {
self.arena.deinit();
}
};
/// Create a new surface. This must be called from the main thread. The
/// pointer to the memory for the surface must be provided and must be
/// stable due to interfacing with various callbacks.
pub fn init(
self: *Surface,
alloc: Allocator,
config: *const configpkg.Config,
app: *App,
rt_app: *apprt.runtime.App,
rt_surface: *apprt.runtime.Surface,
) !void {
// Initialize our renderer with our initialized surface.
try Renderer.surfaceInit(rt_surface);
// Determine our DPI configurations so we can properly configure
// font points to pixels and handle other high-DPI scaling factors.
const content_scale = try rt_surface.getContentScale();
const x_dpi = content_scale.x * font.face.default_dpi;
const y_dpi = content_scale.y * font.face.default_dpi;
log.debug("xscale={} yscale={} xdpi={} ydpi={}", .{
content_scale.x,
content_scale.y,
x_dpi,
y_dpi,
});
// The font size we desire along with the DPI determined for the surface
const font_size: font.face.DesiredSize = .{
.points = config.@"font-size",
.xdpi = @intFromFloat(x_dpi),
.ydpi = @intFromFloat(y_dpi),
};
// Find all the fonts for this surface
//
// Future: we can share the font group amongst all surfaces to save
// some new surface init time and some memory. This will require making
// thread-safe changes to font structs.
var font_lib = try font.Library.init();
errdefer font_lib.deinit();
var font_group = try alloc.create(font.GroupCache);
errdefer alloc.destroy(font_group);
font_group.* = try font.GroupCache.init(alloc, group: {
var group = try font.Group.init(alloc, font_lib, font_size);
errdefer group.deinit();
// Setup our font metric modifiers if we have any.
group.metric_modifiers = set: {
var set: font.face.Metrics.ModifierSet = .{};
errdefer set.deinit(alloc);
if (config.@"adjust-cell-width") |m| try set.put(alloc, .cell_width, m);
if (config.@"adjust-cell-height") |m| try set.put(alloc, .cell_height, m);
if (config.@"adjust-font-baseline") |m| try set.put(alloc, .cell_baseline, m);
if (config.@"adjust-underline-position") |m| try set.put(alloc, .underline_position, m);
if (config.@"adjust-underline-thickness") |m| try set.put(alloc, .underline_thickness, m);
if (config.@"adjust-strikethrough-position") |m| try set.put(alloc, .strikethrough_position, m);
if (config.@"adjust-strikethrough-thickness") |m| try set.put(alloc, .strikethrough_thickness, m);
break :set set;
};
// If we have codepoint mappings, set those.
if (config.@"font-codepoint-map".map.list.len > 0) {
group.codepoint_map = config.@"font-codepoint-map".map;
}
// Set our styles
group.styles.set(.bold, config.@"font-style-bold" != .false);
group.styles.set(.italic, config.@"font-style-italic" != .false);
group.styles.set(.bold_italic, config.@"font-style-bold-italic" != .false);
// Search for fonts
if (font.Discover != void) discover: {
const disco = try app.fontDiscover() orelse {
log.warn("font discovery not available, cannot search for fonts", .{});
break :discover;
};
group.discover = disco;
// A buffer we use to store the font names for logging.
var name_buf: [256]u8 = undefined;
if (config.@"font-family") |family| {
var disco_it = try disco.discover(alloc, .{
.family = family,
.style = config.@"font-style".nameValue(),
.size = font_size.points,
.variations = config.@"font-variation".list.items,
});
defer disco_it.deinit();
if (try disco_it.next()) |face| {
log.info("font regular: {s}", .{try face.name(&name_buf)});
_ = try group.addFace(.regular, .{ .deferred = face });
} else log.warn("font-family not found: {s}", .{family});
}
// In all the styled cases below, we prefer to specify an exact
// style via the `font-style` configuration. If a style is not
// specified, we use the discovery mechanism to search for a
// style category such as bold, italic, etc. We can't specify both
// because the latter will restrict the search to only that. If
// a user says `font-style = italic` for the bold face for example,
// no results would be found if we restrict to ALSO searching for
// italic.
if (config.@"font-family-bold") |family| {
const style = config.@"font-style-bold".nameValue();
var disco_it = try disco.discover(alloc, .{
.family = family,
.style = style,
.size = font_size.points,
.bold = style == null,
.variations = config.@"font-variation-bold".list.items,
});
defer disco_it.deinit();
if (try disco_it.next()) |face| {
log.info("font bold: {s}", .{try face.name(&name_buf)});
_ = try group.addFace(.bold, .{ .deferred = face });
} else log.warn("font-family-bold not found: {s}", .{family});
}
if (config.@"font-family-italic") |family| {
const style = config.@"font-style-italic".nameValue();
var disco_it = try disco.discover(alloc, .{
.family = family,
.style = style,
.size = font_size.points,
.italic = style == null,
.variations = config.@"font-variation-italic".list.items,
});
defer disco_it.deinit();
if (try disco_it.next()) |face| {
log.info("font italic: {s}", .{try face.name(&name_buf)});
_ = try group.addFace(.italic, .{ .deferred = face });
} else log.warn("font-family-italic not found: {s}", .{family});
}
if (config.@"font-family-bold-italic") |family| {
const style = config.@"font-style-bold-italic".nameValue();
var disco_it = try disco.discover(alloc, .{
.family = family,
.style = style,
.size = font_size.points,
.bold = style == null,
.italic = style == null,
.variations = config.@"font-variation-bold-italic".list.items,
});
defer disco_it.deinit();
if (try disco_it.next()) |face| {
log.info("font bold+italic: {s}", .{try face.name(&name_buf)});
_ = try group.addFace(.bold_italic, .{ .deferred = face });
} else log.warn("font-family-bold-italic not found: {s}", .{family});
}
}
// Our built-in font will be used as a backup
_ = try group.addFace(
.regular,
.{ .loaded = try font.Face.init(font_lib, face_ttf, group.faceOptions()) },
);
_ = try group.addFace(
.bold,
.{ .loaded = try font.Face.init(font_lib, face_bold_ttf, group.faceOptions()) },
);
// Auto-italicize if we have to.
try group.italicize();
// Emoji fallback. We don't include this on Mac since Mac is expected
// to always have the Apple Emoji available on the system.
if (builtin.os.tag != .macos or font.Discover == void) {
_ = try group.addFace(
.regular,
.{ .loaded = try font.Face.init(font_lib, face_emoji_ttf, group.faceOptions()) },
);
_ = try group.addFace(
.regular,
.{ .loaded = try font.Face.init(font_lib, face_emoji_text_ttf, group.faceOptions()) },
);
}
break :group group;
});
errdefer font_group.deinit(alloc);
log.info("font loading complete, any non-logged faces are using the built-in font", .{});
// Pre-calculate our initial cell size ourselves.
const cell_size = try renderer.CellSize.init(alloc, font_group);
// Convert our padding from points to pixels
const padding_x: u32 = padding_x: {
const padding_x: f32 = @floatFromInt(config.@"window-padding-x");
break :padding_x @intFromFloat(@floor(padding_x * x_dpi / 72));
};
const padding_y: u32 = padding_y: {
const padding_y: f32 = @floatFromInt(config.@"window-padding-y");
break :padding_y @intFromFloat(@floor(padding_y * y_dpi / 72));
};
const padding: renderer.Padding = .{
.top = padding_y,
.bottom = padding_y,
.right = padding_x,
.left = padding_x,
};
// Create our terminal grid with the initial size
const app_mailbox: App.Mailbox = .{ .rt_app = rt_app, .mailbox = &app.mailbox };
var renderer_impl = try Renderer.init(alloc, .{
.config = try Renderer.DerivedConfig.init(alloc, config),
.font_group = font_group,
.padding = .{
.explicit = padding,
.balance = config.@"window-padding-balance",
},
.surface_mailbox = .{ .surface = self, .app = app_mailbox },
});
errdefer renderer_impl.deinit();
// Calculate our grid size based on known dimensions.
const surface_size = try rt_surface.getSize();
const screen_size: renderer.ScreenSize = .{
.width = surface_size.width,
.height = surface_size.height,
};
const grid_size = renderer.GridSize.init(
screen_size.subPadding(padding),
cell_size,
);
// The mutex used to protect our renderer state.
var mutex = try alloc.create(std.Thread.Mutex);
mutex.* = .{};
errdefer alloc.destroy(mutex);
// Create the renderer thread
var render_thread = try renderer.Thread.init(
alloc,
rt_surface,
&self.renderer,
&self.renderer_state,
app_mailbox,
);
errdefer render_thread.deinit();
// Start our IO implementation
var io = try termio.Impl.init(alloc, .{
.grid_size = grid_size,
.screen_size = screen_size,
.padding = padding,
.full_config = config,
.config = try termio.Impl.DerivedConfig.init(alloc, config),
.resources_dir = app.resources_dir,
.renderer_state = &self.renderer_state,
.renderer_wakeup = render_thread.wakeup,
.renderer_mailbox = render_thread.mailbox,
.surface_mailbox = .{ .surface = self, .app = app_mailbox },
});
errdefer io.deinit();
// Create the IO thread
var io_thread = try termio.Thread.init(alloc, &self.io);
errdefer io_thread.deinit();
self.* = .{
.alloc = alloc,
.app = app,
.rt_app = rt_app,
.rt_surface = rt_surface,
.font_lib = font_lib,
.font_group = font_group,
.font_size = font_size,
.renderer = renderer_impl,
.renderer_thread = render_thread,
.renderer_state = .{
.mutex = mutex,
.terminal = &self.io.terminal,
},
.renderer_thr = undefined,
.mouse = .{},
.io = io,
.io_thread = io_thread,
.io_thr = undefined,
.screen_size = .{ .width = 0, .height = 0 },
.grid_size = .{},
.cell_size = cell_size,
.padding = padding,
.config = try DerivedConfig.init(alloc, config),
};
// Report initial cell size on surface creation
try rt_surface.setCellSize(cell_size.width, cell_size.height);
// Set a minimum size that is cols=10 h=4. This matches Mac's Terminal.app
// but is otherwise somewhat arbitrary.
try rt_surface.setSizeLimits(.{
.width = cell_size.width * 10,
.height = cell_size.height * 4,
}, null);
// Call our size callback which handles all our retina setup
// Note: this shouldn't be necessary and when we clean up the surface
// init stuff we should get rid of this. But this is required because
// sizeCallback does retina-aware stuff we don't do here and don't want
// to duplicate.
try self.sizeCallback(surface_size);
// Give the renderer one more opportunity to finalize any surface
// setup on the main thread prior to spinning up the rendering thread.
try renderer_impl.finalizeSurfaceInit(rt_surface);
// Start our renderer thread
self.renderer_thr = try std.Thread.spawn(
.{},
renderer.Thread.threadMain,
.{&self.renderer_thread},
);
self.renderer_thr.setName("renderer") catch {};
// Start our IO thread
self.io_thr = try std.Thread.spawn(
.{},
termio.Thread.threadMain,
.{&self.io_thread},
);
self.io_thr.setName("io") catch {};
// Determine our initial window size if configured. We need to do this
// quite late in the process because our height/width are in grid dimensions,
// so we need to know our cell sizes first.
//
// Note: it is important to do this after the renderer is setup above.
// This allows the apprt to fully initialize the surface before we
// start messing with the window.
if (config.@"window-height" > 0 and config.@"window-width" > 0) init: {
const scale = rt_surface.getContentScale() catch break :init;
const height = @max(config.@"window-height" * cell_size.height, 480);
const width = @max(config.@"window-width" * cell_size.width, 640);
const width_f32: f32 = @floatFromInt(width);
const height_f32: f32 = @floatFromInt(height);
// The final values are affected by content scale and we need to
// account for the padding so we get the exact correct grid size.
const final_width: u32 =
@as(u32, @intFromFloat(@ceil(width_f32 / scale.x))) +
padding.left +
padding.right;
const final_height: u32 =
@as(u32, @intFromFloat(@ceil(height_f32 / scale.y))) +
padding.top +
padding.bottom;
rt_surface.setInitialWindowSize(final_width, final_height) catch |err| {
log.warn("unable to set initial window size: {s}", .{err});
};
}
if (config.title) |title| try rt_surface.setTitle(title);
}
pub fn deinit(self: *Surface) void {
// Stop rendering thread
{
self.renderer_thread.stop.notify() catch |err|
log.err("error notifying renderer thread to stop, may stall err={}", .{err});
self.renderer_thr.join();
// We need to become the active rendering thread again
self.renderer.threadEnter(self.rt_surface) catch unreachable;
}
// Stop our IO thread
{
self.io_thread.stop.notify() catch |err|
log.err("error notifying io thread to stop, may stall err={}", .{err});
self.io_thr.join();
}
// We need to deinit AFTER everything is stopped, since there are
// shared values between the two threads.
self.renderer_thread.deinit();
self.renderer.deinit();
self.io_thread.deinit();
self.io.deinit();
self.font_group.deinit(self.alloc);
self.font_lib.deinit();
self.alloc.destroy(self.font_group);
if (self.inspector) |v| {
v.deinit();
self.alloc.destroy(v);
}
self.alloc.destroy(self.renderer_state.mutex);
self.config.deinit();
log.info("surface closed addr={x}", .{@intFromPtr(self)});
}
/// Close this surface. This will trigger the runtime to start the
/// close process, which should ultimately deinitialize this surface.
pub fn close(self: *Surface) void {
self.rt_surface.close(self.needsConfirmQuit());
}
/// Activate the inspector. This will begin collecting inspection data.
/// This will not affect the GUI. The GUI must use performAction to
/// show/hide the inspector UI.
pub fn activateInspector(self: *Surface) !void {
if (self.inspector != null) return;
// Setup the inspector
var ptr = try self.alloc.create(inspector.Inspector);
errdefer self.alloc.destroy(ptr);
ptr.* = try inspector.Inspector.init(self);
self.inspector = ptr;
// Put the inspector onto the render state
{
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
assert(self.renderer_state.inspector == null);
self.renderer_state.inspector = self.inspector;
}
// Notify our components we have an inspector active
_ = self.renderer_thread.mailbox.push(.{ .inspector = true }, .{ .forever = {} });
_ = self.io_thread.mailbox.push(.{ .inspector = true }, .{ .forever = {} });
}
/// Deactivate the inspector and stop collecting any information.
pub fn deactivateInspector(self: *Surface) void {
const insp = self.inspector orelse return;
// Remove the inspector from the render state
{
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
assert(self.renderer_state.inspector != null);
self.renderer_state.inspector = null;
}
// Notify our components we have deactivated inspector
_ = self.renderer_thread.mailbox.push(.{ .inspector = false }, .{ .forever = {} });
_ = self.io_thread.mailbox.push(.{ .inspector = false }, .{ .forever = {} });
// Deinit the inspector
insp.deinit();
self.alloc.destroy(insp);
self.inspector = null;
}
/// True if the surface requires confirmation to quit. This should be called
/// by apprt to determine if the surface should confirm before quitting.
pub fn needsConfirmQuit(self: *Surface) bool {
// If the child has exited then our process is certainly not alive.
// We check this first to avoid the locking overhead below.
if (self.child_exited) return false;
// If we are configured to not hold open surfaces explicitly, just
// always say there is nothing alive.
if (!self.config.confirm_close_surface) return false;
// We have to talk to the terminal.
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
return !self.io.terminal.cursorIsAtPrompt();
}
/// Called from the app thread to handle mailbox messages to our specific
/// surface.
pub fn handleMessage(self: *Surface, msg: Message) !void {
switch (msg) {
.change_config => |config| try self.changeConfig(config),
.set_title => |*v| {
// We ignore the message in case the title was set via config.
if (self.config.title != null) {
log.debug("ignoring title change request since static title is set via config", .{});
return;
}
// The ptrCast just gets sliceTo to return the proper type.
// We know that our title should end in 0.
const slice = std.mem.sliceTo(@as([*:0]const u8, @ptrCast(v)), 0);
log.debug("changing title \"{s}\"", .{slice});
try self.rt_surface.setTitle(slice);
},
.set_mouse_shape => |shape| {
log.debug("changing mouse shape: {}", .{shape});
try self.rt_surface.setMouseShape(shape);
},
.cell_size => |size| try self.setCellSize(size),
.clipboard_read => |kind| {
if (!self.config.clipboard_read) {
log.info("application attempted to read clipboard, but 'clipboard-read' setting is off", .{});
return;
}
try self.startClipboardRequest(.standard, .{ .osc_52 = kind });
},
.clipboard_write => |req| switch (req) {
.small => |v| try self.clipboardWrite(v.data[0..v.len], .standard),
.stable => |v| try self.clipboardWrite(v, .standard),
.alloc => |v| {
defer v.alloc.free(v.data);
try self.clipboardWrite(v.data, .standard);
},
},
.close => self.close(),
// Close without confirmation.
.child_exited => {
self.child_exited = true;
self.close();
},
}
}
/// Update our configuration at runtime.
fn changeConfig(self: *Surface, config: *const configpkg.Config) !void {
// Update our new derived config immediately
const derived = DerivedConfig.init(self.alloc, config) catch |err| {
// If the derivation fails then we just log and return. We don't
// hard fail in this case because we don't want to error the surface
// when config fails we just want to keep using the old config.
log.err("error updating configuration err={}", .{err});
return;
};
self.config.deinit();
self.config = derived;
// If our mouse is hidden but we disabled mouse hiding, then show it again.
if (!self.config.mouse_hide_while_typing and self.mouse.hidden) {
self.showMouse();
}
// We need to store our configs in a heap-allocated pointer so that
// our messages aren't huge.
var renderer_config_ptr = try self.alloc.create(Renderer.DerivedConfig);
errdefer self.alloc.destroy(renderer_config_ptr);
var termio_config_ptr = try self.alloc.create(termio.Impl.DerivedConfig);
errdefer self.alloc.destroy(termio_config_ptr);
// Update our derived configurations for the renderer and termio,
// then send them a message to update.
renderer_config_ptr.* = try Renderer.DerivedConfig.init(self.alloc, config);
errdefer renderer_config_ptr.deinit();
termio_config_ptr.* = try termio.Impl.DerivedConfig.init(self.alloc, config);
errdefer termio_config_ptr.deinit();
_ = self.renderer_thread.mailbox.push(.{
.change_config = .{
.alloc = self.alloc,
.ptr = renderer_config_ptr,
},
}, .{ .forever = {} });
_ = self.io_thread.mailbox.push(.{
.change_config = .{
.alloc = self.alloc,
.ptr = termio_config_ptr,
},
}, .{ .forever = {} });
// With mailbox messages sent, we have to wake them up so they process it.
self.queueRender() catch |err| {
log.warn("failed to notify renderer of config change err={}", .{err});
};
self.io_thread.wakeup.notify() catch |err| {
log.warn("failed to notify io thread of config change err={}", .{err});
};
}
/// Returns the pwd of the terminal, if any. This is always copied because
/// the pwd can change at any point from termio. If we are calling from the IO
/// thread you should just check the terminal directly.
pub fn pwd(self: *const Surface, alloc: Allocator) !?[]const u8 {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
const terminal_pwd = self.io.terminal.getPwd() orelse return null;
return try alloc.dupe(u8, terminal_pwd);
}
/// Returns the x/y coordinate of where the IME (Input Method Editor)
/// keyboard should be rendered.
pub fn imePoint(self: *const Surface) apprt.IMEPos {
self.renderer_state.mutex.lock();
const cursor = self.renderer_state.terminal.screen.cursor;
self.renderer_state.mutex.unlock();
// TODO: need to handle when scrolling and the cursor is not
// in the visible portion of the screen.
// Our sizes are all scaled so we need to send the unscaled values back.
const content_scale = self.rt_surface.getContentScale() catch .{ .x = 1, .y = 1 };
const x: f64 = x: {
// Simple x * cell width gives the top-left corner
var x: f64 = @floatFromInt(cursor.x * self.cell_size.width);
// We want the midpoint
x += @as(f64, @floatFromInt(self.cell_size.width)) / 2;
// And scale it
x /= content_scale.x;
break :x x;
};
const y: f64 = y: {
// Simple x * cell width gives the top-left corner
var y: f64 = @floatFromInt(cursor.y * self.cell_size.height);
// We want the bottom
y += @floatFromInt(self.cell_size.height);
// And scale it
y /= content_scale.y;
break :y y;
};
return .{ .x = x, .y = y };
}
fn clipboardWrite(self: *const Surface, data: []const u8, loc: apprt.Clipboard) !void {
if (!self.config.clipboard_write) {
log.info("application attempted to write clipboard, but 'clipboard-write' setting is off", .{});
return;
}
const dec = std.base64.standard.Decoder;
// Build buffer
const size = dec.calcSizeForSlice(data) catch |err| switch (err) {
error.InvalidPadding => {
log.info("application sent invalid base64 data for OSC 52", .{});
return;
},
// Should not be reachable but don't want to risk it.
else => return,
};
var buf = try self.alloc.allocSentinel(u8, size, 0);
defer self.alloc.free(buf);
buf[buf.len] = 0;
// Decode
dec.decode(buf, data) catch |err| switch (err) {
// Ignore this. It is possible to actually have valid data and
// get this error, so we allow it.
error.InvalidPadding => {},
else => {
log.info("application sent invalid base64 data for OSC 52", .{});
return;
},
};
assert(buf[buf.len] == 0);
self.rt_surface.setClipboardString(buf, loc) catch |err| {
log.err("error setting clipboard string err={}", .{err});
return;
};
}
/// Set the selection contents.
///
/// This must be called with the renderer mutex held.
fn setSelection(self: *Surface, sel_: ?terminal.Selection) void {
const prev_ = self.io.terminal.screen.selection;
self.io.terminal.screen.selection = sel_;
// Determine the clipboard we want to copy selection to, if it is enabled.
const clipboard: apprt.Clipboard = switch (self.config.copy_on_select) {
.false => return,
.true => .selection,
.clipboard => .standard,
};
// Set our selection clipboard. If the selection is cleared we do not
// clear the clipboard. If the selection is set, we only set the clipboard
// again if it changed, since setting the clipboard can be an expensive
// operation.
const sel = sel_ orelse return;
if (prev_) |prev| if (std.meta.eql(sel, prev)) return;
// Check if our runtime supports the selection clipboard at all.
// We can save a lot of work if it doesn't.
if (@hasDecl(apprt.runtime.Surface, "supportsClipboard")) {
if (!self.rt_surface.supportsClipboard(clipboard)) {
return;
}
}
var buf = self.io.terminal.screen.selectionString(
self.alloc,
sel,
self.config.clipboard_trim_trailing_spaces,
) catch |err| {
log.err("error reading selection string err={}", .{err});
return;
};
defer self.alloc.free(buf);
self.rt_surface.setClipboardString(buf, clipboard) catch |err| {
log.err("error setting clipboard string err={}", .{err});
return;
};
}
/// Change the cell size for the terminal grid. This can happen as
/// a result of changing the font size at runtime.
fn setCellSize(self: *Surface, size: renderer.CellSize) !void {
// Update our new cell size for future calcs
self.cell_size = size;
// Update our grid_size
self.grid_size = renderer.GridSize.init(
self.screen_size.subPadding(self.padding),
self.cell_size,
);
// Notify the terminal
_ = self.io_thread.mailbox.push(.{
.resize = .{
.grid_size = self.grid_size,
.screen_size = self.screen_size,
.padding = self.padding,
},
}, .{ .forever = {} });
self.io_thread.wakeup.notify() catch {};
// Notify the window
try self.rt_surface.setCellSize(size.width, size.height);
}
/// Change the font size.
///
/// This can only be called from the main thread.
pub fn setFontSize(self: *Surface, size: font.face.DesiredSize) void {
// Update our font size so future changes work
self.font_size = size;
// Notify our render thread of the font size. This triggers everything else.
_ = self.renderer_thread.mailbox.push(.{
.font_size = size,
}, .{ .forever = {} });
// Schedule render which also drains our mailbox
self.queueRender() catch unreachable;
}
/// This queues a render operation with the renderer thread. The render
/// isn't guaranteed to happen immediately but it will happen as soon as
/// practical.
fn queueRender(self: *const Surface) !void {
try self.renderer_thread.wakeup.notify();
}
pub fn sizeCallback(self: *Surface, size: apprt.SurfaceSize) !void {
const tracy = trace(@src());
defer tracy.end();
const new_screen_size: renderer.ScreenSize = .{
.width = size.width,
.height = size.height,
};
// Update our screen size, but only if it actually changed. And if
// the screen size didn't change, then our grid size could not have
// changed, so we just return.
if (self.screen_size.equals(new_screen_size)) return;
try self.resize(new_screen_size);
}
fn resize(self: *Surface, size: renderer.ScreenSize) !void {
// Save our screen size
self.screen_size = size;
// Mail the renderer so that it can update the GPU and re-render
_ = self.renderer_thread.mailbox.push(.{
.resize = .{
.screen_size = self.screen_size,
.padding = self.padding,
},
}, .{ .forever = {} });
try self.queueRender();
// Recalculate our grid size. Because Ghostty supports fluid resizing,
// its possible the grid doesn't change at all even if the screen size changes.
// We have to update the IO thread no matter what because we send
// pixel-level sizing to the subprocess.
self.grid_size = renderer.GridSize.init(
self.screen_size.subPadding(self.padding),
self.cell_size,
);
if (self.grid_size.columns < 5 and (self.padding.left > 0 or self.padding.right > 0)) {
log.warn("WARNING: very small terminal grid detected with padding " ++
"set. Is your padding reasonable?", .{});
}
if (self.grid_size.rows < 2 and (self.padding.top > 0 or self.padding.bottom > 0)) {
log.warn("WARNING: very small terminal grid detected with padding " ++
"set. Is your padding reasonable?", .{});
}
// Mail the IO thread
_ = self.io_thread.mailbox.push(.{
.resize = .{
.grid_size = self.grid_size,
.screen_size = self.screen_size,
.padding = self.padding,
},
}, .{ .forever = {} });
try self.io_thread.wakeup.notify();
}
/// Called to set the preedit state for character input. Preedit is used
/// with dead key states, for example, when typing an accent character.
/// This should be called with null to reset the preedit state.
///
/// The core surface will NOT reset the preedit state on charCallback or
/// keyCallback and we rely completely on the apprt implementation to track
/// the preedit state correctly.
pub fn preeditCallback(self: *Surface, preedit: ?u21) !void {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
self.renderer_state.preedit = if (preedit) |v| .{
.codepoint = v,
} else null;
try self.queueRender();
}
/// Called for any key events. This handles keybindings, encoding and
/// sending to the termianl, etc. The return value is true if the key
/// was handled and false if it was not.
pub fn keyCallback(
self: *Surface,
event: input.KeyEvent,
) !bool {
// log.debug("keyCallback event={}", .{event});
// Setup our inspector event if we have an inspector.
var insp_ev: ?inspector.key.Event = if (self.inspector != null) ev: {
var copy = event;
copy.utf8 = "";
if (event.utf8.len > 0) copy.utf8 = try self.alloc.dupe(u8, event.utf8);
break :ev .{ .event = copy };
} else null;
// When we're done processing, we always want to add the event to
// the inspector.
defer if (insp_ev) |ev| ev: {
// We have to check for the inspector again because our keybinding
// might close it.
const insp = self.inspector orelse {
ev.deinit(self.alloc);
break :ev;
};
if (insp.recordKeyEvent(ev)) {
self.queueRender() catch {};
} else |err| {
log.warn("error adding key event to inspector err={}", .{err});
}
};
// Before encoding, we see if we have any keybindings for this
// key. Those always intercept before any encoding tasks.
binding: {
const binding_action: input.Binding.Action, const consumed = action: {
const binding_mods = event.mods.binding();
var trigger: input.Binding.Trigger = .{
.mods = binding_mods,
.key = event.key,
};
const set = self.config.keybind.set;
if (set.get(trigger)) |v| break :action .{
v,
set.getConsumed(trigger),
};
trigger.key = event.physical_key;
trigger.physical = true;
if (set.get(trigger)) |v| break :action .{
v,
set.getConsumed(trigger),
};
break :binding;
};
// We only execute the binding on press/repeat but we still consume
// the key on release so that we don't send any release events.
log.debug("key event binding consumed={} action={}", .{ consumed, binding_action });
const performed = if (event.action == .press or event.action == .repeat)
try self.performBindingAction(binding_action)
else
false;
// If we consume this event, then we are done. If we don't consume
// it, we processed the action but we still want to process our
// encodings, too.
if (consumed and performed) {
if (insp_ev) |*ev| ev.binding = binding_action;
return true;
}
}
// If we allow KAM and KAM is enabled then we do nothing.
if (self.config.vt_kam_allowed) {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
if (self.io.terminal.modes.get(.disable_keyboard)) return true;
}
// If this input event has text, then we hide the mouse if configured.
if (self.config.mouse_hide_while_typing and
!self.mouse.hidden and
event.utf8.len > 0)
{
self.hideMouse();
}
// No binding, so we have to perform an encoding task. This
// may still result in no encoding. Under different modes and
// inputs there are many keybindings that result in no encoding
// whatsoever.
const enc: input.KeyEncoder = enc: {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
const t = &self.io.terminal;
break :enc .{
.event = event,
.alt_esc_prefix = t.modes.get(.alt_esc_prefix),
.cursor_key_application = t.modes.get(.cursor_keys),
.keypad_key_application = t.modes.get(.keypad_keys),
.modify_other_keys_state_2 = t.flags.modify_other_keys_2,
.kitty_flags = t.screen.kitty_keyboard.current(),
};
};
var data: termio.Message.WriteReq.Small.Array = undefined;
const seq = try enc.encode(&data);
if (seq.len == 0) return false;
_ = self.io_thread.mailbox.push(.{
.write_small = .{
.data = data,
.len = @intCast(seq.len),
},
}, .{ .forever = {} });
if (insp_ev) |*ev| {
ev.pty = self.alloc.dupe(u8, seq) catch |err| err: {
log.warn("error copying pty data for inspector err={}", .{err});
break :err "";
};
}
try self.io_thread.wakeup.notify();
// If our event is any keypress that isn't a modifier and we generated
// some data to send to the pty, then we move the viewport down to the
// bottom. If we generated literal text, then we also clear the selection.
if (!event.key.modifier()) {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
if (event.utf8.len > 0) self.setSelection(null);
try self.io.terminal.scrollViewport(.{ .bottom = {} });
try self.queueRender();
}
return true;
}
/// Sends text as-is to the terminal without triggering any keyboard
/// protocol. This will treat the input text as if it was pasted
/// from the clipboard so the same logic will be applied. Namely,
/// if bracketed mode is on this will do a bracketed paste. Otherwise,
/// this will filter newlines to '\r'.
pub fn textCallback(self: *Surface, text: []const u8) !void {
try self.completeClipboardPaste(text, true);
}
pub fn focusCallback(self: *Surface, focused: bool) !void {
// Notify our render thread of the new state
_ = self.renderer_thread.mailbox.push(.{
.focus = focused,
}, .{ .forever = {} });
// Notify our app if we gained focus.
if (focused) self.app.focusSurface(self);
// Schedule render which also drains our mailbox
try self.queueRender();
// Notify the app about focus in/out if it is requesting it
{
self.renderer_state.mutex.lock();
const focus_event = self.io.terminal.modes.get(.focus_event);
self.renderer_state.mutex.unlock();
if (focus_event) {
const seq = if (focused) "\x1b[I" else "\x1b[O";
_ = self.io_thread.mailbox.push(.{
.write_stable = seq,
}, .{ .forever = {} });
try self.io_thread.wakeup.notify();
}
}
}
pub fn refreshCallback(self: *Surface) !void {
// The point of this callback is to schedule a render, so do that.
try self.queueRender();
}
pub fn scrollCallback(
self: *Surface,
xoff: f64,
yoff: f64,
scroll_mods: input.ScrollMods,
) !void {
const tracy = trace(@src());
defer tracy.end();
// log.info("SCROLL: xoff={} yoff={} mods={}", .{ xoff, yoff, scroll_mods });
// Always show the mouse again if it is hidden
if (self.mouse.hidden) self.showMouse();
const ScrollAmount = struct {
// Positive is up, right
sign: isize = 1,
delta_unsigned: usize = 0,
delta: isize = 0,
};
const y: ScrollAmount = if (yoff == 0) .{} else y: {
// Non-precision scrolling is easy to calculate.
if (!scroll_mods.precision) {
const y_sign: isize = if (yoff > 0) -1 else 1;
const y_delta_unsigned: usize = @max(@divFloor(self.grid_size.rows, 15), 1);
const y_delta: isize = y_sign * @as(isize, @intCast(y_delta_unsigned));
break :y .{ .sign = y_sign, .delta_unsigned = y_delta_unsigned, .delta = y_delta };
}
// Precision scrolling is more complicated. We need to maintain state
// to build up a pending scroll amount if we're only scrolling by a
// tiny amount so that we can scroll by a full row when we have enough.
// Add our previously saved pending amount to the offset to get the
// new offset value.
//
// NOTE: we currently multiply by -1 because macOS sends the opposite
// of what we expect. This is jank we should audit our sign usage and
// carefully document what we expect so this can work cross platform.
// Right now this isn't important because macOS is the only high-precision
// scroller.
const poff = self.mouse.pending_scroll_y + (yoff * -1);
// If the new offset is less than a single unit of scroll, we save
// the new pending value and do not scroll yet.
const cell_size: f64 = @floatFromInt(self.cell_size.height);
if (@abs(poff) < cell_size) {
self.mouse.pending_scroll_y = poff;
break :y .{};
}
// We scroll by the number of rows in the offset and save the remainder
const amount = poff / cell_size;
self.mouse.pending_scroll_y = poff - (amount * cell_size);
break :y .{
.sign = if (yoff > 0) 1 else -1,
.delta_unsigned = @intFromFloat(@abs(amount)),
.delta = @intFromFloat(amount),
};
};
// For detailed comments see the y calculation above.
const x: ScrollAmount = if (xoff == 0) .{} else x: {
if (!scroll_mods.precision) {
const x_sign: isize = if (xoff < 0) -1 else 1;
const x_delta_unsigned: usize = 1;
const x_delta: isize = x_sign * @as(isize, @intCast(x_delta_unsigned));
break :x .{ .sign = x_sign, .delta_unsigned = x_delta_unsigned, .delta = x_delta };
}
const poff = self.mouse.pending_scroll_x + (xoff * -1);
const cell_size: f64 = @floatFromInt(self.cell_size.width);
if (@abs(poff) < cell_size) {
self.mouse.pending_scroll_x = poff;
break :x .{};
}
const amount = poff / cell_size;
self.mouse.pending_scroll_x = poff - (amount * cell_size);
break :x .{
.delta_unsigned = @intFromFloat(@abs(amount)),
.delta = @intFromFloat(amount),
};
};
log.info("scroll: delta_y={} delta_x={}", .{ y.delta, x.delta });
{
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
// If we have an active mouse reporting mode, clear the selection.
// The selection can occur if the user uses the shift mod key to
// override mouse grabbing from the window.
if (self.io.terminal.flags.mouse_event != .none) {
self.setSelection(null);
}
// If we're in alternate screen with alternate scroll enabled, then
// we convert to cursor keys. This only happens if we're:
// (1) alt screen (2) no explicit mouse reporting and (3) alt
// scroll mode enabled.
if (self.io.terminal.active_screen == .alternate and
self.io.terminal.flags.mouse_event == .none and
self.io.terminal.modes.get(.mouse_alternate_scroll))
{
if (y.delta_unsigned > 0) {
const seq = if (y.delta < 0) "\x1bOA" else "\x1bOB";
for (0..y.delta_unsigned) |_| {
_ = self.io_thread.mailbox.push(.{
.write_stable = seq,
}, .{ .instant = {} });
}
}
// After sending all our messages we have to notify our IO thread
try self.io_thread.wakeup.notify();
return;
}
// We have mouse events, are not in an alternate scroll buffer,
// or have alternate scroll disabled. In this case, we just run
// the normal logic.
// If we're scrolling up or down, then send a mouse event.
if (self.io.terminal.flags.mouse_event != .none) {
if (y.delta != 0) {
const pos = try self.rt_surface.getCursorPos();
try self.mouseReport(if (y.delta < 0) .four else .five, .press, self.mouse.mods, pos);
}
if (x.delta != 0) {
const pos = try self.rt_surface.getCursorPos();
try self.mouseReport(if (x.delta > 0) .six else .seven, .press, self.mouse.mods, pos);
}
// If mouse reporting is on, we do not want to scroll the
// viewport.
return;
}
// Modify our viewport, this requires a lock since it affects rendering
try self.io.terminal.scrollViewport(.{ .delta = y.delta });
}
try self.queueRender();
}
/// This is called when the content scale of the surface changes. The surface
/// can then update any DPI-sensitive state.
pub fn contentScaleCallback(self: *Surface, content_scale: apprt.ContentScale) !void {
// Calculate the new DPI
const x_dpi = content_scale.x * font.face.default_dpi;
const y_dpi = content_scale.y * font.face.default_dpi;
// Update our font size which is dependent on the DPI
const size = size: {
var size = self.font_size;
size.xdpi = @intFromFloat(x_dpi);
size.ydpi = @intFromFloat(y_dpi);
break :size size;
};
// If our DPI didn't actually change, save a lot of work by doing nothing.
if (size.xdpi == self.font_size.xdpi and size.ydpi == self.font_size.ydpi) {
return;
}
self.setFontSize(size);
// Update our padding which is dependent on DPI.
self.padding = padding: {
const padding_x: u32 = padding_x: {
const padding_x: f32 = @floatFromInt(self.config.window_padding_x);
break :padding_x @intFromFloat(@floor(padding_x * x_dpi / 72));
};
const padding_y: u32 = padding_y: {
const padding_y: f32 = @floatFromInt(self.config.window_padding_y);
break :padding_y @intFromFloat(@floor(padding_y * y_dpi / 72));
};
break :padding .{
.top = padding_y,
.bottom = padding_y,
.right = padding_x,
.left = padding_x,
};
};
// Force a resize event because the change in padding will affect
// pixel-level changes to the renderer and viewport.
try self.resize(self.screen_size);
}
/// The type of action to report for a mouse event.
const MouseReportAction = enum { press, release, motion };
fn mouseReport(
self: *Surface,
button: ?input.MouseButton,
action: MouseReportAction,
mods: input.Mods,
pos: apprt.CursorPos,
) !void {
// Depending on the event, we may do nothing at all.
switch (self.io.terminal.flags.mouse_event) {
.none => return,
// X10 only reports clicks with mouse button 1, 2, 3. We verify
// the button later.
.x10 => if (action != .press or
button == null or
!(button.? == .left or
button.? == .right or
button.? == .middle)) return,
// Doesn't report motion
.normal => if (action == .motion) return,
// Button must be pressed
.button => if (button == null) return,
// Everything
.any => {},
}
// Handle scenarios where the mouse position is outside the viewport.
// We always report release events no matter where they happen.
if (action != .release) {
const pos_out_viewport = pos_out_viewport: {
const max_x: f32 = @floatFromInt(self.screen_size.width);
const max_y: f32 = @floatFromInt(self.screen_size.height);
break :pos_out_viewport pos.x < 0 or pos.y < 0 or
pos.x > max_x or pos.y > max_y;
};
if (pos_out_viewport) outside_viewport: {
// If we don't have a motion-tracking event mode, do nothing.
if (!self.io.terminal.flags.mouse_event.motion()) return;
// If any button is pressed, we still do the report. Otherwise,
// we do not do the report.
for (self.mouse.click_state) |state| {
if (state != .release) break :outside_viewport;
}
return;
}
}
// This format reports X/Y
const viewport_point = self.posToViewport(pos.x, pos.y);
// Record our new point. We only want to send a mouse event if the
// cell changed, unless we're tracking raw pixels.
if (action == .motion and self.io.terminal.flags.mouse_format != .sgr_pixels) {
if (self.mouse.event_point) |last_point| {
if (last_point.eql(viewport_point)) return;
}
}
self.mouse.event_point = viewport_point;
// Get the code we'll actually write
const button_code: u8 = code: {
var acc: u8 = 0;
// Determine our initial button value
if (button == null) {
// Null button means motion without a button pressed
acc = 3;
} else if (action == .release and
self.io.terminal.flags.mouse_format != .sgr and
self.io.terminal.flags.mouse_format != .sgr_pixels)
{
// Release is 3. It is NOT 3 in SGR mode because SGR can tell
// the application what button was released.
acc = 3;
} else {
acc = switch (button.?) {
.left => 0,
.middle => 1,
.right => 2,
.four => 64,
.five => 65,
else => return, // unsupported
};
}
// X10 doesn't have modifiers
if (self.io.terminal.flags.mouse_event != .x10) {
if (mods.shift) acc += 4;
if (mods.alt) acc += 8;
if (mods.ctrl) acc += 16;
}
// Motion adds another bit
if (action == .motion) acc += 32;
break :code acc;
};
switch (self.io.terminal.flags.mouse_format) {
.x10 => {
if (viewport_point.x > 222 or viewport_point.y > 222) {
log.info("X10 mouse format can only encode X/Y up to 223", .{});
return;
}
// + 1 below is because our x/y is 0-indexed and the protocol wants 1
var data: termio.Message.WriteReq.Small.Array = undefined;
assert(data.len >= 6);
data[0] = '\x1b';
data[1] = '[';
data[2] = 'M';
data[3] = 32 + button_code;
data[4] = 32 + @as(u8, @intCast(viewport_point.x)) + 1;
data[5] = 32 + @as(u8, @intCast(viewport_point.y)) + 1;
// Ask our IO thread to write the data
_ = self.io_thread.mailbox.push(.{
.write_small = .{
.data = data,
.len = 6,
},
}, .{ .forever = {} });
},
.utf8 => {
// Maximum of 12 because at most we have 2 fully UTF-8 encoded chars
var data: termio.Message.WriteReq.Small.Array = undefined;
assert(data.len >= 12);
data[0] = '\x1b';
data[1] = '[';
data[2] = 'M';
// The button code will always fit in a single u8
data[3] = 32 + button_code;
// UTF-8 encode the x/y
var i: usize = 4;
i += try std.unicode.utf8Encode(@intCast(32 + viewport_point.x + 1), data[i..]);
i += try std.unicode.utf8Encode(@intCast(32 + viewport_point.y + 1), data[i..]);
// Ask our IO thread to write the data
_ = self.io_thread.mailbox.push(.{
.write_small = .{
.data = data,
.len = @intCast(i),
},
}, .{ .forever = {} });
},
.sgr => {
// Final character to send in the CSI
const final: u8 = if (action == .release) 'm' else 'M';
// Response always is at least 4 chars, so this leaves the
// remainder for numbers which are very large...
var data: termio.Message.WriteReq.Small.Array = undefined;
const resp = try std.fmt.bufPrint(&data, "\x1B[<{d};{d};{d}{c}", .{
button_code,
viewport_point.x + 1,
viewport_point.y + 1,
final,
});
// Ask our IO thread to write the data
_ = self.io_thread.mailbox.push(.{
.write_small = .{
.data = data,
.len = @intCast(resp.len),
},
}, .{ .forever = {} });
},
.urxvt => {
// Response always is at least 4 chars, so this leaves the
// remainder for numbers which are very large...
var data: termio.Message.WriteReq.Small.Array = undefined;
const resp = try std.fmt.bufPrint(&data, "\x1B[{d};{d};{d}M", .{
32 + button_code,
viewport_point.x + 1,
viewport_point.y + 1,
});
// Ask our IO thread to write the data
_ = self.io_thread.mailbox.push(.{
.write_small = .{
.data = data,
.len = @intCast(resp.len),
},
}, .{ .forever = {} });
},
.sgr_pixels => {
// Final character to send in the CSI
const final: u8 = if (action == .release) 'm' else 'M';
// Response always is at least 4 chars, so this leaves the
// remainder for numbers which are very large...
var data: termio.Message.WriteReq.Small.Array = undefined;
const resp = try std.fmt.bufPrint(&data, "\x1B[<{d};{d};{d}{c}", .{
button_code,
@as(i32, @intFromFloat(@round(pos.x))),
@as(i32, @intFromFloat(@round(pos.y))),
final,
});
// Ask our IO thread to write the data
_ = self.io_thread.mailbox.push(.{
.write_small = .{
.data = data,
.len = @intCast(resp.len),
},
}, .{ .forever = {} });
},
}
// After sending all our messages we have to notify our IO thread
try self.io_thread.wakeup.notify();
}
/// Returns true if the shift modifier is allowed to be captured by modifier
/// events. It is up to the caller to still verify it is a situation in which
/// shift capture makes sense (i.e. left button, mouse click, etc.)
fn mouseShiftCapture(self: *const Surface, lock: bool) bool {
// Handle our never/always case where we don't need a lock.
switch (self.config.mouse_shift_capture) {
.never => return false,
.always => return true,
.false, .true => {},
}
if (lock) self.renderer_state.mutex.lock();
defer if (lock) self.renderer_state.mutex.unlock();
// If thet terminal explicitly requests it then we always allow it
// since we processed never/always at this point.
switch (self.io.terminal.flags.mouse_shift_capture) {
.false => return false,
.true => return true,
.null => {},
}
// Otherwise, go with the user's preference
return switch (self.config.mouse_shift_capture) {
.false => false,
.true => true,
.never, .always => unreachable, // handled earlier
};
}
pub fn mouseButtonCallback(
self: *Surface,
action: input.MouseButtonState,
button: input.MouseButton,
mods: input.Mods,
) !void {
// log.debug("mouse action={} button={} mods={}", .{ action, button, mods });
const tracy = trace(@src());
defer tracy.end();
// If we have an inspector, we always queue a render
if (self.inspector) |insp| {
defer self.queueRender() catch {};
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
// If the inspector is requesting a cell, then we intercept
// left mouse clicks and send them to the inspector.
if (insp.cell == .requested and
button == .left and
action == .press)
{
const pos = try self.rt_surface.getCursorPos();
const point = self.posToViewport(pos.x, pos.y);
const cell = self.renderer_state.terminal.screen.getCell(
.viewport,
point.y,
point.x,
);
insp.cell = .{ .selected = .{
.row = point.y,
.col = point.x,
.cell = cell,
} };
return;
}
}
// Always record our latest mouse state
self.mouse.click_state[@intCast(@intFromEnum(button))] = action;
self.mouse.mods = @bitCast(mods);
// Always show the mouse again if it is hidden
if (self.mouse.hidden) self.showMouse();
// This is set to true if the terminal is allowed to capture the shift
// modifer. Note we can do this more efficiently probably with less
// locking/unlocking but clicking isn't that frequent enough to be a
// bottleneck.
const shift_capture = self.mouseShiftCapture(true);
// Shift-click continues the previous mouse state if we have a selection.
// cursorPosCallback will also do a mouse report so we don't need to do any
// of the logic below.
if (button == .left and action == .press) {
if (mods.shift and
self.mouse.left_click_count > 0 and
!shift_capture)
{
// Checking for selection requires the renderer state mutex which
// sucks but this should be pretty rare of an event so it won't
// cause a ton of contention.
const selection = selection: {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
break :selection self.io.terminal.screen.selection != null;
};
if (selection) {
const pos = try self.rt_surface.getCursorPos();
try self.cursorPosCallback(pos);
return;
}
}
}
// Report mouse events if enabled
{
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
if (self.io.terminal.flags.mouse_event != .none) report: {
// If we have shift-pressed and we aren't allowed to capture it,
// then we do not do a mouse report.
if (mods.shift and button == .left and !shift_capture) break :report;
// In any other mouse button scenario without shift pressed we
// clear the selection since the underlying application can handle
// that in any way (i.e. "scrolling").
self.setSelection(null);
const pos = try self.rt_surface.getCursorPos();
const report_action: MouseReportAction = switch (action) {
.press => .press,
.release => .release,
};
try self.mouseReport(
button,
report_action,
self.mouse.mods,
pos,
);
// If we're doing mouse reporting, we do not support any other
// selection or highlighting.
return;
}
}
// For left button clicks we always record some information for
// selection/highlighting purposes.
if (button == .left and action == .press) {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
const pos = try self.rt_surface.getCursorPos();
// If we move our cursor too much between clicks then we reset
// the multi-click state.
if (self.mouse.left_click_count > 0) {
const max_distance: f64 = @floatFromInt(self.cell_size.width);
const distance = @sqrt(
std.math.pow(f64, pos.x - self.mouse.left_click_xpos, 2) +
std.math.pow(f64, pos.y - self.mouse.left_click_ypos, 2),
);
if (distance > max_distance) self.mouse.left_click_count = 0;
}
// Store it
const point = self.posToViewport(pos.x, pos.y);
self.mouse.left_click_point = point.toScreen(&self.io.terminal.screen);
self.mouse.left_click_xpos = pos.x;
self.mouse.left_click_ypos = pos.y;
// Setup our click counter and timer
if (std.time.Instant.now()) |now| {
// If we have mouse clicks, then we check if the time elapsed
// is less than and our interval and if so, increase the count.
if (self.mouse.left_click_count > 0) {
const since = now.since(self.mouse.left_click_time);
if (since > self.config.mouse_interval) {
self.mouse.left_click_count = 0;
}
}
self.mouse.left_click_time = now;
self.mouse.left_click_count += 1;
// We only support up to triple-clicks.
if (self.mouse.left_click_count > 3) self.mouse.left_click_count = 1;
} else |err| {
self.mouse.left_click_count = 1;
log.err("error reading time, mouse multi-click won't work err={}", .{err});
}
switch (self.mouse.left_click_count) {
// First mouse click, clear selection
1 => if (self.io.terminal.screen.selection != null) {
self.setSelection(null);
try self.queueRender();
},
// Double click, select the word under our mouse
2 => {
const sel_ = self.io.terminal.screen.selectWord(self.mouse.left_click_point);
if (sel_) |sel| {
self.setSelection(sel);
try self.queueRender();
}
},
// Triple click, select the line under our mouse
3 => {
const sel_ = if (mods.ctrl)
self.io.terminal.screen.selectOutput(self.mouse.left_click_point)
else
self.io.terminal.screen.selectLine(self.mouse.left_click_point);
if (sel_) |sel| {
self.setSelection(sel);
try self.queueRender();
}
},
// We should be bounded by 1 to 3
else => unreachable,
}
}
// Middle-click pastes from our selection clipboard
if (button == .middle and action == .press) {
if (self.config.copy_on_select != .false) {
const clipboard: apprt.Clipboard = switch (self.config.copy_on_select) {
.true => .selection,
.clipboard => .standard,
.false => unreachable,
};
try self.startClipboardRequest(clipboard, .{ .paste = {} });
}
}
}
pub fn cursorPosCallback(
self: *Surface,
pos: apprt.CursorPos,
) !void {
const tracy = trace(@src());
defer tracy.end();
// Always show the mouse again if it is hidden
if (self.mouse.hidden) self.showMouse();
// We are reading/writing state for the remainder
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
// If we have an inspector, we need to always record position information
if (self.inspector) |insp| {
insp.mouse.last_xpos = pos.x;
insp.mouse.last_ypos = pos.y;
const point = self.posToViewport(pos.x, pos.y);
insp.mouse.last_point = point.toScreen(&self.io.terminal.screen);
try self.queueRender();
}
// Do a mouse report
if (self.io.terminal.flags.mouse_event != .none) report: {
// Shift overrides mouse "grabbing" in the window, taken from Kitty.
if (self.mouse.mods.shift and
self.mouse.click_state[@intFromEnum(input.MouseButton.left)] == .press and
!self.mouseShiftCapture(false)) break :report;
// We use the first mouse button we find pressed in order to report
// since the spec (afaict) does not say...
const button: ?input.MouseButton = button: for (self.mouse.click_state, 0..) |state, i| {
if (state == .press)
break :button @enumFromInt(i);
} else null;
try self.mouseReport(button, .motion, self.mouse.mods, pos);
// If we're doing mouse motion tracking, we do not support text
// selection.
return;
}
// If the cursor isn't clicked currently, it doesn't matter
if (self.mouse.click_state[@intFromEnum(input.MouseButton.left)] != .press) return;
// All roads lead to requiring a re-render at this point.
try self.queueRender();
// If our y is negative, we're above the window. In this case, we scroll
// up. The amount we scroll up is dependent on how negative we are.
// Note: one day, we can change this from distance to time based if we want.
//log.warn("CURSOR POS: {} {}", .{ pos, self.screen_size });
const max_y: f32 = @floatFromInt(self.screen_size.height);
if (pos.y < 0 or pos.y > max_y) {
const delta: isize = if (pos.y < 0) -1 else 1;
try self.io.terminal.scrollViewport(.{ .delta = delta });
// TODO: We want a timer or something to repeat while we're still
// at this cursor position. Right now, the user has to jiggle their
// mouse in order to scroll.
}
// Convert to points
const viewport_point = self.posToViewport(pos.x, pos.y);
const screen_point = viewport_point.toScreen(&self.io.terminal.screen);
// Handle dragging depending on click count
switch (self.mouse.left_click_count) {
1 => self.dragLeftClickSingle(screen_point, pos.x),
2 => self.dragLeftClickDouble(screen_point),
3 => self.dragLeftClickTriple(screen_point),
else => unreachable,
}
}
/// Double-click dragging moves the selection one "word" at a time.
fn dragLeftClickDouble(
self: *Surface,
screen_point: terminal.point.ScreenPoint,
) void {
// Get the word under our current point. If there isn't a word, do nothing.
const word = self.io.terminal.screen.selectWord(screen_point) orelse return;
// Get our selection to grow it. If we don't have a selection, start it now.
// We may not have a selection if we started our dbl-click in an area
// that had no data, then we dragged our mouse into an area with data.
var sel = self.io.terminal.screen.selectWord(self.mouse.left_click_point) orelse {
self.setSelection(word);
return;
};
// Grow our selection
if (screen_point.before(self.mouse.left_click_point)) {
sel.start = word.start;
} else {
sel.end = word.end;
}
self.setSelection(sel);
}
/// Triple-click dragging moves the selection one "line" at a time.
fn dragLeftClickTriple(
self: *Surface,
screen_point: terminal.point.ScreenPoint,
) void {
// Get the word under our current point. If there isn't a word, do nothing.
const word = self.io.terminal.screen.selectLine(screen_point) orelse return;
// Get our selection to grow it. If we don't have a selection, start it now.
// We may not have a selection if we started our dbl-click in an area
// that had no data, then we dragged our mouse into an area with data.
var sel = self.io.terminal.screen.selectLine(self.mouse.left_click_point) orelse {
self.setSelection(word);
return;
};
// Grow our selection
if (screen_point.before(self.mouse.left_click_point)) {
sel.start = word.start;
} else {
sel.end = word.end;
}
self.setSelection(sel);
}
fn dragLeftClickSingle(
self: *Surface,
screen_point: terminal.point.ScreenPoint,
xpos: f64,
) void {
// NOTE(mitchellh): This logic super sucks. There has to be an easier way
// to calculate this, but this is good for a v1. Selection isn't THAT
// common so its not like this performance heavy code is running that
// often.
// TODO: unit test this, this logic sucks
// If we were selecting, and we switched directions, then we restart
// calculations because it forces us to reconsider if the first cell is
// selected.
if (self.io.terminal.screen.selection) |sel| {
const reset: bool = if (sel.end.before(sel.start))
sel.start.before(screen_point)
else
screen_point.before(sel.start);
if (reset) self.setSelection(null);
}
// Our logic for determining if the starting cell is selected:
//
// - The "xboundary" is 60% the width of a cell from the left. We choose
// 60% somewhat arbitrarily based on feeling.
// - If we started our click left of xboundary, backwards selections
// can NEVER select the current char.
// - If we started our click right of xboundary, backwards selections
// ALWAYS selected the current char, but we must move the cursor
// left of the xboundary.
// - Inverted logic for forwards selections.
//
// the boundary point at which we consider selection or non-selection
const cell_width_f64: f64 = @floatFromInt(self.cell_size.width);
const cell_xboundary = cell_width_f64 * 0.6;
// first xpos of the clicked cell adjusted for padding
const left_padding_f64: f64 = @as(f64, @floatFromInt(self.padding.left));
const cell_xstart = @as(f64, @floatFromInt(self.mouse.left_click_point.x)) * cell_width_f64;
const cell_start_xpos = self.mouse.left_click_xpos - cell_xstart - left_padding_f64;
// If this is the same cell, then we only start the selection if weve
// moved past the boundary point the opposite direction from where we
// started.
if (std.meta.eql(screen_point, self.mouse.left_click_point)) {
// Ensuring to adjusting the cursor position for padding
const cell_xpos = xpos - cell_xstart - left_padding_f64;
const selected: bool = if (cell_start_xpos < cell_xboundary)
cell_xpos >= cell_xboundary
else
cell_xpos < cell_xboundary;
self.setSelection(if (selected) .{
.start = screen_point,
.end = screen_point,
} else null);
return;
}
// If this is a different cell and we haven't started selection,
// we determine the starting cell first.
if (self.io.terminal.screen.selection == null) {
// - If we're moving to a point before the start, then we select
// the starting cell if we started after the boundary, else
// we start selection of the prior cell.
// - Inverse logic for a point after the start.
const click_point = self.mouse.left_click_point;
const start: terminal.point.ScreenPoint = if (screen_point.before(click_point)) start: {
if (cell_start_xpos >= cell_xboundary) {
break :start click_point;
} else {
break :start if (click_point.x > 0) terminal.point.ScreenPoint{
.y = click_point.y,
.x = click_point.x - 1,
} else terminal.point.ScreenPoint{
.x = self.io.terminal.screen.cols - 1,
.y = click_point.y -| 1,
};
}
} else start: {
if (cell_start_xpos < cell_xboundary) {
break :start click_point;
} else {
break :start if (click_point.x < self.io.terminal.screen.cols - 1) terminal.point.ScreenPoint{
.y = click_point.y,
.x = click_point.x + 1,
} else terminal.point.ScreenPoint{
.y = click_point.y + 1,
.x = 0,
};
}
};
self.setSelection(.{ .start = start, .end = screen_point });
return;
}
// TODO: detect if selection point is passed the point where we've
// actually written data before and disallow it.
// We moved! Set the selection end point. The start point should be
// set earlier.
assert(self.io.terminal.screen.selection != null);
var sel = self.io.terminal.screen.selection.?;
sel.end = screen_point;
self.setSelection(sel);
}
fn posToViewport(self: Surface, xpos: f64, ypos: f64) terminal.point.Viewport {
// xpos/ypos need to be adjusted for window padding
// (i.e. "window-padding-*" settings.
const pad = if (self.config.window_padding_balance)
renderer.Padding.balanced(self.screen_size, self.grid_size, self.cell_size)
else
self.padding;
const xpos_adjusted: f64 = xpos - @as(f64, @floatFromInt(pad.left));
const ypos_adjusted: f64 = ypos - @as(f64, @floatFromInt(pad.top));
// xpos and ypos can be negative if while dragging, the user moves the
// mouse off the surface. Likewise, they can be larger than our surface
// width if the user drags out of the surface positively.
return .{
.x = if (xpos_adjusted < 0) 0 else x: {
// Our cell is the mouse divided by cell width
const cell_width: f64 = @floatFromInt(self.cell_size.width);
const x: usize = @intFromFloat(xpos_adjusted / cell_width);
// Can be off the screen if the user drags it out, so max
// it out on our available columns
break :x @min(x, self.grid_size.columns - 1);
},
.y = if (ypos_adjusted < 0) 0 else y: {
const cell_height: f64 = @floatFromInt(self.cell_size.height);
const y: usize = @intFromFloat(ypos_adjusted / cell_height);
break :y @min(y, self.grid_size.rows - 1);
},
};
}
/// Scroll to the bottom of the viewport.
///
/// Precondition: the render_state mutex must be held.
fn scrollToBottom(self: *Surface) !void {
try self.io.terminal.scrollViewport(.{ .bottom = {} });
try self.queueRender();
}
fn hideMouse(self: *Surface) void {
if (self.mouse.hidden) return;
self.mouse.hidden = true;
self.rt_surface.setMouseVisibility(false);
}
fn showMouse(self: *Surface) void {
if (!self.mouse.hidden) return;
self.mouse.hidden = false;
self.rt_surface.setMouseVisibility(true);
}
/// Perform a binding action. A binding is a keybinding. This function
/// must be called from the GUI thread.
///
/// This function returns true if the binding action was performed. This
/// may return false if the binding action is not supported or if the
/// binding action would do nothing (i.e. previous tab with no tabs).
///
/// NOTE: At the time of writing this comment, only previous/next tab
/// will ever return false. We can expand this in the future if it becomes
/// useful. We did previous/next tab so we could implement #498.
pub fn performBindingAction(self: *Surface, action: input.Binding.Action) !bool {
switch (action) {
.unbind => unreachable,
.ignore => {},
.reload_config => try self.app.reloadConfig(self.rt_app),
.csi, .esc => |data| {
// We need to send the CSI/ESC sequence as a single write request.
// If you split it across two then the shell can interpret it
// as two literals.
var buf: [128]u8 = undefined;
const full_data = try std.fmt.bufPrint(&buf, "\x1b{s}{s}", .{ if (action == .csi) "[" else "", data });
_ = self.io_thread.mailbox.push(try termio.Message.writeReq(
self.alloc,
full_data,
), .{ .forever = {} });
try self.io_thread.wakeup.notify();
// CSI/ESC triggers a scroll.
{
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
self.scrollToBottom() catch |err| {
log.warn("error scrolling to bottom err={}", .{err});
};
}
},
.cursor_key => |ck| {
// We send a different sequence depending on if we're
// in cursor keys mode. We're in "normal" mode if cursor
// keys mode is NOT set.
const normal = normal: {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
// With the lock held, we must scroll to the bottom.
// We always scroll to the bottom for these inputs.
self.scrollToBottom() catch |err| {
log.warn("error scrolling to bottom err={}", .{err});
};
break :normal !self.io.terminal.modes.get(.cursor_keys);
};
if (normal) {
_ = self.io_thread.mailbox.push(.{
.write_stable = ck.normal,
}, .{ .forever = {} });
} else {
_ = self.io_thread.mailbox.push(.{
.write_stable = ck.application,
}, .{ .forever = {} });
}
try self.io_thread.wakeup.notify();
},
.copy_to_clipboard => {
// We can read from the renderer state without holding
// the lock because only we will write to this field.
if (self.io.terminal.screen.selection) |sel| {
var buf = self.io.terminal.screen.selectionString(
self.alloc,
sel,
self.config.clipboard_trim_trailing_spaces,
) catch |err| {
log.err("error reading selection string err={}", .{err});
return true;
};
defer self.alloc.free(buf);
self.rt_surface.setClipboardString(buf, .standard) catch |err| {
log.err("error setting clipboard string err={}", .{err});
return true;
};
}
},
.paste_from_clipboard => try self.startClipboardRequest(
.standard,
.{ .paste = {} },
),
.increase_font_size => |delta| {
log.debug("increase font size={}", .{delta});
var size = self.font_size;
size.points +|= delta;
self.setFontSize(size);
},
.decrease_font_size => |delta| {
log.debug("decrease font size={}", .{delta});
var size = self.font_size;
size.points = @max(1, size.points -| delta);
self.setFontSize(size);
},
.reset_font_size => {
log.debug("reset font size", .{});
var size = self.font_size;
size.points = self.config.original_font_size;
self.setFontSize(size);
},
.clear_screen => {
_ = self.io_thread.mailbox.push(.{
.clear_screen = .{ .history = true },
}, .{ .forever = {} });
try self.io_thread.wakeup.notify();
},
.scroll_to_top => {
_ = self.io_thread.mailbox.push(.{
.scroll_viewport = .{ .top = {} },
}, .{ .forever = {} });
try self.io_thread.wakeup.notify();
},
.scroll_to_bottom => {
_ = self.io_thread.mailbox.push(.{
.scroll_viewport = .{ .bottom = {} },
}, .{ .forever = {} });
try self.io_thread.wakeup.notify();
},
.scroll_page_up => {
const rows: isize = @intCast(self.grid_size.rows);
_ = self.io_thread.mailbox.push(.{
.scroll_viewport = .{ .delta = -1 * rows },
}, .{ .forever = {} });
try self.io_thread.wakeup.notify();
},
.scroll_page_down => {
const rows: isize = @intCast(self.grid_size.rows);
_ = self.io_thread.mailbox.push(.{
.scroll_viewport = .{ .delta = rows },
}, .{ .forever = {} });
try self.io_thread.wakeup.notify();
},
.scroll_page_fractional => |fraction| {
const rows: f32 = @floatFromInt(self.grid_size.rows);
const delta: isize = @intFromFloat(@floor(fraction * rows));
_ = self.io_thread.mailbox.push(.{
.scroll_viewport = .{ .delta = delta },
}, .{ .forever = {} });
try self.io_thread.wakeup.notify();
},
.jump_to_prompt => |delta| {
_ = self.io_thread.mailbox.push(.{
.jump_to_prompt = @intCast(delta),
}, .{ .forever = {} });
try self.io_thread.wakeup.notify();
},
.write_scrollback_file => write_scrollback_file: {
// Create a temporary directory to store our scrollback.
var tmp_dir = try internal_os.TempDir.init();
errdefer tmp_dir.deinit();
// Open our scrollback file
var file = try tmp_dir.dir.createFile("scrollback", .{});
defer file.close();
// Write the scrollback contents. This requires a lock.
{
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
// We do not support this for alternate screens
// because they don't have scrollback anyways.
if (self.io.terminal.active_screen == .alternate) {
tmp_dir.deinit();
break :write_scrollback_file;
}
const history_max = terminal.Screen.RowIndexTag.history.maxLen(
&self.io.terminal.screen,
);
try self.io.terminal.screen.dumpString(file.writer(), .{
.start = .{ .history = 0 },
.end = .{ .history = history_max -| 1 },
.unwrap = true,
});
}
// Get the final path
var path_buf: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const path = try tmp_dir.dir.realpath("scrollback", &path_buf);
_ = self.io_thread.mailbox.push(try termio.Message.writeReq(
self.alloc,
path,
), .{ .forever = {} });
try self.io_thread.wakeup.notify();
},
.new_window => try self.app.newWindow(self.rt_app, .{ .parent = self }),
.new_tab => {
if (@hasDecl(apprt.Surface, "newTab")) {
try self.rt_surface.newTab();
} else log.warn("runtime doesn't implement newTab", .{});
},
.previous_tab => {
if (@hasDecl(apprt.Surface, "hasTabs")) {
if (!self.rt_surface.hasTabs()) {
log.debug("surface has no tabs, ignoring previous_tab binding", .{});
return false;
}
}
if (@hasDecl(apprt.Surface, "gotoPreviousTab")) {
self.rt_surface.gotoPreviousTab();
} else log.warn("runtime doesn't implement gotoPreviousTab", .{});
},
.next_tab => {
if (@hasDecl(apprt.Surface, "hasTabs")) {
if (!self.rt_surface.hasTabs()) {
log.debug("surface has no tabs, ignoring next_tab binding", .{});
return false;
}
}
if (@hasDecl(apprt.Surface, "gotoNextTab")) {
self.rt_surface.gotoNextTab();
} else log.warn("runtime doesn't implement gotoNextTab", .{});
},
.goto_tab => |n| {
if (@hasDecl(apprt.Surface, "gotoTab")) {
self.rt_surface.gotoTab(n);
} else log.warn("runtime doesn't implement gotoTab", .{});
},
.new_split => |direction| {
if (@hasDecl(apprt.Surface, "newSplit")) {
try self.rt_surface.newSplit(direction);
} else log.warn("runtime doesn't implement newSplit", .{});
},
.goto_split => |direction| {
if (@hasDecl(apprt.Surface, "gotoSplit")) {
self.rt_surface.gotoSplit(direction);
} else log.warn("runtime doesn't implement gotoSplit", .{});
},
.toggle_split_zoom => {
if (@hasDecl(apprt.Surface, "toggleSplitZoom")) {
self.rt_surface.toggleSplitZoom();
} else log.warn("runtime doesn't implement toggleSplitZoom", .{});
},
.toggle_fullscreen => {
if (@hasDecl(apprt.Surface, "toggleFullscreen")) {
self.rt_surface.toggleFullscreen(self.config.macos_non_native_fullscreen);
} else log.warn("runtime doesn't implement toggleFullscreen", .{});
},
.inspector => |mode| {
if (@hasDecl(apprt.Surface, "controlInspector")) {
self.rt_surface.controlInspector(mode);
} else log.warn("runtime doesn't implement controlInspector", .{});
},
.close_surface => self.close(),
.close_window => try self.app.closeSurface(self),
.quit => try self.app.setQuit(),
}
return true;
}
/// Call this to complete a clipboard request sent to apprt. This should
/// only be called once for each request. The data is immediately copied so
/// it is safe to free the data after this call.
///
/// If "allow_unsafe" is false, then the data is checked for "safety" prior.
/// If unsafe data is detected, this will return error.UnsafePaste. Unsafe
/// data is defined as data that contains newlines, though this definition
/// may change later to detect other scenarios.
pub fn completeClipboardRequest(
self: *Surface,
req: apprt.ClipboardRequest,
data: []const u8,
allow_unsafe: bool,
) !void {
switch (req) {
.paste => try self.completeClipboardPaste(data, allow_unsafe),
.osc_52 => |kind| try self.completeClipboardReadOSC52(data, kind),
}
}
/// This starts a clipboard request, with some basic validation. For example,
/// an OSC 52 request is not actually requested if OSC 52 is disabled.
fn startClipboardRequest(
self: *Surface,
loc: apprt.Clipboard,
req: apprt.ClipboardRequest,
) !void {
switch (req) {
.paste => {}, // always allowed
.osc_52 => if (!self.config.clipboard_read) {
log.info(
"application attempted to read clipboard, but 'clipboard-read' setting is off",
.{},
);
return;
},
}
try self.rt_surface.clipboardRequest(loc, req);
}
fn completeClipboardPaste(
self: *Surface,
data: []const u8,
allow_unsafe: bool,
) !void {
if (data.len == 0) return;
const critical: struct {
bracketed: bool,
} = critical: {
self.renderer_state.mutex.lock();
defer self.renderer_state.mutex.unlock();
const bracketed = self.io.terminal.modes.get(.bracketed_paste);
// If we have paste protection enabled, we detect unsafe pastes and return
// an error. The error approach allows apprt to attempt to complete the paste
// before falling back to requesting confirmation.
//
// We do not do this for bracketed pastes because bracketed pastes are
// by definition safe since they're framed.
if (!bracketed and
self.config.clipboard_paste_protection and
!allow_unsafe and
!terminal.isSafePaste(data))
{
log.info("potentially unsafe paste detected, rejecting until confirmation", .{});
return error.UnsafePaste;
}
// With the lock held, we must scroll to the bottom.
// We always scroll to the bottom for these inputs.
self.scrollToBottom() catch |err| {
log.warn("error scrolling to bottom err={}", .{err});
};
break :critical .{
.bracketed = bracketed,
};
};
if (critical.bracketed) {
// If we're bracketd we write the data as-is to the terminal with
// the bracketed paste escape codes around it.
_ = self.io_thread.mailbox.push(.{
.write_stable = "\x1B[200~",
}, .{ .forever = {} });
_ = self.io_thread.mailbox.push(try termio.Message.writeReq(
self.alloc,
data,
), .{ .forever = {} });
_ = self.io_thread.mailbox.push(.{
.write_stable = "\x1B[201~",
}, .{ .forever = {} });
} else {
// If its not bracketed the input bytes are indistinguishable from
// keystrokes, so we must be careful. For example, we must replace
// any newlines with '\r'.
// We just do a heap allocation here because its easy and I don't think
// worth the optimization of using small messages.
var buf = try self.alloc.alloc(u8, data.len);
defer self.alloc.free(buf);
// This is super, super suboptimal. We can easily make use of SIMD
// here, but maybe LLVM in release mode is smart enough to figure
// out something clever. Either way, large non-bracketed pastes are
// increasingly rare for modern applications.
var len: usize = 0;
for (data, 0..) |ch, i| {
const dch = switch (ch) {
'\n' => '\r',
'\r' => if (i + 1 < data.len and data[i + 1] == '\n') continue else ch,
else => ch,
};
buf[len] = dch;
len += 1;
}
_ = self.io_thread.mailbox.push(try termio.Message.writeReq(
self.alloc,
buf[0..len],
), .{ .forever = {} });
}
try self.io_thread.wakeup.notify();
}
fn completeClipboardReadOSC52(self: *Surface, data: []const u8, kind: u8) !void {
// Even if the clipboard data is empty we reply, since presumably
// the client app is expecting a reply. We first allocate our buffer.
// This must hold the base64 encoded data PLUS the OSC code surrounding it.
const enc = std.base64.standard.Encoder;
const size = enc.calcSize(data.len);
var buf = try self.alloc.alloc(u8, size + 9); // const for OSC
defer self.alloc.free(buf);
// Wrap our data with the OSC code
const prefix = try std.fmt.bufPrint(buf, "\x1b]52;{c};", .{kind});
assert(prefix.len == 7);
buf[buf.len - 2] = '\x1b';
buf[buf.len - 1] = '\\';
// Do the base64 encoding
const encoded = enc.encode(buf[prefix.len..], data);
assert(encoded.len == size);
_ = self.io_thread.mailbox.push(try termio.Message.writeReq(
self.alloc,
buf,
), .{ .forever = {} });
self.io_thread.wakeup.notify() catch {};
}
pub const face_ttf = @embedFile("font/res/FiraCode-Regular.ttf");
pub const face_bold_ttf = @embedFile("font/res/FiraCode-Bold.ttf");
pub const face_emoji_ttf = @embedFile("font/res/NotoColorEmoji.ttf");
pub const face_emoji_text_ttf = @embedFile("font/res/NotoEmoji-Regular.ttf");