mirror of
https://github.com/ghostty-org/ghostty.git
synced 2025-07-16 16:56:09 +03:00
478 lines
18 KiB
Zig
478 lines
18 KiB
Zig
const std = @import("std");
|
|
const assert = std.debug.assert;
|
|
const Allocator = std.mem.Allocator;
|
|
const size = @import("size.zig");
|
|
const getOffset = size.getOffset;
|
|
const Offset = size.Offset;
|
|
const OffsetBuf = size.OffsetBuf;
|
|
const alignForward = std.mem.alignForward;
|
|
|
|
/// A relatively naive bitmap allocator that uses memory offsets against
|
|
/// a fixed backing buffer so that the backing buffer can be easily moved
|
|
/// without having to update pointers.
|
|
///
|
|
/// The chunk size determines the size of each chunk in bytes. This is the
|
|
/// minimum distributed unit of memory. For example, if you request a
|
|
/// 1-byte allocation, you'll use a chunk of chunk_size bytes. Likewise,
|
|
/// if your chunk size is 4, and you request a 5-byte allocation, you'll
|
|
/// use 2 chunks.
|
|
///
|
|
/// The allocator is susceptible to fragmentation. If you allocate and free
|
|
/// memory in a way that leaves small holes in the memory, you may not be
|
|
/// able to allocate large chunks of memory even if there is enough free
|
|
/// memory in aggregate. To avoid fragmentation, use a chunk size that is
|
|
/// large enough to cover most of your allocations.
|
|
///
|
|
// Notes for contributors: this is highly contributor friendly part of
|
|
// the code. If you can improve this, add tests, show benchmarks, then
|
|
// please do so!
|
|
pub fn BitmapAllocator(comptime chunk_size: comptime_int) type {
|
|
return struct {
|
|
const Self = @This();
|
|
|
|
comptime {
|
|
assert(std.math.isPowerOfTwo(chunk_size));
|
|
}
|
|
|
|
pub const base_align = @alignOf(u64);
|
|
pub const bitmap_bit_size = @bitSizeOf(u64);
|
|
|
|
/// The bitmap of available chunks. Each bit represents a chunk. A
|
|
/// 1 means the chunk is free and a 0 means it's used. We use 1
|
|
/// for free since it makes it very slightly faster to find free
|
|
/// chunks.
|
|
bitmap: Offset(u64),
|
|
bitmap_count: usize,
|
|
|
|
/// The contiguous buffer of chunks.
|
|
chunks: Offset(u8),
|
|
|
|
/// Initialize the allocator map with a given buf and memory layout.
|
|
pub fn init(buf: OffsetBuf, l: Layout) Self {
|
|
assert(@intFromPtr(buf.start()) % base_align == 0);
|
|
|
|
// Initialize our bitmaps to all 1s to note that all chunks are free.
|
|
const bitmap = buf.member(u64, l.bitmap_start);
|
|
const bitmap_ptr = bitmap.ptr(buf);
|
|
@memset(bitmap_ptr[0..l.bitmap_count], std.math.maxInt(u64));
|
|
|
|
return .{
|
|
.bitmap = bitmap,
|
|
.bitmap_count = l.bitmap_count,
|
|
.chunks = buf.member(u8, l.chunks_start),
|
|
};
|
|
}
|
|
|
|
/// Allocate n elements of type T. This will return error.OutOfMemory
|
|
/// if there isn't enough space in the backing buffer.
|
|
///
|
|
/// Use (size.zig).getOffset to get the base offset from the backing
|
|
/// memory for portable storage.
|
|
pub fn alloc(
|
|
self: *Self,
|
|
comptime T: type,
|
|
base: anytype,
|
|
n: usize,
|
|
) Allocator.Error![]T {
|
|
// note: we don't handle alignment yet, we just require that all
|
|
// types are properly aligned. This is a limitation that should be
|
|
// fixed but we haven't needed it. Contributor friendly: add tests
|
|
// and fix this.
|
|
assert(chunk_size % @alignOf(T) == 0);
|
|
assert(n > 0);
|
|
|
|
const byte_count = std.math.mul(usize, @sizeOf(T), n) catch
|
|
return error.OutOfMemory;
|
|
const chunk_count = std.math.divCeil(usize, byte_count, chunk_size) catch
|
|
return error.OutOfMemory;
|
|
|
|
// Find the index of the free chunk. This also marks it as used.
|
|
const bitmaps = self.bitmap.ptr(base);
|
|
const idx = findFreeChunks(bitmaps[0..self.bitmap_count], chunk_count) orelse
|
|
return error.OutOfMemory;
|
|
|
|
const chunks = self.chunks.ptr(base);
|
|
const ptr: [*]T = @alignCast(@ptrCast(&chunks[idx * chunk_size]));
|
|
return ptr[0..n];
|
|
}
|
|
|
|
pub fn free(self: *Self, base: anytype, slice: anytype) void {
|
|
// Convert the slice of whatever type to a slice of bytes. We
|
|
// can then use the byte len and chunk size to determine the
|
|
// number of chunks that were allocated.
|
|
const bytes = std.mem.sliceAsBytes(slice);
|
|
const aligned_len = std.mem.alignForward(usize, bytes.len, chunk_size);
|
|
const chunk_count = @divExact(aligned_len, chunk_size);
|
|
|
|
// From the pointer, we can calculate the exact index.
|
|
const chunks = self.chunks.ptr(base);
|
|
const chunk_idx = @divExact(@intFromPtr(slice.ptr) - @intFromPtr(chunks), chunk_size);
|
|
|
|
// From the chunk index, we can find the starting bitmap index
|
|
// and the bit within the last bitmap.
|
|
var bitmap_idx = @divFloor(chunk_idx, 64);
|
|
const bitmap_bit = chunk_idx % 64;
|
|
const bitmaps = self.bitmap.ptr(base);
|
|
|
|
// If our chunk count is over 64 then we need to handle the
|
|
// case where we have to mark multiple bitmaps.
|
|
if (chunk_count > 64) {
|
|
const bitmaps_full = @divFloor(chunk_count, 64);
|
|
for (0..bitmaps_full) |i| bitmaps[bitmap_idx + i] = std.math.maxInt(u64);
|
|
bitmap_idx += bitmaps_full;
|
|
}
|
|
|
|
// Set the bitmap to mark the chunks as free. Note we have to
|
|
// do chunk_count % 64 to handle the case where our chunk count
|
|
// is using multiple bitmaps.
|
|
const bitmap = &bitmaps[bitmap_idx];
|
|
for (0..chunk_count % 64) |i| {
|
|
const mask = @as(u64, 1) << @intCast(bitmap_bit + i);
|
|
bitmap.* |= mask;
|
|
}
|
|
}
|
|
|
|
/// For debugging
|
|
fn dumpBitmaps(self: *Self, base: anytype) void {
|
|
const bitmaps = self.bitmap.ptr(base);
|
|
for (bitmaps[0..self.bitmap_count], 0..) |bitmap, idx| {
|
|
std.log.warn("bm={b} idx={}", .{ bitmap, idx });
|
|
}
|
|
}
|
|
|
|
pub const Layout = struct {
|
|
total_size: usize,
|
|
bitmap_count: usize,
|
|
bitmap_start: usize,
|
|
chunks_start: usize,
|
|
};
|
|
|
|
/// Get the layout for the given capacity. The capacity is in
|
|
/// number of bytes, not chunks. The capacity will likely be
|
|
/// rounded up to the nearest chunk size and bitmap size so
|
|
/// everything is perfectly divisible.
|
|
pub fn layout(cap: usize) Layout {
|
|
// Align the cap forward to our chunk size so we always have
|
|
// a full chunk at the end.
|
|
const aligned_cap = alignForward(usize, cap, chunk_size);
|
|
|
|
// Calculate the number of bitmaps. We need 1 bitmap per 64 chunks.
|
|
// We align the chunk count forward so our bitmaps are full so we
|
|
// don't have to handle the case where we have a partial bitmap.
|
|
const chunk_count = @divExact(aligned_cap, chunk_size);
|
|
const aligned_chunk_count = alignForward(usize, chunk_count, 64);
|
|
const bitmap_count = @divExact(aligned_chunk_count, 64);
|
|
|
|
const bitmap_start = 0;
|
|
const bitmap_end = @sizeOf(u64) * bitmap_count;
|
|
const chunks_start = alignForward(usize, bitmap_end, @alignOf(u8));
|
|
const chunks_end = chunks_start + (aligned_cap * chunk_size);
|
|
const total_size = chunks_end;
|
|
|
|
return Layout{
|
|
.total_size = total_size,
|
|
.bitmap_count = bitmap_count,
|
|
.bitmap_start = bitmap_start,
|
|
.chunks_start = chunks_start,
|
|
};
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Find `n` sequential free chunks in the given bitmaps and return the index
|
|
/// of the first chunk. If no chunks are found, return `null`. This also updates
|
|
/// the bitmap to mark the chunks as used.
|
|
fn findFreeChunks(bitmaps: []u64, n: usize) ?usize {
|
|
// NOTE: This is a naive implementation that just iterates through the
|
|
// bitmaps. There is very likely a more efficient way to do this but
|
|
// I'm not a bit twiddling expert. Perhaps even SIMD could be used here
|
|
// but unsure. Contributor friendly: let's benchmark and improve this!
|
|
|
|
// Large chunks require special handling. In this case we look for
|
|
// divFloor sequential chunks that are maxInt, then look for the mod
|
|
// normally in the next bitmap.
|
|
if (n > @bitSizeOf(u64)) {
|
|
const div = @divFloor(n, @bitSizeOf(u64));
|
|
const mod = n % @bitSizeOf(u64);
|
|
var seq: usize = 0;
|
|
for (bitmaps, 0..) |*bitmap, idx| {
|
|
// If we aren't fully empty then reset the sequence
|
|
if (bitmap.* != std.math.maxInt(u64)) {
|
|
seq = 0;
|
|
continue;
|
|
}
|
|
|
|
// If we haven't reached the sequence count we're looking for
|
|
// then add one and continue, we're still accumulating blanks.
|
|
if (seq != div) {
|
|
seq += 1;
|
|
if (seq != div or mod > 0) continue;
|
|
}
|
|
|
|
// We've reached the seq count see if this has mod starting empty
|
|
// blanks.
|
|
if (mod > 0) {
|
|
const final = @as(u64, std.math.maxInt(u64)) >> @intCast(64 - mod);
|
|
if (bitmap.* & final == 0) {
|
|
// No blanks, reset.
|
|
seq = 0;
|
|
continue;
|
|
}
|
|
|
|
bitmap.* ^= final;
|
|
}
|
|
|
|
// Found! Set all in our sequence to full and mask our final.
|
|
// The "zero_mod" modifier below handles the case where we have
|
|
// a perfectly divisible number of chunks so we don't have to
|
|
// mark the trailing bitmap.
|
|
const zero_mod = @intFromBool(mod == 0);
|
|
const start_idx = idx - (seq - zero_mod);
|
|
const end_idx = idx + zero_mod;
|
|
for (start_idx..end_idx) |i| bitmaps[i] = 0;
|
|
|
|
return (start_idx * 64);
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
assert(n <= @bitSizeOf(u64));
|
|
for (bitmaps, 0..) |*bitmap, idx| {
|
|
// Shift the bitmap to find `n` sequential free chunks.
|
|
var shifted: u64 = bitmap.*;
|
|
for (1..n) |i| shifted &= bitmap.* >> @intCast(i);
|
|
|
|
// If we have zero then we have no matches
|
|
if (shifted == 0) continue;
|
|
|
|
// Trailing zeroes gets us the bit 1-indexed
|
|
const bit = @ctz(shifted);
|
|
|
|
// Calculate the mask so we can mark it as used
|
|
for (0..n) |i| {
|
|
const mask = @as(u64, 1) << @intCast(bit + i);
|
|
bitmap.* ^= mask;
|
|
}
|
|
|
|
return (idx * 64) + bit;
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
test "findFreeChunks single found" {
|
|
const testing = std.testing;
|
|
|
|
var bitmaps = [_]u64{
|
|
0b10000000_00000000_00000000_00000000_00000000_00000000_00001110_00000000,
|
|
};
|
|
const idx = findFreeChunks(&bitmaps, 2).?;
|
|
try testing.expectEqual(@as(usize, 9), idx);
|
|
try testing.expectEqual(
|
|
0b10000000_00000000_00000000_00000000_00000000_00000000_00001000_00000000,
|
|
bitmaps[0],
|
|
);
|
|
}
|
|
|
|
test "findFreeChunks single not found" {
|
|
const testing = std.testing;
|
|
|
|
var bitmaps = [_]u64{0b10000111_00000000_00000000_00000000_00000000_00000000_00000000_00000000};
|
|
const idx = findFreeChunks(&bitmaps, 4);
|
|
try testing.expect(idx == null);
|
|
}
|
|
|
|
test "findFreeChunks multiple found" {
|
|
const testing = std.testing;
|
|
|
|
var bitmaps = [_]u64{
|
|
0b10000111_00000000_00000000_00000000_00000000_00000000_00000000_01110000,
|
|
0b10000000_00111110_00000000_00000000_00000000_00000000_00111110_00000000,
|
|
};
|
|
const idx = findFreeChunks(&bitmaps, 4).?;
|
|
try testing.expectEqual(@as(usize, 73), idx);
|
|
try testing.expectEqual(
|
|
0b10000000_00111110_00000000_00000000_00000000_00000000_00100000_00000000,
|
|
bitmaps[1],
|
|
);
|
|
}
|
|
|
|
test "findFreeChunks exactly 64 chunks" {
|
|
const testing = std.testing;
|
|
|
|
var bitmaps = [_]u64{
|
|
0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111,
|
|
};
|
|
const idx = findFreeChunks(&bitmaps, 64).?;
|
|
try testing.expectEqual(
|
|
0b00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000,
|
|
bitmaps[0],
|
|
);
|
|
try testing.expectEqual(@as(usize, 0), idx);
|
|
}
|
|
|
|
test "findFreeChunks larger than 64 chunks" {
|
|
const testing = std.testing;
|
|
|
|
var bitmaps = [_]u64{
|
|
0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111,
|
|
0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111,
|
|
};
|
|
const idx = findFreeChunks(&bitmaps, 65).?;
|
|
try testing.expectEqual(
|
|
0b00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000,
|
|
bitmaps[0],
|
|
);
|
|
try testing.expectEqual(
|
|
0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111110,
|
|
bitmaps[1],
|
|
);
|
|
try testing.expectEqual(@as(usize, 0), idx);
|
|
}
|
|
|
|
test "findFreeChunks larger than 64 chunks not at beginning" {
|
|
const testing = std.testing;
|
|
|
|
var bitmaps = [_]u64{
|
|
0b11111111_00000000_00000000_00000000_00000000_00000000_00000000_00000000,
|
|
0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111,
|
|
0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111,
|
|
};
|
|
const idx = findFreeChunks(&bitmaps, 65).?;
|
|
try testing.expectEqual(
|
|
0b11111111_00000000_00000000_00000000_00000000_00000000_00000000_00000000,
|
|
bitmaps[0],
|
|
);
|
|
try testing.expectEqual(
|
|
0b00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000,
|
|
bitmaps[1],
|
|
);
|
|
try testing.expectEqual(
|
|
0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111110,
|
|
bitmaps[2],
|
|
);
|
|
try testing.expectEqual(@as(usize, 64), idx);
|
|
}
|
|
|
|
test "findFreeChunks larger than 64 chunks exact" {
|
|
const testing = std.testing;
|
|
|
|
var bitmaps = [_]u64{
|
|
0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111,
|
|
0b11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111,
|
|
};
|
|
const idx = findFreeChunks(&bitmaps, 128).?;
|
|
try testing.expectEqual(
|
|
0b00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000,
|
|
bitmaps[0],
|
|
);
|
|
try testing.expectEqual(
|
|
0b00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000,
|
|
bitmaps[1],
|
|
);
|
|
try testing.expectEqual(@as(usize, 0), idx);
|
|
}
|
|
|
|
test "BitmapAllocator layout" {
|
|
const Alloc = BitmapAllocator(4);
|
|
const cap = 64 * 4;
|
|
|
|
const testing = std.testing;
|
|
const layout = Alloc.layout(cap);
|
|
|
|
// We expect to use one bitmap since the cap is bytes.
|
|
try testing.expectEqual(@as(usize, 1), layout.bitmap_count);
|
|
}
|
|
|
|
test "BitmapAllocator alloc sequentially" {
|
|
const Alloc = BitmapAllocator(4);
|
|
const cap = 64;
|
|
|
|
const testing = std.testing;
|
|
const alloc = testing.allocator;
|
|
const layout = Alloc.layout(cap);
|
|
const buf = try alloc.alignedAlloc(u8, Alloc.base_align, layout.total_size);
|
|
defer alloc.free(buf);
|
|
|
|
var bm = Alloc.init(OffsetBuf.init(buf), layout);
|
|
const ptr = try bm.alloc(u8, buf, 1);
|
|
ptr[0] = 'A';
|
|
|
|
const ptr2 = try bm.alloc(u8, buf, 1);
|
|
try testing.expect(@intFromPtr(ptr.ptr) != @intFromPtr(ptr2.ptr));
|
|
|
|
// Should grab the next chunk
|
|
try testing.expectEqual(@intFromPtr(ptr.ptr) + 4, @intFromPtr(ptr2.ptr));
|
|
|
|
// Free ptr and next allocation should be back
|
|
bm.free(buf, ptr);
|
|
const ptr3 = try bm.alloc(u8, buf, 1);
|
|
try testing.expectEqual(@intFromPtr(ptr.ptr), @intFromPtr(ptr3.ptr));
|
|
}
|
|
|
|
test "BitmapAllocator alloc non-byte" {
|
|
const Alloc = BitmapAllocator(4);
|
|
const cap = 128;
|
|
|
|
const testing = std.testing;
|
|
const alloc = testing.allocator;
|
|
const layout = Alloc.layout(cap);
|
|
const buf = try alloc.alignedAlloc(u8, Alloc.base_align, layout.total_size);
|
|
defer alloc.free(buf);
|
|
|
|
var bm = Alloc.init(OffsetBuf.init(buf), layout);
|
|
const ptr = try bm.alloc(u21, buf, 1);
|
|
ptr[0] = 'A';
|
|
|
|
const ptr2 = try bm.alloc(u21, buf, 1);
|
|
try testing.expect(@intFromPtr(ptr.ptr) != @intFromPtr(ptr2.ptr));
|
|
try testing.expectEqual(@intFromPtr(ptr.ptr) + 4, @intFromPtr(ptr2.ptr));
|
|
|
|
// Free ptr and next allocation should be back
|
|
bm.free(buf, ptr);
|
|
const ptr3 = try bm.alloc(u21, buf, 1);
|
|
try testing.expectEqual(@intFromPtr(ptr.ptr), @intFromPtr(ptr3.ptr));
|
|
}
|
|
|
|
test "BitmapAllocator alloc non-byte multi-chunk" {
|
|
const Alloc = BitmapAllocator(4 * @sizeOf(u21));
|
|
const cap = 128;
|
|
|
|
const testing = std.testing;
|
|
const alloc = testing.allocator;
|
|
const layout = Alloc.layout(cap);
|
|
const buf = try alloc.alignedAlloc(u8, Alloc.base_align, layout.total_size);
|
|
defer alloc.free(buf);
|
|
|
|
var bm = Alloc.init(OffsetBuf.init(buf), layout);
|
|
const ptr = try bm.alloc(u21, buf, 6);
|
|
try testing.expectEqual(@as(usize, 6), ptr.len);
|
|
for (ptr) |*v| v.* = 'A';
|
|
|
|
const ptr2 = try bm.alloc(u21, buf, 1);
|
|
try testing.expect(@intFromPtr(ptr.ptr) != @intFromPtr(ptr2.ptr));
|
|
try testing.expectEqual(@intFromPtr(ptr.ptr) + (@sizeOf(u21) * 4 * 2), @intFromPtr(ptr2.ptr));
|
|
|
|
// Free ptr and next allocation should be back
|
|
bm.free(buf, ptr);
|
|
const ptr3 = try bm.alloc(u21, buf, 1);
|
|
try testing.expectEqual(@intFromPtr(ptr.ptr), @intFromPtr(ptr3.ptr));
|
|
}
|
|
|
|
test "BitmapAllocator alloc large" {
|
|
const Alloc = BitmapAllocator(2);
|
|
const cap = 256;
|
|
|
|
const testing = std.testing;
|
|
const alloc = testing.allocator;
|
|
const layout = Alloc.layout(cap);
|
|
const buf = try alloc.alignedAlloc(u8, Alloc.base_align, layout.total_size);
|
|
defer alloc.free(buf);
|
|
|
|
var bm = Alloc.init(OffsetBuf.init(buf), layout);
|
|
const ptr = try bm.alloc(u8, buf, 129);
|
|
ptr[0] = 'A';
|
|
bm.free(buf, ptr);
|
|
}
|