2024-08-03 16:03:42 -07:00

408 lines
14 KiB
Metal

using namespace metal;
struct Uniforms {
float4x4 projection_matrix;
float2 cell_size;
ushort2 grid_size;
float4 grid_padding;
float min_contrast;
ushort2 cursor_pos;
uchar4 cursor_color;
};
//-------------------------------------------------------------------
// Color Functions
//-------------------------------------------------------------------
#pragma mark - Colors
// https://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef
float luminance_component(float c) {
if (c <= 0.03928f) {
return c / 12.92f;
} else {
return pow((c + 0.055f) / 1.055f, 2.4f);
}
}
float relative_luminance(float3 color) {
color.r = luminance_component(color.r);
color.g = luminance_component(color.g);
color.b = luminance_component(color.b);
float3 weights = float3(0.2126f, 0.7152f, 0.0722f);
return dot(color, weights);
}
// https://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef
float contrast_ratio(float3 color1, float3 color2) {
float l1 = relative_luminance(color1);
float l2 = relative_luminance(color2);
return (max(l1, l2) + 0.05f) / (min(l1, l2) + 0.05f);
}
// Return the fg if the contrast ratio is greater than min, otherwise
// return a color that satisfies the contrast ratio. Currently, the color
// is always white or black, whichever has the highest contrast ratio.
float4 contrasted_color(float min, float4 fg, float4 bg) {
float3 fg_premult = fg.rgb * fg.a;
float3 bg_premult = bg.rgb * bg.a;
float ratio = contrast_ratio(fg_premult, bg_premult);
if (ratio < min) {
float white_ratio = contrast_ratio(float3(1.0f), bg_premult);
float black_ratio = contrast_ratio(float3(0.0f), bg_premult);
if (white_ratio > black_ratio) {
return float4(1.0f);
} else {
return float4(0.0f, 0.0f, 0.0f, 1.0f);
}
}
return fg;
}
//-------------------------------------------------------------------
// Cell Background Shader
//-------------------------------------------------------------------
#pragma mark - Cell BG Shader
// The possible modes that a cell bg entry can take.
enum CellBgMode : uint8_t {
MODE_RGB = 1u,
};
struct CellBgVertexIn {
// The mode for this cell.
uint8_t mode [[attribute(0)]];
// The grid coordinates (x, y) where x < columns and y < rows
ushort2 grid_pos [[attribute(1)]];
// The color. For BG modes, this is the bg color, for FG modes this is
// the text color. For styles, this is the color of the style.
uchar4 color [[attribute(3)]];
// The width of the cell in cells (i.e. 2 for double-wide).
uint8_t cell_width [[attribute(2)]];
};
struct CellBgVertexOut {
float4 position [[position]];
float4 color;
};
vertex CellBgVertexOut cell_bg_vertex(unsigned int vid [[vertex_id]],
CellBgVertexIn input [[stage_in]],
constant Uniforms& uniforms
[[buffer(1)]]) {
// Convert the grid x,y into world space x, y by accounting for cell size
float2 cell_pos = uniforms.cell_size * float2(input.grid_pos);
// Scaled cell size for the cell width
float2 cell_size_scaled = uniforms.cell_size;
cell_size_scaled.x = cell_size_scaled.x * input.cell_width;
// If we're at the edge of the grid, we add our padding to the background
// to extend it. Note: grid_padding is top/right/bottom/left.
if (input.grid_pos.y == 0) {
cell_pos.y -= uniforms.grid_padding.r;
cell_size_scaled.y += uniforms.grid_padding.r;
} else if (input.grid_pos.y == uniforms.grid_size.y - 1) {
cell_size_scaled.y += uniforms.grid_padding.b;
}
if (input.grid_pos.x == 0) {
cell_pos.x -= uniforms.grid_padding.a;
cell_size_scaled.x += uniforms.grid_padding.a;
} else if (input.grid_pos.x == uniforms.grid_size.x - 1) {
cell_size_scaled.x += uniforms.grid_padding.g;
}
// Turn the cell position into a vertex point depending on the
// vertex ID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use vertex ID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
float2 position;
position.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f;
position.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f;
// Calculate the final position of our cell in world space.
// We have to add our cell size since our vertices are offset
// one cell up and to the left. (Do the math to verify yourself)
cell_pos = cell_pos + cell_size_scaled * position;
CellBgVertexOut out;
out.color = float4(input.color) / 255.0f;
out.position =
uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
return out;
}
fragment float4 cell_bg_fragment(CellBgVertexOut in [[stage_in]]) {
return in.color;
}
//-------------------------------------------------------------------
// Cell Text Shader
//-------------------------------------------------------------------
#pragma mark - Cell Text Shader
// The possible modes that a cell fg entry can take.
enum CellTextMode : uint8_t {
MODE_TEXT = 1u,
MODE_TEXT_CONSTRAINED = 2u,
MODE_TEXT_COLOR = 3u,
MODE_TEXT_CURSOR = 4u,
};
struct CellTextVertexIn {
// The mode for this cell.
uint8_t mode [[attribute(0)]];
// The grid coordinates (x, y) where x < columns and y < rows
ushort2 grid_pos [[attribute(1)]];
// The width of the cell in cells (i.e. 2 for double-wide).
uint8_t cell_width [[attribute(6)]];
// The color of the rendered text glyph.
uchar4 color [[attribute(5)]];
// The background color of the cell. This is used to determine if
// we need to render the text with a different color to ensure
// contrast.
uchar4 bg_color [[attribute(7)]];
// The position of the glyph in the texture (x,y)
uint2 glyph_pos [[attribute(2)]];
// The size of the glyph in the texture (w,h)
uint2 glyph_size [[attribute(3)]];
// The left and top bearings for the glyph (x,y)
int2 glyph_offset [[attribute(4)]];
};
struct CellTextVertexOut {
float4 position [[position]];
float2 cell_size;
uint8_t mode;
float4 color;
float2 tex_coord;
};
vertex CellTextVertexOut cell_text_vertex(unsigned int vid [[vertex_id]],
CellTextVertexIn input [[stage_in]],
constant Uniforms& uniforms
[[buffer(1)]]) {
// Convert the grid x,y into world space x, y by accounting for cell size
float2 cell_pos = uniforms.cell_size * float2(input.grid_pos);
// Scaled cell size for the cell width
float2 cell_size_scaled = uniforms.cell_size;
cell_size_scaled.x = cell_size_scaled.x * input.cell_width;
// Turn the cell position into a vertex point depending on the
// vertex ID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use vertex ID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
float2 position;
position.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f;
position.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f;
CellTextVertexOut out;
out.mode = input.mode;
out.cell_size = uniforms.cell_size;
out.color = float4(input.color) / 255.0f;
float2 glyph_size = float2(input.glyph_size);
float2 glyph_offset = float2(input.glyph_offset);
// The glyph_offset.y is the y bearing, a y value that when added
// to the baseline is the offset (+y is up). Our grid goes down.
// So we flip it with `cell_size.y - glyph_offset.y`.
glyph_offset.y = cell_size_scaled.y - glyph_offset.y;
// If we're constrained then we need to scale the glyph.
// We also always constrain colored glyphs since we should have
// their scaled cell size exactly correct.
if (input.mode == MODE_TEXT_CONSTRAINED || input.mode == MODE_TEXT_COLOR) {
if (glyph_size.x > cell_size_scaled.x) {
float new_y = glyph_size.y * (cell_size_scaled.x / glyph_size.x);
glyph_offset.y += (glyph_size.y - new_y) / 2;
glyph_size.y = new_y;
glyph_size.x = cell_size_scaled.x;
}
}
// Calculate the final position of the cell which uses our glyph size
// and glyph offset to create the correct bounding box for the glyph.
cell_pos = cell_pos + glyph_size * position + glyph_offset;
out.position =
uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
// Calculate the texture coordinate in pixels. This is NOT normalized
// (between 0.0 and 1.0) and must be done in the fragment shader.
out.tex_coord = float2(input.glyph_pos) + float2(input.glyph_size) * position;
// If we have a minimum contrast, we need to check if we need to
// change the color of the text to ensure it has enough contrast
// with the background.
if (uniforms.min_contrast > 1.0f && input.mode == MODE_TEXT) {
float4 bg_color = float4(input.bg_color) / 255.0f;
out.color = contrasted_color(uniforms.min_contrast, out.color, bg_color);
}
// If this cell is the cursor cell, then we need to change the color.
if (input.mode != MODE_TEXT_CURSOR &&
input.grid_pos.x == uniforms.cursor_pos.x &&
input.grid_pos.y == uniforms.cursor_pos.y) {
out.color = float4(uniforms.cursor_color) / 255.0f;
}
return out;
}
fragment float4 cell_text_fragment(CellTextVertexOut in [[stage_in]],
texture2d<float> textureGreyscale
[[texture(0)]],
texture2d<float> textureColor
[[texture(1)]]) {
constexpr sampler textureSampler(address::clamp_to_edge, filter::linear);
switch (in.mode) {
case MODE_TEXT_CURSOR:
case MODE_TEXT_CONSTRAINED:
case MODE_TEXT: {
// Normalize the texture coordinates to [0,1]
float2 size =
float2(textureGreyscale.get_width(), textureGreyscale.get_height());
float2 coord = in.tex_coord / size;
// We premult the alpha to our whole color since our blend function
// uses One/OneMinusSourceAlpha to avoid blurry edges.
// We first premult our given color.
float4 premult = float4(in.color.rgb * in.color.a, in.color.a);
// Then premult the texture color
float a = textureGreyscale.sample(textureSampler, coord).r;
premult = premult * a;
return premult;
}
case MODE_TEXT_COLOR: {
// Normalize the texture coordinates to [0,1]
float2 size = float2(textureColor.get_width(), textureColor.get_height());
float2 coord = in.tex_coord / size;
return textureColor.sample(textureSampler, coord);
}
}
}
//-------------------------------------------------------------------
// Image Shader
//-------------------------------------------------------------------
#pragma mark - Image Shader
struct ImageVertexIn {
// The grid coordinates (x, y) where x < columns and y < rows where
// the image will be rendered. It will be rendered from the top left.
float2 grid_pos [[attribute(1)]];
// Offset in pixels from the top-left of the cell to make the top-left
// corner of the image.
float2 cell_offset [[attribute(2)]];
// The source rectangle of the texture to sample from.
float4 source_rect [[attribute(3)]];
// The final width/height of the image in pixels.
float2 dest_size [[attribute(4)]];
};
struct ImageVertexOut {
float4 position [[position]];
float2 tex_coord;
};
vertex ImageVertexOut image_vertex(unsigned int vid [[vertex_id]],
ImageVertexIn input [[stage_in]],
texture2d<uint> image [[texture(0)]],
constant Uniforms& uniforms [[buffer(1)]]) {
// The size of the image in pixels
float2 image_size = float2(image.get_width(), image.get_height());
// Turn the image position into a vertex point depending on the
// vertex ID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use vertex ID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
float2 position;
position.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f;
position.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f;
// The texture coordinates start at our source x/y, then add the width/height
// as enabled by our instance id, then normalize to [0, 1]
float2 tex_coord = input.source_rect.xy;
tex_coord += input.source_rect.zw * position;
tex_coord /= image_size;
ImageVertexOut out;
// The position of our image starts at the top-left of the grid cell and
// adds the source rect width/height components.
float2 image_pos = (uniforms.cell_size * input.grid_pos) + input.cell_offset;
image_pos += input.dest_size * position;
out.position =
uniforms.projection_matrix * float4(image_pos.x, image_pos.y, 0.0f, 1.0f);
out.tex_coord = tex_coord;
return out;
}
fragment float4 image_fragment(ImageVertexOut in [[stage_in]],
texture2d<uint> image [[texture(0)]]) {
constexpr sampler textureSampler(address::clamp_to_edge, filter::linear);
// Ehhhhh our texture is in RGBA8Uint but our color attachment is
// BGRA8Unorm. So we need to convert it. We should really be converting
// our texture to BGRA8Unorm.
uint4 rgba = image.sample(textureSampler, in.tex_coord);
// Convert to float4 and premultiply the alpha. We should also probably
// premultiply the alpha in the texture.
float4 result = float4(rgba) / 255.0f;
result.rgb *= result.a;
return result;
}
//-------------------------------------------------------------------
// Post Shader
//-------------------------------------------------------------------
#pragma mark - Post Shader
struct PostVertexOut {
float4 position [[position]];
};
constant float2 post_pos[4] = {{-1, -1}, {1, -1}, {-1, 1}, {1, 1}};
vertex PostVertexOut post_vertex(uint id [[vertex_id]]) {
PostVertexOut out;
out.position = float4(post_pos[id], 0, 1);
return out;
}