ghostty/src/renderer/generic.zig
2025-07-06 12:56:43 -07:00

3221 lines
133 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const xev = @import("xev");
const wuffs = @import("wuffs");
const apprt = @import("../apprt.zig");
const configpkg = @import("../config.zig");
const font = @import("../font/main.zig");
const os = @import("../os/main.zig");
const terminal = @import("../terminal/main.zig");
const renderer = @import("../renderer.zig");
const math = @import("../math.zig");
const Surface = @import("../Surface.zig");
const link = @import("link.zig");
const cellpkg = @import("cell.zig");
const noMinContrast = cellpkg.noMinContrast;
const constraintWidth = cellpkg.constraintWidth;
const isCovering = cellpkg.isCovering;
const imagepkg = @import("image.zig");
const Image = imagepkg.Image;
const ImageMap = imagepkg.ImageMap;
const ImagePlacementList = std.ArrayListUnmanaged(imagepkg.Placement);
const shadertoy = @import("shadertoy.zig");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const ArenaAllocator = std.heap.ArenaAllocator;
const Terminal = terminal.Terminal;
const Health = renderer.Health;
const getConstraint = @import("../font/nerd_font_attributes.zig").getConstraint;
const FileType = @import("../file_type.zig").FileType;
const macos = switch (builtin.os.tag) {
.macos => @import("macos"),
else => void,
};
const DisplayLink = switch (builtin.os.tag) {
.macos => *macos.video.DisplayLink,
else => void,
};
const log = std.log.scoped(.generic_renderer);
/// Create a renderer type with the provided graphics API wrapper.
///
/// The graphics API wrapper must provide the interface outlined below.
/// Specific details for the interfaces are documented on the existing
/// implementations (`Metal` and `OpenGL`).
///
/// Hierarchy of graphics abstractions:
///
/// [ GraphicsAPI ] - Responsible for configuring the runtime surface
/// | | and providing render `Target`s that draw to it,
/// | | as well as `Frame`s and `Pipeline`s.
/// | V
/// | [ Target ] - Represents an abstract target for rendering, which
/// | could be a surface directly but is also used as an
/// | abstraction for off-screen frame buffers.
/// V
/// [ Frame ] - Represents the context for drawing a given frame,
/// | provides `RenderPass`es for issuing draw commands
/// | to, and reports the frame health when complete.
/// V
/// [ RenderPass ] - Represents a render pass in a frame, consisting of
/// : one or more `Step`s applied to the same target(s),
/// [ Step ] - - - - each describing the input buffers and textures and
/// : the vertex/fragment functions and geometry to use.
/// :_ _ _ _ _ _ _ _ _ _/
/// v
/// [ Pipeline ] - Describes a vertex and fragment function to be used
/// for a `Step`; the `GraphicsAPI` is responsible for
/// these and they should be constructed and cached
/// ahead of time.
///
/// [ Buffer ] - An abstraction over a GPU buffer.
///
/// [ Texture ] - An abstraction over a GPU texture.
///
pub fn Renderer(comptime GraphicsAPI: type) type {
return struct {
const Self = @This();
pub const API = GraphicsAPI;
const Target = GraphicsAPI.Target;
const Buffer = GraphicsAPI.Buffer;
const Texture = GraphicsAPI.Texture;
const RenderPass = GraphicsAPI.RenderPass;
const shaderpkg = GraphicsAPI.shaders;
const Shaders = shaderpkg.Shaders;
/// Allocator that can be used
alloc: std.mem.Allocator,
/// This mutex must be held whenever any state used in `drawFrame` is
/// being modified, and also when it's being accessed in `drawFrame`.
draw_mutex: std.Thread.Mutex = .{},
/// The configuration we need derived from the main config.
config: DerivedConfig,
/// The mailbox for communicating with the window.
surface_mailbox: apprt.surface.Mailbox,
/// Current font metrics defining our grid.
grid_metrics: font.Metrics,
/// The size of everything.
size: renderer.Size,
/// True if the window is focused
focused: bool,
/// The foreground color set by an OSC 10 sequence. If unset then
/// default_foreground_color is used.
foreground_color: ?terminal.color.RGB,
/// Foreground color set in the user's config file.
default_foreground_color: terminal.color.RGB,
/// The background color set by an OSC 11 sequence. If unset then
/// default_background_color is used.
background_color: ?terminal.color.RGB,
/// Background color set in the user's config file.
default_background_color: terminal.color.RGB,
/// The cursor color set by an OSC 12 sequence. If unset then
/// default_cursor_color is used.
cursor_color: ?terminal.color.RGB,
/// Default cursor color when no color is set explicitly by an OSC 12 command.
/// This is cursor color as set in the user's config, if any. If no cursor color
/// is set in the user's config, then the cursor color is determined by the
/// current foreground color.
default_cursor_color: ?configpkg.Config.TerminalColor,
/// The current set of cells to render. This is rebuilt on every frame
/// but we keep this around so that we don't reallocate. Each set of
/// cells goes into a separate shader.
cells: cellpkg.Contents,
/// The last viewport that we based our rebuild off of. If this changes,
/// then we do a full rebuild of the cells. The pointer values in this pin
/// are NOT SAFE to read because they may be modified, freed, etc from the
/// termio thread. We treat the pointers as integers for comparison only.
cells_viewport: ?terminal.Pin = null,
/// Set to true after rebuildCells is called. This can be used
/// to determine if any possible changes have been made to the
/// cells for the draw call.
cells_rebuilt: bool = false,
/// The current GPU uniform values.
uniforms: shaderpkg.Uniforms,
/// Custom shader uniform values.
custom_shader_uniforms: shadertoy.Uniforms,
/// Timestamp we rendered out first frame.
///
/// This is used when updating custom shader uniforms.
first_frame_time: ?std.time.Instant = null,
/// Timestamp when we rendered out more recent frame.
///
/// This is used when updating custom shader uniforms.
last_frame_time: ?std.time.Instant = null,
/// The font structures.
font_grid: *font.SharedGrid,
font_shaper: font.Shaper,
font_shaper_cache: font.ShaperCache,
/// The images that we may render.
images: ImageMap = .{},
image_placements: ImagePlacementList = .{},
image_bg_end: u32 = 0,
image_text_end: u32 = 0,
image_virtual: bool = false,
/// Background image, if we have one.
bg_image: ?imagepkg.Image = null,
/// Set whenever the background image changes, singalling
/// that the new background image needs to be uploaded to
/// the GPU.
///
/// This is initialized as true so that we load the image
/// on renderer initialization, not just on config change.
bg_image_changed: bool = true,
/// Background image vertex buffer.
bg_image_buffer: shaderpkg.BgImage,
/// This value is used to force-update the swap chain copy
/// of the background image buffer whenever we change it.
bg_image_buffer_modified: usize = 0,
/// Graphics API state.
api: GraphicsAPI,
/// The CVDisplayLink used to drive the rendering loop in
/// sync with the display. This is void on platforms that
/// don't support a display link.
display_link: ?DisplayLink = null,
/// Health of the most recently completed frame.
health: std.atomic.Value(Health) = .{ .raw = .healthy },
/// Our swap chain (multiple buffering)
swap_chain: SwapChain,
/// This value is used to force-update swap chain targets in the
/// event of a config change that requires it (such as blending mode).
target_config_modified: usize = 0,
/// If something happened that requires us to reinitialize our shaders,
/// this is set to true so that we can do that whenever possible.
reinitialize_shaders: bool = false,
/// Whether or not we have custom shaders.
has_custom_shaders: bool = false,
/// Our shader pipelines.
shaders: Shaders,
/// Swap chain which maintains multiple copies of the state needed to
/// render a frame, so that we can start building the next frame while
/// the previous frame is still being processed on the GPU.
const SwapChain = struct {
// The count of buffers we use for double/triple buffering.
// If this is one then we don't do any double+ buffering at all.
// This is comptime because there isn't a good reason to change
// this at runtime and there is a lot of complexity to support it.
const buf_count = GraphicsAPI.swap_chain_count;
/// `buf_count` structs that can hold the
/// data needed by the GPU to draw a frame.
frames: [buf_count]FrameState,
/// Index of the most recently used frame state struct.
frame_index: std.math.IntFittingRange(0, buf_count) = 0,
/// Semaphore that we wait on to make sure we have an available
/// frame state struct so we can start working on a new frame.
frame_sema: std.Thread.Semaphore = .{ .permits = buf_count },
/// Set to true when deinited, if you try to deinit a defunct
/// swap chain it will just be ignored, to prevent double-free.
///
/// This is required because of `displayUnrealized`, since it
/// `deinits` the swapchain, which leads to a double-free if
/// the renderer is deinited after that.
defunct: bool = false,
pub fn init(api: GraphicsAPI, custom_shaders: bool) !SwapChain {
var result: SwapChain = .{ .frames = undefined };
// Initialize all of our frame state.
for (&result.frames) |*frame| {
frame.* = try FrameState.init(api, custom_shaders);
}
return result;
}
pub fn deinit(self: *SwapChain) void {
if (self.defunct) return;
self.defunct = true;
// Wait for all of our inflight draws to complete
// so that we can cleanly deinit our GPU state.
for (0..buf_count) |_| self.frame_sema.wait();
for (&self.frames) |*frame| frame.deinit();
}
/// Get the next frame state to draw to. This will wait on the
/// semaphore to ensure that the frame is available. This must
/// always be paired with a call to releaseFrame.
pub fn nextFrame(self: *SwapChain) error{Defunct}!*FrameState {
if (self.defunct) return error.Defunct;
self.frame_sema.wait();
errdefer self.frame_sema.post();
self.frame_index = (self.frame_index + 1) % buf_count;
return &self.frames[self.frame_index];
}
/// This should be called when the frame has completed drawing.
pub fn releaseFrame(self: *SwapChain) void {
self.frame_sema.post();
}
};
/// State we need duplicated for every frame. Any state that could be
/// in a data race between the GPU and CPU while a frame is being drawn
/// should be in this struct.
///
/// While a draw is in-process, we "lock" the state (via a semaphore)
/// and prevent the CPU from updating the state until our graphics API
/// reports that the frame is complete.
///
/// This is used to implement double/triple buffering.
const FrameState = struct {
uniforms: UniformBuffer,
cells: CellTextBuffer,
cells_bg: CellBgBuffer,
grayscale: Texture,
grayscale_modified: usize = 0,
color: Texture,
color_modified: usize = 0,
target: Target,
/// See property of same name on Renderer for explanation.
target_config_modified: usize = 0,
/// Buffer with the vertex data for our background image.
///
/// TODO: Make this an optional and only create it
/// if we actually have a background image.
bg_image_buffer: BgImageBuffer,
/// See property of same name on Renderer for explanation.
bg_image_buffer_modified: usize = 0,
/// Custom shader state, this is null if we have no custom shaders.
custom_shader_state: ?CustomShaderState = null,
const UniformBuffer = Buffer(shaderpkg.Uniforms);
const CellBgBuffer = Buffer(shaderpkg.CellBg);
const CellTextBuffer = Buffer(shaderpkg.CellText);
const BgImageBuffer = Buffer(shaderpkg.BgImage);
pub fn init(api: GraphicsAPI, custom_shaders: bool) !FrameState {
// Uniform buffer contains exactly 1 uniform struct. The
// uniform data will be undefined so this must be set before
// a frame is drawn.
var uniforms = try UniformBuffer.init(api.uniformBufferOptions(), 1);
errdefer uniforms.deinit();
// Create GPU buffers for our cells.
//
// We start them off with a size of 1, which will of course be
// too small, but they will be resized as needed. This is a bit
// wasteful but since it's a one-time thing it's not really a
// huge concern.
var cells = try CellTextBuffer.init(api.fgBufferOptions(), 1);
errdefer cells.deinit();
var cells_bg = try CellBgBuffer.init(api.bgBufferOptions(), 1);
errdefer cells_bg.deinit();
// Create a GPU buffer for our background image info.
var bg_image_buffer = try BgImageBuffer.init(
api.bgImageBufferOptions(),
1,
);
errdefer bg_image_buffer.deinit();
// Initialize our textures for our font atlas.
//
// As with the buffers above, we start these off as small
// as possible since they'll inevitably be resized anyway.
const grayscale = try api.initAtlasTexture(&.{
.data = undefined,
.size = 1,
.format = .grayscale,
});
errdefer grayscale.deinit();
const color = try api.initAtlasTexture(&.{
.data = undefined,
.size = 1,
.format = .bgra,
});
errdefer color.deinit();
var custom_shader_state =
if (custom_shaders)
try CustomShaderState.init(api)
else
null;
errdefer if (custom_shader_state) |*state| state.deinit();
// Initialize the target. Just as with the other resources,
// start it off as small as we can since it'll be resized.
const target = try api.initTarget(1, 1);
return .{
.uniforms = uniforms,
.cells = cells,
.cells_bg = cells_bg,
.bg_image_buffer = bg_image_buffer,
.grayscale = grayscale,
.color = color,
.target = target,
.custom_shader_state = custom_shader_state,
};
}
pub fn deinit(self: *FrameState) void {
self.uniforms.deinit();
self.cells.deinit();
self.cells_bg.deinit();
self.grayscale.deinit();
self.color.deinit();
self.bg_image_buffer.deinit();
if (self.custom_shader_state) |*state| state.deinit();
}
pub fn resize(
self: *FrameState,
api: GraphicsAPI,
width: usize,
height: usize,
) !void {
if (self.custom_shader_state) |*state| {
try state.resize(api, width, height);
}
const target = try api.initTarget(width, height);
self.target.deinit();
self.target = target;
}
};
/// State relevant to our custom shaders if we have any.
const CustomShaderState = struct {
/// When we have a custom shader state, we maintain a front
/// and back texture which we use as a swap chain to render
/// between when multiple custom shaders are defined.
front_texture: Texture,
back_texture: Texture,
uniforms: UniformBuffer,
const UniformBuffer = Buffer(shadertoy.Uniforms);
/// Swap the front and back textures.
pub fn swap(self: *CustomShaderState) void {
std.mem.swap(Texture, &self.front_texture, &self.back_texture);
}
pub fn init(api: GraphicsAPI) !CustomShaderState {
// Create a GPU buffer to hold our uniforms.
var uniforms = try UniformBuffer.init(api.uniformBufferOptions(), 1);
errdefer uniforms.deinit();
// Initialize the front and back textures at 1x1 px, this
// is slightly wasteful but it's only done once so whatever.
const front_texture = try Texture.init(
api.textureOptions(),
1,
1,
null,
);
errdefer front_texture.deinit();
const back_texture = try Texture.init(
api.textureOptions(),
1,
1,
null,
);
errdefer back_texture.deinit();
return .{
.front_texture = front_texture,
.back_texture = back_texture,
.uniforms = uniforms,
};
}
pub fn deinit(self: *CustomShaderState) void {
self.front_texture.deinit();
self.back_texture.deinit();
self.uniforms.deinit();
}
pub fn resize(
self: *CustomShaderState,
api: GraphicsAPI,
width: usize,
height: usize,
) !void {
const front_texture = try Texture.init(
api.textureOptions(),
@intCast(width),
@intCast(height),
null,
);
errdefer front_texture.deinit();
const back_texture = try Texture.init(
api.textureOptions(),
@intCast(width),
@intCast(height),
null,
);
errdefer back_texture.deinit();
self.front_texture.deinit();
self.back_texture.deinit();
self.front_texture = front_texture;
self.back_texture = back_texture;
}
};
/// The configuration for this renderer that is derived from the main
/// configuration. This must be exported so that we don't need to
/// pass around Config pointers which makes memory management a pain.
pub const DerivedConfig = struct {
arena: ArenaAllocator,
font_thicken: bool,
font_thicken_strength: u8,
font_features: std.ArrayListUnmanaged([:0]const u8),
font_styles: font.CodepointResolver.StyleStatus,
font_shaping_break: configpkg.FontShapingBreak,
cursor_color: ?configpkg.Config.TerminalColor,
cursor_opacity: f64,
cursor_text: ?configpkg.Config.TerminalColor,
background: terminal.color.RGB,
background_opacity: f64,
foreground: terminal.color.RGB,
selection_background: ?configpkg.Config.TerminalColor,
selection_foreground: ?configpkg.Config.TerminalColor,
bold_color: ?configpkg.BoldColor,
min_contrast: f32,
padding_color: configpkg.WindowPaddingColor,
custom_shaders: configpkg.RepeatablePath,
bg_image: ?configpkg.Path,
bg_image_opacity: f32,
bg_image_position: configpkg.BackgroundImagePosition,
bg_image_fit: configpkg.BackgroundImageFit,
bg_image_repeat: bool,
links: link.Set,
vsync: bool,
colorspace: configpkg.Config.WindowColorspace,
blending: configpkg.Config.AlphaBlending,
pub fn init(
alloc_gpa: Allocator,
config: *const configpkg.Config,
) !DerivedConfig {
var arena = ArenaAllocator.init(alloc_gpa);
errdefer arena.deinit();
const alloc = arena.allocator();
// Copy our shaders
const custom_shaders = try config.@"custom-shader".clone(alloc);
// Copy our background image
const bg_image =
if (config.@"background-image") |bg|
try bg.clone(alloc)
else
null;
// Copy our font features
const font_features = try config.@"font-feature".clone(alloc);
// Get our font styles
var font_styles = font.CodepointResolver.StyleStatus.initFill(true);
font_styles.set(.bold, config.@"font-style-bold" != .false);
font_styles.set(.italic, config.@"font-style-italic" != .false);
font_styles.set(.bold_italic, config.@"font-style-bold-italic" != .false);
// Our link configs
const links = try link.Set.fromConfig(
alloc,
config.link.links.items,
);
return .{
.background_opacity = @max(0, @min(1, config.@"background-opacity")),
.font_thicken = config.@"font-thicken",
.font_thicken_strength = config.@"font-thicken-strength",
.font_features = font_features.list,
.font_styles = font_styles,
.font_shaping_break = config.@"font-shaping-break",
.cursor_color = config.@"cursor-color",
.cursor_text = config.@"cursor-text",
.cursor_opacity = @max(0, @min(1, config.@"cursor-opacity")),
.background = config.background.toTerminalRGB(),
.foreground = config.foreground.toTerminalRGB(),
.bold_color = config.@"bold-color",
.min_contrast = @floatCast(config.@"minimum-contrast"),
.padding_color = config.@"window-padding-color",
.selection_background = config.@"selection-background",
.selection_foreground = config.@"selection-foreground",
.custom_shaders = custom_shaders,
.bg_image = bg_image,
.bg_image_opacity = config.@"background-image-opacity",
.bg_image_position = config.@"background-image-position",
.bg_image_fit = config.@"background-image-fit",
.bg_image_repeat = config.@"background-image-repeat",
.links = links,
.vsync = config.@"window-vsync",
.colorspace = config.@"window-colorspace",
.blending = config.@"alpha-blending",
.arena = arena,
};
}
pub fn deinit(self: *DerivedConfig) void {
const alloc = self.arena.allocator();
self.links.deinit(alloc);
self.arena.deinit();
}
};
pub fn init(alloc: Allocator, options: renderer.Options) !Self {
// Initialize our graphics API wrapper, this will prepare the
// surface provided by the apprt and set up any API-specific
// GPU resources.
var api = try GraphicsAPI.init(alloc, options);
errdefer api.deinit();
const has_custom_shaders = options.config.custom_shaders.value.items.len > 0;
// Prepare our swap chain
var swap_chain = try SwapChain.init(
api,
has_custom_shaders,
);
errdefer swap_chain.deinit();
// Create the font shaper.
var font_shaper = try font.Shaper.init(alloc, .{
.features = options.config.font_features.items,
});
errdefer font_shaper.deinit();
// Initialize all the data that requires a critical font section.
const font_critical: struct {
metrics: font.Metrics,
} = font_critical: {
const grid: *font.SharedGrid = options.font_grid;
grid.lock.lockShared();
defer grid.lock.unlockShared();
break :font_critical .{
.metrics = grid.metrics,
};
};
const display_link: ?DisplayLink = switch (builtin.os.tag) {
.macos => if (options.config.vsync)
try macos.video.DisplayLink.createWithActiveCGDisplays()
else
null,
else => null,
};
errdefer if (display_link) |v| v.release();
var result: Self = .{
.alloc = alloc,
.config = options.config,
.surface_mailbox = options.surface_mailbox,
.grid_metrics = font_critical.metrics,
.size = options.size,
.focused = true,
.foreground_color = null,
.default_foreground_color = options.config.foreground,
.background_color = null,
.default_background_color = options.config.background,
.cursor_color = null,
.default_cursor_color = options.config.cursor_color,
// Render state
.cells = .{},
.uniforms = .{
.projection_matrix = undefined,
.cell_size = undefined,
.grid_size = undefined,
.grid_padding = undefined,
.screen_size = undefined,
.padding_extend = .{},
.min_contrast = options.config.min_contrast,
.cursor_pos = .{ std.math.maxInt(u16), std.math.maxInt(u16) },
.cursor_color = undefined,
.bg_color = .{
options.config.background.r,
options.config.background.g,
options.config.background.b,
@intFromFloat(@round(options.config.background_opacity * 255.0)),
},
.bools = .{
.cursor_wide = false,
.use_display_p3 = options.config.colorspace == .@"display-p3",
.use_linear_blending = options.config.blending.isLinear(),
.use_linear_correction = options.config.blending == .@"linear-corrected",
},
},
.custom_shader_uniforms = .{
.resolution = .{ 0, 0, 1 },
.time = 0,
.time_delta = 0,
.frame_rate = 60, // not currently updated
.frame = 0,
.channel_time = @splat(@splat(0)), // not currently updated
.channel_resolution = @splat(@splat(0)),
.mouse = @splat(0), // not currently updated
.date = @splat(0), // not currently updated
.sample_rate = 0, // N/A, we don't have any audio
.current_cursor = @splat(0),
.previous_cursor = @splat(0),
.current_cursor_color = @splat(0),
.previous_cursor_color = @splat(0),
.cursor_change_time = 0,
},
.bg_image_buffer = undefined,
// Fonts
.font_grid = options.font_grid,
.font_shaper = font_shaper,
.font_shaper_cache = font.ShaperCache.init(),
// Shaders (initialized below)
.shaders = undefined,
// Graphics API stuff
.api = api,
.swap_chain = swap_chain,
.display_link = display_link,
};
try result.initShaders();
// Ensure our undefined values above are correctly initialized.
result.updateFontGridUniforms();
result.updateScreenSizeUniforms();
result.updateBgImageBuffer();
try result.prepBackgroundImage();
return result;
}
pub fn deinit(self: *Self) void {
self.swap_chain.deinit();
if (DisplayLink != void) {
if (self.display_link) |display_link| {
display_link.stop() catch {};
display_link.release();
}
}
self.cells.deinit(self.alloc);
self.font_shaper.deinit();
self.font_shaper_cache.deinit(self.alloc);
self.config.deinit();
{
var it = self.images.iterator();
while (it.next()) |kv| kv.value_ptr.image.deinit(self.alloc);
self.images.deinit(self.alloc);
}
self.image_placements.deinit(self.alloc);
if (self.bg_image) |img| img.deinit(self.alloc);
self.deinitShaders();
self.api.deinit();
self.* = undefined;
}
fn deinitShaders(self: *Self) void {
self.shaders.deinit(self.alloc);
}
fn initShaders(self: *Self) !void {
var arena = ArenaAllocator.init(self.alloc);
defer arena.deinit();
const arena_alloc = arena.allocator();
// Load our custom shaders
const custom_shaders: []const [:0]const u8 = shadertoy.loadFromFiles(
arena_alloc,
self.config.custom_shaders,
GraphicsAPI.custom_shader_target,
) catch |err| err: {
log.warn("error loading custom shaders err={}", .{err});
break :err &.{};
};
const has_custom_shaders = custom_shaders.len > 0;
var shaders = try self.api.initShaders(
self.alloc,
custom_shaders,
);
errdefer shaders.deinit(self.alloc);
self.shaders = shaders;
self.has_custom_shaders = has_custom_shaders;
}
/// This is called early right after surface creation.
pub fn surfaceInit(surface: *apprt.Surface) !void {
// If our API has to do things here, let it.
if (@hasDecl(GraphicsAPI, "surfaceInit")) {
try GraphicsAPI.surfaceInit(surface);
}
}
/// This is called just prior to spinning up the renderer thread for
/// final main thread setup requirements.
pub fn finalizeSurfaceInit(self: *Self, surface: *apprt.Surface) !void {
// If our API has to do things to finalize surface init, let it.
if (@hasDecl(GraphicsAPI, "finalizeSurfaceInit")) {
try self.api.finalizeSurfaceInit(surface);
}
}
/// Callback called by renderer.Thread when it begins.
pub fn threadEnter(self: *const Self, surface: *apprt.Surface) !void {
// If our API has to do things on thread enter, let it.
if (@hasDecl(GraphicsAPI, "threadEnter")) {
try self.api.threadEnter(surface);
}
}
/// Callback called by renderer.Thread when it exits.
pub fn threadExit(self: *const Self) void {
// If our API has to do things on thread exit, let it.
if (@hasDecl(GraphicsAPI, "threadExit")) {
self.api.threadExit();
}
}
/// Called by renderer.Thread when it starts the main loop.
pub fn loopEnter(self: *Self, thr: *renderer.Thread) !void {
// If our API has to do things on loop enter, let it.
if (@hasDecl(GraphicsAPI, "loopEnter")) {
self.api.loopEnter();
}
// If we don't support a display link we have no work to do.
if (comptime DisplayLink == void) return;
// This is when we know our "self" pointer is stable so we can
// setup the display link. To setup the display link we set our
// callback and we can start it immediately.
const display_link = self.display_link orelse return;
try display_link.setOutputCallback(
xev.Async,
&displayLinkCallback,
&thr.draw_now,
);
display_link.start() catch {};
}
/// Called by renderer.Thread when it exits the main loop.
pub fn loopExit(self: *Self) void {
// If our API has to do things on loop exit, let it.
if (@hasDecl(GraphicsAPI, "loopExit")) {
self.api.loopExit();
}
// If we don't support a display link we have no work to do.
if (comptime DisplayLink == void) return;
// Stop our display link. If this fails its okay it just means
// that we either never started it or the view its attached to
// is gone which is fine.
const display_link = self.display_link orelse return;
display_link.stop() catch {};
}
/// This is called by the GTK apprt after the surface is
/// reinitialized due to any of the events mentioned in
/// the doc comment for `displayUnrealized`.
pub fn displayRealized(self: *Self) !void {
// If our API has to do things on realize, let it.
if (@hasDecl(GraphicsAPI, "displayRealized")) {
self.api.displayRealized();
}
// Lock the draw mutex so that we can
// safely reinitialize our GPU resources.
self.draw_mutex.lock();
defer self.draw_mutex.unlock();
// We assume that the swap chain was deinited in
// `displayUnrealized`, in which case it should be
// marked defunct. If not, we have a problem.
assert(self.swap_chain.defunct);
// We reinitialize our shaders and our swap chain.
try self.initShaders();
self.swap_chain = try SwapChain.init(
self.api,
self.has_custom_shaders,
);
self.reinitialize_shaders = false;
self.target_config_modified = 1;
}
/// This is called by the GTK apprt when the surface is being destroyed.
/// This can happen because the surface is being closed but also when
/// moving the window between displays or splitting.
pub fn displayUnrealized(self: *Self) void {
// If our API has to do things on unrealize, let it.
if (@hasDecl(GraphicsAPI, "displayUnrealized")) {
self.api.displayUnrealized();
}
// Lock the draw mutex so that we can
// safely deinitialize our GPU resources.
self.draw_mutex.lock();
defer self.draw_mutex.unlock();
// We deinit our swap chain and shaders.
//
// This will mark them as defunct so that they
// can't be double-freed or used in draw calls.
self.swap_chain.deinit();
self.shaders.deinit(self.alloc);
}
fn displayLinkCallback(
_: *macos.video.DisplayLink,
ud: ?*xev.Async,
) void {
const draw_now = ud orelse return;
draw_now.notify() catch |err| {
log.err("error notifying draw_now err={}", .{err});
};
}
/// Mark the full screen as dirty so that we redraw everything.
pub fn markDirty(self: *Self) void {
self.cells_viewport = null;
}
/// Called when we get an updated display ID for our display link.
pub fn setMacOSDisplayID(self: *Self, id: u32) !void {
if (comptime DisplayLink == void) return;
const display_link = self.display_link orelse return;
log.info("updating display link display id={}", .{id});
display_link.setCurrentCGDisplay(id) catch |err| {
log.warn("error setting display link display id err={}", .{err});
};
}
/// True if our renderer has animations so that a higher frequency
/// timer is used.
pub fn hasAnimations(self: *const Self) bool {
return self.has_custom_shaders;
}
/// True if our renderer is using vsync. If true, the renderer or apprt
/// is responsible for triggering draw_now calls to the render thread.
/// That is the only way to trigger a drawFrame.
pub fn hasVsync(self: *const Self) bool {
if (comptime DisplayLink == void) return false;
const display_link = self.display_link orelse return false;
return display_link.isRunning();
}
/// Callback when the focus changes for the terminal this is rendering.
///
/// Must be called on the render thread.
pub fn setFocus(self: *Self, focus: bool) !void {
self.focused = focus;
// If we're not focused, then we want to stop the display link
// because it is a waste of resources and we can move to pure
// change-driven updates.
if (comptime DisplayLink != void) link: {
const display_link = self.display_link orelse break :link;
if (focus) {
display_link.start() catch {};
} else {
display_link.stop() catch {};
}
}
}
/// Callback when the window is visible or occluded.
///
/// Must be called on the render thread.
pub fn setVisible(self: *Self, visible: bool) void {
// If we're not visible, then we want to stop the display link
// because it is a waste of resources and we can move to pure
// change-driven updates.
if (comptime DisplayLink != void) link: {
const display_link = self.display_link orelse break :link;
if (visible and self.focused) {
display_link.start() catch {};
} else {
display_link.stop() catch {};
}
}
}
/// Set the new font grid.
///
/// Must be called on the render thread.
pub fn setFontGrid(self: *Self, grid: *font.SharedGrid) void {
self.draw_mutex.lock();
defer self.draw_mutex.unlock();
// Update our grid
self.font_grid = grid;
// Update all our textures so that they sync on the next frame.
// We can modify this without a lock because the GPU does not
// touch this data.
for (&self.swap_chain.frames) |*frame| {
frame.grayscale_modified = 0;
frame.color_modified = 0;
}
// Get our metrics from the grid. This doesn't require a lock because
// the metrics are never recalculated.
const metrics = grid.metrics;
self.grid_metrics = metrics;
// Reset our shaper cache. If our font changed (not just the size) then
// the data in the shaper cache may be invalid and cannot be used, so we
// always clear the cache just in case.
const font_shaper_cache = font.ShaperCache.init();
self.font_shaper_cache.deinit(self.alloc);
self.font_shaper_cache = font_shaper_cache;
// Update cell size.
self.size.cell = .{
.width = metrics.cell_width,
.height = metrics.cell_height,
};
// Update relevant uniforms
self.updateFontGridUniforms();
}
/// Update uniforms that are based on the font grid.
///
/// Caller must hold the draw mutex.
fn updateFontGridUniforms(self: *Self) void {
self.uniforms.cell_size = .{
@floatFromInt(self.grid_metrics.cell_width),
@floatFromInt(self.grid_metrics.cell_height),
};
}
/// Update the frame data.
pub fn updateFrame(
self: *Self,
state: *renderer.State,
cursor_blink_visible: bool,
) !void {
// Data we extract out of the critical area.
const Critical = struct {
bg: terminal.color.RGB,
screen: terminal.Screen,
screen_type: terminal.ScreenType,
mouse: renderer.State.Mouse,
preedit: ?renderer.State.Preedit,
cursor_style: ?renderer.CursorStyle,
color_palette: terminal.color.Palette,
/// If true, rebuild the full screen.
full_rebuild: bool,
};
// Update all our data as tightly as possible within the mutex.
var critical: Critical = critical: {
// const start = try std.time.Instant.now();
// const start_micro = std.time.microTimestamp();
// defer {
// const end = std.time.Instant.now() catch unreachable;
// // "[updateFrame critical time] <START us>\t<TIME_TAKEN us>"
// std.log.err("[updateFrame critical time] {}\t{}", .{start_micro, end.since(start) / std.time.ns_per_us});
// }
state.mutex.lock();
defer state.mutex.unlock();
// If we're in a synchronized output state, we pause all rendering.
if (state.terminal.modes.get(.synchronized_output)) {
log.debug("synchronized output started, skipping render", .{});
return;
}
// Swap bg/fg if the terminal is reversed
const bg = self.background_color orelse self.default_background_color;
const fg = self.foreground_color orelse self.default_foreground_color;
defer {
if (self.background_color) |*c| {
c.* = bg;
} else {
self.default_background_color = bg;
}
if (self.foreground_color) |*c| {
c.* = fg;
} else {
self.default_foreground_color = fg;
}
}
if (state.terminal.modes.get(.reverse_colors)) {
if (self.background_color) |*c| {
c.* = fg;
} else {
self.default_background_color = fg;
}
if (self.foreground_color) |*c| {
c.* = bg;
} else {
self.default_foreground_color = bg;
}
}
// Get the viewport pin so that we can compare it to the current.
const viewport_pin = state.terminal.screen.pages.pin(.{ .viewport = .{} }).?;
// We used to share terminal state, but we've since learned through
// analysis that it is faster to copy the terminal state than to
// hold the lock while rebuilding GPU cells.
var screen_copy = try state.terminal.screen.clone(
self.alloc,
.{ .viewport = .{} },
null,
);
errdefer screen_copy.deinit();
// Whether to draw our cursor or not.
const cursor_style = if (state.terminal.flags.password_input)
.lock
else
renderer.cursorStyle(
state,
self.focused,
cursor_blink_visible,
);
// Get our preedit state
const preedit: ?renderer.State.Preedit = preedit: {
if (cursor_style == null) break :preedit null;
const p = state.preedit orelse break :preedit null;
break :preedit try p.clone(self.alloc);
};
errdefer if (preedit) |p| p.deinit(self.alloc);
// If we have Kitty graphics data, we enter a SLOW SLOW SLOW path.
// We only do this if the Kitty image state is dirty meaning only if
// it changes.
//
// If we have any virtual references, we must also rebuild our
// kitty state on every frame because any cell change can move
// an image.
if (state.terminal.screen.kitty_images.dirty or
self.image_virtual)
{
try self.prepKittyGraphics(state.terminal);
}
// If we have any terminal dirty flags set then we need to rebuild
// the entire screen. This can be optimized in the future.
const full_rebuild: bool = rebuild: {
{
const Int = @typeInfo(terminal.Terminal.Dirty).@"struct".backing_integer.?;
const v: Int = @bitCast(state.terminal.flags.dirty);
if (v > 0) break :rebuild true;
}
{
const Int = @typeInfo(terminal.Screen.Dirty).@"struct".backing_integer.?;
const v: Int = @bitCast(state.terminal.screen.dirty);
if (v > 0) break :rebuild true;
}
// If our viewport changed then we need to rebuild the entire
// screen because it means we scrolled. If we have no previous
// viewport then we must rebuild.
const prev_viewport = self.cells_viewport orelse break :rebuild true;
if (!prev_viewport.eql(viewport_pin)) break :rebuild true;
break :rebuild false;
};
// Reset the dirty flags in the terminal and screen. We assume
// that our rebuild will be successful since so we optimize for
// success and reset while we hold the lock. This is much easier
// than coordinating row by row or as changes are persisted.
state.terminal.flags.dirty = .{};
state.terminal.screen.dirty = .{};
{
var it = state.terminal.screen.pages.pageIterator(
.right_down,
.{ .screen = .{} },
null,
);
while (it.next()) |chunk| {
var dirty_set = chunk.node.data.dirtyBitSet();
dirty_set.unsetAll();
}
}
// Update our viewport pin
self.cells_viewport = viewport_pin;
break :critical .{
.bg = self.background_color orelse self.default_background_color,
.screen = screen_copy,
.screen_type = state.terminal.active_screen,
.mouse = state.mouse,
.preedit = preedit,
.cursor_style = cursor_style,
.color_palette = state.terminal.color_palette.colors,
.full_rebuild = full_rebuild,
};
};
defer {
critical.screen.deinit();
if (critical.preedit) |p| p.deinit(self.alloc);
}
// Build our GPU cells
try self.rebuildCells(
critical.full_rebuild,
&critical.screen,
critical.screen_type,
critical.mouse,
critical.preedit,
critical.cursor_style,
&critical.color_palette,
);
// Notify our shaper we're done for the frame. For some shapers,
// such as CoreText, this triggers off-thread cleanup logic.
self.font_shaper.endFrame();
// Acquire the draw mutex because we're modifying state here.
{
self.draw_mutex.lock();
defer self.draw_mutex.unlock();
// Update our background color
self.uniforms.bg_color = .{
critical.bg.r,
critical.bg.g,
critical.bg.b,
@intFromFloat(@round(self.config.background_opacity * 255.0)),
};
}
}
/// Draw the frame to the screen.
///
/// If `sync` is true, this will synchronously block until
/// the frame is finished drawing and has been presented.
pub fn drawFrame(
self: *Self,
sync: bool,
) !void {
// We hold a the draw mutex to prevent changes to any
// data we access while we're in the middle of drawing.
self.draw_mutex.lock();
defer self.draw_mutex.unlock();
// Let our graphics API do any bookkeeping, etc.
// that it needs to do before / after `drawFrame`.
self.api.drawFrameStart();
defer self.api.drawFrameEnd();
// Retrieve the most up-to-date surface size from the Graphics API
const surface_size = try self.api.surfaceSize();
// If either of our surface dimensions is zero
// then drawing is absurd, so we just return.
if (surface_size.width == 0 or surface_size.height == 0) return;
const size_changed =
self.size.screen.width != surface_size.width or
self.size.screen.height != surface_size.height;
// Conditions under which we need to draw the frame, otherwise we
// don't need to since the previous frame should be identical.
const needs_redraw =
size_changed or
self.cells_rebuilt or
self.hasAnimations() or
sync;
if (!needs_redraw) {
// We still need to present the last target again, because the
// apprt may be swapping buffers and display an outdated frame
// if we don't draw something new.
try self.api.presentLastTarget();
return;
}
self.cells_rebuilt = false;
// Wait for a frame to be available.
const frame = try self.swap_chain.nextFrame();
errdefer self.swap_chain.releaseFrame();
// log.debug("drawing frame index={}", .{self.swap_chain.frame_index});
// If we need to reinitialize our shaders, do so.
if (self.reinitialize_shaders) {
self.reinitialize_shaders = false;
self.shaders.deinit(self.alloc);
try self.initShaders();
}
// Our shaders should not be defunct at this point.
assert(!self.shaders.defunct);
// If we have custom shaders, make sure we have the
// custom shader state in our frame state, otherwise
// if we have a state but don't need it we remove it.
if (self.has_custom_shaders) {
if (frame.custom_shader_state == null) {
frame.custom_shader_state = try .init(self.api);
try frame.custom_shader_state.?.resize(
self.api,
surface_size.width,
surface_size.height,
);
}
} else if (frame.custom_shader_state) |*state| {
state.deinit();
frame.custom_shader_state = null;
}
// If our stored size doesn't match the
// surface size we need to update it.
if (size_changed) {
self.size.screen = .{
.width = surface_size.width,
.height = surface_size.height,
};
self.updateScreenSizeUniforms();
}
// If this frame's target isn't the correct size, or the target
// config has changed (such as when the blending mode changes),
// remove it and replace it with a new one with the right values.
if (frame.target.width != self.size.screen.width or
frame.target.height != self.size.screen.height or
frame.target_config_modified != self.target_config_modified)
{
try frame.resize(
self.api,
self.size.screen.width,
self.size.screen.height,
);
frame.target_config_modified = self.target_config_modified;
}
// Upload images to the GPU as necessary.
try self.uploadKittyImages();
// Upload the background image to the GPU as necessary.
try self.uploadBackgroundImage();
// Update custom shader uniforms if necessary.
try self.updateCustomShaderUniforms();
// Setup our frame data
try frame.uniforms.sync(&.{self.uniforms});
try frame.cells_bg.sync(self.cells.bg_cells);
const fg_count = try frame.cells.syncFromArrayLists(self.cells.fg_rows.lists);
// If our background image buffer has changed, sync it.
if (frame.bg_image_buffer_modified != self.bg_image_buffer_modified) {
try frame.bg_image_buffer.sync(&.{self.bg_image_buffer});
frame.bg_image_buffer_modified = self.bg_image_buffer_modified;
}
// If our font atlas changed, sync the texture data
texture: {
const modified = self.font_grid.atlas_grayscale.modified.load(.monotonic);
if (modified <= frame.grayscale_modified) break :texture;
self.font_grid.lock.lockShared();
defer self.font_grid.lock.unlockShared();
frame.grayscale_modified = self.font_grid.atlas_grayscale.modified.load(.monotonic);
try self.syncAtlasTexture(&self.font_grid.atlas_grayscale, &frame.grayscale);
}
texture: {
const modified = self.font_grid.atlas_color.modified.load(.monotonic);
if (modified <= frame.color_modified) break :texture;
self.font_grid.lock.lockShared();
defer self.font_grid.lock.unlockShared();
frame.color_modified = self.font_grid.atlas_color.modified.load(.monotonic);
try self.syncAtlasTexture(&self.font_grid.atlas_color, &frame.color);
}
// Get a frame context from the graphics API.
var frame_ctx = try self.api.beginFrame(self, &frame.target);
defer frame_ctx.complete(sync);
{
var pass = frame_ctx.renderPass(&.{.{
.target = if (frame.custom_shader_state) |state|
.{ .texture = state.back_texture }
else
.{ .target = frame.target },
.clear_color = .{ 0.0, 0.0, 0.0, 0.0 },
}});
defer pass.complete();
// First we draw our background image, if we have one.
// The bg image shader also draws the main bg color.
//
// Otherwise, if we don't have a background image, we
// draw the background color by itself in its own step.
//
// NOTE: We don't use the clear_color for this because that
// would require us to do color space conversion on the
// CPU-side. In the future when we have utilities for
// that we should remove this step and use clear_color.
if (self.bg_image) |img| switch (img) {
.ready => |texture| pass.step(.{
.pipeline = self.shaders.pipelines.bg_image,
.uniforms = frame.uniforms.buffer,
.buffers = &.{frame.bg_image_buffer.buffer},
.textures = &.{texture},
.draw = .{ .type = .triangle, .vertex_count = 3 },
}),
else => {},
} else {
pass.step(.{
.pipeline = self.shaders.pipelines.bg_color,
.uniforms = frame.uniforms.buffer,
.buffers = &.{ null, frame.cells_bg.buffer },
.draw = .{ .type = .triangle, .vertex_count = 3 },
});
}
// Then we draw any kitty images that need
// to be behind text AND cell backgrounds.
try self.drawImagePlacements(
&pass,
self.image_placements.items[0..self.image_bg_end],
);
// Then we draw any opaque cell backgrounds.
pass.step(.{
.pipeline = self.shaders.pipelines.cell_bg,
.uniforms = frame.uniforms.buffer,
.buffers = &.{ null, frame.cells_bg.buffer },
.draw = .{ .type = .triangle, .vertex_count = 3 },
});
// Kitty images between cell backgrounds and text.
try self.drawImagePlacements(
&pass,
self.image_placements.items[self.image_bg_end..self.image_text_end],
);
// Text.
pass.step(.{
.pipeline = self.shaders.pipelines.cell_text,
.uniforms = frame.uniforms.buffer,
.buffers = &.{
frame.cells.buffer,
frame.cells_bg.buffer,
},
.textures = &.{
frame.grayscale,
frame.color,
},
.draw = .{
.type = .triangle_strip,
.vertex_count = 4,
.instance_count = fg_count,
},
});
// Kitty images in front of text.
try self.drawImagePlacements(
&pass,
self.image_placements.items[self.image_text_end..],
);
}
// If we have custom shaders, then we render them.
if (frame.custom_shader_state) |*state| {
// Sync our uniforms.
try state.uniforms.sync(&.{self.custom_shader_uniforms});
for (self.shaders.post_pipelines, 0..) |pipeline, i| {
defer state.swap();
var pass = frame_ctx.renderPass(&.{.{
.target = if (i < self.shaders.post_pipelines.len - 1)
.{ .texture = state.front_texture }
else
.{ .target = frame.target },
.clear_color = .{ 0.0, 0.0, 0.0, 0.0 },
}});
defer pass.complete();
pass.step(.{
.pipeline = pipeline,
.uniforms = state.uniforms.buffer,
.textures = &.{state.back_texture},
.draw = .{
.type = .triangle,
.vertex_count = 3,
},
});
}
}
}
// Callback from the graphics API when a frame is completed.
pub fn frameCompleted(
self: *Self,
health: Health,
) void {
// If our health value hasn't changed, then we do nothing. We don't
// do a cmpxchg here because strict atomicity isn't important.
if (self.health.load(.seq_cst) != health) {
self.health.store(health, .seq_cst);
// Our health value changed, so we notify the surface so that it
// can do something about it.
_ = self.surface_mailbox.push(.{
.renderer_health = health,
}, .{ .forever = {} });
}
// Always release our semaphore
self.swap_chain.releaseFrame();
}
fn drawImagePlacements(
self: *Self,
pass: *RenderPass,
placements: []const imagepkg.Placement,
) !void {
if (placements.len == 0) return;
for (placements) |p| {
// Look up the image
const image = self.images.get(p.image_id) orelse {
log.warn("image not found for placement image_id={}", .{p.image_id});
return;
};
// Get the texture
const texture = switch (image.image) {
.ready => |t| t,
else => {
log.warn("image not ready for placement image_id={}", .{p.image_id});
return;
},
};
// Create our vertex buffer, which is always exactly one item.
// future(mitchellh): we can group rendering multiple instances of a single image
var buf = try Buffer(shaderpkg.Image).initFill(
self.api.imageBufferOptions(),
&.{.{
.grid_pos = .{
@as(f32, @floatFromInt(p.x)),
@as(f32, @floatFromInt(p.y)),
},
.cell_offset = .{
@as(f32, @floatFromInt(p.cell_offset_x)),
@as(f32, @floatFromInt(p.cell_offset_y)),
},
.source_rect = .{
@as(f32, @floatFromInt(p.source_x)),
@as(f32, @floatFromInt(p.source_y)),
@as(f32, @floatFromInt(p.source_width)),
@as(f32, @floatFromInt(p.source_height)),
},
.dest_size = .{
@as(f32, @floatFromInt(p.width)),
@as(f32, @floatFromInt(p.height)),
},
}},
);
defer buf.deinit();
pass.step(.{
.pipeline = self.shaders.pipelines.image,
.buffers = &.{buf.buffer},
.textures = &.{texture},
.draw = .{
.type = .triangle_strip,
.vertex_count = 4,
},
});
}
}
/// This goes through the Kitty graphic placements and accumulates the
/// placements we need to render on our viewport.
fn prepKittyGraphics(
self: *Self,
t: *terminal.Terminal,
) !void {
self.draw_mutex.lock();
defer self.draw_mutex.unlock();
const storage = &t.screen.kitty_images;
defer storage.dirty = false;
// We always clear our previous placements no matter what because
// we rebuild them from scratch.
self.image_placements.clearRetainingCapacity();
self.image_virtual = false;
// Go through our known images and if there are any that are no longer
// in use then mark them to be freed.
//
// This never conflicts with the below because a placement can't
// reference an image that doesn't exist.
{
var it = self.images.iterator();
while (it.next()) |kv| {
if (storage.imageById(kv.key_ptr.*) == null) {
kv.value_ptr.image.markForUnload();
}
}
}
// The top-left and bottom-right corners of our viewport in screen
// points. This lets us determine offsets and containment of placements.
const top = t.screen.pages.getTopLeft(.viewport);
const bot = t.screen.pages.getBottomRight(.viewport).?;
const top_y = t.screen.pages.pointFromPin(.screen, top).?.screen.y;
const bot_y = t.screen.pages.pointFromPin(.screen, bot).?.screen.y;
// Go through the placements and ensure the image is
// on the GPU or else is ready to be sent to the GPU.
var it = storage.placements.iterator();
while (it.next()) |kv| {
const p = kv.value_ptr;
// Special logic based on location
switch (p.location) {
.pin => {},
.virtual => {
// We need to mark virtual placements on our renderer so that
// we know to rebuild in more scenarios since cell changes can
// now trigger placement changes.
self.image_virtual = true;
// We also continue out because virtual placements are
// only triggered by the unicode placeholder, not by the
// placement itself.
continue;
},
}
// Get the image for the placement
const image = storage.imageById(kv.key_ptr.image_id) orelse {
log.warn(
"missing image for placement, ignoring image_id={}",
.{kv.key_ptr.image_id},
);
continue;
};
try self.prepKittyPlacement(t, top_y, bot_y, &image, p);
}
// If we have virtual placements then we need to scan for placeholders.
if (self.image_virtual) {
var v_it = terminal.kitty.graphics.unicode.placementIterator(top, bot);
while (v_it.next()) |virtual_p| try self.prepKittyVirtualPlacement(
t,
&virtual_p,
);
}
// Sort the placements by their Z value.
std.mem.sortUnstable(
imagepkg.Placement,
self.image_placements.items,
{},
struct {
fn lessThan(
ctx: void,
lhs: imagepkg.Placement,
rhs: imagepkg.Placement,
) bool {
_ = ctx;
return lhs.z < rhs.z or (lhs.z == rhs.z and lhs.image_id < rhs.image_id);
}
}.lessThan,
);
// Find our indices. The values are sorted by z so we can
// find the first placement out of bounds to find the limits.
var bg_end: ?u32 = null;
var text_end: ?u32 = null;
const bg_limit = std.math.minInt(i32) / 2;
for (self.image_placements.items, 0..) |p, i| {
if (bg_end == null and p.z >= bg_limit) {
bg_end = @intCast(i);
}
if (text_end == null and p.z >= 0) {
text_end = @intCast(i);
}
}
// If we didn't see any images with a z > the bg limit,
// then our bg end is the end of our placement list.
self.image_bg_end =
bg_end orelse @intCast(self.image_placements.items.len);
// Same idea for the image_text_end.
self.image_text_end =
text_end orelse @intCast(self.image_placements.items.len);
}
fn prepKittyVirtualPlacement(
self: *Self,
t: *terminal.Terminal,
p: *const terminal.kitty.graphics.unicode.Placement,
) !void {
const storage = &t.screen.kitty_images;
const image = storage.imageById(p.image_id) orelse {
log.warn(
"missing image for virtual placement, ignoring image_id={}",
.{p.image_id},
);
return;
};
const rp = p.renderPlacement(
storage,
&image,
self.grid_metrics.cell_width,
self.grid_metrics.cell_height,
) catch |err| {
log.warn("error rendering virtual placement err={}", .{err});
return;
};
// If our placement is zero sized then we don't do anything.
if (rp.dest_width == 0 or rp.dest_height == 0) return;
const viewport: terminal.point.Point = t.screen.pages.pointFromPin(
.viewport,
rp.top_left,
) orelse {
// This is unreachable with virtual placements because we should
// only ever be looking at virtual placements that are in our
// viewport in the renderer and virtual placements only ever take
// up one row.
unreachable;
};
// Prepare the image for the GPU and store the placement.
try self.prepKittyImage(&image);
try self.image_placements.append(self.alloc, .{
.image_id = image.id,
.x = @intCast(rp.top_left.x),
.y = @intCast(viewport.viewport.y),
.z = -1,
.width = rp.dest_width,
.height = rp.dest_height,
.cell_offset_x = rp.offset_x,
.cell_offset_y = rp.offset_y,
.source_x = rp.source_x,
.source_y = rp.source_y,
.source_width = rp.source_width,
.source_height = rp.source_height,
});
}
/// Get the viewport-relative position for this
/// placement and add it to the placements list.
fn prepKittyPlacement(
self: *Self,
t: *terminal.Terminal,
top_y: u32,
bot_y: u32,
image: *const terminal.kitty.graphics.Image,
p: *const terminal.kitty.graphics.ImageStorage.Placement,
) !void {
// Get the rect for the placement. If this placement doesn't have
// a rect then its virtual or something so skip it.
const rect = p.rect(image.*, t) orelse return;
// This is expensive but necessary.
const img_top_y = t.screen.pages.pointFromPin(.screen, rect.top_left).?.screen.y;
const img_bot_y = t.screen.pages.pointFromPin(.screen, rect.bottom_right).?.screen.y;
// If the selection isn't within our viewport then skip it.
if (img_top_y > bot_y) return;
if (img_bot_y < top_y) return;
// We need to prep this image for upload if it isn't in the
// cache OR it is in the cache but the transmit time doesn't
// match meaning this image is different.
try self.prepKittyImage(image);
// Calculate the dimensions of our image, taking in to
// account the rows / columns specified by the placement.
const dest_size = p.calculatedSize(image.*, t);
// Calculate the source rectangle
const source_x = @min(image.width, p.source_x);
const source_y = @min(image.height, p.source_y);
const source_width = if (p.source_width > 0)
@min(image.width - source_x, p.source_width)
else
image.width;
const source_height = if (p.source_height > 0)
@min(image.height - source_y, p.source_height)
else
image.height;
// Get the viewport-relative Y position of the placement.
const y_pos: i32 = @as(i32, @intCast(img_top_y)) - @as(i32, @intCast(top_y));
// Accumulate the placement
if (dest_size.width > 0 and dest_size.height > 0) {
try self.image_placements.append(self.alloc, .{
.image_id = image.id,
.x = @intCast(rect.top_left.x),
.y = y_pos,
.z = p.z,
.width = dest_size.width,
.height = dest_size.height,
.cell_offset_x = p.x_offset,
.cell_offset_y = p.y_offset,
.source_x = source_x,
.source_y = source_y,
.source_width = source_width,
.source_height = source_height,
});
}
}
/// Prepare the provided image for upload to the GPU by copying its
/// data with our allocator and setting it to the pending state.
fn prepKittyImage(
self: *Self,
image: *const terminal.kitty.graphics.Image,
) !void {
// If this image exists and its transmit time is the same we assume
// it is the identical image so we don't need to send it to the GPU.
const gop = try self.images.getOrPut(self.alloc, image.id);
if (gop.found_existing and
gop.value_ptr.transmit_time.order(image.transmit_time) == .eq)
{
return;
}
// Copy the data into the pending state.
const data = try self.alloc.dupe(u8, image.data);
errdefer self.alloc.free(data);
// Store it in the map
const pending: Image.Pending = .{
.width = image.width,
.height = image.height,
.pixel_format = switch (image.format) {
.gray => .gray,
.gray_alpha => .gray_alpha,
.rgb => .rgb,
.rgba => .rgba,
.png => unreachable, // should be decoded by now
},
.data = data.ptr,
};
const new_image: Image = .{ .pending = pending };
if (!gop.found_existing) {
gop.value_ptr.* = .{
.image = new_image,
.transmit_time = undefined,
};
} else {
try gop.value_ptr.image.markForReplace(
self.alloc,
new_image,
);
}
try gop.value_ptr.image.prepForUpload(self.alloc);
gop.value_ptr.transmit_time = image.transmit_time;
}
/// Upload any images to the GPU that need to be uploaded,
/// and remove any images that are no longer needed on the GPU.
fn uploadKittyImages(self: *Self) !void {
var image_it = self.images.iterator();
while (image_it.next()) |kv| {
const img = &kv.value_ptr.image;
if (img.isUnloading()) {
img.deinit(self.alloc);
self.images.removeByPtr(kv.key_ptr);
return;
}
if (img.isPending()) try img.upload(self.alloc, &self.api);
}
}
/// Call this any time the background image path changes.
///
/// Caller must hold the draw mutex.
fn prepBackgroundImage(self: *Self) !void {
// Then we try to load the background image if we have a path.
if (self.config.bg_image) |p| load_background: {
const path = switch (p) {
.required, .optional => |slice| slice,
};
// Open the file
var file = std.fs.openFileAbsolute(path, .{}) catch |err| {
log.warn(
"error opening background image file \"{s}\": {}",
.{ path, err },
);
break :load_background;
};
defer file.close();
// Read it
const contents = file.readToEndAlloc(
self.alloc,
std.math.maxInt(u32), // Max size of 4 GiB, for now.
) catch |err| {
log.warn(
"error reading background image file \"{s}\": {}",
.{ path, err },
);
break :load_background;
};
defer self.alloc.free(contents);
// Figure out what type it probably is.
const file_type = switch (FileType.detect(contents)) {
.unknown => FileType.guessFromExtension(
std.fs.path.extension(path),
),
else => |t| t,
};
// Decode it if we know how.
const image_data = switch (file_type) {
.png => try wuffs.png.decode(self.alloc, contents),
.jpeg => try wuffs.jpeg.decode(self.alloc, contents),
.unknown => {
log.warn(
"Cannot determine file type for background image file \"{s}\"!",
.{path},
);
break :load_background;
},
else => |f| {
log.warn(
"Unsupported file type {} for background image file \"{s}\"!",
.{ f, path },
);
break :load_background;
},
};
const image: imagepkg.Image = .{
.pending = .{
.width = image_data.width,
.height = image_data.height,
.pixel_format = .rgba,
.data = image_data.data.ptr,
},
};
// If we have an existing background image, replace it.
// Otherwise, set this as our background image directly.
if (self.bg_image) |*img| {
try img.markForReplace(self.alloc, image);
} else {
self.bg_image = image;
}
} else {
// If we don't have a background image path, mark our
// background image for unload if we currently have one.
if (self.bg_image) |*img| img.markForUnload();
}
}
fn uploadBackgroundImage(self: *Self) !void {
// Make sure our bg image is uploaded if it needs to be.
if (self.bg_image) |*bg| {
if (bg.isUnloading()) {
bg.deinit(self.alloc);
self.bg_image = null;
return;
}
if (bg.isPending()) try bg.upload(self.alloc, &self.api);
}
}
/// Update the configuration.
pub fn changeConfig(self: *Self, config: *DerivedConfig) !void {
self.draw_mutex.lock();
defer self.draw_mutex.unlock();
// We always redo the font shaper in case font features changed. We
// could check to see if there was an actual config change but this is
// easier and rare enough to not cause performance issues.
{
var font_shaper = try font.Shaper.init(self.alloc, .{
.features = config.font_features.items,
});
errdefer font_shaper.deinit();
self.font_shaper.deinit();
self.font_shaper = font_shaper;
}
// We also need to reset the shaper cache so shaper info
// from the previous font isn't re-used for the new font.
const font_shaper_cache = font.ShaperCache.init();
self.font_shaper_cache.deinit(self.alloc);
self.font_shaper_cache = font_shaper_cache;
// Set our new minimum contrast
self.uniforms.min_contrast = config.min_contrast;
// Set our new color space and blending
self.uniforms.bools.use_display_p3 = config.colorspace == .@"display-p3";
self.uniforms.bools.use_linear_blending = config.blending.isLinear();
self.uniforms.bools.use_linear_correction = config.blending == .@"linear-corrected";
// Set our new colors
self.default_background_color = config.background;
self.default_foreground_color = config.foreground;
self.default_cursor_color = config.cursor_color;
const bg_image_config_changed =
self.config.bg_image_fit != config.bg_image_fit or
self.config.bg_image_position != config.bg_image_position or
self.config.bg_image_repeat != config.bg_image_repeat or
self.config.bg_image_opacity != config.bg_image_opacity;
const bg_image_changed =
if (self.config.bg_image) |old|
if (config.bg_image) |new|
!old.equal(new)
else
true
else
config.bg_image != null;
const old_blending = self.config.blending;
const custom_shaders_changed = !self.config.custom_shaders.equal(config.custom_shaders);
self.config.deinit();
self.config = config.*;
// If our background image path changed, prepare the new bg image.
if (bg_image_changed) try self.prepBackgroundImage();
// If our background image config changed, update the vertex buffer.
if (bg_image_config_changed) self.updateBgImageBuffer();
// Reset our viewport to force a rebuild, in case of a font change.
self.cells_viewport = null;
const blending_changed = old_blending != config.blending;
if (blending_changed) {
// We update our API's blending mode.
self.api.blending = config.blending;
// And indicate that we need to reinitialize our shaders.
self.reinitialize_shaders = true;
// And indicate that our swap chain targets need to
// be re-created to account for the new blending mode.
self.target_config_modified +%= 1;
}
if (custom_shaders_changed) {
self.reinitialize_shaders = true;
}
}
/// Resize the screen.
pub fn setScreenSize(
self: *Self,
size: renderer.Size,
) void {
self.draw_mutex.lock();
defer self.draw_mutex.unlock();
// We only actually need the padding from this,
// everything else is derived elsewhere.
self.size.padding = size.padding;
self.updateScreenSizeUniforms();
log.debug("screen size size={}", .{size});
}
/// Update uniforms that are based on the screen size.
///
/// Caller must hold the draw mutex.
fn updateScreenSizeUniforms(self: *Self) void {
const terminal_size = self.size.terminal();
// Blank space around the grid.
const blank: renderer.Padding = self.size.screen.blankPadding(
self.size.padding,
.{
.columns = self.cells.size.columns,
.rows = self.cells.size.rows,
},
.{
.width = self.grid_metrics.cell_width,
.height = self.grid_metrics.cell_height,
},
).add(self.size.padding);
// Setup our uniforms
self.uniforms.projection_matrix = math.ortho2d(
-1 * @as(f32, @floatFromInt(self.size.padding.left)),
@floatFromInt(terminal_size.width + self.size.padding.right),
@floatFromInt(terminal_size.height + self.size.padding.bottom),
-1 * @as(f32, @floatFromInt(self.size.padding.top)),
);
self.uniforms.grid_padding = .{
@floatFromInt(blank.top),
@floatFromInt(blank.right),
@floatFromInt(blank.bottom),
@floatFromInt(blank.left),
};
self.uniforms.screen_size = .{
@floatFromInt(self.size.screen.width),
@floatFromInt(self.size.screen.height),
};
}
/// Update the background image vertex buffer (CPU-side).
///
/// This should be called if and when configs change that
/// could affect the background image.
///
/// Caller must hold the draw mutex.
fn updateBgImageBuffer(self: *Self) void {
self.bg_image_buffer = .{
.opacity = self.config.bg_image_opacity,
.info = .{
.position = switch (self.config.bg_image_position) {
.@"top-left" => .tl,
.@"top-center" => .tc,
.@"top-right" => .tr,
.@"center-left" => .ml,
.@"center-center", .center => .mc,
.@"center-right" => .mr,
.@"bottom-left" => .bl,
.@"bottom-center" => .bc,
.@"bottom-right" => .br,
},
.fit = switch (self.config.bg_image_fit) {
.contain => .contain,
.cover => .cover,
.stretch => .stretch,
.none => .none,
},
.repeat = self.config.bg_image_repeat,
},
};
// Signal that the buffer was modified.
self.bg_image_buffer_modified +%= 1;
}
/// Update uniforms for the custom shaders, if necessary.
///
/// This should be called exactly once per frame, inside `drawFrame`.
fn updateCustomShaderUniforms(self: *Self) !void {
// We only need to do this if we have custom shaders.
if (!self.has_custom_shaders) return;
const now = try std.time.Instant.now();
defer self.last_frame_time = now;
const first_frame_time = self.first_frame_time orelse t: {
self.first_frame_time = now;
break :t now;
};
const last_frame_time = self.last_frame_time orelse now;
const since_ns: f32 = @floatFromInt(now.since(first_frame_time));
self.custom_shader_uniforms.time = since_ns / std.time.ns_per_s;
const delta_ns: f32 = @floatFromInt(now.since(last_frame_time));
self.custom_shader_uniforms.time_delta = delta_ns / std.time.ns_per_s;
self.custom_shader_uniforms.frame += 1;
const screen = self.size.screen;
const padding = self.size.padding;
const cell = self.size.cell;
self.custom_shader_uniforms.resolution = .{
@floatFromInt(screen.width),
@floatFromInt(screen.height),
1,
};
self.custom_shader_uniforms.channel_resolution[0] = .{
@floatFromInt(screen.width),
@floatFromInt(screen.height),
1,
0,
};
// Update custom cursor uniforms, if we have a cursor.
if (self.cells.fg_rows.lists[0].items.len > 0) {
const cursor: shaderpkg.CellText =
self.cells.fg_rows.lists[0].items[0];
const cursor_width: f32 = @floatFromInt(cursor.glyph_size[0]);
const cursor_height: f32 = @floatFromInt(cursor.glyph_size[1]);
var pixel_x: f32 = @floatFromInt(
cursor.grid_pos[0] * cell.width + padding.left,
);
var pixel_y: f32 = @floatFromInt(
cursor.grid_pos[1] * cell.height + padding.top,
);
pixel_x += @floatFromInt(cursor.bearings[0]);
pixel_y += @floatFromInt(cursor.bearings[1]);
// If +Y is up in our shaders, we need to flip the coordinate.
if (!GraphicsAPI.custom_shader_y_is_down) {
pixel_y = @as(f32, @floatFromInt(screen.height)) - pixel_y;
// We need to add the cursor height because we need the +Y
// edge for the Y coordinate, and flipping means that it's
// the -Y edge now.
pixel_y += cursor_height;
}
const new_cursor: [4]f32 = .{
pixel_x,
pixel_y,
cursor_width,
cursor_height,
};
const cursor_color: [4]f32 = .{
@as(f32, @floatFromInt(cursor.color[0])) / 255.0,
@as(f32, @floatFromInt(cursor.color[1])) / 255.0,
@as(f32, @floatFromInt(cursor.color[2])) / 255.0,
@as(f32, @floatFromInt(cursor.color[3])) / 255.0,
};
const uniforms = &self.custom_shader_uniforms;
const cursor_changed: bool =
!std.meta.eql(new_cursor, uniforms.current_cursor) or
!std.meta.eql(cursor_color, uniforms.current_cursor_color);
if (cursor_changed) {
uniforms.previous_cursor = uniforms.current_cursor;
uniforms.previous_cursor_color = uniforms.current_cursor_color;
uniforms.current_cursor = new_cursor;
uniforms.current_cursor_color = cursor_color;
uniforms.cursor_change_time = uniforms.time;
}
}
}
/// Convert the terminal state to GPU cells stored in CPU memory. These
/// are then synced to the GPU in the next frame. This only updates CPU
/// memory and doesn't touch the GPU.
fn rebuildCells(
self: *Self,
wants_rebuild: bool,
screen: *terminal.Screen,
screen_type: terminal.ScreenType,
mouse: renderer.State.Mouse,
preedit: ?renderer.State.Preedit,
cursor_style_: ?renderer.CursorStyle,
color_palette: *const terminal.color.Palette,
) !void {
self.draw_mutex.lock();
defer self.draw_mutex.unlock();
// const start = try std.time.Instant.now();
// const start_micro = std.time.microTimestamp();
// defer {
// const end = std.time.Instant.now() catch unreachable;
// // "[rebuildCells time] <START us>\t<TIME_TAKEN us>"
// std.log.warn("[rebuildCells time] {}\t{}", .{start_micro, end.since(start) / std.time.ns_per_us});
// }
_ = screen_type; // we might use this again later so not deleting it yet
// Create an arena for all our temporary allocations while rebuilding
var arena = ArenaAllocator.init(self.alloc);
defer arena.deinit();
const arena_alloc = arena.allocator();
// Create our match set for the links.
var link_match_set: link.MatchSet = if (mouse.point) |mouse_pt| try self.config.links.matchSet(
arena_alloc,
screen,
mouse_pt,
mouse.mods,
) else .{};
// Determine our x/y range for preedit. We don't want to render anything
// here because we will render the preedit separately.
const preedit_range: ?struct {
y: terminal.size.CellCountInt,
x: [2]terminal.size.CellCountInt,
cp_offset: usize,
} = if (preedit) |preedit_v| preedit: {
const range = preedit_v.range(screen.cursor.x, screen.pages.cols - 1);
break :preedit .{
.y = screen.cursor.y,
.x = .{ range.start, range.end },
.cp_offset = range.cp_offset,
};
} else null;
const grid_size_diff =
self.cells.size.rows != screen.pages.rows or
self.cells.size.columns != screen.pages.cols;
if (grid_size_diff) {
var new_size = self.cells.size;
new_size.rows = screen.pages.rows;
new_size.columns = screen.pages.cols;
try self.cells.resize(self.alloc, new_size);
// Update our uniforms accordingly, otherwise
// our background cells will be out of place.
self.uniforms.grid_size = .{ new_size.columns, new_size.rows };
}
const rebuild = wants_rebuild or grid_size_diff;
if (rebuild) {
// If we are doing a full rebuild, then we clear the entire cell buffer.
self.cells.reset();
// We also reset our padding extension depending on the screen type
switch (self.config.padding_color) {
.background => {},
// For extension, assume we are extending in all directions.
// For "extend" this may be disabled due to heuristics below.
.extend, .@"extend-always" => {
self.uniforms.padding_extend = .{
.up = true,
.down = true,
.left = true,
.right = true,
};
},
}
}
// We rebuild the cells row-by-row because we
// do font shaping and dirty tracking by row.
var row_it = screen.pages.rowIterator(.left_up, .{ .viewport = .{} }, null);
// If our cell contents buffer is shorter than the screen viewport,
// we render the rows that fit, starting from the bottom. If instead
// the viewport is shorter than the cell contents buffer, we align
// the top of the viewport with the top of the contents buffer.
var y: terminal.size.CellCountInt = @min(
screen.pages.rows,
self.cells.size.rows,
);
while (row_it.next()) |row| {
// The viewport may have more rows than our cell contents,
// so we need to break from the loop early if we hit y = 0.
if (y == 0) break;
y -= 1;
if (!rebuild) {
// Only rebuild if we are doing a full rebuild or this row is dirty.
if (!row.isDirty()) continue;
// Clear the cells if the row is dirty
self.cells.clear(y);
}
// True if we want to do font shaping around the cursor.
// We want to do font shaping as long as the cursor is enabled.
const shape_cursor = screen.viewportIsBottom() and
y == screen.cursor.y;
// We need to get this row's selection, if
// there is one, for proper run splitting.
const row_selection = sel: {
const sel = screen.selection orelse break :sel null;
const pin = screen.pages.pin(.{ .viewport = .{ .y = y } }) orelse
break :sel null;
break :sel sel.containedRow(screen, pin) orelse null;
};
// On primary screen, we still apply vertical padding
// extension under certain conditions we feel are safe.
//
// This helps make some scenarios look better while
// avoiding scenarios we know do NOT look good.
switch (self.config.padding_color) {
// These already have the correct values set above.
.background, .@"extend-always" => {},
// Apply heuristics for padding extension.
.extend => if (y == 0) {
self.uniforms.padding_extend.up = !row.neverExtendBg(
color_palette,
self.background_color orelse self.default_background_color,
);
} else if (y == self.cells.size.rows - 1) {
self.uniforms.padding_extend.down = !row.neverExtendBg(
color_palette,
self.background_color orelse self.default_background_color,
);
},
}
// Iterator of runs for shaping.
var run_iter_opts: font.shape.RunOptions = .{
.grid = self.font_grid,
.screen = screen,
.row = row,
.selection = row_selection,
.cursor_x = if (shape_cursor) screen.cursor.x else null,
};
run_iter_opts.applyBreakConfig(self.config.font_shaping_break);
var run_iter = self.font_shaper.runIterator(run_iter_opts);
var shaper_run: ?font.shape.TextRun = try run_iter.next(self.alloc);
var shaper_cells: ?[]const font.shape.Cell = null;
var shaper_cells_i: usize = 0;
const row_cells_all = row.cells(.all);
// If our viewport is wider than our cell contents buffer,
// we still only process cells up to the width of the buffer.
const row_cells = row_cells_all[0..@min(row_cells_all.len, self.cells.size.columns)];
for (row_cells, 0..) |*cell, x| {
// If this cell falls within our preedit range then we
// skip this because preedits are setup separately.
if (preedit_range) |range| preedit: {
// We're not on the preedit line, no actions necessary.
if (range.y != y) break :preedit;
// We're before the preedit range, no actions necessary.
if (x < range.x[0]) break :preedit;
// We're in the preedit range, skip this cell.
if (x <= range.x[1]) continue;
// After exiting the preedit range we need to catch
// the run position up because of the missed cells.
// In all other cases, no action is necessary.
if (x != range.x[1] + 1) break :preedit;
// Step the run iterator until we find a run that ends
// after the current cell, which will be the soonest run
// that might contain glyphs for our cell.
while (shaper_run) |run| {
if (run.offset + run.cells > x) break;
shaper_run = try run_iter.next(self.alloc);
shaper_cells = null;
shaper_cells_i = 0;
}
const run = shaper_run orelse break :preedit;
// If we haven't shaped this run, do so now.
shaper_cells = shaper_cells orelse
// Try to read the cells from the shaping cache if we can.
self.font_shaper_cache.get(run) orelse
cache: {
// Otherwise we have to shape them.
const cells = try self.font_shaper.shape(run);
// Try to cache them. If caching fails for any reason we
// continue because it is just a performance optimization,
// not a correctness issue.
self.font_shaper_cache.put(
self.alloc,
run,
cells,
) catch |err| {
log.warn(
"error caching font shaping results err={}",
.{err},
);
};
// The cells we get from direct shaping are always owned
// by the shaper and valid until the next shaping call so
// we can safely use them.
break :cache cells;
};
// Advance our index until we reach or pass
// our current x position in the shaper cells.
while (shaper_cells.?[shaper_cells_i].x < x) {
shaper_cells_i += 1;
}
}
const wide = cell.wide;
const style = row.style(cell);
const cell_pin: terminal.Pin = cell: {
var copy = row;
copy.x = @intCast(x);
break :cell copy;
};
// True if this cell is selected
const selected: bool = if (screen.selection) |sel|
sel.contains(screen, .{
.node = row.node,
.y = row.y,
.x = @intCast(
// Spacer tails should show the selection
// state of the wide cell they belong to.
if (wide == .spacer_tail)
x -| 1
else
x,
),
})
else
false;
// The `_style` suffixed values are the colors based on
// the cell style (SGR), before applying any additional
// configuration, inversions, selections, etc.
const bg_style = style.bg(cell, color_palette);
const fg_style = style.fg(.{
.default = self.foreground_color orelse self.default_foreground_color,
.palette = color_palette,
.bold = self.config.bold_color,
});
// The final background color for the cell.
const bg = bg: {
if (selected) {
// If we have an explicit selection background color
// specified int he config, use that
if (self.config.selection_background) |v| {
break :bg switch (v) {
.color => |color| color.toTerminalRGB(),
.@"cell-foreground" => if (style.flags.inverse) bg_style else fg_style,
.@"cell-background" => if (style.flags.inverse) fg_style else bg_style,
};
}
// If no configuration, then our selection background
// is our foreground color.
break :bg self.foreground_color orelse self.default_foreground_color;
}
// Not selected
break :bg if (style.flags.inverse != isCovering(cell.codepoint()))
// Two cases cause us to invert (use the fg color as the bg)
// - The "inverse" style flag.
// - A "covering" glyph; we use fg for bg in that
// case to help make sure that padding extension
// works correctly.
//
// If one of these is true (but not the other)
// then we use the fg style color for the bg.
fg_style
else
// Otherwise they cancel out.
bg_style;
};
const fg = fg: {
// Our happy-path non-selection background color
// is our style or our configured defaults.
const final_bg = bg_style orelse
self.background_color orelse
self.default_background_color;
// Whether we need to use the bg color as our fg color:
// - Cell is selected, inverted, and set to cell-foreground
// - Cell is selected, not inverted, and set to cell-background
// - Cell is inverted and not selected
if (selected) {
// Use the selection foreground if set
if (self.config.selection_foreground) |v| {
break :fg switch (v) {
.color => |color| color.toTerminalRGB(),
.@"cell-foreground" => if (style.flags.inverse) final_bg else fg_style,
.@"cell-background" => if (style.flags.inverse) fg_style else final_bg,
};
}
break :fg self.background_color orelse self.default_background_color;
}
break :fg if (style.flags.inverse)
final_bg
else
fg_style;
};
// Foreground alpha for this cell.
const alpha: u8 = if (style.flags.faint) 175 else 255;
// Set the cell's background color.
{
const rgb = bg orelse self.background_color orelse self.default_background_color;
// Determine our background alpha. If we have transparency configured
// then this is dynamic depending on some situations. This is all
// in an attempt to make transparency look the best for various
// situations. See inline comments.
const bg_alpha: u8 = bg_alpha: {
const default: u8 = 255;
// Cells that are selected should be fully opaque.
if (selected) break :bg_alpha default;
// Cells that are reversed should be fully opaque.
if (style.flags.inverse) break :bg_alpha default;
// Cells that have an explicit bg color should be fully opaque.
if (bg_style != null) break :bg_alpha default;
// Otherwise, we won't draw the bg for this cell,
// we'll let the already-drawn background color
// show through.
break :bg_alpha 0;
};
self.cells.bgCell(y, x).* = .{
rgb.r, rgb.g, rgb.b, bg_alpha,
};
}
// If the invisible flag is set on this cell then we
// don't need to render any foreground elements, so
// we just skip all glyphs with this x coordinate.
//
// NOTE: This behavior matches xterm. Some other terminal
// emulators, e.g. Alacritty, still render text decorations
// and only make the text itself invisible. The decision
// has been made here to match xterm's behavior for this.
if (style.flags.invisible) {
continue;
}
// Give links a single underline, unless they already have
// an underline, in which case use a double underline to
// distinguish them.
const underline: terminal.Attribute.Underline = if (link_match_set.contains(screen, cell_pin))
if (style.flags.underline == .single)
.double
else
.single
else
style.flags.underline;
// We draw underlines first so that they layer underneath text.
// This improves readability when a colored underline is used
// which intersects parts of the text (descenders).
if (underline != .none) self.addUnderline(
@intCast(x),
@intCast(y),
underline,
style.underlineColor(color_palette) orelse fg,
alpha,
) catch |err| {
log.warn(
"error adding underline to cell, will be invalid x={} y={}, err={}",
.{ x, y, err },
);
};
if (style.flags.overline) self.addOverline(@intCast(x), @intCast(y), fg, alpha) catch |err| {
log.warn(
"error adding overline to cell, will be invalid x={} y={}, err={}",
.{ x, y, err },
);
};
// If we're at or past the end of our shaper run then
// we need to get the next run from the run iterator.
if (shaper_cells != null and shaper_cells_i >= shaper_cells.?.len) {
shaper_run = try run_iter.next(self.alloc);
shaper_cells = null;
shaper_cells_i = 0;
}
if (shaper_run) |run| glyphs: {
// If we haven't shaped this run yet, do so.
shaper_cells = shaper_cells orelse
// Try to read the cells from the shaping cache if we can.
self.font_shaper_cache.get(run) orelse
cache: {
// Otherwise we have to shape them.
const cells = try self.font_shaper.shape(run);
// Try to cache them. If caching fails for any reason we
// continue because it is just a performance optimization,
// not a correctness issue.
self.font_shaper_cache.put(
self.alloc,
run,
cells,
) catch |err| {
log.warn(
"error caching font shaping results err={}",
.{err},
);
};
// The cells we get from direct shaping are always owned
// by the shaper and valid until the next shaping call so
// we can safely use them.
break :cache cells;
};
const cells = shaper_cells orelse break :glyphs;
// If there are no shaper cells for this run, ignore it.
// This can occur for runs of empty cells, and is fine.
if (cells.len == 0) break :glyphs;
// If we encounter a shaper cell to the left of the current
// cell then we have some problems. This logic relies on x
// position monotonically increasing.
assert(cells[shaper_cells_i].x >= x);
// NOTE: An assumption is made here that a single cell will never
// be present in more than one shaper run. If that assumption is
// violated, this logic breaks.
while (shaper_cells_i < cells.len and cells[shaper_cells_i].x == x) : ({
shaper_cells_i += 1;
}) {
self.addGlyph(
@intCast(x),
@intCast(y),
cell_pin,
cells[shaper_cells_i],
shaper_run.?,
fg,
alpha,
) catch |err| {
log.warn(
"error adding glyph to cell, will be invalid x={} y={}, err={}",
.{ x, y, err },
);
};
}
}
// Finally, draw a strikethrough if necessary.
if (style.flags.strikethrough) self.addStrikethrough(
@intCast(x),
@intCast(y),
fg,
alpha,
) catch |err| {
log.warn(
"error adding strikethrough to cell, will be invalid x={} y={}, err={}",
.{ x, y, err },
);
};
}
}
// Setup our cursor rendering information.
cursor: {
// By default, we don't handle cursor inversion on the shader.
self.cells.setCursor(null, null);
self.uniforms.cursor_pos = .{
std.math.maxInt(u16),
std.math.maxInt(u16),
};
// If we have preedit text, we don't setup a cursor
if (preedit != null) break :cursor;
// Prepare the cursor cell contents.
const style = cursor_style_ orelse break :cursor;
const cursor_color = cursor_color: {
// If an explicit cursor color was set by OSC 12, use that.
if (self.cursor_color) |v| break :cursor_color v;
// Use our configured color if specified
if (self.default_cursor_color) |v| switch (v) {
.color => |color| break :cursor_color color.toTerminalRGB(),
inline .@"cell-foreground",
.@"cell-background",
=> |_, tag| {
const sty = screen.cursor.page_pin.style(screen.cursor.page_cell);
const fg_style = sty.fg(.{
.default = self.foreground_color orelse self.default_foreground_color,
.palette = color_palette,
.bold = self.config.bold_color,
});
const bg_style = sty.bg(
screen.cursor.page_cell,
color_palette,
) orelse self.background_color orelse self.default_background_color;
break :cursor_color switch (tag) {
.color => unreachable,
.@"cell-foreground" => if (sty.flags.inverse) bg_style else fg_style,
.@"cell-background" => if (sty.flags.inverse) fg_style else bg_style,
};
},
};
break :cursor_color self.foreground_color orelse self.default_foreground_color;
};
self.addCursor(screen, style, cursor_color);
// If the cursor is visible then we set our uniforms.
if (style == .block and screen.viewportIsBottom()) {
const wide = screen.cursor.page_cell.wide;
self.uniforms.cursor_pos = .{
// If we are a spacer tail of a wide cell, our cursor needs
// to move back one cell. The saturate is to ensure we don't
// overflow but this shouldn't happen with well-formed input.
switch (wide) {
.narrow, .spacer_head, .wide => screen.cursor.x,
.spacer_tail => screen.cursor.x -| 1,
},
screen.cursor.y,
};
self.uniforms.bools.cursor_wide = switch (wide) {
.narrow, .spacer_head => false,
.wide, .spacer_tail => true,
};
const uniform_color = if (self.config.cursor_text) |txt| blk: {
// If cursor-text is set, then compute the correct color.
// Otherwise, use the background color.
if (txt == .color) {
// Use the color set by cursor-text, if any.
break :blk txt.color.toTerminalRGB();
}
const sty = screen.cursor.page_pin.style(screen.cursor.page_cell);
const fg_style = sty.fg(.{
.default = self.foreground_color orelse self.default_foreground_color,
.palette = color_palette,
.bold = self.config.bold_color,
});
const bg_style = sty.bg(screen.cursor.page_cell, color_palette) orelse self.background_color orelse self.default_background_color;
break :blk switch (txt) {
// If the cell is reversed, use the opposite cell color instead.
.@"cell-foreground" => if (sty.flags.inverse) bg_style else fg_style,
.@"cell-background" => if (sty.flags.inverse) fg_style else bg_style,
else => unreachable,
};
} else self.background_color orelse self.default_background_color;
self.uniforms.cursor_color = .{
uniform_color.r,
uniform_color.g,
uniform_color.b,
255,
};
}
}
// Setup our preedit text.
if (preedit) |preedit_v| {
const range = preedit_range.?;
var x = range.x[0];
for (preedit_v.codepoints[range.cp_offset..]) |cp| {
self.addPreeditCell(cp, .{ .x = x, .y = range.y }) catch |err| {
log.warn("error building preedit cell, will be invalid x={} y={}, err={}", .{
x,
range.y,
err,
});
};
x += if (cp.wide) 2 else 1;
}
}
// Update that our cells rebuilt
self.cells_rebuilt = true;
// Log some things
// log.debug("rebuildCells complete cached_runs={}", .{
// self.font_shaper_cache.count(),
// });
}
/// Add an underline decoration to the specified cell
fn addUnderline(
self: *Self,
x: terminal.size.CellCountInt,
y: terminal.size.CellCountInt,
style: terminal.Attribute.Underline,
color: terminal.color.RGB,
alpha: u8,
) !void {
const sprite: font.Sprite = switch (style) {
.none => unreachable,
.single => .underline,
.double => .underline_double,
.dotted => .underline_dotted,
.dashed => .underline_dashed,
.curly => .underline_curly,
};
const render = try self.font_grid.renderGlyph(
self.alloc,
font.sprite_index,
@intFromEnum(sprite),
.{
.cell_width = 1,
.grid_metrics = self.grid_metrics,
},
);
try self.cells.add(self.alloc, .underline, .{
.atlas = .grayscale,
.grid_pos = .{ @intCast(x), @intCast(y) },
.color = .{ color.r, color.g, color.b, alpha },
.glyph_pos = .{ render.glyph.atlas_x, render.glyph.atlas_y },
.glyph_size = .{ render.glyph.width, render.glyph.height },
.bearings = .{
@intCast(render.glyph.offset_x),
@intCast(render.glyph.offset_y),
},
});
}
/// Add a overline decoration to the specified cell
fn addOverline(
self: *Self,
x: terminal.size.CellCountInt,
y: terminal.size.CellCountInt,
color: terminal.color.RGB,
alpha: u8,
) !void {
const render = try self.font_grid.renderGlyph(
self.alloc,
font.sprite_index,
@intFromEnum(font.Sprite.overline),
.{
.cell_width = 1,
.grid_metrics = self.grid_metrics,
},
);
try self.cells.add(self.alloc, .overline, .{
.atlas = .grayscale,
.grid_pos = .{ @intCast(x), @intCast(y) },
.color = .{ color.r, color.g, color.b, alpha },
.glyph_pos = .{ render.glyph.atlas_x, render.glyph.atlas_y },
.glyph_size = .{ render.glyph.width, render.glyph.height },
.bearings = .{
@intCast(render.glyph.offset_x),
@intCast(render.glyph.offset_y),
},
});
}
/// Add a strikethrough decoration to the specified cell
fn addStrikethrough(
self: *Self,
x: terminal.size.CellCountInt,
y: terminal.size.CellCountInt,
color: terminal.color.RGB,
alpha: u8,
) !void {
const render = try self.font_grid.renderGlyph(
self.alloc,
font.sprite_index,
@intFromEnum(font.Sprite.strikethrough),
.{
.cell_width = 1,
.grid_metrics = self.grid_metrics,
},
);
try self.cells.add(self.alloc, .strikethrough, .{
.atlas = .grayscale,
.grid_pos = .{ @intCast(x), @intCast(y) },
.color = .{ color.r, color.g, color.b, alpha },
.glyph_pos = .{ render.glyph.atlas_x, render.glyph.atlas_y },
.glyph_size = .{ render.glyph.width, render.glyph.height },
.bearings = .{
@intCast(render.glyph.offset_x),
@intCast(render.glyph.offset_y),
},
});
}
// Add a glyph to the specified cell.
fn addGlyph(
self: *Self,
x: terminal.size.CellCountInt,
y: terminal.size.CellCountInt,
cell_pin: terminal.Pin,
shaper_cell: font.shape.Cell,
shaper_run: font.shape.TextRun,
color: terminal.color.RGB,
alpha: u8,
) !void {
const rac = cell_pin.rowAndCell();
const cell = rac.cell;
const cp = cell.codepoint();
// Render
const render = try self.font_grid.renderGlyph(
self.alloc,
shaper_run.font_index,
shaper_cell.glyph_index,
.{
.grid_metrics = self.grid_metrics,
.thicken = self.config.font_thicken,
.thicken_strength = self.config.font_thicken_strength,
.cell_width = cell.gridWidth(),
.constraint = getConstraint(cp),
.constraint_width = constraintWidth(cell_pin),
},
);
// If the glyph is 0 width or height, it will be invisible
// when drawn, so don't bother adding it to the buffer.
if (render.glyph.width == 0 or render.glyph.height == 0) {
return;
}
try self.cells.add(self.alloc, .text, .{
.atlas = switch (render.presentation) {
.emoji => .color,
.text => .grayscale,
},
.bools = .{ .no_min_contrast = noMinContrast(cp) },
.grid_pos = .{ @intCast(x), @intCast(y) },
.color = .{ color.r, color.g, color.b, alpha },
.glyph_pos = .{ render.glyph.atlas_x, render.glyph.atlas_y },
.glyph_size = .{ render.glyph.width, render.glyph.height },
.bearings = .{
@intCast(render.glyph.offset_x + shaper_cell.x_offset),
@intCast(render.glyph.offset_y + shaper_cell.y_offset),
},
});
}
fn addCursor(
self: *Self,
screen: *terminal.Screen,
cursor_style: renderer.CursorStyle,
cursor_color: terminal.color.RGB,
) void {
// Add the cursor. We render the cursor over the wide character if
// we're on the wide character tail.
const wide, const x = cell: {
// The cursor goes over the screen cursor position.
const cell = screen.cursor.page_cell;
if (cell.wide != .spacer_tail or screen.cursor.x == 0)
break :cell .{ cell.wide == .wide, screen.cursor.x };
// If we're part of a wide character, we move the cursor back to
// the actual character.
const prev_cell = screen.cursorCellLeft(1);
break :cell .{ prev_cell.wide == .wide, screen.cursor.x - 1 };
};
const alpha: u8 = if (!self.focused) 255 else alpha: {
const alpha = 255 * self.config.cursor_opacity;
break :alpha @intFromFloat(@ceil(alpha));
};
const render = switch (cursor_style) {
.block,
.block_hollow,
.bar,
.underline,
=> render: {
const sprite: font.Sprite = switch (cursor_style) {
.block => .cursor_rect,
.block_hollow => .cursor_hollow_rect,
.bar => .cursor_bar,
.underline => .cursor_underline,
.lock => unreachable,
};
break :render self.font_grid.renderGlyph(
self.alloc,
font.sprite_index,
@intFromEnum(sprite),
.{
.cell_width = if (wide) 2 else 1,
.grid_metrics = self.grid_metrics,
},
) catch |err| {
log.warn("error rendering cursor glyph err={}", .{err});
return;
};
},
.lock => self.font_grid.renderCodepoint(
self.alloc,
0xF023, // lock symbol
.regular,
.text,
.{
.cell_width = if (wide) 2 else 1,
.grid_metrics = self.grid_metrics,
},
) catch |err| {
log.warn("error rendering cursor glyph err={}", .{err});
return;
} orelse {
// This should never happen because we embed nerd
// fonts so we just log and return instead of fallback.
log.warn("failed to find lock symbol for cursor codepoint=0xF023", .{});
return;
},
};
self.cells.setCursor(.{
.atlas = .grayscale,
.bools = .{ .is_cursor_glyph = true },
.grid_pos = .{ x, screen.cursor.y },
.color = .{ cursor_color.r, cursor_color.g, cursor_color.b, alpha },
.glyph_pos = .{ render.glyph.atlas_x, render.glyph.atlas_y },
.glyph_size = .{ render.glyph.width, render.glyph.height },
.bearings = .{
@intCast(render.glyph.offset_x),
@intCast(render.glyph.offset_y),
},
}, cursor_style);
}
fn addPreeditCell(
self: *Self,
cp: renderer.State.Preedit.Codepoint,
coord: terminal.Coordinate,
) !void {
// Preedit is rendered inverted
const bg = self.foreground_color orelse self.default_foreground_color;
const fg = self.background_color orelse self.default_background_color;
// Render the glyph for our preedit text
const render_ = self.font_grid.renderCodepoint(
self.alloc,
@intCast(cp.codepoint),
.regular,
.text,
.{ .grid_metrics = self.grid_metrics },
) catch |err| {
log.warn("error rendering preedit glyph err={}", .{err});
return;
};
const render = render_ orelse {
log.warn("failed to find font for preedit codepoint={X}", .{cp.codepoint});
return;
};
// Add our opaque background cell
self.cells.bgCell(coord.y, coord.x).* = .{
bg.r, bg.g, bg.b, 255,
};
if (cp.wide and coord.x < self.cells.size.columns - 1) {
self.cells.bgCell(coord.y, coord.x + 1).* = .{
bg.r, bg.g, bg.b, 255,
};
}
// Add our text
try self.cells.add(self.alloc, .text, .{
.atlas = .grayscale,
.grid_pos = .{ @intCast(coord.x), @intCast(coord.y) },
.color = .{ fg.r, fg.g, fg.b, 255 },
.glyph_pos = .{ render.glyph.atlas_x, render.glyph.atlas_y },
.glyph_size = .{ render.glyph.width, render.glyph.height },
.bearings = .{
@intCast(render.glyph.offset_x),
@intCast(render.glyph.offset_y),
},
});
}
/// Sync the atlas data to the given texture. This copies the bytes
/// associated with the atlas to the given texture. If the atlas no
/// longer fits into the texture, the texture will be resized.
fn syncAtlasTexture(
self: *const Self,
atlas: *const font.Atlas,
texture: *Texture,
) !void {
if (atlas.size > texture.width) {
// Free our old texture
texture.*.deinit();
// Reallocate
texture.* = try self.api.initAtlasTexture(atlas);
}
try texture.replaceRegion(0, 0, atlas.size, atlas.size, atlas.data);
}
};
}