mirror of
https://github.com/ghostty-org/ghostty.git
synced 2025-07-22 11:46:11 +03:00
503 lines
16 KiB
Zig
503 lines
16 KiB
Zig
//! This exposes primitives to draw 2D graphics and export the graphic to
|
|
//! a font atlas.
|
|
const std = @import("std");
|
|
const assert = std.debug.assert;
|
|
const Allocator = std.mem.Allocator;
|
|
const js = @import("zig-js");
|
|
const pixman = @import("pixman");
|
|
const font = @import("../main.zig");
|
|
|
|
pub const Point = struct {
|
|
x: i32,
|
|
y: i32,
|
|
};
|
|
|
|
pub const Line = struct {
|
|
p1: Point,
|
|
p2: Point,
|
|
};
|
|
|
|
pub const Box = struct {
|
|
x1: i32,
|
|
y1: i32,
|
|
x2: i32,
|
|
y2: i32,
|
|
|
|
pub fn rect(self: Box) Rect {
|
|
const tl_x = @min(self.x1, self.x2);
|
|
const tl_y = @min(self.y1, self.y2);
|
|
const br_x = @max(self.x1, self.x2);
|
|
const br_y = @max(self.y1, self.y2);
|
|
return .{
|
|
.x = tl_x,
|
|
.y = tl_y,
|
|
.width = @intCast(br_x - tl_x),
|
|
.height = @intCast(br_y - tl_y),
|
|
};
|
|
}
|
|
};
|
|
|
|
pub const Rect = struct {
|
|
x: i32,
|
|
y: i32,
|
|
width: u32,
|
|
height: u32,
|
|
};
|
|
|
|
pub const Triangle = struct {
|
|
p1: Point,
|
|
p2: Point,
|
|
p3: Point,
|
|
};
|
|
|
|
pub const Trapezoid = struct {
|
|
top: i32,
|
|
bottom: i32,
|
|
left: Line,
|
|
right: Line,
|
|
};
|
|
|
|
/// We only use alpha-channel so a pixel can only be "on" or "off".
|
|
pub const Color = enum(u8) {
|
|
const CSS_BUF_MAX = 24;
|
|
|
|
on = 255,
|
|
off = 0,
|
|
_,
|
|
|
|
fn pixmanColor(self: Color) pixman.Color {
|
|
// pixman uses u16 for color while our color value is u8 so we
|
|
// scale it up proportionally.
|
|
const max = @as(f32, @floatFromInt(std.math.maxInt(u8)));
|
|
const max_u16 = @as(f32, @floatFromInt(std.math.maxInt(u16)));
|
|
const unscaled = @as(f32, @floatFromInt(@intFromEnum(self)));
|
|
const scaled = @as(u16, @intFromFloat((unscaled * max_u16) / max));
|
|
return .{ .red = 0, .green = 0, .blue = 0, .alpha = scaled };
|
|
}
|
|
|
|
fn cssColor(self: Color, buf: []u8) ![]u8 {
|
|
return try std.fmt.bufPrint(buf, "rgba(0, 0, 0, {:.2})", .{
|
|
@as(f32, @floatFromInt(@intFromEnum(self))) / 255,
|
|
});
|
|
}
|
|
};
|
|
|
|
/// Composition operations that are supported.
|
|
pub const CompositionOp = enum {
|
|
// Note: more can be added here as needed.
|
|
|
|
source_out,
|
|
|
|
fn pixmanOp(self: CompositionOp) pixman.Op {
|
|
return switch (self) {
|
|
.source_out => .out,
|
|
};
|
|
}
|
|
|
|
fn jsOp(self: CompositionOp) js.String {
|
|
return switch (self) {
|
|
.source_out => js.string("source-out"),
|
|
};
|
|
}
|
|
};
|
|
|
|
pub const Canvas = switch (font.options.backend) {
|
|
.web_canvas => WebCanvasImpl,
|
|
else => PixmanImpl,
|
|
};
|
|
|
|
const WebCanvasImpl = struct {
|
|
/// The canvas element that is our final image.
|
|
canvas: js.Object,
|
|
|
|
/// Store the dimensions for easy access later.
|
|
width: u32,
|
|
height: u32,
|
|
|
|
pub fn init(alloc: Allocator, width: u32, height: u32) !WebCanvasImpl {
|
|
_ = alloc;
|
|
|
|
// Create our canvas that we're going to continue to reuse.
|
|
const doc = try js.global.get(js.Object, "document");
|
|
defer doc.deinit();
|
|
const canvas = try doc.call(js.Object, "createElement", .{js.string("canvas")});
|
|
errdefer canvas.deinit();
|
|
|
|
// Set our dimensions.
|
|
try canvas.set("width", width);
|
|
try canvas.set("height", height);
|
|
|
|
return WebCanvasImpl{
|
|
.canvas = canvas,
|
|
.width = width,
|
|
.height = height,
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: *WebCanvasImpl, alloc: Allocator) void {
|
|
_ = alloc;
|
|
self.canvas.deinit();
|
|
self.* = undefined;
|
|
}
|
|
|
|
pub fn pixel(self: *WebCanvasImpl, x: u32, y: u32, color: Color) void {
|
|
const ctx = self.context(color) catch return;
|
|
defer ctx.deinit();
|
|
ctx.call(void, "fillRect", .{ x, y, 1, 1 }) catch return;
|
|
}
|
|
|
|
pub fn rect(self: *WebCanvasImpl, v: Rect, color: Color) void {
|
|
const ctx = self.context(color) catch return;
|
|
defer ctx.deinit();
|
|
ctx.call(void, "fillRect", .{
|
|
@as(u32, @intCast(v.x)),
|
|
@as(u32, @intCast(v.y)),
|
|
v.width,
|
|
v.height,
|
|
}) catch return;
|
|
}
|
|
|
|
pub fn trapezoid(self: *WebCanvasImpl, t: Trapezoid) void {
|
|
const ctx = self.context(.on) catch return;
|
|
defer ctx.deinit();
|
|
|
|
ctx.call(void, "beginPath", .{}) catch return;
|
|
ctx.call(void, "moveTo", .{ t.left.p1.x, t.left.p1.y }) catch return;
|
|
ctx.call(void, "lineTo", .{ t.right.p1.x, t.right.p1.y }) catch return;
|
|
ctx.call(void, "lineTo", .{ t.right.p2.x, t.right.p2.y }) catch return;
|
|
ctx.call(void, "lineTo", .{ t.left.p2.x, t.left.p2.y }) catch return;
|
|
ctx.call(void, "fill", .{}) catch return;
|
|
}
|
|
|
|
pub fn triangle(self: *WebCanvasImpl, t: Triangle, color: Color) void {
|
|
const ctx = self.context(color) catch return;
|
|
defer ctx.deinit();
|
|
|
|
ctx.call(void, "beginPath", .{}) catch return;
|
|
ctx.call(void, "moveTo", .{ t.p1.x, t.p1.y }) catch return;
|
|
ctx.call(void, "lineTo", .{ t.p2.x, t.p2.y }) catch return;
|
|
ctx.call(void, "lineTo", .{ t.p3.x, t.p3.y }) catch return;
|
|
ctx.call(void, "fill", .{}) catch return;
|
|
}
|
|
|
|
pub fn composite(
|
|
self: *WebCanvasImpl,
|
|
op: CompositionOp,
|
|
src: *const WebCanvasImpl,
|
|
dest: Rect,
|
|
) void {
|
|
const ctx = self.context(Color.on) catch return;
|
|
defer ctx.deinit();
|
|
|
|
// Set our compositing operation
|
|
ctx.set("globalCompositeOperation", op.jsOp()) catch return;
|
|
|
|
// Composite
|
|
ctx.call(void, "drawImage", .{
|
|
src.canvas,
|
|
dest.x,
|
|
dest.y,
|
|
dest.width,
|
|
dest.height,
|
|
}) catch return;
|
|
}
|
|
|
|
fn context(self: WebCanvasImpl, fill: ?Color) !js.Object {
|
|
const ctx = try self.canvas.call(js.Object, "getContext", .{js.string("2d")});
|
|
errdefer ctx.deinit();
|
|
|
|
// Reset our composite operation
|
|
try ctx.set("globalCompositeOperation", js.string("source-over"));
|
|
|
|
// Set our fill color
|
|
if (fill) |c| {
|
|
var buf: [Color.CSS_BUF_MAX]u8 = undefined;
|
|
const color = try c.cssColor(&buf);
|
|
try ctx.set("fillStyle", js.string(color));
|
|
}
|
|
|
|
return ctx;
|
|
}
|
|
|
|
pub fn writeAtlas(self: *WebCanvasImpl, alloc: Allocator, atlas: *font.Atlas) !font.Atlas.Region {
|
|
assert(atlas.format == .grayscale);
|
|
|
|
// Reload our context since we resized the canvas
|
|
const ctx = try self.context(null);
|
|
defer ctx.deinit();
|
|
|
|
// Set our width/height. Set to vars in case we just query the canvas later.
|
|
const width = self.width;
|
|
const height = self.height;
|
|
|
|
// Read the image data and get it into a []u8 on our side
|
|
const bitmap: []u8 = bitmap: {
|
|
// Read the raw bitmap data and get the "data" value which is a
|
|
// Uint8ClampedArray.
|
|
const data = try ctx.call(js.Object, "getImageData", .{ 0, 0, width, height });
|
|
defer data.deinit();
|
|
const src_array = try data.get(js.Object, "data");
|
|
defer src_array.deinit();
|
|
|
|
// Allocate our local memory to copy the data to.
|
|
const len = try src_array.get(u32, "length");
|
|
const bitmap = try alloc.alloc(u8, @intCast(len));
|
|
errdefer alloc.free(bitmap);
|
|
|
|
// Create our target Uint8Array that we can use to copy from src.
|
|
const mem_array = mem_array: {
|
|
// Get our runtime memory
|
|
const mem = try js.runtime.get(js.Object, "memory");
|
|
defer mem.deinit();
|
|
const buf = try mem.get(js.Object, "buffer");
|
|
defer buf.deinit();
|
|
|
|
// Construct our array to peer into our memory
|
|
const Uint8Array = try js.global.get(js.Object, "Uint8Array");
|
|
defer Uint8Array.deinit();
|
|
const mem_array = try Uint8Array.new(.{ buf, bitmap.ptr });
|
|
errdefer mem_array.deinit();
|
|
|
|
break :mem_array mem_array;
|
|
};
|
|
defer mem_array.deinit();
|
|
|
|
// Copy
|
|
try mem_array.call(void, "set", .{src_array});
|
|
|
|
break :bitmap bitmap;
|
|
};
|
|
errdefer alloc.free(bitmap);
|
|
|
|
// Convert the format of the bitmap to A8 since the raw canvas data
|
|
// is in RGBA.
|
|
// NOTE(mitchellh): do we need a 1px buffer to avoid artifacts?
|
|
const bitmap_a8: []u8 = a8: {
|
|
assert(@mod(bitmap.len, 4) == 0);
|
|
assert(bitmap.len == width * height * 4);
|
|
var bitmap_a8 = try alloc.alloc(u8, bitmap.len / 4);
|
|
errdefer alloc.free(bitmap_a8);
|
|
var i: usize = 0;
|
|
while (i < bitmap_a8.len) : (i += 1) {
|
|
bitmap_a8[i] = bitmap[(i * 4) + 3];
|
|
}
|
|
|
|
break :a8 bitmap_a8;
|
|
};
|
|
defer alloc.free(bitmap_a8);
|
|
|
|
// Write the glyph information into the atlas
|
|
const region = try atlas.reserve(alloc, width, height);
|
|
if (region.width > 0 and region.height > 0) {
|
|
assert(region.width == width);
|
|
assert(region.height == height);
|
|
atlas.set(region, bitmap_a8);
|
|
}
|
|
|
|
return region;
|
|
}
|
|
};
|
|
|
|
const PixmanImpl = struct {
|
|
/// The underlying image.
|
|
image: *pixman.Image,
|
|
|
|
/// The raw data buffer.
|
|
data: []u32,
|
|
|
|
pub fn init(alloc: Allocator, width: u32, height: u32) !Canvas {
|
|
// Determine the config for our image buffer. The images we draw
|
|
// for boxes are always 8bpp
|
|
const format: pixman.FormatCode = .a8;
|
|
const stride = format.strideForWidth(width);
|
|
const len = @as(usize, @intCast(stride * @as(c_int, @intCast(height))));
|
|
|
|
// Allocate our buffer. pixman uses []u32 so we divide our length
|
|
// by 4 since u32 / u8 = 4.
|
|
const data = try alloc.alloc(u32, len / 4);
|
|
errdefer alloc.free(data);
|
|
@memset(data, 0);
|
|
|
|
// Create the image we'll draw to
|
|
const img = try pixman.Image.createBitsNoClear(
|
|
format,
|
|
@intCast(width),
|
|
@intCast(height),
|
|
data.ptr,
|
|
stride,
|
|
);
|
|
errdefer _ = img.unref();
|
|
|
|
return Canvas{
|
|
.image = img,
|
|
.data = data,
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: *Canvas, alloc: Allocator) void {
|
|
alloc.free(self.data);
|
|
_ = self.image.unref();
|
|
self.* = undefined;
|
|
}
|
|
|
|
/// Write the data in this drawing to the atlas.
|
|
pub fn writeAtlas(self: *Canvas, alloc: Allocator, atlas: *font.Atlas) !font.Atlas.Region {
|
|
assert(atlas.format == .grayscale);
|
|
|
|
const width = @as(u32, @intCast(self.image.getWidth()));
|
|
const height = @as(u32, @intCast(self.image.getHeight()));
|
|
|
|
// Allocate our texture atlas region
|
|
const region = region: {
|
|
// We need to add a 1px padding to the font so that we don't
|
|
// get fuzzy issues when blending textures.
|
|
const padding = 1;
|
|
|
|
// Get the full padded region
|
|
var region = try atlas.reserve(
|
|
alloc,
|
|
width + (padding * 2), // * 2 because left+right
|
|
height + (padding * 2), // * 2 because top+bottom
|
|
);
|
|
|
|
// Modify the region so that we remove the padding so that
|
|
// we write to the non-zero location. The data in an Altlas
|
|
// is always initialized to zero (Atlas.clear) so we don't
|
|
// need to worry about zero-ing that.
|
|
region.x += padding;
|
|
region.y += padding;
|
|
region.width -= padding * 2;
|
|
region.height -= padding * 2;
|
|
break :region region;
|
|
};
|
|
|
|
if (region.width > 0 and region.height > 0) {
|
|
const depth = atlas.format.depth();
|
|
|
|
// Convert our []u32 to []u8 since we use 8bpp formats
|
|
const stride = self.image.getStride();
|
|
const data = @as([*]u8, @ptrCast(self.data.ptr))[0 .. self.data.len * 4];
|
|
|
|
// We can avoid a buffer copy if our atlas width and bitmap
|
|
// width match and the bitmap pitch is just the width (meaning
|
|
// the data is tightly packed).
|
|
const needs_copy = !(width * depth == stride);
|
|
|
|
// If we need to copy the data, we copy it into a temporary buffer.
|
|
const buffer = if (needs_copy) buffer: {
|
|
const temp = try alloc.alloc(u8, width * height * depth);
|
|
var dst_ptr = temp;
|
|
var src_ptr = data.ptr;
|
|
var i: usize = 0;
|
|
while (i < height) : (i += 1) {
|
|
@memcpy(dst_ptr[0 .. width * depth], src_ptr[0 .. width * depth]);
|
|
dst_ptr = dst_ptr[width * depth ..];
|
|
src_ptr += @as(usize, @intCast(stride));
|
|
}
|
|
break :buffer temp;
|
|
} else data[0..(width * height * depth)];
|
|
defer if (buffer.ptr != data.ptr) alloc.free(buffer);
|
|
|
|
// Write the glyph information into the atlas
|
|
assert(region.width == width);
|
|
assert(region.height == height);
|
|
atlas.set(region, buffer);
|
|
}
|
|
|
|
return region;
|
|
}
|
|
|
|
/// Draw and fill a single pixel
|
|
pub fn pixel(self: *Canvas, x: u32, y: u32, color: Color) void {
|
|
const boxes = &[_]pixman.Box32{
|
|
.{
|
|
.x1 = @intCast(x),
|
|
.y1 = @intCast(y),
|
|
.x2 = @intCast(x + 1),
|
|
.y2 = @intCast(y + 1),
|
|
},
|
|
};
|
|
|
|
self.image.fillBoxes(.src, color.pixmanColor(), boxes) catch {};
|
|
}
|
|
|
|
/// Draw and fill a rectangle. This is the main primitive for drawing
|
|
/// lines as well (which are just generally skinny rectangles...)
|
|
pub fn rect(self: *Canvas, v: Rect, color: Color) void {
|
|
const boxes = &[_]pixman.Box32{
|
|
.{
|
|
.x1 = @intCast(v.x),
|
|
.y1 = @intCast(v.y),
|
|
.x2 = @intCast(v.x + @as(i32, @intCast(v.width))),
|
|
.y2 = @intCast(v.y + @as(i32, @intCast(v.height))),
|
|
},
|
|
};
|
|
|
|
assert(boxes[0].x1 >= 0);
|
|
assert(boxes[0].y1 >= 0);
|
|
assert(boxes[0].x2 <= @as(i32, @intCast(self.image.getWidth())));
|
|
assert(boxes[0].y2 <= @as(i32, @intCast(self.image.getHeight())));
|
|
self.image.fillBoxes(.src, color.pixmanColor(), boxes) catch {};
|
|
}
|
|
|
|
/// Draw and fill a trapezoid.
|
|
pub fn trapezoid(self: *Canvas, t: Trapezoid) void {
|
|
self.image.rasterizeTrapezoid(.{
|
|
.top = pixman.Fixed.init(t.top),
|
|
.bottom = pixman.Fixed.init(t.bottom),
|
|
.left = .{
|
|
.p1 = .{
|
|
.x = pixman.Fixed.init(t.left.p1.x),
|
|
.y = pixman.Fixed.init(t.left.p1.y),
|
|
},
|
|
.p2 = .{
|
|
.x = pixman.Fixed.init(t.left.p2.x),
|
|
.y = pixman.Fixed.init(t.left.p2.y),
|
|
},
|
|
},
|
|
.right = .{
|
|
.p1 = .{
|
|
.x = pixman.Fixed.init(t.right.p1.x),
|
|
.y = pixman.Fixed.init(t.right.p1.y),
|
|
},
|
|
.p2 = .{
|
|
.x = pixman.Fixed.init(t.right.p2.x),
|
|
.y = pixman.Fixed.init(t.right.p2.y),
|
|
},
|
|
},
|
|
}, 0, 0);
|
|
}
|
|
|
|
/// Draw and fill a triangle.
|
|
pub fn triangle(self: *Canvas, t: Triangle, color: Color) void {
|
|
const tris = &[_]pixman.Triangle{
|
|
.{
|
|
.p1 = .{ .x = pixman.Fixed.init(t.p1.x), .y = pixman.Fixed.init(t.p1.y) },
|
|
.p2 = .{ .x = pixman.Fixed.init(t.p2.x), .y = pixman.Fixed.init(t.p2.y) },
|
|
.p3 = .{ .x = pixman.Fixed.init(t.p3.x), .y = pixman.Fixed.init(t.p3.y) },
|
|
},
|
|
};
|
|
|
|
const src = pixman.Image.createSolidFill(color.pixmanColor()) catch return;
|
|
defer _ = src.unref();
|
|
self.image.compositeTriangles(.over, src, .a8, 0, 0, 0, 0, tris);
|
|
}
|
|
|
|
/// Composite one image on another.
|
|
pub fn composite(self: *Canvas, op: CompositionOp, src: *const Canvas, dest: Rect) void {
|
|
self.image.composite(
|
|
op.pixmanOp(),
|
|
src.image,
|
|
null,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
@intCast(dest.x),
|
|
@intCast(dest.y),
|
|
@intCast(dest.width),
|
|
@intCast(dest.height),
|
|
);
|
|
}
|
|
};
|