#include using namespace metal; enum Padding : uint8_t { EXTEND_LEFT = 1u, EXTEND_RIGHT = 2u, EXTEND_UP = 4u, EXTEND_DOWN = 8u, }; struct Uniforms { float4x4 projection_matrix; float2 cell_size; ushort2 grid_size; float4 grid_padding; uint8_t padding_extend; float min_contrast; ushort2 cursor_pos; uchar4 cursor_color; }; //------------------------------------------------------------------- // Color Functions //------------------------------------------------------------------- #pragma mark - Colors // https://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef float luminance_component(float c) { if (c <= 0.03928f) { return c / 12.92f; } else { return pow((c + 0.055f) / 1.055f, 2.4f); } } float relative_luminance(float3 color) { color.r = luminance_component(color.r); color.g = luminance_component(color.g); color.b = luminance_component(color.b); float3 weights = float3(0.2126f, 0.7152f, 0.0722f); return dot(color, weights); } // https://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef float contrast_ratio(float3 color1, float3 color2) { float l1 = relative_luminance(color1); float l2 = relative_luminance(color2); return (max(l1, l2) + 0.05f) / (min(l1, l2) + 0.05f); } // Return the fg if the contrast ratio is greater than min, otherwise // return a color that satisfies the contrast ratio. Currently, the color // is always white or black, whichever has the highest contrast ratio. float4 contrasted_color(float min, float4 fg, float4 bg) { float3 fg_premult = fg.rgb * fg.a; float3 bg_premult = bg.rgb * bg.a; float ratio = contrast_ratio(fg_premult, bg_premult); if (ratio < min) { float white_ratio = contrast_ratio(float3(1.0f), bg_premult); float black_ratio = contrast_ratio(float3(0.0f), bg_premult); if (white_ratio > black_ratio) { return float4(1.0f); } else { return float4(0.0f, 0.0f, 0.0f, 1.0f); } } return fg; } //------------------------------------------------------------------- // Full Screen Vertex Shader //------------------------------------------------------------------- #pragma mark - Full Screen Vertex Shader struct FullScreenVertexOut { float4 position [[position]]; }; vertex FullScreenVertexOut full_screen_vertex( uint vid [[vertex_id]] ) { FullScreenVertexOut out; float4 position; position.x = (vid == 2) ? 3.0 : -1.0; position.y = (vid == 0) ? -3.0 : 1.0; position.zw = 1.0; // Single triangle is clipped to viewport. // // X <- vid == 0: (-1, -3) // |\ // | \ // | \ // |###\ // |#+# \ `+` is (0, 0). `#`s are viewport area. // |### \ // X------X <- vid == 2: (3, 1) // ^ // vid == 1: (-1, 1) out.position = position; return out; } //------------------------------------------------------------------- // Cell Background Shader //------------------------------------------------------------------- #pragma mark - Cell BG Shader fragment float4 cell_bg_fragment( FullScreenVertexOut in [[stage_in]], constant uchar4 *cells [[buffer(0)]], constant Uniforms& uniforms [[buffer(1)]] ) { int2 grid_pos = int2(floor((in.position.xy - uniforms.grid_padding.wx) / uniforms.cell_size)); // Clamp x position, extends edge bg colors in to padding on sides. if (grid_pos.x < 0) { if (uniforms.padding_extend & EXTEND_LEFT) { grid_pos.x = 0; } else { return float4(0.0); } } else if (grid_pos.x > uniforms.grid_size.x - 1) { if (uniforms.padding_extend & EXTEND_RIGHT) { grid_pos.x = uniforms.grid_size.x - 1; } else { return float4(0.0); } } // Clamp y position if we should extend, otherwise discard if out of bounds. if (grid_pos.y < 0) { if (uniforms.padding_extend & EXTEND_UP) { grid_pos.y = 0; } else { return float4(0.0); } } else if (grid_pos.y > uniforms.grid_size.y - 1) { if (uniforms.padding_extend & EXTEND_DOWN) { grid_pos.y = uniforms.grid_size.y - 1; } else { return float4(0.0); } } // Retrieve color for cell and return it. return float4(cells[grid_pos.y * uniforms.grid_size.x + grid_pos.x]) / 255.0; } //------------------------------------------------------------------- // Cell Text Shader //------------------------------------------------------------------- #pragma mark - Cell Text Shader // The possible modes that a cell fg entry can take. enum CellTextMode : uint8_t { MODE_TEXT = 1u, MODE_TEXT_CONSTRAINED = 2u, MODE_TEXT_COLOR = 3u, MODE_TEXT_CURSOR = 4u, MODE_TEXT_POWERLINE = 5u, }; struct CellTextVertexIn { // The position of the glyph in the texture (x, y) uint2 glyph_pos [[attribute(0)]]; // The size of the glyph in the texture (w, h) uint2 glyph_size [[attribute(1)]]; // The left and top bearings for the glyph (x, y) int2 bearings [[attribute(2)]]; // The grid coordinates (x, y) where x < columns and y < rows ushort2 grid_pos [[attribute(3)]]; // The color of the rendered text glyph. uchar4 color [[attribute(4)]]; // The mode for this cell. uint8_t mode [[attribute(5)]]; // The width to constrain the glyph to, in cells, or 0 for no constraint. uint8_t constraint_width [[attribute(6)]]; }; struct CellTextVertexOut { float4 position [[position]]; uint8_t mode; float4 color; float2 tex_coord; }; vertex CellTextVertexOut cell_text_vertex( uint vid [[vertex_id]], CellTextVertexIn in [[stage_in]], constant Uniforms& uniforms [[buffer(1)]], constant uchar4 *bg_colors [[buffer(2)]] ) { // Convert the grid x, y into world space x, y by accounting for cell size float2 cell_pos = uniforms.cell_size * float2(in.grid_pos); // Turn the cell position into a vertex point depending on the // vertex ID. Since we use instanced drawing, we have 4 vertices // for each corner of the cell. We can use vertex ID to determine // which one we're looking at. Using this, we can use 1 or 0 to keep // or discard the value for the vertex. // // 0 = top-right // 1 = bot-right // 2 = bot-left // 3 = top-left float2 corner; corner.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f; corner.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f; CellTextVertexOut out; out.mode = in.mode; out.color = float4(in.color) / 255.0f; // === Grid Cell === // +X // 0,0--...-> // | // . offset.x = bearings.x // +Y. .|. // . | | // | cell_pos -> +-------+ _. // v ._| |_. _|- offset.y = cell_size.y - bearings.y // | | .###. | | // | | #...# | | // glyph_size.y -+ | ##### | | // | | #.... | +- bearings.y // |_| .#### | | // | |_| // +-------+ // |_._| // | // glyph_size.x // // In order to get the top left of the glyph, we compute an offset based on // the bearings. The Y bearing is the distance from the bottom of the cell // to the top of the glyph, so we subtract it from the cell height to get // the y offset. The X bearing is the distance from the left of the cell // to the left of the glyph, so it works as the x offset directly. float2 size = float2(in.glyph_size); float2 offset = float2(in.bearings); offset.y = uniforms.cell_size.y - offset.y; // If we're constrained then we need to scale the glyph. // We also always constrain colored glyphs since we should have // their scaled cell size exactly correct. if (in.mode == MODE_TEXT_CONSTRAINED || in.mode == MODE_TEXT_COLOR) { float max_width = uniforms.cell_size.x * in.constraint_width; if (size.x > max_width) { float new_y = size.y * (max_width / size.x); offset.y += (size.y - new_y) / 2; size.y = new_y; size.x = max_width; } } // Calculate the final position of the cell which uses our glyph size // and glyph offset to create the correct bounding box for the glyph. cell_pos = cell_pos + size * corner + offset; out.position = uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f); // Calculate the texture coordinate in pixels. This is NOT normalized // (between 0.0 and 1.0), and does not need to be, since the texture will // be sampled with pixel coordinate mode. out.tex_coord = float2(in.glyph_pos) + float2(in.glyph_size) * corner; // If we have a minimum contrast, we need to check if we need to // change the color of the text to ensure it has enough contrast // with the background. // We only apply this adjustment to "normal" text with MODE_TEXT, // since we want color glyphs to appear in their original color // and Powerline glyphs to be unaffected (else parts of the line would // have different colors as some parts are displayed via background colors). if (uniforms.min_contrast > 1.0f && in.mode == MODE_TEXT) { float4 bg_color = float4(bg_colors[in.grid_pos.y * uniforms.grid_size.x + in.grid_pos.x]) / 255.0f; out.color = contrasted_color(uniforms.min_contrast, out.color, bg_color); } // If this cell is the cursor cell, then we need to change the color. if ( in.mode != MODE_TEXT_CURSOR && in.grid_pos.x == uniforms.cursor_pos.x && in.grid_pos.y == uniforms.cursor_pos.y ) { out.color = float4(uniforms.cursor_color) / 255.0f; } return out; } fragment float4 cell_text_fragment( CellTextVertexOut in [[stage_in]], texture2d textureGrayscale [[texture(0)]], texture2d textureColor [[texture(1)]] ) { constexpr sampler textureSampler( coord::pixel, address::clamp_to_edge, filter::nearest ); switch (in.mode) { default: case MODE_TEXT_CURSOR: case MODE_TEXT_CONSTRAINED: case MODE_TEXT_POWERLINE: case MODE_TEXT: { // We premult the alpha to our whole color since our blend function // uses One/OneMinusSourceAlpha to avoid blurry edges. // We first premult our given color. float4 premult = float4(in.color.rgb * in.color.a, in.color.a); // Then premult the texture color float a = textureGrayscale.sample(textureSampler, in.tex_coord).r; premult = premult * a; return premult; } case MODE_TEXT_COLOR: { return textureColor.sample(textureSampler, in.tex_coord); } } } //------------------------------------------------------------------- // Image Shader //------------------------------------------------------------------- #pragma mark - Image Shader struct ImageVertexIn { // The grid coordinates (x, y) where x < columns and y < rows where // the image will be rendered. It will be rendered from the top left. float2 grid_pos [[attribute(0)]]; // Offset in pixels from the top-left of the cell to make the top-left // corner of the image. float2 cell_offset [[attribute(1)]]; // The source rectangle of the texture to sample from. float4 source_rect [[attribute(2)]]; // The final width/height of the image in pixels. float2 dest_size [[attribute(3)]]; }; struct ImageVertexOut { float4 position [[position]]; float2 tex_coord; }; vertex ImageVertexOut image_vertex( uint vid [[vertex_id]], ImageVertexIn in [[stage_in]], texture2d image [[texture(0)]], constant Uniforms& uniforms [[buffer(1)]] ) { // The size of the image in pixels float2 image_size = float2(image.get_width(), image.get_height()); // Turn the image position into a vertex point depending on the // vertex ID. Since we use instanced drawing, we have 4 vertices // for each corner of the cell. We can use vertex ID to determine // which one we're looking at. Using this, we can use 1 or 0 to keep // or discard the value for the vertex. // // 0 = top-right // 1 = bot-right // 2 = bot-left // 3 = top-left float2 corner; corner.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f; corner.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f; // The texture coordinates start at our source x/y, then add the width/height // as enabled by our instance id, then normalize to [0, 1] float2 tex_coord = in.source_rect.xy; tex_coord += in.source_rect.zw * corner; tex_coord /= image_size; ImageVertexOut out; // The position of our image starts at the top-left of the grid cell and // adds the source rect width/height components. float2 image_pos = (uniforms.cell_size * in.grid_pos) + in.cell_offset; image_pos += in.dest_size * corner; out.position = uniforms.projection_matrix * float4(image_pos.x, image_pos.y, 0.0f, 1.0f); out.tex_coord = tex_coord; return out; } fragment float4 image_fragment( ImageVertexOut in [[stage_in]], texture2d image [[texture(0)]] ) { constexpr sampler textureSampler(address::clamp_to_edge, filter::linear); // Ehhhhh our texture is in RGBA8Uint but our color attachment is // BGRA8Unorm. So we need to convert it. We should really be converting // our texture to BGRA8Unorm. uint4 rgba = image.sample(textureSampler, in.tex_coord); // Convert to float4 and premultiply the alpha. We should also probably // premultiply the alpha in the texture. float4 result = float4(rgba) / 255.0f; result.rgb *= result.a; return result; }