//! Window represents a single OS window. //! //! NOTE(multi-window): This may be premature, but this abstraction is here //! to pave the way One Day(tm) for multi-window support. At the time of //! writing, we support exactly one window. const Window = @This(); const std = @import("std"); const builtin = @import("builtin"); const assert = std.debug.assert; const Allocator = std.mem.Allocator; const Grid = @import("Grid.zig"); const glfw = @import("glfw"); const gl = @import("opengl.zig"); const libuv = @import("libuv"); const Pty = @import("Pty.zig"); const Command = @import("Command.zig"); const SegmentedPool = @import("segmented_pool.zig").SegmentedPool; const trace = @import("tracy").trace; const max_timer = @import("max_timer.zig"); const terminal = @import("terminal/main.zig"); const Config = @import("config.zig").Config; const input = @import("input.zig"); const RenderTimer = max_timer.MaxTimer(renderTimerCallback); const log = std.log.scoped(.window); // The preallocation size for the write request pool. This should be big // enough to satisfy most write requests. It must be a power of 2. const WRITE_REQ_PREALLOC = std.math.pow(usize, 2, 5); /// Allocator alloc: Allocator, /// The glfw window handle. window: glfw.Window, /// The glfw mouse cursor handle. cursor: glfw.Cursor, /// Whether the window is currently focused focused: bool, /// The terminal grid attached to this window. grid: Grid, /// The underlying pty for this window. pty: Pty, /// The command we're running for our tty. command: Command, /// Mouse state. mouse: Mouse, /// The terminal emulator internal state. This is the abstract "terminal" /// that manages input, grid updating, etc. and is renderer-agnostic. It /// just stores internal state about a grid. This is connected back to /// a renderer. terminal: terminal.Terminal, /// The stream parser. terminal_stream: terminal.Stream(*Window), /// Cursor state. terminal_cursor: Cursor, /// Render at least 60fps. render_timer: RenderTimer, /// The reader/writer stream for the pty. pty_stream: libuv.Tty, /// This is the pool of available (unused) write requests. If you grab /// one from the pool, you must put it back when you're done! write_req_pool: SegmentedPool(libuv.WriteReq.T, WRITE_REQ_PREALLOC) = .{}, /// The pool of available buffers for writing to the pty. write_buf_pool: SegmentedPool([64]u8, WRITE_REQ_PREALLOC) = .{}, /// The app configuration config: *const Config, /// Window background color bg_r: f32, bg_g: f32, bg_b: f32, bg_a: f32, /// Bracketed paste mode bracketed_paste: bool = false, /// Set to true for a single GLFW key/char callback cycle to cause the /// char callback to ignore. GLFW seems to always do key followed by char /// callbacks so we abuse that here. This is to solve an issue where commands /// like such as "control-v" will write a "v" even if they're intercepted. ignore_char: bool = false, /// Information related to the current cursor for the window. // // QUESTION(mitchellh): should this be attached to the Screen instead? // I'm not sure if the cursor settings stick to the screen, i.e. if you // change to an alternate screen if those are preserved. Need to check this. const Cursor = struct { /// Timer for cursor blinking. timer: libuv.Timer, /// Current cursor style. This can be set by escape sequences. To get /// the default style, the config has to be referenced. style: terminal.CursorStyle = .default, /// Whether the cursor is visible at all. This should not be used for /// "blink" settings, see "blink" for that. This is used to turn the /// cursor ON or OFF. visible: bool = true, /// Whether the cursor is currently blinking. If it is blinking, then /// the cursor will not be rendered. blink: bool = false, /// Start (or restart) the timer. This is idempotent. pub fn startTimer(self: Cursor) !void { try self.timer.start( cursorTimerCallback, 0, self.timer.getRepeat(), ); } /// Stop the timer. This is idempotent. pub fn stopTimer(self: Cursor) !void { try self.timer.stop(); } }; /// Mouse state for the window. const Mouse = struct { /// The current state of mouse click. click_state: ClickState = .none, /// The point at which the mouse click happened. This is in screen /// coordinates so that scrolling preserves the location. click_point: terminal.point.ScreenPoint = .{}, /// The starting xpos/ypos of the click. This is only useful initially. /// As soon as scrolling occurs, these are no longer accurate to calculate /// the screen point. click_xpos: f64 = 0, click_ypos: f64 = 0, const ClickState = enum { none, left }; }; /// Create a new window. This allocates and returns a pointer because we /// need a stable pointer for user data callbacks. Therefore, a stack-only /// initialization is not currently possible. pub fn create(alloc: Allocator, loop: libuv.Loop, config: *const Config) !*Window { var self = try alloc.create(Window); errdefer alloc.destroy(self); // Create our window const window = try glfw.Window.create(640, 480, "ghostty", null, null, .{ .context_version_major = 3, .context_version_minor = 3, .opengl_profile = .opengl_core_profile, .opengl_forward_compat = true, .cocoa_graphics_switching = builtin.os.tag == .macos, .cocoa_retina_framebuffer = true, }); errdefer window.destroy(); // NOTE(multi-window): We'll need to extract all the below into a // dedicated renderer and consider the multi-threading (or at the very // least: multi-OpenGL-context) implications. Since we don't support // multiple windows right now, we just do it all here. // Setup OpenGL try glfw.makeContextCurrent(window); try glfw.swapInterval(1); // Load OpenGL bindings const version = try gl.glad.load(glfw.getProcAddress); log.info("loaded OpenGL {}.{}", .{ gl.glad.versionMajor(version), gl.glad.versionMinor(version), }); if (builtin.mode == .Debug) { var ext_iter = try gl.ext.iterator(); while (try ext_iter.next()) |ext| { log.debug("OpenGL extension available name={s}", .{ext}); } } // Culling, probably not necessary. We have to change the winding // order since our 0,0 is top-left. gl.c.glEnable(gl.c.GL_CULL_FACE); gl.c.glFrontFace(gl.c.GL_CW); // Blending for text gl.c.glEnable(gl.c.GL_BLEND); gl.c.glBlendFunc(gl.c.GL_SRC_ALPHA, gl.c.GL_ONE_MINUS_SRC_ALPHA); // Create our terminal grid with the initial window size const window_size = try window.getSize(); var grid = try Grid.init(alloc, config); try grid.setScreenSize(.{ .width = window_size.width, .height = window_size.height }); grid.background = .{ .r = config.background.r, .g = config.background.g, .b = config.background.b, }; grid.foreground = .{ .r = config.foreground.r, .g = config.foreground.g, .b = config.foreground.b, }; // Set a minimum size that is cols=10 h=4. This matches Mac's Terminal.app // but is otherwise somewhat arbitrary. try window.setSizeLimits(.{ .width = @floatToInt(u32, grid.cell_size.width * 10), .height = @floatToInt(u32, grid.cell_size.height * 4), }, .{ .width = null, .height = null }); // Create our pty var pty = try Pty.open(.{ .ws_row = @intCast(u16, grid.size.rows), .ws_col = @intCast(u16, grid.size.columns), .ws_xpixel = @intCast(u16, window_size.width), .ws_ypixel = @intCast(u16, window_size.height), }); errdefer pty.deinit(); // Create our child process const path = (try Command.expandPath(alloc, config.command orelse "sh")) orelse return error.CommandNotFound; defer alloc.free(path); var env = try std.process.getEnvMap(alloc); defer env.deinit(); try env.put("TERM", "xterm-256color"); var cmd: Command = .{ .path = path, .args = &[_][]const u8{path}, .env = &env, .pre_exec = (struct { fn callback(c: *Command) void { const p = c.getData(Pty) orelse unreachable; p.childPreExec() catch |err| log.err("error initializing child: {}", .{err}); } }).callback, .data = &pty, }; // note: can't set these in the struct initializer because it // sets the handle to "0". Probably a stage1 zig bug. cmd.stdin = std.fs.File{ .handle = pty.slave }; cmd.stdout = cmd.stdin; cmd.stderr = cmd.stdin; try cmd.start(alloc); log.debug("started subcommand path={s} pid={?}", .{ path, cmd.pid }); // Read data var stream = try libuv.Tty.init(alloc, loop, pty.master); errdefer stream.deinit(alloc); stream.setData(self); try stream.readStart(ttyReadAlloc, ttyRead); // Create our terminal var term = try terminal.Terminal.init(alloc, grid.size.columns, grid.size.rows); errdefer term.deinit(alloc); // Setup a timer for blinking the cursor var timer = try libuv.Timer.init(alloc, loop); errdefer timer.deinit(alloc); errdefer timer.close(null); timer.setData(self); try timer.start(cursorTimerCallback, 600, 600); // Create the cursor const cursor = try glfw.Cursor.createStandard(.ibeam); errdefer cursor.destroy(); try window.setCursor(cursor); self.* = .{ .alloc = alloc, .window = window, .cursor = cursor, .focused = false, .grid = grid, .pty = pty, .command = cmd, .mouse = .{}, .terminal = term, .terminal_stream = .{ .handler = self }, .terminal_cursor = .{ .timer = timer, .style = .blinking_block, }, .render_timer = try RenderTimer.init(loop, self, 16, 64), .pty_stream = stream, .config = config, .bg_r = @intToFloat(f32, config.background.r) / 255.0, .bg_g = @intToFloat(f32, config.background.g) / 255.0, .bg_b = @intToFloat(f32, config.background.b) / 255.0, .bg_a = 1.0, }; // Setup our callbacks and user data window.setUserPointer(self); window.setSizeCallback(sizeCallback); window.setCharCallback(charCallback); window.setKeyCallback(keyCallback); window.setFocusCallback(focusCallback); window.setRefreshCallback(refreshCallback); window.setScrollCallback(scrollCallback); window.setCursorPosCallback(cursorPosCallback); window.setMouseButtonCallback(mouseButtonCallback); // Call our size callback which handles all our retina setup // Note: this shouldn't be necessary and when we clean up the window // init stuff we should get rid of this. But this is required because // sizeCallback does retina-aware stuff we don't do here and don't want // to duplicate. sizeCallback( window, @intCast(i32, window_size.width), @intCast(i32, window_size.height), ); return self; } pub fn destroy(self: *Window) void { // Deinitialize the pty. This closes the pty handles. This should // cause a close in the our subprocess so just wait for that. self.pty.deinit(); _ = self.command.wait() catch |err| log.err("error waiting for command to exit: {}", .{err}); self.terminal.deinit(self.alloc); self.grid.deinit(); self.window.destroy(); self.terminal_cursor.timer.close((struct { fn callback(t: *libuv.Timer) void { const alloc = t.loop().getData(Allocator).?.*; t.deinit(alloc); } }).callback); self.render_timer.deinit(); // We have to dealloc our window in the close callback because // we can't free some of the memory associated with the window // until the stream is closed. self.pty_stream.readStop(); self.pty_stream.close((struct { fn callback(t: *libuv.Tty) void { const win = t.getData(Window).?; const alloc = win.alloc; t.deinit(alloc); win.write_req_pool.deinit(alloc); win.write_buf_pool.deinit(alloc); win.alloc.destroy(win); } }).callback); // We can destroy the cursor right away. glfw will just revert any // windows using it to the default. self.cursor.destroy(); } pub fn shouldClose(self: Window) bool { return self.window.shouldClose(); } /// Queue a write to the pty. fn queueWrite(self: *Window, data: []const u8) !void { // We go through and chunk the data if necessary to fit into // our cached buffers that we can queue to the stream. var i: usize = 0; while (i < data.len) { const req = try self.write_req_pool.get(); const buf = try self.write_buf_pool.get(); const end = @minimum(data.len, i + buf.len); std.mem.copy(u8, buf, data[i..end]); try self.pty_stream.write( .{ .req = req }, &[1][]u8{buf[0..(end - i)]}, ttyWrite, ); i = end; } } fn sizeCallback(window: glfw.Window, width: i32, height: i32) void { const tracy = trace(@src()); defer tracy.end(); // glfw gives us signed integers, but negative width/height is n // non-sensical so we use unsigned throughout, so assert. assert(width >= 0); assert(height >= 0); // Get our framebuffer size since this will give us the size in pixels // whereas width/height in this callback is in screen coordinates. For // Retina displays (or any other displays that have a scale factor), // these will not match. const px_size = window.getFramebufferSize() catch |err| err: { log.err("error querying window size in pixels, will use screen size err={}", .{err}); break :err glfw.Window.Size{ .width = @intCast(u32, width), .height = @intCast(u32, height), }; }; // Update our grid so that the projections on render are correct. const win = window.getUserPointer(Window) orelse return; win.grid.setScreenSize(.{ .width = px_size.width, .height = px_size.height, }) catch |err| log.err("error updating grid screen size err={}", .{err}); // Update the size of our terminal state win.terminal.resize(win.alloc, win.grid.size.columns, win.grid.size.rows) catch |err| log.err("error updating terminal size: {}", .{err}); // Update the size of our pty win.pty.setSize(.{ .ws_row = @intCast(u16, win.grid.size.rows), .ws_col = @intCast(u16, win.grid.size.columns), .ws_xpixel = @intCast(u16, width), .ws_ypixel = @intCast(u16, height), }) catch |err| log.err("error updating pty screen size err={}", .{err}); // Update our viewport for this context to be the entire window. // OpenGL works in pixels, so we have to use the pixel size. gl.viewport(0, 0, @intCast(i32, px_size.width), @intCast(i32, px_size.height)) catch |err| log.err("error updating OpenGL viewport err={}", .{err}); // Draw win.render_timer.schedule() catch |err| log.err("error scheduling render timer in sizeCallback err={}", .{err}); } fn charCallback(window: glfw.Window, codepoint: u21) void { const tracy = trace(@src()); defer tracy.end(); const win = window.getUserPointer(Window) orelse return; // Ignore if requested. See field docs for more information. if (win.ignore_char) { win.ignore_char = false; return; } // Anytime is character is created, we have to clear the selection if (win.terminal.selection != null) { win.terminal.selection = null; win.render_timer.schedule() catch |err| log.err("error scheduling render in charCallback err={}", .{err}); } // We want to scroll to the bottom // TODO: detect if we're at the bottom to avoid the render call here. win.terminal.scrollViewport(.{ .bottom = {} }); win.render_timer.schedule() catch |err| log.err("error scheduling render in charCallback err={}", .{err}); // Write the character to the pty win.queueWrite(&[1]u8{@intCast(u8, codepoint)}) catch |err| log.err("error queueing write in charCallback err={}", .{err}); } fn keyCallback( window: glfw.Window, key: glfw.Key, scancode: i32, action: glfw.Action, mods: glfw.Mods, ) void { const tracy = trace(@src()); defer tracy.end(); const win = window.getUserPointer(Window) orelse return; // Reset the ignore char setting. If we didn't handle the char // by here, we aren't going to get it so we just reset this. win.ignore_char = false; //log.info("KEY {} {} {} {}", .{ key, scancode, mods, action }); _ = scancode; if (action == .press or action == .repeat) { // Convert our glfw input into a platform agnostic trigger. When we // extract the platform out of this file, we'll pull a lot of this out // into a function. For now, this is the only place we do it so we just // put it right here. const trigger: input.Binding.Trigger = .{ .mods = @bitCast(input.Mods, mods), .key = switch (key) { .a => .a, .b => .b, .c => .c, .d => .d, .e => .e, .f => .f, .g => .g, .h => .h, .i => .i, .j => .j, .k => .k, .l => .l, .m => .m, .n => .n, .o => .o, .p => .p, .q => .q, .r => .r, .s => .s, .t => .t, .u => .u, .v => .v, .w => .w, .x => .x, .y => .y, .z => .z, .up => .up, .down => .down, .right => .right, .left => .left, .home => .home, .end => .end, .page_up => .page_up, .page_down => .page_down, else => .invalid, }, }; if (win.config.keybind.set.get(trigger)) |binding_action| { //log.warn("BINDING ACTION={}", .{binding_action}); switch (binding_action) { .unbind => unreachable, .ignore => {}, .csi => |data| { win.queueWrite("\x1B[") catch |err| log.err("error queueing write in keyCallback err={}", .{err}); win.queueWrite(data) catch |err| log.warn("error pasting clipboard: {}", .{err}); }, .copy_to_clipboard => { if (win.terminal.selection) |sel| { var buf = win.terminal.screen.selectionString(win.alloc, sel) catch |err| { log.err("error reading selection string err={}", .{err}); return; }; defer win.alloc.free(buf); glfw.setClipboardString(buf) catch |err| { log.err("error setting clipboard string err={}", .{err}); return; }; } }, .paste_from_clipboard => { const data = glfw.getClipboardString() catch |err| { log.warn("error reading clipboard: {}", .{err}); return; }; if (data.len > 0) { if (win.bracketed_paste) win.queueWrite("\x1B[200~") catch |err| log.err("error queueing write in keyCallback err={}", .{err}); win.queueWrite(data) catch |err| log.warn("error pasting clipboard: {}", .{err}); if (win.bracketed_paste) win.queueWrite("\x1B[201~") catch |err| log.err("error queueing write in keyCallback err={}", .{err}); } }, } // Bindings always result in us ignoring the char if printable win.ignore_char = true; // No matter what, if there is a binding then we are done. return; } // Handle non-printables const char: u8 = switch (@bitCast(u8, mods)) { // No modifiers pressed at all 0 => @as(u8, switch (key) { .backspace => 0x7F, .enter => '\r', .tab => '\t', .escape => 0x1B, else => 0, }), // Control only @bitCast(u8, glfw.Mods{ .control = true }) => @as(u8, switch (key) { .a => 0x01, .b => 0x02, .c => 0x03, .d => 0x04, .e => 0x05, .f => 0x06, .g => 0x07, .h => 0x08, .i => 0x09, .j => 0x0A, .k => 0x0B, .l => 0x0C, .m => 0x0D, .n => 0x0E, .o => 0x0F, .p => 0x10, .q => 0x11, .r => 0x12, .s => 0x13, .t => 0x14, .u => 0x15, .v => 0x16, .w => 0x17, .x => 0x18, .y => 0x19, .z => 0x1A, else => 0, }), else => 0, }; if (char > 0) { win.queueWrite(&[1]u8{char}) catch |err| log.err("error queueing write in keyCallback err={}", .{err}); } } } fn focusCallback(window: glfw.Window, focused: bool) void { const tracy = trace(@src()); defer tracy.end(); const win = window.getUserPointer(Window) orelse return; // If we aren't changing focus state, do nothing. I don't think this // can happen but it costs very little to check. if (win.focused == focused) return; // We have to schedule a render because no matter what we're changing // the cursor. If we're focused its reappearing, if we're not then // its changing to hollow and not blinking. win.render_timer.schedule() catch unreachable; // Set our focused state on the window. win.focused = focused; if (focused) win.terminal_cursor.startTimer() catch unreachable else win.terminal_cursor.stopTimer() catch unreachable; } fn refreshCallback(window: glfw.Window) void { const tracy = trace(@src()); defer tracy.end(); const win = window.getUserPointer(Window) orelse return; // The point of this callback is to schedule a render, so do that. win.render_timer.schedule() catch unreachable; } fn scrollCallback(window: glfw.Window, xoff: f64, yoff: f64) void { const tracy = trace(@src()); defer tracy.end(); const win = window.getUserPointer(Window) orelse return; //log.info("SCROLL: {} {}", .{ xoff, yoff }); _ = xoff; // Positive is up const sign: isize = if (yoff > 0) -1 else 1; const delta: isize = sign * @maximum(@divFloor(win.grid.size.rows, 15), 1); log.info("scroll: delta={}", .{delta}); win.terminal.scrollViewport(.{ .delta = delta }); // Schedule render since scrolling usually does something. // TODO(perf): we can only schedule render if we know scrolling // did something win.render_timer.schedule() catch unreachable; } fn mouseButtonCallback( window: glfw.Window, button: glfw.MouseButton, action: glfw.Action, mods: glfw.Mods, ) void { _ = mods; const tracy = trace(@src()); defer tracy.end(); if (button == .left) { switch (action) { .press => { const win = window.getUserPointer(Window) orelse return; const pos = window.getCursorPos() catch |err| { log.err("error reading cursor position: {}", .{err}); return; }; // Store it const point = win.posToViewport(pos.xpos, pos.ypos); win.mouse.click_state = .left; win.mouse.click_point = point.toScreen(&win.terminal.screen); win.mouse.click_xpos = pos.xpos; win.mouse.click_ypos = pos.ypos; log.debug("click start state={} viewport={} screen={}", .{ win.mouse.click_state, point, win.mouse.click_point, }); // Selection is always cleared if (win.terminal.selection != null) { win.terminal.selection = null; win.render_timer.schedule() catch |err| log.err("error scheduling render in mouseButtinCallback err={}", .{err}); } }, .release => { const win = window.getUserPointer(Window) orelse return; win.mouse.click_state = .none; log.debug("click end", .{}); }, .repeat => {}, } } } fn cursorPosCallback( window: glfw.Window, xpos: f64, ypos: f64, ) void { const tracy = trace(@src()); defer tracy.end(); const win = window.getUserPointer(Window) orelse return; // If the cursor isn't clicked currently, it doesn't matter if (win.mouse.click_state != .left) return; // All roads lead to requiring a re-render at this pont. win.render_timer.schedule() catch |err| log.err("error scheduling render timer in cursorPosCallback err={}", .{err}); // Convert to points const viewport_point = win.posToViewport(xpos, ypos); const screen_point = viewport_point.toScreen(&win.terminal.screen); // NOTE(mitchellh): This logic super sucks. There has to be an easier way // to calculate this, but this is good for a v1. Selection isn't THAT // common so its not like this performance heavy code is running that // often. // TODO: unit test this, this logic sucks // If we were selecting, and we switched directions, then we restart // calculations because it forces us to reconsider if the first cell is // selected. if (win.terminal.selection) |sel| { const reset: bool = if (sel.end.before(sel.start)) sel.start.before(screen_point) else screen_point.before(sel.start); if (reset) win.terminal.selection = null; } // Our logic for determing if the starting cell is selected: // // - The "xboundary" is 60% the width of a cell from the left. We choose // 60% somewhat arbitrarily based on feeling. // - If we started our click left of xboundary, backwards selections // can NEVER select the current char. // - If we started our click right of xboundary, backwards selections // ALWAYS selected the current char, but we must move the cursor // left of the xboundary. // - Inverted logic for forwards selections. // // the boundary point at which we consider selection or non-selection const cell_xboundary = win.grid.cell_size.width * 0.6; // first xpos of the clicked cell const cell_xstart = @intToFloat(f32, win.mouse.click_point.x) * win.grid.cell_size.width; const cell_start_xpos = win.mouse.click_xpos - cell_xstart; // If this is the same cell, then we only start the selection if weve // moved past the boundary point the opposite direction from where we // started. if (std.meta.eql(screen_point, win.mouse.click_point)) { const cell_xpos = xpos - cell_xstart; const selected: bool = if (cell_start_xpos < cell_xboundary) cell_xpos >= cell_xboundary else cell_xpos < cell_xboundary; win.terminal.selection = if (selected) .{ .start = screen_point, .end = screen_point, } else null; return; } // If this is a different cell and we haven't started selection, // we determine the starting cell first. if (win.terminal.selection == null) { // - If we're moving to a point before the start, then we select // the starting cell if we started after the boundary, else // we start selection of the prior cell. // - Inverse logic for a point after the start. const click_point = win.mouse.click_point; const start: terminal.point.ScreenPoint = if (screen_point.before(click_point)) start: { if (win.mouse.click_xpos > cell_xboundary) { break :start click_point; } else { break :start if (click_point.x > 0) terminal.point.ScreenPoint{ .y = click_point.y, .x = click_point.x - 1, } else terminal.point.ScreenPoint{ .x = win.terminal.screen.cols - 1, .y = click_point.y -| 1, }; } } else start: { if (win.mouse.click_xpos < cell_xboundary) { break :start click_point; } else { break :start if (click_point.x < win.terminal.screen.cols - 1) terminal.point.ScreenPoint{ .y = click_point.y, .x = click_point.x + 1, } else terminal.point.ScreenPoint{ .y = click_point.y + 1, .x = 0, }; } }; win.terminal.selection = .{ .start = start, .end = screen_point }; return; } // TODO: detect if selection point is passed the point where we've // actually written data before and disallow it. // We moved! Set the selection end point. The start point should be // set earlier. assert(win.terminal.selection != null); win.terminal.selection.?.end = screen_point; } fn posToViewport(self: Window, xpos: f64, ypos: f64) terminal.point.Viewport { // xpos and ypos can be negative if while dragging, the user moves the // mouse off the window. Likewise, they can be larger than our window // width if the user drags out of the window positively. return .{ .x = if (xpos < 0) 0 else x: { // Our cell is the mouse divided by cell width const cell_width = @floatCast(f64, self.grid.cell_size.width); const x = @floatToInt(usize, xpos / cell_width); // Can be off the screen if the user drags it out, so max // it out on our available columns break :x @minimum(x, self.terminal.cols - 1); }, .y = if (ypos < 0) 0 else y: { const cell_height = @floatCast(f64, self.grid.cell_size.height); const y = @floatToInt(usize, ypos / cell_height); break :y @minimum(y, self.terminal.rows - 1); }, }; } fn cursorTimerCallback(t: *libuv.Timer) void { const tracy = trace(@src()); defer tracy.end(); const win = t.getData(Window) orelse return; // If the cursor is currently invisible, then we do nothing. Ideally // in this state the timer would be cancelled but no big deal. if (!win.terminal_cursor.visible) return; // Swap blink state and schedule a render win.terminal_cursor.blink = !win.terminal_cursor.blink; win.render_timer.schedule() catch unreachable; } fn ttyReadAlloc(t: *libuv.Tty, size: usize) ?[]u8 { const tracy = trace(@src()); defer tracy.end(); const alloc = t.loop().getData(Allocator).?.*; return alloc.alloc(u8, size) catch null; } fn ttyRead(t: *libuv.Tty, n: isize, buf: []const u8) void { const tracy = trace(@src()); tracy.color(0xEAEA7F); // yellow-ish defer tracy.end(); const win = t.getData(Window).?; defer win.alloc.free(buf); // log.info("DATA: {d}", .{n}); // log.info("DATA: {any}", .{buf[0..@intCast(usize, n)]}); // First check for errors in the case n is less than 0. libuv.convertError(@intCast(i32, n)) catch |err| { switch (err) { // ignore EOF because it should end the process. libuv.Error.EOF => {}, else => log.err("read error: {}", .{err}), } return; }; // Whenever a character is typed, we ensure the cursor is in the // non-blink state so it is rendered if visible. win.terminal_cursor.blink = false; if (win.terminal_cursor.timer.isActive() catch false) { _ = win.terminal_cursor.timer.again() catch null; } // Schedule a render win.render_timer.schedule() catch unreachable; // Process the terminal data win.terminal_stream.nextSlice(buf[0..@intCast(usize, n)]) catch |err| log.err("error processing terminal data: {}", .{err}); } fn ttyWrite(req: *libuv.WriteReq, status: i32) void { const tracy = trace(@src()); defer tracy.end(); const tty = req.handle(libuv.Tty).?; const win = tty.getData(Window).?; win.write_req_pool.put(); win.write_buf_pool.put(); libuv.convertError(status) catch |err| log.err("write error: {}", .{err}); //log.info("WROTE: {d}", .{status}); } fn renderTimerCallback(t: *libuv.Timer) void { const tracy = trace(@src()); tracy.color(0x006E7F); // blue-ish defer tracy.end(); const win = t.getData(Window).?; // Setup our cursor settings if (win.focused) { win.grid.cursor_visible = win.terminal_cursor.visible and !win.terminal_cursor.blink; win.grid.cursor_style = Grid.CursorStyle.fromTerminal(win.terminal_cursor.style) orelse .box; } else { win.grid.cursor_visible = true; win.grid.cursor_style = .box_hollow; } // Calculate foreground and background colors const bg = win.grid.background; const fg = win.grid.foreground; defer { win.grid.background = bg; win.grid.foreground = fg; } if (win.terminal.modes.reverse_colors == 1) { win.grid.background = fg; win.grid.foreground = bg; } // Set our background const gl_bg: struct { r: f32, g: f32, b: f32, a: f32, } = if (win.terminal.modes.reverse_colors == 1) .{ .r = @intToFloat(f32, fg.r) / 255, .g = @intToFloat(f32, fg.g) / 255, .b = @intToFloat(f32, fg.b) / 255, .a = 1.0, } else .{ .r = win.bg_r, .g = win.bg_g, .b = win.bg_b, .a = win.bg_a, }; gl.clearColor(gl_bg.r, gl_bg.g, gl_bg.b, gl_bg.a); gl.clear(gl.c.GL_COLOR_BUFFER_BIT); // For now, rebuild all cells win.grid.rebuildCells(win.terminal) catch |err| log.err("error calling rebuildCells in render timer err={}", .{err}); // Finalize the cells prior to render win.grid.finalizeCells(win.terminal) catch |err| log.err("error calling updateCells in render timer err={}", .{err}); // Render the grid win.grid.render() catch |err| { log.err("error rendering grid: {}", .{err}); return; }; // Swap win.window.swapBuffers() catch |err| { log.err("error swapping buffers: {}", .{err}); return; }; // Record our run win.render_timer.tick(); } //------------------------------------------------------------------- // Stream Callbacks pub fn print(self: *Window, c: u21) !void { try self.terminal.print(c); } pub fn bell(self: Window) !void { _ = self; log.info("BELL", .{}); } pub fn backspace(self: *Window) !void { self.terminal.backspace(); } pub fn horizontalTab(self: *Window) !void { try self.terminal.horizontalTab(); } pub fn linefeed(self: *Window) !void { self.terminal.linefeed(); } pub fn carriageReturn(self: *Window) !void { self.terminal.carriageReturn(); } pub fn setCursorLeft(self: *Window, amount: u16) !void { self.terminal.cursorLeft(amount); } pub fn setCursorRight(self: *Window, amount: u16) !void { self.terminal.cursorRight(amount); } pub fn setCursorDown(self: *Window, amount: u16) !void { self.terminal.cursorDown(amount); } pub fn setCursorUp(self: *Window, amount: u16) !void { self.terminal.cursorUp(amount); } pub fn setCursorCol(self: *Window, col: u16) !void { self.terminal.setCursorColAbsolute(col); } pub fn setCursorRow(self: *Window, row: u16) !void { if (self.terminal.modes.origin == 1) { // TODO log.err("setCursorRow: implement origin mode", .{}); unreachable; } self.terminal.setCursorPos(row, self.terminal.screen.cursor.x + 1); } pub fn setCursorPos(self: *Window, row: u16, col: u16) !void { self.terminal.setCursorPos(row, col); } pub fn eraseDisplay(self: *Window, mode: terminal.EraseDisplay) !void { if (mode == .complete) { // Whenever we erase the full display, scroll to bottom. self.terminal.scrollViewport(.{ .bottom = {} }); try self.render_timer.schedule(); } self.terminal.eraseDisplay(mode); } pub fn eraseLine(self: *Window, mode: terminal.EraseLine) !void { self.terminal.eraseLine(mode); } pub fn deleteChars(self: *Window, count: usize) !void { try self.terminal.deleteChars(count); } pub fn eraseChars(self: *Window, count: usize) !void { self.terminal.eraseChars(count); } pub fn insertLines(self: *Window, count: usize) !void { self.terminal.insertLines(count); } pub fn insertBlanks(self: *Window, count: usize) !void { self.terminal.insertBlanks(count); } pub fn deleteLines(self: *Window, count: usize) !void { self.terminal.deleteLines(count); } pub fn reverseIndex(self: *Window) !void { try self.terminal.reverseIndex(); } pub fn index(self: *Window) !void { self.terminal.index(); } pub fn nextLine(self: *Window) !void { self.terminal.carriageReturn(); self.terminal.index(); } pub fn setTopAndBottomMargin(self: *Window, top: u16, bot: u16) !void { self.terminal.setScrollingRegion(top, bot); } pub fn setMode(self: *Window, mode: terminal.Mode, enabled: bool) !void { switch (mode) { .reverse_colors => { self.terminal.modes.reverse_colors = @boolToInt(enabled); // Schedule a render since we changed colors try self.render_timer.schedule(); }, .origin => { self.terminal.modes.origin = @boolToInt(enabled); self.terminal.setCursorPos(1, 1); }, .autowrap => { self.terminal.modes.autowrap = @boolToInt(enabled); }, .cursor_visible => { self.terminal_cursor.visible = enabled; }, .alt_screen_save_cursor_clear_enter => { const opts: terminal.Terminal.AlternateScreenOptions = .{ .cursor_save = true, .clear_on_enter = true, }; if (enabled) self.terminal.alternateScreen(opts) else self.terminal.primaryScreen(opts); // Schedule a render since we changed screens try self.render_timer.schedule(); }, .bracketed_paste => self.bracketed_paste = true, .enable_mode_3 => { // Disable deccolm self.terminal.setDeccolmSupported(enabled); // Force resize back to the window size self.terminal.resize(self.alloc, self.grid.size.columns, self.grid.size.rows) catch |err| log.err("error updating terminal size: {}", .{err}); }, .@"132_column" => try self.terminal.deccolm( self.alloc, if (enabled) .@"132_cols" else .@"80_cols", ), else => if (enabled) log.warn("unimplemented mode: {}", .{mode}), } } pub fn setAttribute(self: *Window, attr: terminal.Attribute) !void { switch (attr) { .unknown => |unk| log.warn("unimplemented or unknown attribute: {any}", .{unk}), else => self.terminal.setAttribute(attr) catch |err| log.warn("error setting attribute {}: {}", .{ attr, err }), } } pub fn deviceAttributes( self: *Window, req: terminal.DeviceAttributeReq, params: []const u16, ) !void { _ = params; switch (req) { .primary => self.queueWrite("\x1B[?6c") catch |err| log.warn("error queueing device attr response: {}", .{err}), else => log.warn("unimplemented device attributes req: {}", .{req}), } } pub fn deviceStatusReport( self: *Window, req: terminal.DeviceStatusReq, ) !void { switch (req) { .operating_status => self.queueWrite("\x1B[0n") catch |err| log.warn("error queueing device attr response: {}", .{err}), .cursor_position => { const pos: struct { x: usize, y: usize, } = if (self.terminal.modes.origin == 1) .{ // TODO: what do we do if cursor is outside scrolling region? .x = self.terminal.screen.cursor.x, .y = self.terminal.screen.cursor.y -| self.terminal.scrolling_region.top, } else .{ .x = self.terminal.screen.cursor.x, .y = self.terminal.screen.cursor.y, }; // Response always is at least 4 chars, so this leaves the // remainder for the row/column as base-10 numbers. This // will support a very large terminal. var buf: [32]u8 = undefined; const resp = try std.fmt.bufPrint(&buf, "\x1B[{};{}R", .{ pos.y + 1, pos.x + 1, }); try self.queueWrite(resp); }, else => log.warn("unimplemented device status req: {}", .{req}), } } pub fn setCursorStyle( self: *Window, style: terminal.CursorStyle, ) !void { self.terminal_cursor.style = style; } pub fn decaln(self: *Window) !void { self.terminal.decaln(); } pub fn tabClear(self: *Window, cmd: terminal.TabClear) !void { self.terminal.tabClear(cmd); } pub fn tabSet(self: *Window) !void { self.terminal.tabSet(); } pub fn saveCursor(self: *Window) !void { self.terminal.saveCursor(); } pub fn restoreCursor(self: *Window) !void { self.terminal.restoreCursor(); } pub fn enquiry(self: *Window) !void { try self.queueWrite(""); } pub fn setActiveStatusDisplay( self: *Window, req: terminal.StatusDisplay, ) !void { self.terminal.status_display = req; }