//! Implementation of IO that uses child exec to talk to the child process. pub const Exec = @This(); const std = @import("std"); const builtin = @import("builtin"); const build_config = @import("../build_config.zig"); const assert = std.debug.assert; const Allocator = std.mem.Allocator; const EnvMap = std.process.EnvMap; const termio = @import("../termio.zig"); const Command = @import("../Command.zig"); const Pty = @import("../Pty.zig"); const SegmentedPool = @import("../segmented_pool.zig").SegmentedPool; const terminal = @import("../terminal/main.zig"); const xev = @import("xev"); const renderer = @import("../renderer.zig"); const tracy = @import("tracy"); const trace = tracy.trace; const apprt = @import("../apprt.zig"); const fastmem = @import("../fastmem.zig"); const internal_os = @import("../os/main.zig"); const log = std.log.scoped(.io_exec); const c = @cImport({ @cInclude("errno.h"); @cInclude("signal.h"); @cInclude("unistd.h"); }); /// Allocator alloc: Allocator, /// This is the pty fd created for the subcommand. subprocess: Subprocess, /// The terminal emulator internal state. This is the abstract "terminal" /// that manages input, grid updating, etc. and is renderer-agnostic. It /// just stores internal state about a grid. terminal: terminal.Terminal, /// The stream parser. This parses the stream of escape codes and so on /// from the child process and calls callbacks in the stream handler. terminal_stream: terminal.Stream(StreamHandler), /// The shared render state renderer_state: *renderer.State, /// A handle to wake up the renderer. This hints to the renderer that that /// a repaint should happen. renderer_wakeup: xev.Async, /// The mailbox for notifying the renderer of things. renderer_mailbox: *renderer.Thread.Mailbox, /// The mailbox for communicating with the surface. surface_mailbox: apprt.surface.Mailbox, /// The cached grid size whenever a resize is called. grid_size: renderer.GridSize, /// The data associated with the currently running thread. data: ?*EventData, /// Initialize the exec implementation. This will also start the child /// process. pub fn init(alloc: Allocator, opts: termio.Options) !Exec { // Create our terminal var term = try terminal.Terminal.init( alloc, opts.grid_size.columns, opts.grid_size.rows, ); errdefer term.deinit(alloc); term.color_palette = opts.config.palette.value; var subprocess = try Subprocess.init(alloc, opts); errdefer subprocess.deinit(); return Exec{ .alloc = alloc, .terminal = term, .terminal_stream = undefined, .subprocess = subprocess, .renderer_state = opts.renderer_state, .renderer_wakeup = opts.renderer_wakeup, .renderer_mailbox = opts.renderer_mailbox, .surface_mailbox = opts.surface_mailbox, .grid_size = opts.grid_size, .data = null, }; } pub fn deinit(self: *Exec) void { self.subprocess.deinit(); // Clean up our other members self.terminal.deinit(self.alloc); } pub fn threadEnter(self: *Exec, thread: *termio.Thread) !ThreadData { assert(self.data == null); const alloc = self.alloc; // Start our subprocess const master_fd = try self.subprocess.start(alloc); errdefer self.subprocess.stop(); // Setup our data that is used for callbacks var ev_data_ptr = try alloc.create(EventData); errdefer alloc.destroy(ev_data_ptr); // Setup our stream so that we can write. var stream = xev.Stream.initFd(master_fd); errdefer stream.deinit(); // Wakeup watcher for the writer thread. var wakeup = try xev.Async.init(); errdefer wakeup.deinit(); // Setup our event data before we start ev_data_ptr.* = .{ .writer_mailbox = thread.mailbox, .writer_wakeup = thread.wakeup, .renderer_state = self.renderer_state, .renderer_wakeup = self.renderer_wakeup, .renderer_mailbox = self.renderer_mailbox, .data_stream = stream, .loop = &thread.loop, .terminal_stream = .{ .handler = .{ .alloc = self.alloc, .ev = ev_data_ptr, .terminal = &self.terminal, .grid_size = &self.grid_size, .surface_mailbox = self.surface_mailbox, }, }, }; errdefer ev_data_ptr.deinit(self.alloc); // Store our data so our callbacks can access it self.data = ev_data_ptr; errdefer self.data = null; // Start our reader thread const read_thread = try std.Thread.spawn( .{}, ReadThread.threadMain, .{ master_fd, ev_data_ptr }, ); read_thread.setName("io-reader") catch {}; // Return our thread data return ThreadData{ .alloc = alloc, .ev = ev_data_ptr, .read_thread = read_thread, }; } pub fn threadExit(self: *Exec, data: ThreadData) void { // Clear out our data since we're not active anymore. self.data = null; // Stop our subprocess self.subprocess.stop(); // Wait for our reader thread to end data.read_thread.join(); } /// Resize the terminal. pub fn resize( self: *Exec, grid_size: renderer.GridSize, screen_size: renderer.ScreenSize, padding: renderer.Padding, ) !void { // Update the size of our pty const padded_size = screen_size.subPadding(padding); try self.subprocess.resize(grid_size, padded_size); // Update our cached grid size self.grid_size = grid_size; // Enter the critical area that we want to keep small { self.renderer_state.mutex.lock(); defer self.renderer_state.mutex.unlock(); // Update the size of our terminal state try self.terminal.resize(self.alloc, grid_size.columns, grid_size.rows); } } /// Clear the screen. pub fn clearScreen(self: *Exec, history: bool) !void { // Queue form-feed ASCII code to clear the visible page. try self.queueWrite(&[_]u8{0x0C}); // Clear our scrollback if (history) { self.renderer_state.mutex.lock(); defer self.renderer_state.mutex.unlock(); self.terminal.screen.clearHistory(); } } pub inline fn queueWrite(self: *Exec, data: []const u8) !void { const ev = self.data.?; // We go through and chunk the data if necessary to fit into // our cached buffers that we can queue to the stream. var i: usize = 0; while (i < data.len) { const req = try ev.write_req_pool.get(); const buf = try ev.write_buf_pool.get(); const end = @min(data.len, i + buf.len); fastmem.copy(u8, buf, data[i..end]); ev.data_stream.queueWrite( ev.loop, &ev.write_queue, req, .{ .slice = buf[0..(end - i)] }, EventData, ev, ttyWrite, ); i = end; } } const ThreadData = struct { /// Allocator used for the event data alloc: Allocator, /// The data that is attached to the callbacks. ev: *EventData, /// Our read thread read_thread: std.Thread, pub fn deinit(self: *ThreadData) void { self.ev.deinit(self.alloc); self.alloc.destroy(self.ev); self.* = undefined; } }; const EventData = struct { // The preallocation size for the write request pool. This should be big // enough to satisfy most write requests. It must be a power of 2. const WRITE_REQ_PREALLOC = std.math.pow(usize, 2, 5); /// Mailbox for data to the writer thread. writer_mailbox: *termio.Mailbox, writer_wakeup: xev.Async, /// The stream parser. This parses the stream of escape codes and so on /// from the child process and calls callbacks in the stream handler. terminal_stream: terminal.Stream(StreamHandler), /// The shared render state renderer_state: *renderer.State, /// A handle to wake up the renderer. This hints to the renderer that that /// a repaint should happen. renderer_wakeup: xev.Async, /// The mailbox for notifying the renderer of things. renderer_mailbox: *renderer.Thread.Mailbox, /// The data stream is the main IO for the pty. data_stream: xev.Stream, /// The event loop, loop: *xev.Loop, /// The write queue for the data stream. write_queue: xev.Stream.WriteQueue = .{}, /// This is the pool of available (unused) write requests. If you grab /// one from the pool, you must put it back when you're done! write_req_pool: SegmentedPool(xev.Stream.WriteRequest, WRITE_REQ_PREALLOC) = .{}, /// The pool of available buffers for writing to the pty. write_buf_pool: SegmentedPool([64]u8, WRITE_REQ_PREALLOC) = .{}, /// Last time the cursor was reset. This is used to prevent message /// flooding with cursor resets. last_cursor_reset: i64 = 0, pub fn deinit(self: *EventData, alloc: Allocator) void { // Clear our write pools. We know we aren't ever going to do // any more IO since we stop our data stream below so we can just // drop this. self.write_req_pool.deinit(alloc); self.write_buf_pool.deinit(alloc); // Stop our data stream self.data_stream.deinit(); } /// This queues a render operation with the renderer thread. The render /// isn't guaranteed to happen immediately but it will happen as soon as /// practical. inline fn queueRender(self: *EventData) !void { try self.renderer_wakeup.notify(); } }; fn ttyWrite( ev_: ?*EventData, _: *xev.Loop, _: *xev.Completion, _: xev.Stream, _: xev.WriteBuffer, r: xev.Stream.WriteError!usize, ) xev.CallbackAction { const ev = ev_.?; ev.write_req_pool.put(); ev.write_buf_pool.put(); const d = r catch |err| { log.err("write error: {}", .{err}); return .disarm; }; _ = d; //log.info("WROTE: {d}", .{status}); return .disarm; } /// Subprocess manages the lifecycle of the shell subprocess. const Subprocess = struct { /// If we build with flatpak support then we have to keep track of /// a potential execution on the host. const FlatpakHostCommand = if (build_config.flatpak) internal_os.FlatpakHostCommand else void; arena: std.heap.ArenaAllocator, cwd: ?[]const u8, env: EnvMap, path: []const u8, args: [][]const u8, grid_size: renderer.GridSize, screen_size: renderer.ScreenSize, pty: ?Pty = null, command: ?Command = null, flatpak_command: ?FlatpakHostCommand = null, /// Initialize the subprocess. This will NOT start it, this only sets /// up the internal state necessary to start it later. pub fn init(gpa: Allocator, opts: termio.Options) !Subprocess { // We have a lot of maybe-allocations that all share the same lifetime // so use an arena so we don't end up in an accounting nightmare. var arena = std.heap.ArenaAllocator.init(gpa); errdefer arena.deinit(); const alloc = arena.allocator(); // Determine the path to the binary we're executing const path = (try Command.expandPath(alloc, opts.config.command orelse "sh")) orelse return error.CommandNotFound; // On macOS, we launch the program as a login shell. This is a Mac-specific // behavior (see other terminals). Terminals in general should NOT be // spawning login shells because well... we're not "logging in." The solution // is to put dotfiles in "rc" variants rather than "_login" variants. But, // history! const argv0_override: ?[]const u8 = if (comptime builtin.target.isDarwin()) argv0: { // Get rid of the path const argv0 = if (std.mem.lastIndexOf(u8, path, "/")) |idx| path[idx + 1 ..] else path; // Copy it with a hyphen so its a login shell const argv0_buf = try alloc.alloc(u8, argv0.len + 1); argv0_buf[0] = '-'; std.mem.copy(u8, argv0_buf[1..], argv0); break :argv0 argv0_buf; } else null; // Set our env vars. For Flatpak builds running in Flatpak we don't // inherit our environment because the login shell on the host side // will get it. var env = env: { if (comptime build_config.flatpak) { if (internal_os.isFlatpak()) { break :env std.process.EnvMap.init(alloc); } } break :env try std.process.getEnvMap(alloc); }; errdefer env.deinit(); try env.put("TERM", "xterm-256color"); try env.put("COLORTERM", "truecolor"); // When embedding in macOS and running via XCode, XCode injects // a bunch of things that break our shell process. We remove those. if (comptime builtin.target.isDarwin() and build_config.artifact == .lib) { if (env.get("__XCODE_BUILT_PRODUCTS_DIR_PATHS") != null) { env.remove("__XCODE_BUILT_PRODUCTS_DIR_PATHS"); env.remove("__XPC_DYLD_LIBRARY_PATH"); env.remove("DYLD_FRAMEWORK_PATH"); env.remove("DYLD_INSERT_LIBRARIES"); env.remove("DYLD_LIBRARY_PATH"); env.remove("LD_LIBRARY_PATH"); env.remove("SECURITYSESSIONID"); env.remove("XPC_SERVICE_NAME"); } } // If we're NOT in a flatpak (usually!), then we just exec the // process directly. If we are in a flatpak, we use flatpak-spawn // to escape the sandbox. const args = if (!internal_os.isFlatpak()) try alloc.dupe( []const u8, &[_][]const u8{argv0_override orelse path}, ) else args: { var args = try std.ArrayList([]const u8).initCapacity(alloc, 8); defer args.deinit(); // We run our shell wrapped in a /bin/sh login shell because // some systems do not properly initialize the env vars unless // we start this way (NixOS!) try args.append("/bin/sh"); try args.append("-l"); try args.append("-c"); try args.append(path); break :args try args.toOwnedSlice(); }; return .{ .arena = arena, .env = env, .cwd = opts.config.@"working-directory", .path = if (internal_os.isFlatpak()) args[0] else path, .args = args, .grid_size = opts.grid_size, .screen_size = opts.screen_size, }; } /// Clean up the subprocess. This will stop the subprocess if it is started. pub fn deinit(self: *Subprocess) void { self.stop(); self.arena.deinit(); self.* = undefined; } /// Start the subprocess. If the subprocess is already started this /// will crash. pub fn start(self: *Subprocess, alloc: Allocator) !std.os.fd_t { assert(self.pty == null and self.command == null); // Create our pty var pty = try Pty.open(.{ .ws_row = @intCast(u16, self.grid_size.rows), .ws_col = @intCast(u16, self.grid_size.columns), .ws_xpixel = @intCast(u16, self.screen_size.width), .ws_ypixel = @intCast(u16, self.screen_size.height), }); self.pty = pty; errdefer { pty.deinit(); self.pty = null; } log.debug("starting command path={s} args={s}", .{ self.path, self.args, }); // In flatpak, we use the HostCommand to execute our shell. if (internal_os.isFlatpak()) flatpak: { if (comptime !build_config.flatpak) { log.warn("flatpak detected, but flatpak support not built-in", .{}); break :flatpak; } // For flatpak our path and argv[0] must match because that is // used for execution by the dbus API. assert(std.mem.eql(u8, self.path, self.args[0])); // Flatpak command must have a stable pointer. self.flatpak_command = .{ .argv = self.args, .env = &self.env, .stdin = pty.slave, .stdout = pty.slave, .stderr = pty.slave, }; var cmd = &self.flatpak_command.?; const pid = try cmd.spawn(alloc); errdefer killCommandFlatpak(cmd); log.info("started subcommand on host via flatpak API path={s} pid={?}", .{ self.path, pid, }); // Once started, we can close the pty child side. We do this after // wait right now but that is fine too. This lets us read the // parent and detect EOF. _ = std.os.close(pty.slave); return pty.master; } // Build our subcommand var cmd: Command = .{ .path = self.path, .args = self.args, .env = &self.env, .cwd = self.cwd, .stdin = .{ .handle = pty.slave }, .stdout = .{ .handle = pty.slave }, .stderr = .{ .handle = pty.slave }, .pre_exec = (struct { fn callback(cmd: *Command) void { const p = cmd.getData(Pty) orelse unreachable; p.childPreExec() catch |err| log.err("error initializing child: {}", .{err}); } }).callback, .data = &self.pty.?, }; try cmd.start(alloc); errdefer killCommand(cmd); log.info("started subcommand path={s} pid={?}", .{ self.path, cmd.pid }); self.command = cmd; return pty.master; } /// Stop the subprocess. This is safe to call anytime. This will wait /// for the subprocess to end so it will block. pub fn stop(self: *Subprocess) void { // Kill our command if (self.command) |*cmd| { killCommand(cmd) catch |err| log.err("error sending SIGHUP to command, may hang: {}", .{err}); _ = cmd.wait(false) catch |err| log.err("error waiting for command to exit: {}", .{err}); self.command = null; } // Kill our Flatpak command if (FlatpakHostCommand != void) { if (self.flatpak_command) |*cmd| { killCommandFlatpak(cmd) catch |err| log.err("error sending SIGHUP to command, may hang: {}", .{err}); _ = cmd.wait() catch |err| log.err("error waiting for command to exit: {}", .{err}); self.flatpak_command = null; } } // Close our PTY. We do this after killing our command because on // macOS, close will block until all blocking operations read/write // are done with it and our reader thread is probably still alive. if (self.pty) |*pty| { pty.deinit(); self.pty = null; } } /// Resize the pty subprocess. This is safe to call anytime. pub fn resize( self: *Subprocess, grid_size: renderer.GridSize, screen_size: renderer.ScreenSize, ) !void { self.grid_size = grid_size; self.screen_size = screen_size; if (self.pty) |pty| { try pty.setSize(.{ .ws_row = @intCast(u16, grid_size.rows), .ws_col = @intCast(u16, grid_size.columns), .ws_xpixel = @intCast(u16, screen_size.width), .ws_ypixel = @intCast(u16, screen_size.height), }); } } /// Kill the underlying subprocess. This sends a SIGHUP to the child /// process. This doesn't wait for the child process to be exited. fn killCommand(command: *Command) !void { if (command.pid) |pid| { const pgid_: ?c.pid_t = pgid: { const pgid = c.getpgid(pid); // Don't know why it would be zero but its not a valid pid if (pgid == 0) break :pgid null; // If the pid doesn't exist then... okay. if (pgid == c.ESRCH) break :pgid null; // If we have an error... if (pgid < 0) { log.warn("error getting pgid for kill", .{}); break :pgid null; } break :pgid pgid; }; if (pgid_) |pgid| { if (c.killpg(pgid, c.SIGHUP) < 0) { log.warn("error killing process group pgid={}", .{pgid}); return error.KillFailed; } } } } /// Kill the underlying process started via Flatpak host command. /// This sends a signal via the Flatpak API. fn killCommandFlatpak(command: *FlatpakHostCommand) !void { try command.signal(c.SIGHUP, true); } }; /// The read thread sits in a loop doing the following pseudo code: /// /// while (true) { blocking_read(); exit_if_eof(); process(); } /// /// Almost all terminal-modifying activity is from the pty read, so /// putting this on a dedicated thread keeps performance very predictable /// while also almost optimal. "Locking is fast, lock contention is slow." /// and since we rarely have contention, this is fast. /// /// This is also empirically fast compared to putting the read into /// an async mechanism like io_uring/epoll because the reads are generally /// small. const ReadThread = struct { /// The main entrypoint for the thread. fn threadMain(fd: std.os.fd_t, ev: *EventData) void { var buf: [1024]u8 = undefined; while (true) { const n = std.os.read(fd, &buf) catch |err| { switch (err) { // This means our pty is closed. We're probably // gracefully shutting down. error.NotOpenForReading, error.InputOutput, => log.info("io reader exiting", .{}), else => { log.err("io reader error err={}", .{err}); unreachable; }, } return; }; // log.info("DATA: {d}", .{n}); @call(.always_inline, process, .{ ev, buf[0..n] }); } } fn process( ev: *EventData, buf: []const u8, ) void { const zone = trace(@src()); defer zone.end(); // log.info("DATA: {d}", .{n}); // log.info("DATA: {any}", .{buf[0..@intCast(usize, n)]}); // Whenever a character is typed, we ensure the cursor is in the // non-blink state so it is rendered if visible. If we're under // HEAVY read load, we don't want to send a ton of these so we // use a timer under the covers const now = ev.loop.now(); if (now - ev.last_cursor_reset > 500) { ev.last_cursor_reset = now; _ = ev.renderer_mailbox.push(.{ .reset_cursor_blink = {}, }, .{ .forever = {} }); } // We are modifying terminal state from here on out ev.renderer_state.mutex.lock(); defer ev.renderer_state.mutex.unlock(); // Schedule a render ev.queueRender() catch unreachable; // Process the terminal data. This is an extremely hot part of the // terminal emulator, so we do some abstraction leakage to avoid // function calls and unnecessary logic. // // The ground state is the only state that we can see and print/execute // ASCII, so we only execute this hot path if we're already in the ground // state. // // Empirically, this alone improved throughput of large text output by ~20%. var i: usize = 0; const end = buf.len; if (ev.terminal_stream.parser.state == .ground) { for (buf[i..end]) |ch| { switch (terminal.parse_table.table[ch][@enumToInt(terminal.Parser.State.ground)].action) { // Print, call directly. .print => ev.terminal_stream.handler.print(@intCast(u21, ch)) catch |err| log.err("error processing terminal data: {}", .{err}), // C0 execute, let our stream handle this one but otherwise // continue since we're guaranteed to be back in ground. .execute => ev.terminal_stream.execute(ch) catch |err| log.err("error processing terminal data: {}", .{err}), // Otherwise, break out and go the slow path until we're // back in ground. There is a slight optimization here where // could try to find the next transition to ground but when // I implemented that it didn't materially change performance. else => break, } i += 1; } } if (i < end) { ev.terminal_stream.nextSlice(buf[i..end]) catch |err| log.err("error processing terminal data: {}", .{err}); } // If our stream handling caused messages to be sent to the writer // thread, then we need to wake it up so that it processes them. if (ev.terminal_stream.handler.writer_messaged) { ev.terminal_stream.handler.writer_messaged = false; ev.writer_wakeup.notify() catch |err| { log.warn("failed to wake up writer thread err={}", .{err}); }; } } }; /// This is used as the handler for the terminal.Stream type. This is /// stateful and is expected to live for the entire lifetime of the terminal. /// It is NOT VALID to stop a stream handler, create a new one, and use that /// unless all of the member fields are copied. const StreamHandler = struct { ev: *EventData, alloc: Allocator, grid_size: *renderer.GridSize, terminal: *terminal.Terminal, surface_mailbox: apprt.surface.Mailbox, /// This is set to true when a message was written to the writer /// mailbox. This can be used by callers to determine if they need /// to wake up the writer. writer_messaged: bool = false, inline fn queueRender(self: *StreamHandler) !void { try self.ev.queueRender(); } inline fn messageWriter(self: *StreamHandler, msg: termio.Message) void { _ = self.ev.writer_mailbox.push(msg, .{ .forever = {} }); self.writer_messaged = true; } pub fn print(self: *StreamHandler, ch: u21) !void { try self.terminal.print(ch); } pub fn printRepeat(self: *StreamHandler, count: usize) !void { try self.terminal.printRepeat(count); } pub fn bell(self: StreamHandler) !void { _ = self; log.info("BELL", .{}); } pub fn backspace(self: *StreamHandler) !void { self.terminal.backspace(); } pub fn horizontalTab(self: *StreamHandler) !void { try self.terminal.horizontalTab(); } pub fn linefeed(self: *StreamHandler) !void { // Small optimization: call index instead of linefeed because they're // identical and this avoids one layer of function call overhead. try self.terminal.index(); } pub fn carriageReturn(self: *StreamHandler) !void { self.terminal.carriageReturn(); } pub fn setCursorLeft(self: *StreamHandler, amount: u16) !void { self.terminal.cursorLeft(amount); } pub fn setCursorRight(self: *StreamHandler, amount: u16) !void { self.terminal.cursorRight(amount); } pub fn setCursorDown(self: *StreamHandler, amount: u16) !void { self.terminal.cursorDown(amount); } pub fn setCursorUp(self: *StreamHandler, amount: u16) !void { self.terminal.cursorUp(amount); } pub fn setCursorCol(self: *StreamHandler, col: u16) !void { self.terminal.setCursorColAbsolute(col); } pub fn setCursorRow(self: *StreamHandler, row: u16) !void { if (self.terminal.modes.origin) { // TODO log.err("setCursorRow: implement origin mode", .{}); unreachable; } self.terminal.setCursorPos(row, self.terminal.screen.cursor.x + 1); } pub fn setCursorPos(self: *StreamHandler, row: u16, col: u16) !void { self.terminal.setCursorPos(row, col); } pub fn eraseDisplay(self: *StreamHandler, mode: terminal.EraseDisplay) !void { if (mode == .complete) { // Whenever we erase the full display, scroll to bottom. try self.terminal.scrollViewport(.{ .bottom = {} }); try self.queueRender(); } self.terminal.eraseDisplay(mode); } pub fn eraseLine(self: *StreamHandler, mode: terminal.EraseLine) !void { self.terminal.eraseLine(mode); } pub fn deleteChars(self: *StreamHandler, count: usize) !void { try self.terminal.deleteChars(count); } pub fn eraseChars(self: *StreamHandler, count: usize) !void { self.terminal.eraseChars(count); } pub fn insertLines(self: *StreamHandler, count: usize) !void { try self.terminal.insertLines(count); } pub fn insertBlanks(self: *StreamHandler, count: usize) !void { self.terminal.insertBlanks(count); } pub fn deleteLines(self: *StreamHandler, count: usize) !void { try self.terminal.deleteLines(count); } pub fn reverseIndex(self: *StreamHandler) !void { try self.terminal.reverseIndex(); } pub fn index(self: *StreamHandler) !void { try self.terminal.index(); } pub fn nextLine(self: *StreamHandler) !void { self.terminal.carriageReturn(); try self.terminal.index(); } pub fn setTopAndBottomMargin(self: *StreamHandler, top: u16, bot: u16) !void { self.terminal.setScrollingRegion(top, bot); } pub fn setMode(self: *StreamHandler, mode: terminal.Mode, enabled: bool) !void { switch (mode) { .cursor_keys => { self.terminal.modes.cursor_keys = enabled; }, .reverse_colors => { self.terminal.modes.reverse_colors = enabled; // Schedule a render since we changed colors try self.queueRender(); }, .origin => { self.terminal.modes.origin = enabled; self.terminal.setCursorPos(1, 1); }, .autowrap => { self.terminal.modes.autowrap = enabled; }, .cursor_visible => { self.ev.renderer_state.cursor.visible = enabled; }, .alt_screen_save_cursor_clear_enter => { const opts: terminal.Terminal.AlternateScreenOptions = .{ .cursor_save = true, .clear_on_enter = true, }; if (enabled) self.terminal.alternateScreen(opts) else self.terminal.primaryScreen(opts); // Schedule a render since we changed screens try self.queueRender(); }, .bracketed_paste => self.terminal.modes.bracketed_paste = enabled, .enable_mode_3 => { // Disable deccolm self.terminal.setDeccolmSupported(enabled); // Force resize back to the window size self.terminal.resize(self.alloc, self.grid_size.columns, self.grid_size.rows) catch |err| log.err("error updating terminal size: {}", .{err}); }, .@"132_column" => try self.terminal.deccolm( self.alloc, if (enabled) .@"132_cols" else .@"80_cols", ), .mouse_event_x10 => self.terminal.modes.mouse_event = if (enabled) .x10 else .none, .mouse_event_normal => self.terminal.modes.mouse_event = if (enabled) .normal else .none, .mouse_event_button => self.terminal.modes.mouse_event = if (enabled) .button else .none, .mouse_event_any => self.terminal.modes.mouse_event = if (enabled) .any else .none, .mouse_format_utf8 => self.terminal.modes.mouse_format = if (enabled) .utf8 else .x10, .mouse_format_sgr => self.terminal.modes.mouse_format = if (enabled) .sgr else .x10, .mouse_format_urxvt => self.terminal.modes.mouse_format = if (enabled) .urxvt else .x10, .mouse_format_sgr_pixels => self.terminal.modes.mouse_format = if (enabled) .sgr_pixels else .x10, .mouse_alternate_scroll => self.terminal.modes.mouse_alternate_scroll = enabled, else => if (enabled) log.warn("unimplemented mode: {}", .{mode}), } } pub fn setAttribute(self: *StreamHandler, attr: terminal.Attribute) !void { switch (attr) { .unknown => |unk| log.warn("unimplemented or unknown attribute: {any}", .{unk}), else => self.terminal.setAttribute(attr) catch |err| log.warn("error setting attribute {}: {}", .{ attr, err }), } } pub fn deviceAttributes( self: *StreamHandler, req: terminal.DeviceAttributeReq, params: []const u16, ) !void { _ = params; switch (req) { // VT220 .primary => self.messageWriter(.{ .write_stable = "\x1B[?62;c" }), else => log.warn("unimplemented device attributes req: {}", .{req}), } } pub fn deviceStatusReport( self: *StreamHandler, req: terminal.DeviceStatusReq, ) !void { switch (req) { .operating_status => self.messageWriter(.{ .write_stable = "\x1B[0n" }), .cursor_position => { const pos: struct { x: usize, y: usize, } = if (self.terminal.modes.origin) .{ // TODO: what do we do if cursor is outside scrolling region? .x = self.terminal.screen.cursor.x, .y = self.terminal.screen.cursor.y -| self.terminal.scrolling_region.top, } else .{ .x = self.terminal.screen.cursor.x, .y = self.terminal.screen.cursor.y, }; // Response always is at least 4 chars, so this leaves the // remainder for the row/column as base-10 numbers. This // will support a very large terminal. var msg: termio.Message = .{ .write_small = .{} }; const resp = try std.fmt.bufPrint(&msg.write_small.data, "\x1B[{};{}R", .{ pos.y + 1, pos.x + 1, }); msg.write_small.len = @intCast(u8, resp.len); self.messageWriter(msg); }, else => log.warn("unimplemented device status req: {}", .{req}), } } pub fn setCursorStyle( self: *StreamHandler, style: terminal.CursorStyle, ) !void { self.ev.renderer_state.cursor.style = style; } pub fn decaln(self: *StreamHandler) !void { try self.terminal.decaln(); } pub fn tabClear(self: *StreamHandler, cmd: terminal.TabClear) !void { self.terminal.tabClear(cmd); } pub fn tabSet(self: *StreamHandler) !void { self.terminal.tabSet(); } pub fn saveCursor(self: *StreamHandler) !void { self.terminal.saveCursor(); } pub fn restoreCursor(self: *StreamHandler) !void { self.terminal.restoreCursor(); } pub fn enquiry(self: *StreamHandler) !void { self.messageWriter(.{ .write_stable = "" }); } pub fn scrollDown(self: *StreamHandler, count: usize) !void { try self.terminal.scrollDown(count); } pub fn scrollUp(self: *StreamHandler, count: usize) !void { try self.terminal.scrollUp(count); } pub fn setActiveStatusDisplay( self: *StreamHandler, req: terminal.StatusDisplay, ) !void { self.terminal.status_display = req; } pub fn configureCharset( self: *StreamHandler, slot: terminal.CharsetSlot, set: terminal.Charset, ) !void { self.terminal.configureCharset(slot, set); } pub fn invokeCharset( self: *StreamHandler, active: terminal.CharsetActiveSlot, slot: terminal.CharsetSlot, single: bool, ) !void { self.terminal.invokeCharset(active, slot, single); } pub fn fullReset( self: *StreamHandler, ) !void { self.terminal.fullReset(); } //------------------------------------------------------------------------- // OSC pub fn changeWindowTitle(self: *StreamHandler, title: []const u8) !void { var buf: [256]u8 = undefined; if (title.len >= buf.len) { log.warn("change title requested larger than our buffer size, ignoring", .{}); return; } std.mem.copy(u8, &buf, title); buf[title.len] = 0; _ = self.surface_mailbox.push(.{ .set_title = buf, }, .{ .forever = {} }); } pub fn clipboardContents(self: *StreamHandler, kind: u8, data: []const u8) !void { // Note: we ignore the "kind" field and always use the primary clipboard. // iTerm also appears to do this but other terminals seem to only allow // certain. Let's investigate more. // Get clipboard contents if (data.len == 1 and data[0] == '?') { _ = self.surface_mailbox.push(.{ .clipboard_read = kind, }, .{ .forever = {} }); return; } // Write clipboard contents _ = self.surface_mailbox.push(.{ .clipboard_write = try apprt.surface.Message.WriteReq.init( self.alloc, data, ), }, .{ .forever = {} }); } };