using namespace metal; // The possible modes that a shader can take. enum Mode : uint8_t { MODE_BG = 1u, MODE_FG = 2u, }; struct Uniforms { float4x4 projection_matrix; float2 px_scale; float2 cell_size; }; struct VertexIn { // The mode for this cell. uint8_t mode [[ attribute(0) ]]; // The grid coordinates (x, y) where x < columns and y < rows float2 grid_pos [[ attribute(1) ]]; // The color. For BG modes, this is the bg color, for FG modes this is // the text color. For styles, this is the color of the style. uchar4 color [[ attribute(5) ]]; // The fields below are present only when rendering text. // The position of the glyph in the texture (x,y) uint2 glyph_pos [[ attribute(2) ]]; // The size of the glyph in the texture (w,h) uint2 glyph_size [[ attribute(3) ]]; // The left and top bearings for the glyph (x,y) int2 glyph_offset [[ attribute(4) ]]; }; struct VertexOut { float4 position [[ position ]]; uint8_t mode; float4 color; float2 tex_coord; }; vertex VertexOut uber_vertex( unsigned int vid [[ vertex_id ]], VertexIn input [[ stage_in ]], constant Uniforms &uniforms [[ buffer(1) ]] ) { // TODO: scale with cell width float2 cell_size = uniforms.cell_size * uniforms.px_scale; // Convert the grid x,y into world space x, y by accounting for cell size float2 cell_pos = cell_size * input.grid_pos; // Turn the cell position into a vertex point depending on the // vertex ID. Since we use instanced drawing, we have 4 vertices // for each corner of the cell. We can use vertex ID to determine // which one we're looking at. Using this, we can use 1 or 0 to keep // or discard the value for the vertex. // // 0 = top-right // 1 = bot-right // 2 = bot-left // 3 = top-left float2 position; position.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f; position.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f; VertexOut out; out.mode = input.mode; out.color = float4(input.color) / 255.0f; switch (input.mode) { case MODE_BG: // Calculate the final position of our cell in world space. // We have to add our cell size since our vertices are offset // one cell up and to the left. (Do the math to verify yourself) cell_pos = cell_pos + cell_size * position; out.position = uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f); break; case MODE_FG: float2 glyph_size = float2(input.glyph_size) * uniforms.px_scale; float2 glyph_offset = float2(input.glyph_offset) * uniforms.px_scale; // TODO: downsampling // The glyph_offset.y is the y bearing, a y value that when added // to the baseline is the offset (+y is up). Our grid goes down. // So we flip it with `cell_size.y - glyph_offset.y`. glyph_offset.y = cell_size.y - glyph_offset.y; // Calculate the final position of the cell which uses our glyph size // and glyph offset to create the correct bounding box for the glyph. cell_pos = cell_pos + glyph_size * position + glyph_offset; out.position = uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f); // Calculate the texture coordinate in pixels. This is NOT normalized // (between 0.0 and 1.0) and must be done in the fragment shader. // TODO: do I need to px_scale? out.tex_coord = float2(input.glyph_pos) + float2(input.glyph_size) * position; break; } return out; } fragment float4 uber_fragment( VertexOut in [[ stage_in ]], texture2d textureGreyscale [[ texture(0) ]] ) { constexpr sampler textureSampler(address::clamp_to_edge, filter::linear); switch (in.mode) { case MODE_BG: return in.color; case MODE_FG: // Normalize the texture coordinates to [0,1] float2 size = float2(textureGreyscale.get_width(), textureGreyscale.get_height()); float2 coord = in.tex_coord / size; float a = textureGreyscale.sample(textureSampler, coord).r; return float4(in.color.rgb, in.color.a * a); } }