Merge pull request #1711 from mitchellh/strikesprite

Strikethrough should be sprite-rendered
This commit is contained in:
Mitchell Hashimoto
2024-04-22 10:42:20 -07:00
committed by GitHub
11 changed files with 208 additions and 208 deletions

View File

@ -129,6 +129,7 @@ fn reloadMetrics(self: *SharedGrid, thicken: bool) !void {
.thickness = self.metrics.underline_thickness * .thickness = self.metrics.underline_thickness *
@as(u32, if (thicken) 2 else 1), @as(u32, if (thicken) 2 else 1),
.underline_position = self.metrics.underline_position, .underline_position = self.metrics.underline_position,
.strikethrough_position = self.metrics.strikethrough_position,
}; };
} }

View File

@ -20,6 +20,8 @@ pub const Sprite = enum(u32) {
underline_dashed, underline_dashed,
underline_curly, underline_curly,
strikethrough,
cursor_rect, cursor_rect,
cursor_hollow_rect, cursor_hollow_rect,
cursor_bar, cursor_bar,

View File

@ -30,11 +30,17 @@ height: u32,
/// Base thickness value for lines of sprites. This is in pixels. If you /// Base thickness value for lines of sprites. This is in pixels. If you
/// want to do any DPI scaling, it is expected to be done earlier. /// want to do any DPI scaling, it is expected to be done earlier.
thickness: u32, thickness: u32 = 1,
/// The position of the underline. /// The position of the underline.
underline_position: u32 = 0, underline_position: u32 = 0,
/// The position of the strikethrough.
// NOTE(mitchellh): We don't use a dedicated strikethrough thickness
// setting yet but fonts can in theory set this. If this becomes an
// issue in practice we can add it here.
strikethrough_position: u32 = 0,
/// Returns true if the codepoint exists in our sprite font. /// Returns true if the codepoint exists in our sprite font.
pub fn hasCodepoint(self: Face, cp: u32, p: ?font.Presentation) bool { pub fn hasCodepoint(self: Face, cp: u32, p: ?font.Presentation) bool {
// We ignore presentation. No matter what presentation is requested // We ignore presentation. No matter what presentation is requested
@ -113,6 +119,16 @@ pub fn renderGlyph(
self.thickness, self.thickness,
), ),
.strikethrough => try underline.renderGlyph(
alloc,
atlas,
@enumFromInt(cp),
width,
self.height,
self.strikethrough_position,
self.thickness,
),
.powerline => powerline: { .powerline => powerline: {
const f: Powerline = .{ const f: Powerline = .{
.width = width, .width = width,
@ -129,6 +145,7 @@ pub fn renderGlyph(
const Kind = enum { const Kind = enum {
box, box,
underline, underline,
strikethrough,
powerline, powerline,
pub fn init(cp: u32) ?Kind { pub fn init(cp: u32) ?Kind {
@ -141,6 +158,9 @@ const Kind = enum {
.underline_curly, .underline_curly,
=> .underline, => .underline,
.strikethrough,
=> .strikethrough,
.cursor_rect, .cursor_rect,
.cursor_hollow_rect, .cursor_hollow_rect,
.cursor_bar, .cursor_bar,
@ -189,3 +209,7 @@ const Kind = enum {
}; };
} }
}; };
test {
@import("std").testing.refAllDecls(@This());
}

View File

@ -7,6 +7,9 @@
//! to maintain and debug another set of shaders for each renderer instead of //! to maintain and debug another set of shaders for each renderer instead of
//! just relying on the glyph system we already need to support for text //! just relying on the glyph system we already need to support for text
//! anyways. //! anyways.
//!
//! This also renders strikethrough, so its really more generally a
//! "horizontal line" renderer.
const std = @import("std"); const std = @import("std");
const builtin = @import("builtin"); const builtin = @import("builtin");
const assert = std.debug.assert; const assert = std.debug.assert;
@ -71,6 +74,7 @@ const Draw = struct {
.underline_dotted => self.drawDotted(canvas), .underline_dotted => self.drawDotted(canvas),
.underline_dashed => self.drawDashed(canvas), .underline_dashed => self.drawDashed(canvas),
.underline_curly => self.drawCurly(canvas), .underline_curly => self.drawCurly(canvas),
.strikethrough => self.drawSingle(canvas),
else => unreachable, else => unreachable,
} }
} }
@ -225,6 +229,24 @@ test "single" {
); );
} }
test "strikethrough" {
const testing = std.testing;
const alloc = testing.allocator;
var atlas_greyscale = try font.Atlas.init(alloc, 512, .greyscale);
defer atlas_greyscale.deinit(alloc);
_ = try renderGlyph(
alloc,
&atlas_greyscale,
.strikethrough,
36,
18,
9,
2,
);
}
test "single large thickness" { test "single large thickness" {
const testing = std.testing; const testing = std.testing;
const alloc = testing.allocator; const alloc = testing.allocator;

View File

@ -452,8 +452,6 @@ pub fn init(alloc: Allocator, options: renderer.Options) !Metal {
.uniforms = .{ .uniforms = .{
.projection_matrix = undefined, .projection_matrix = undefined,
.cell_size = undefined, .cell_size = undefined,
.strikethrough_position = @floatFromInt(font_critical.metrics.strikethrough_position),
.strikethrough_thickness = @floatFromInt(font_critical.metrics.strikethrough_thickness),
.min_contrast = options.config.min_contrast, .min_contrast = options.config.min_contrast,
}, },
@ -584,8 +582,6 @@ pub fn setFontGrid(self: *Metal, grid: *font.SharedGrid) void {
@floatFromInt(metrics.cell_width), @floatFromInt(metrics.cell_width),
@floatFromInt(metrics.cell_height), @floatFromInt(metrics.cell_height),
}, },
.strikethrough_position = @floatFromInt(metrics.strikethrough_position),
.strikethrough_thickness = @floatFromInt(metrics.strikethrough_thickness),
.min_contrast = self.uniforms.min_contrast, .min_contrast = self.uniforms.min_contrast,
}; };
} }
@ -1436,8 +1432,6 @@ pub fn setScreenSize(
@floatFromInt(self.grid_metrics.cell_width), @floatFromInt(self.grid_metrics.cell_width),
@floatFromInt(self.grid_metrics.cell_height), @floatFromInt(self.grid_metrics.cell_height),
}, },
.strikethrough_position = old.strikethrough_position,
.strikethrough_thickness = old.strikethrough_thickness,
.min_contrast = old.min_contrast, .min_contrast = old.min_contrast,
}; };
@ -1914,12 +1908,25 @@ fn updateCell(
} }
if (style.flags.strikethrough) { if (style.flags.strikethrough) {
const render = try self.font_grid.renderGlyph(
self.alloc,
font.sprite_index,
@intFromEnum(font.Sprite.strikethrough),
.{
.cell_width = if (cell.wide == .wide) 2 else 1,
.grid_metrics = self.grid_metrics,
},
);
self.cells.appendAssumeCapacity(.{ self.cells.appendAssumeCapacity(.{
.mode = .strikethrough, .mode = .fg,
.grid_pos = .{ @as(f32, @floatFromInt(x)), @as(f32, @floatFromInt(y)) }, .grid_pos = .{ @as(f32, @floatFromInt(x)), @as(f32, @floatFromInt(y)) },
.cell_width = cell.gridWidth(), .cell_width = cell.gridWidth(),
.color = .{ colors.fg.r, colors.fg.g, colors.fg.b, alpha }, .color = .{ colors.fg.r, colors.fg.g, colors.fg.b, alpha },
.bg_color = bg, .bg_color = bg,
.glyph_pos = .{ render.glyph.atlas_x, render.glyph.atlas_y },
.glyph_size = .{ render.glyph.width, render.glyph.height },
.glyph_offset = .{ render.glyph.offset_x, render.glyph.offset_y },
}); });
} }

View File

@ -207,17 +207,6 @@ const SetFontSize = struct {
}, },
); );
} }
const bind = try gl_state.cell_program.program.use();
defer bind.unbind();
try gl_state.cell_program.program.setUniform(
"strikethrough_position",
@as(f32, @floatFromInt(self.metrics.strikethrough_position)),
);
try gl_state.cell_program.program.setUniform(
"strikethrough_thickness",
@as(f32, @floatFromInt(self.metrics.strikethrough_thickness)),
);
} }
}; };
@ -1491,17 +1480,27 @@ fn updateCell(
} }
if (style.flags.strikethrough) { if (style.flags.strikethrough) {
const render = try self.font_grid.renderGlyph(
self.alloc,
font.sprite_index,
@intFromEnum(font.Sprite.strikethrough),
.{
.cell_width = if (cell.wide == .wide) 2 else 1,
.grid_metrics = self.grid_metrics,
},
);
self.cells.appendAssumeCapacity(.{ self.cells.appendAssumeCapacity(.{
.mode = .strikethrough, .mode = .fg,
.grid_col = @intCast(x), .grid_col = @intCast(x),
.grid_row = @intCast(y), .grid_row = @intCast(y),
.grid_width = cell.gridWidth(), .grid_width = cell.gridWidth(),
.glyph_x = 0, .glyph_x = render.glyph.atlas_x,
.glyph_y = 0, .glyph_y = render.glyph.atlas_y,
.glyph_width = 0, .glyph_width = render.glyph.width,
.glyph_height = 0, .glyph_height = render.glyph.height,
.glyph_offset_x = 0, .glyph_offset_x = render.glyph.offset_x,
.glyph_offset_y = 0, .glyph_offset_y = render.glyph.offset_y,
.r = colors.fg.r, .r = colors.fg.r,
.g = colors.fg.g, .g = colors.fg.g,
.b = colors.fg.b, .b = colors.fg.b,

View File

@ -103,7 +103,6 @@ pub const Cell = extern struct {
fg = 2, fg = 2,
fg_constrained = 3, fg_constrained = 3,
fg_color = 7, fg_color = 7,
strikethrough = 8,
}; };
}; };
@ -124,10 +123,6 @@ pub const Uniforms = extern struct {
/// Size of a single cell in pixels, unscaled. /// Size of a single cell in pixels, unscaled.
cell_size: [2]f32, cell_size: [2]f32,
/// Metrics for underline/strikethrough
strikethrough_position: f32,
strikethrough_thickness: f32,
/// The minimum contrast ratio for text. The contrast ratio is calculated /// The minimum contrast ratio for text. The contrast ratio is calculated
/// according to the WCAG 2.0 spec. /// according to the WCAG 2.0 spec.
min_contrast: f32, min_contrast: f32,

View File

@ -53,7 +53,6 @@ pub const CellMode = enum(u8) {
fg = 2, fg = 2,
fg_constrained = 3, fg_constrained = 3,
fg_color = 7, fg_color = 7,
strikethrough = 8,
// Non-exhaustive because masks change it // Non-exhaustive because masks change it
_, _,

View File

@ -28,7 +28,6 @@ const uint MODE_BG = 1u;
const uint MODE_FG = 2u; const uint MODE_FG = 2u;
const uint MODE_FG_CONSTRAINED = 3u; const uint MODE_FG_CONSTRAINED = 3u;
const uint MODE_FG_COLOR = 7u; const uint MODE_FG_COLOR = 7u;
const uint MODE_STRIKETHROUGH = 8u;
void main() { void main() {
float a; float a;
@ -48,9 +47,5 @@ void main() {
case MODE_FG_COLOR: case MODE_FG_COLOR:
out_FragColor = texture(text_color, glyph_tex_coords); out_FragColor = texture(text_color, glyph_tex_coords);
break; break;
case MODE_STRIKETHROUGH:
out_FragColor = color;
break;
} }
} }

View File

@ -2,54 +2,51 @@ using namespace metal;
// The possible modes that a shader can take. // The possible modes that a shader can take.
enum Mode : uint8_t { enum Mode : uint8_t {
MODE_BG = 1u, MODE_BG = 1u,
MODE_FG = 2u, MODE_FG = 2u,
MODE_FG_CONSTRAINED = 3u, MODE_FG_CONSTRAINED = 3u,
MODE_FG_COLOR = 7u, MODE_FG_COLOR = 7u,
MODE_STRIKETHROUGH = 8u,
}; };
struct Uniforms { struct Uniforms {
float4x4 projection_matrix; float4x4 projection_matrix;
float2 cell_size; float2 cell_size;
float strikethrough_position;
float strikethrough_thickness;
float min_contrast; float min_contrast;
}; };
struct VertexIn { struct VertexIn {
// The mode for this cell. // The mode for this cell.
uint8_t mode [[ attribute(0) ]]; uint8_t mode [[attribute(0)]];
// The grid coordinates (x, y) where x < columns and y < rows // The grid coordinates (x, y) where x < columns and y < rows
float2 grid_pos [[ attribute(1) ]]; float2 grid_pos [[attribute(1)]];
// The width of the cell in cells (i.e. 2 for double-wide). // The width of the cell in cells (i.e. 2 for double-wide).
uint8_t cell_width [[ attribute(6) ]]; uint8_t cell_width [[attribute(6)]];
// The color. For BG modes, this is the bg color, for FG modes this is // The color. For BG modes, this is the bg color, for FG modes this is
// the text color. For styles, this is the color of the style. // the text color. For styles, this is the color of the style.
uchar4 color [[ attribute(5) ]]; uchar4 color [[attribute(5)]];
// The fields below are present only when rendering text (fg mode) // The fields below are present only when rendering text (fg mode)
// The background color of the cell. This is used to determine if // The background color of the cell. This is used to determine if
// we need to render the text with a different color to ensure // we need to render the text with a different color to ensure
// contrast. // contrast.
uchar4 bg_color [[ attribute(7) ]]; uchar4 bg_color [[attribute(7)]];
// The position of the glyph in the texture (x,y) // The position of the glyph in the texture (x,y)
uint2 glyph_pos [[ attribute(2) ]]; uint2 glyph_pos [[attribute(2)]];
// The size of the glyph in the texture (w,h) // The size of the glyph in the texture (w,h)
uint2 glyph_size [[ attribute(3) ]]; uint2 glyph_size [[attribute(3)]];
// The left and top bearings for the glyph (x,y) // The left and top bearings for the glyph (x,y)
int2 glyph_offset [[ attribute(4) ]]; int2 glyph_offset [[attribute(4)]];
}; };
struct VertexOut { struct VertexOut {
float4 position [[ position ]]; float4 position [[position]];
float2 cell_size; float2 cell_size;
uint8_t mode; uint8_t mode;
float4 color; float4 color;
@ -63,11 +60,11 @@ struct VertexOut {
// https://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef // https://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef
float luminance_component(float c) { float luminance_component(float c) {
if (c <= 0.03928f) { if (c <= 0.03928f) {
return c / 12.92f; return c / 12.92f;
} else { } else {
return pow((c + 0.055f) / 1.055f, 2.4f); return pow((c + 0.055f) / 1.055f, 2.4f);
} }
} }
float relative_luminance(float3 color) { float relative_luminance(float3 color) {
@ -89,20 +86,20 @@ float contrast_ratio(float3 color1, float3 color2) {
// return a color that satisfies the contrast ratio. Currently, the color // return a color that satisfies the contrast ratio. Currently, the color
// is always white or black, whichever has the highest contrast ratio. // is always white or black, whichever has the highest contrast ratio.
float4 contrasted_color(float min, float4 fg, float4 bg) { float4 contrasted_color(float min, float4 fg, float4 bg) {
float3 fg_premult = fg.rgb * fg.a; float3 fg_premult = fg.rgb * fg.a;
float3 bg_premult = bg.rgb * bg.a; float3 bg_premult = bg.rgb * bg.a;
float ratio = contrast_ratio(fg_premult, bg_premult); float ratio = contrast_ratio(fg_premult, bg_premult);
if (ratio < min) { if (ratio < min) {
float white_ratio = contrast_ratio(float3(1.0f), bg_premult); float white_ratio = contrast_ratio(float3(1.0f), bg_premult);
float black_ratio = contrast_ratio(float3(0.0f), bg_premult); float black_ratio = contrast_ratio(float3(0.0f), bg_premult);
if (white_ratio > black_ratio) { if (white_ratio > black_ratio) {
return float4(1.0f); return float4(1.0f);
} else { } else {
return float4(0.0f, 0.0f, 0.0f, 1.0f); return float4(0.0f, 0.0f, 0.0f, 1.0f);
}
} }
}
return fg; return fg;
} }
//------------------------------------------------------------------- //-------------------------------------------------------------------
@ -110,11 +107,9 @@ float4 contrasted_color(float min, float4 fg, float4 bg) {
//------------------------------------------------------------------- //-------------------------------------------------------------------
#pragma mark - Terminal Grid Cell Shader #pragma mark - Terminal Grid Cell Shader
vertex VertexOut uber_vertex( vertex VertexOut uber_vertex(unsigned int vid [[vertex_id]],
unsigned int vid [[ vertex_id ]], VertexIn input [[stage_in]],
VertexIn input [[ stage_in ]], constant Uniforms& uniforms [[buffer(1)]]) {
constant Uniforms &uniforms [[ buffer(1) ]]
) {
// Convert the grid x,y into world space x, y by accounting for cell size // Convert the grid x,y into world space x, y by accounting for cell size
float2 cell_pos = uniforms.cell_size * input.grid_pos; float2 cell_pos = uniforms.cell_size * input.grid_pos;
@ -141,115 +136,98 @@ vertex VertexOut uber_vertex(
out.cell_size = uniforms.cell_size; out.cell_size = uniforms.cell_size;
out.color = float4(input.color) / 255.0f; out.color = float4(input.color) / 255.0f;
switch (input.mode) { switch (input.mode) {
case MODE_BG: case MODE_BG:
// Calculate the final position of our cell in world space. // Calculate the final position of our cell in world space.
// We have to add our cell size since our vertices are offset // We have to add our cell size since our vertices are offset
// one cell up and to the left. (Do the math to verify yourself) // one cell up and to the left. (Do the math to verify yourself)
cell_pos = cell_pos + cell_size_scaled * position; cell_pos = cell_pos + cell_size_scaled * position;
out.position = uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f); out.position = uniforms.projection_matrix *
break; float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
break;
case MODE_FG: case MODE_FG:
case MODE_FG_CONSTRAINED: case MODE_FG_CONSTRAINED:
case MODE_FG_COLOR: { case MODE_FG_COLOR: {
float2 glyph_size = float2(input.glyph_size); float2 glyph_size = float2(input.glyph_size);
float2 glyph_offset = float2(input.glyph_offset); float2 glyph_offset = float2(input.glyph_offset);
// The glyph_offset.y is the y bearing, a y value that when added // The glyph_offset.y is the y bearing, a y value that when added
// to the baseline is the offset (+y is up). Our grid goes down. // to the baseline is the offset (+y is up). Our grid goes down.
// So we flip it with `cell_size.y - glyph_offset.y`. // So we flip it with `cell_size.y - glyph_offset.y`.
glyph_offset.y = cell_size_scaled.y - glyph_offset.y; glyph_offset.y = cell_size_scaled.y - glyph_offset.y;
// If we're constrained then we need to scale the glyph. // If we're constrained then we need to scale the glyph.
// We also always constrain colored glyphs since we should have // We also always constrain colored glyphs since we should have
// their scaled cell size exactly correct. // their scaled cell size exactly correct.
if (input.mode == MODE_FG_CONSTRAINED || input.mode == MODE_FG_COLOR) { if (input.mode == MODE_FG_CONSTRAINED || input.mode == MODE_FG_COLOR) {
if (glyph_size.x > cell_size_scaled.x) { if (glyph_size.x > cell_size_scaled.x) {
float new_y = glyph_size.y * (cell_size_scaled.x / glyph_size.x); float new_y = glyph_size.y * (cell_size_scaled.x / glyph_size.x);
glyph_offset.y += (glyph_size.y - new_y) / 2; glyph_offset.y += (glyph_size.y - new_y) / 2;
glyph_size.y = new_y; glyph_size.y = new_y;
glyph_size.x = cell_size_scaled.x; glyph_size.x = cell_size_scaled.x;
}
} }
// Calculate the final position of the cell which uses our glyph size
// and glyph offset to create the correct bounding box for the glyph.
cell_pos = cell_pos + glyph_size * position + glyph_offset;
out.position = uniforms.projection_matrix *
float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
// Calculate the texture coordinate in pixels. This is NOT normalized
// (between 0.0 and 1.0) and must be done in the fragment shader.
out.tex_coord =
float2(input.glyph_pos) + float2(input.glyph_size) * position;
// If we have a minimum contrast, we need to check if we need to
// change the color of the text to ensure it has enough contrast
// with the background.
if (uniforms.min_contrast > 1.0f && input.mode == MODE_FG) {
float4 bg_color = float4(input.bg_color) / 255.0f;
out.color =
contrasted_color(uniforms.min_contrast, out.color, bg_color);
}
break;
} }
// Calculate the final position of the cell which uses our glyph size
// and glyph offset to create the correct bounding box for the glyph.
cell_pos = cell_pos + glyph_size * position + glyph_offset;
out.position = uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
// Calculate the texture coordinate in pixels. This is NOT normalized
// (between 0.0 and 1.0) and must be done in the fragment shader.
out.tex_coord = float2(input.glyph_pos) + float2(input.glyph_size) * position;
// If we have a minimum contrast, we need to check if we need to
// change the color of the text to ensure it has enough contrast
// with the background.
if (uniforms.min_contrast > 1.0f && input.mode == MODE_FG) {
float4 bg_color = float4(input.bg_color) / 255.0f;
out.color = contrasted_color(uniforms.min_contrast, out.color, bg_color);
}
break;
}
case MODE_STRIKETHROUGH: {
// Strikethrough Y value is just our thickness
float2 strikethrough_size = float2(cell_size_scaled.x, uniforms.strikethrough_thickness);
// Position the strikethrough where we are told to
float2 strikethrough_offset = float2(cell_size_scaled.x, uniforms.strikethrough_position);
// Go to the bottom of the cell, take away the size of the
// strikethrough, and that is our position. We also float it slightly
// above the bottom.
cell_pos = cell_pos + strikethrough_offset - (strikethrough_size * position);
out.position = uniforms.projection_matrix * float4(cell_pos, 0.0f, 1.0);
break;
}
} }
return out; return out;
} }
fragment float4 uber_fragment( fragment float4 uber_fragment(VertexOut in [[stage_in]],
VertexOut in [[ stage_in ]], texture2d<float> textureGreyscale [[texture(0)]],
texture2d<float> textureGreyscale [[ texture(0) ]], texture2d<float> textureColor [[texture(1)]]) {
texture2d<float> textureColor [[ texture(1) ]]
) {
constexpr sampler textureSampler(address::clamp_to_edge, filter::linear); constexpr sampler textureSampler(address::clamp_to_edge, filter::linear);
switch (in.mode) { switch (in.mode) {
case MODE_BG: case MODE_BG:
return in.color; return in.color;
case MODE_FG_CONSTRAINED: case MODE_FG_CONSTRAINED:
case MODE_FG: { case MODE_FG: {
// Normalize the texture coordinates to [0,1] // Normalize the texture coordinates to [0,1]
float2 size = float2(textureGreyscale.get_width(), textureGreyscale.get_height()); float2 size =
float2 coord = in.tex_coord / size; float2(textureGreyscale.get_width(), textureGreyscale.get_height());
float2 coord = in.tex_coord / size;
// We premult the alpha to our whole color since our blend function // We premult the alpha to our whole color since our blend function
// uses One/OneMinusSourceAlpha to avoid blurry edges. // uses One/OneMinusSourceAlpha to avoid blurry edges.
// We first premult our given color. // We first premult our given color.
float4 premult = float4(in.color.rgb * in.color.a, in.color.a); float4 premult = float4(in.color.rgb * in.color.a, in.color.a);
// Then premult the texture color // Then premult the texture color
float a = textureGreyscale.sample(textureSampler, coord).r; float a = textureGreyscale.sample(textureSampler, coord).r;
premult = premult * a; premult = premult * a;
return premult; return premult;
} }
case MODE_FG_COLOR: { case MODE_FG_COLOR: {
// Normalize the texture coordinates to [0,1] // Normalize the texture coordinates to [0,1]
float2 size = float2(textureColor.get_width(), textureColor.get_height()); float2 size = float2(textureColor.get_width(), textureColor.get_height());
float2 coord = in.tex_coord / size; float2 coord = in.tex_coord / size;
return textureColor.sample(textureSampler, coord); return textureColor.sample(textureSampler, coord);
} }
case MODE_STRIKETHROUGH:
return in.color;
} }
} }
@ -261,30 +239,28 @@ fragment float4 uber_fragment(
struct ImageVertexIn { struct ImageVertexIn {
// The grid coordinates (x, y) where x < columns and y < rows where // The grid coordinates (x, y) where x < columns and y < rows where
// the image will be rendered. It will be rendered from the top left. // the image will be rendered. It will be rendered from the top left.
float2 grid_pos [[ attribute(1) ]]; float2 grid_pos [[attribute(1)]];
// Offset in pixels from the top-left of the cell to make the top-left // Offset in pixels from the top-left of the cell to make the top-left
// corner of the image. // corner of the image.
float2 cell_offset [[ attribute(2) ]]; float2 cell_offset [[attribute(2)]];
// The source rectangle of the texture to sample from. // The source rectangle of the texture to sample from.
float4 source_rect [[ attribute(3) ]]; float4 source_rect [[attribute(3)]];
// The final width/height of the image in pixels. // The final width/height of the image in pixels.
float2 dest_size [[ attribute(4) ]]; float2 dest_size [[attribute(4)]];
}; };
struct ImageVertexOut { struct ImageVertexOut {
float4 position [[ position ]]; float4 position [[position]];
float2 tex_coord; float2 tex_coord;
}; };
vertex ImageVertexOut image_vertex( vertex ImageVertexOut image_vertex(unsigned int vid [[vertex_id]],
unsigned int vid [[ vertex_id ]], ImageVertexIn input [[stage_in]],
ImageVertexIn input [[ stage_in ]], texture2d<uint> image [[texture(0)]],
texture2d<uint> image [[ texture(0) ]], constant Uniforms& uniforms [[buffer(1)]]) {
constant Uniforms &uniforms [[ buffer(1) ]]
) {
// The size of the image in pixels // The size of the image in pixels
float2 image_size = float2(image.get_width(), image.get_height()); float2 image_size = float2(image.get_width(), image.get_height());
@ -315,15 +291,14 @@ vertex ImageVertexOut image_vertex(
float2 image_pos = (uniforms.cell_size * input.grid_pos) + input.cell_offset; float2 image_pos = (uniforms.cell_size * input.grid_pos) + input.cell_offset;
image_pos += input.dest_size * position; image_pos += input.dest_size * position;
out.position = uniforms.projection_matrix * float4(image_pos.x, image_pos.y, 0.0f, 1.0f); out.position =
uniforms.projection_matrix * float4(image_pos.x, image_pos.y, 0.0f, 1.0f);
out.tex_coord = tex_coord; out.tex_coord = tex_coord;
return out; return out;
} }
fragment float4 image_fragment( fragment float4 image_fragment(ImageVertexOut in [[stage_in]],
ImageVertexOut in [[ stage_in ]], texture2d<uint> image [[texture(0)]]) {
texture2d<uint> image [[ texture(0) ]]
) {
constexpr sampler textureSampler(address::clamp_to_edge, filter::linear); constexpr sampler textureSampler(address::clamp_to_edge, filter::linear);
// Ehhhhh our texture is in RGBA8Uint but our color attachment is // Ehhhhh our texture is in RGBA8Uint but our color attachment is
@ -344,13 +319,13 @@ fragment float4 image_fragment(
#pragma mark - Post Shader #pragma mark - Post Shader
struct PostVertexOut { struct PostVertexOut {
float4 position [[ position ]]; float4 position [[position]];
}; };
constant float2 post_pos[4] = { {-1,-1}, {1,-1}, {-1,1}, {1,1 } }; constant float2 post_pos[4] = {{-1, -1}, {1, -1}, {-1, 1}, {1, 1}};
vertex PostVertexOut post_vertex(uint id [[ vertex_id ]]) { vertex PostVertexOut post_vertex(uint id [[vertex_id]]) {
PostVertexOut out; PostVertexOut out;
out.position = float4(post_pos[id], 0, 1); out.position = float4(post_pos[id], 0, 1);
return out; return out;
} }

View File

@ -8,7 +8,6 @@ const uint MODE_BG = 1u;
const uint MODE_FG = 2u; const uint MODE_FG = 2u;
const uint MODE_FG_CONSTRAINED = 3u; const uint MODE_FG_CONSTRAINED = 3u;
const uint MODE_FG_COLOR = 7u; const uint MODE_FG_COLOR = 7u;
const uint MODE_STRIKETHROUGH = 8u;
// The grid coordinates (x, y) where x < columns and y < rows // The grid coordinates (x, y) where x < columns and y < rows
layout (location = 0) in vec2 grid_coord; layout (location = 0) in vec2 grid_coord;
@ -57,8 +56,6 @@ uniform sampler2D text;
uniform sampler2D text_color; uniform sampler2D text_color;
uniform vec2 cell_size; uniform vec2 cell_size;
uniform mat4 projection; uniform mat4 projection;
uniform float strikethrough_position;
uniform float strikethrough_thickness;
uniform float min_contrast; uniform float min_contrast;
/******************************************************************** /********************************************************************
@ -233,21 +230,5 @@ void main() {
} }
color = color_final; color = color_final;
break; break;
case MODE_STRIKETHROUGH:
// Strikethrough Y value is just our thickness
vec2 strikethrough_size = vec2(cell_size_scaled.x, strikethrough_thickness);
// Position the strikethrough where we are told to
vec2 strikethrough_offset = vec2(cell_size_scaled.x, strikethrough_position) ;
// Go to the bottom of the cell, take away the size of the
// strikethrough, and that is our position. We also float it slightly
// above the bottom.
cell_pos = cell_pos + strikethrough_offset - (strikethrough_size * position);
gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
color = color_in / 255.0;
break;
} }
} }