Metal Renderer

This implements a pure Metal renderer for macOS targets. 

Performance:
  - Average frame time: 0.7ms (Metal) vs. 1.5ms (OpenGL)
  - Average fps while `cat`-ing a 1GB file (vsync disabled): 100 (Metal) vs. 70 (OpenGL)
    * Note: while the frame time is 2x faster in Metal, the FPS is not 2x for what I assume to be lock contention on terminal state.

Why?
  - OpenGL has been deprecated on macOS since 2018. 
  - All OpenGL has to go through a Metal translation layer anyways, which has a non-zero cost. 
  - There is a bug on Mac where rendering OpenGL on a separate thread from the windowing thread can cause crashes, so most OpenGL software just don't multi-thread render on Mac. 
  - Metal is more explicit about resource management compared to OpenGL, so we gain performance.
  - Metal is much more multi-thread friendly, so our multi-threaded renderer works great! (with resizes!)
This commit is contained in:
Mitchell Hashimoto
2022-10-31 10:48:53 -07:00
committed by GitHub
17 changed files with 1598 additions and 62 deletions

View File

@ -58,9 +58,6 @@ jobs:
nix_path: nixpkgs=channel:nixos-unstable nix_path: nixpkgs=channel:nixos-unstable
- name: test - name: test
run: nix develop -c zig build test -fstage1
- name: test stage2
run: nix develop -c zig build test run: nix develop -c zig build test
- name: Test Dynamic Build - name: Test Dynamic Build

View File

@ -223,13 +223,19 @@ fn addDeps(
_ = try utf8proc.link(b, step); _ = try utf8proc.link(b, step);
// Glfw // Glfw
const glfw_opts: glfw.Options = .{ .metal = false, .opengl = false }; const glfw_opts: glfw.Options = .{
.metal = step.target.isDarwin(),
.opengl = false,
};
try glfw.link(b, step, glfw_opts); try glfw.link(b, step, glfw_opts);
// Imgui, we have to do this later since we need some information // Imgui, we have to do this later since we need some information
const imgui_backends = [_][]const u8{ "glfw", "opengl3" }; const imgui_backends = if (step.target.isDarwin())
&[_][]const u8{ "glfw", "opengl3", "metal" }
else
&[_][]const u8{ "glfw", "opengl3" };
var imgui_opts: imgui.Options = .{ var imgui_opts: imgui.Options = .{
.backends = &imgui_backends, .backends = imgui_backends,
.freetype = .{ .enabled = true }, .freetype = .{ .enabled = true },
}; };

View File

@ -101,11 +101,17 @@ pub fn buildImgui(
lib.addCSourceFiles(srcs, flags.items); lib.addCSourceFiles(srcs, flags.items);
if (opt.backends) |backends| { if (opt.backends) |backends| {
for (backends) |backend| { for (backends) |backend| {
const ext = if (std.mem.eql(u8, "metal", backend)) ext: {
// Metal requires some extra frameworks
step.linkFramework("QuartzCore");
break :ext "mm";
} else "cpp";
var buf: [4096]u8 = undefined; var buf: [4096]u8 = undefined;
const path = try std.fmt.bufPrint( const path = try std.fmt.bufPrint(
&buf, &buf,
"{s}imgui/backends/imgui_impl_{s}.cpp", "{s}imgui/backends/imgui_impl_{s}.{s}",
.{ root, backend }, .{ root, backend, ext },
); );
lib.addCSourceFile(path, flags.items); lib.addCSourceFile(path, flags.items);

View File

@ -13,6 +13,10 @@ pub const ImplGlfw = struct {
return ImGui_ImplGlfw_InitForOpenGL(win, install_callbacks); return ImGui_ImplGlfw_InitForOpenGL(win, install_callbacks);
} }
pub fn initForOther(win: *GLFWWindow, install_callbacks: bool) bool {
return ImGui_ImplGlfw_InitForOther(win, install_callbacks);
}
pub fn shutdown() void { pub fn shutdown() void {
return ImGui_ImplGlfw_Shutdown(); return ImGui_ImplGlfw_Shutdown();
} }
@ -23,6 +27,7 @@ pub const ImplGlfw = struct {
extern "c" fn glfwGetError(?*const anyopaque) c_int; extern "c" fn glfwGetError(?*const anyopaque) c_int;
extern "c" fn ImGui_ImplGlfw_InitForOpenGL(*GLFWWindow, bool) bool; extern "c" fn ImGui_ImplGlfw_InitForOpenGL(*GLFWWindow, bool) bool;
extern "c" fn ImGui_ImplGlfw_InitForOther(*GLFWWindow, bool) bool;
extern "c" fn ImGui_ImplGlfw_Shutdown() void; extern "c" fn ImGui_ImplGlfw_Shutdown() void;
extern "c" fn ImGui_ImplGlfw_NewFrame() void; extern "c" fn ImGui_ImplGlfw_NewFrame() void;
}; };

31
pkg/imgui/impl_metal.zig Normal file
View File

@ -0,0 +1,31 @@
const std = @import("std");
const c = @import("c.zig");
const imgui = @import("main.zig");
const Allocator = std.mem.Allocator;
pub const ImplMetal = struct {
pub fn init(device: ?*anyopaque) bool {
return ImGui_ImplMetal_Init(device);
}
pub fn shutdown() void {
return ImGui_ImplMetal_Shutdown();
}
pub fn newFrame(render_pass_desc: ?*anyopaque) void {
return ImGui_ImplMetal_NewFrame(render_pass_desc);
}
pub fn renderDrawData(
data: *imgui.DrawData,
command_buffer: ?*anyopaque,
command_encoder: ?*anyopaque,
) void {
ImGui_ImplMetal_RenderDrawData(data, command_buffer, command_encoder);
}
extern "c" fn ImGui_ImplMetal_Init(?*anyopaque) bool;
extern "c" fn ImGui_ImplMetal_Shutdown() void;
extern "c" fn ImGui_ImplMetal_NewFrame(?*anyopaque) void;
extern "c" fn ImGui_ImplMetal_RenderDrawData(*imgui.DrawData, ?*anyopaque, ?*anyopaque) void;
};

View File

@ -7,6 +7,7 @@ pub usingnamespace @import("io.zig");
pub usingnamespace @import("style.zig"); pub usingnamespace @import("style.zig");
pub usingnamespace @import("impl_glfw.zig"); pub usingnamespace @import("impl_glfw.zig");
pub usingnamespace @import("impl_metal.zig");
pub usingnamespace @import("impl_opengl3.zig"); pub usingnamespace @import("impl_opengl3.zig");
test { test {

View File

@ -54,7 +54,7 @@ pub const Object = struct {
break :getter objc.sel(val); break :getter objc.sel(val);
} else objc.sel(n); } else objc.sel(n);
self.msgSend(T, getter, .{}); return self.msgSend(T, getter, .{});
} }
}; };

View File

@ -9,6 +9,7 @@ const assert = std.debug.assert;
const Atlas = @import("Atlas.zig"); const Atlas = @import("Atlas.zig");
const Window = @import("Window.zig"); const Window = @import("Window.zig");
const renderer = @import("renderer.zig");
/// If this is false, the rest of the terminal will be compiled without /// If this is false, the rest of the terminal will be compiled without
/// dev mode support at all. /// dev mode support at all.
@ -27,9 +28,10 @@ window: ?*Window = null,
/// Update the state associated with the dev mode. This should generally /// Update the state associated with the dev mode. This should generally
/// only be called paired with a render since it otherwise wastes CPU /// only be called paired with a render since it otherwise wastes CPU
/// cycles. /// cycles.
///
/// Note: renderers should call their implementation "newFrame" functions
/// prior to this.
pub fn update(self: *const DevMode) !void { pub fn update(self: *const DevMode) !void {
imgui.ImplOpenGL3.newFrame();
imgui.ImplGlfw.newFrame();
imgui.newFrame(); imgui.newFrame();
if (imgui.begin("dev mode", null, .{})) { if (imgui.begin("dev mode", null, .{})) {
@ -42,16 +44,27 @@ pub fn update(self: *const DevMode) !void {
helpMarker("The number of glyphs loaded and rendered into a " ++ helpMarker("The number of glyphs loaded and rendered into a " ++
"font atlas currently."); "font atlas currently.");
const Renderer = @TypeOf(window.renderer);
if (imgui.treeNode("Atlas: Greyscale", .{ .default_open = true })) { if (imgui.treeNode("Atlas: Greyscale", .{ .default_open = true })) {
defer imgui.treePop(); defer imgui.treePop();
const atlas = &window.font_group.atlas_greyscale; const atlas = &window.font_group.atlas_greyscale;
try self.atlasInfo(atlas, @intCast(usize, window.renderer.texture.id)); const tex = switch (Renderer) {
renderer.OpenGL => @intCast(usize, window.renderer.texture.id),
renderer.Metal => @ptrToInt(window.renderer.texture_greyscale.value),
else => @compileError("renderer unsupported, add it!"),
};
try self.atlasInfo(atlas, tex);
} }
if (imgui.treeNode("Atlas: Color (Emoji)", .{ .default_open = true })) { if (imgui.treeNode("Atlas: Color (Emoji)", .{ .default_open = true })) {
defer imgui.treePop(); defer imgui.treePop();
const atlas = &window.font_group.atlas_color; const atlas = &window.font_group.atlas_color;
try self.atlasInfo(atlas, @intCast(usize, window.renderer.texture_color.id)); const tex = switch (Renderer) {
renderer.OpenGL => @intCast(usize, window.renderer.texture_color.id),
renderer.Metal => @ptrToInt(window.renderer.texture_color.value),
else => @compileError("renderer unsupported, add it!"),
};
try self.atlasInfo(atlas, tex);
} }
} }
} }

View File

@ -36,7 +36,7 @@ const log = std.log.scoped(.window);
const WRITE_REQ_PREALLOC = std.math.pow(usize, 2, 5); const WRITE_REQ_PREALLOC = std.math.pow(usize, 2, 5);
// The renderer implementation to use. // The renderer implementation to use.
const Renderer = renderer.OpenGL; const Renderer = renderer.Renderer;
/// Allocator /// Allocator
alloc: Allocator, alloc: Allocator,

View File

@ -6,6 +6,7 @@ const fontconfig = @import("fontconfig");
const freetype = @import("freetype"); const freetype = @import("freetype");
const harfbuzz = @import("harfbuzz"); const harfbuzz = @import("harfbuzz");
const tracy = @import("tracy"); const tracy = @import("tracy");
const renderer = @import("renderer.zig");
const App = @import("App.zig"); const App = @import("App.zig");
const cli_args = @import("cli_args.zig"); const cli_args = @import("cli_args.zig");
@ -19,6 +20,7 @@ pub fn main() !void {
if (options.fontconfig) { if (options.fontconfig) {
log.info("dependency fontconfig={d}", .{fontconfig.version()}); log.info("dependency fontconfig={d}", .{fontconfig.version()});
} }
log.info("renderer={}", .{renderer.Renderer});
const GPA = std.heap.GeneralPurposeAllocator(.{}); const GPA = std.heap.GeneralPurposeAllocator(.{});
var gpa: ?GPA = gpa: { var gpa: ?GPA = gpa: {

View File

@ -7,11 +7,22 @@
//! APIs. The renderers in this package assume that the renderer is already //! APIs. The renderers in this package assume that the renderer is already
//! setup (OpenGL has a context, Vulkan has a surface, etc.) //! setup (OpenGL has a context, Vulkan has a surface, etc.)
const builtin = @import("builtin");
pub usingnamespace @import("renderer/cursor.zig");
pub usingnamespace @import("renderer/size.zig"); pub usingnamespace @import("renderer/size.zig");
pub const Metal = @import("renderer/Metal.zig");
pub const OpenGL = @import("renderer/OpenGL.zig"); pub const OpenGL = @import("renderer/OpenGL.zig");
pub const Thread = @import("renderer/Thread.zig"); pub const Thread = @import("renderer/Thread.zig");
pub const State = @import("renderer/State.zig"); pub const State = @import("renderer/State.zig");
/// The implementation to use for the renderer. This is comptime chosen
/// so that every build has exactly one renderer implementation.
pub const Renderer = switch (builtin.os.tag) {
.macos => Metal,
else => OpenGL,
};
test { test {
@import("std").testing.refAllDecls(@This()); @import("std").testing.refAllDecls(@This());
} }

1207
src/renderer/Metal.zig Normal file

File diff suppressed because it is too large Load Diff

View File

@ -66,7 +66,7 @@ font_shaper: font.Shaper,
/// Whether the cursor is visible or not. This is used to control cursor /// Whether the cursor is visible or not. This is used to control cursor
/// blinking. /// blinking.
cursor_visible: bool, cursor_visible: bool,
cursor_style: CursorStyle, cursor_style: renderer.CursorStyle,
/// Default foreground color /// Default foreground color
foreground: terminal.color.RGB, foreground: terminal.color.RGB,
@ -74,25 +74,6 @@ foreground: terminal.color.RGB,
/// Default background color /// Default background color
background: terminal.color.RGB, background: terminal.color.RGB,
/// Available cursor styles for drawing. The values represents the mode value
/// in the shader.
pub const CursorStyle = enum(u8) {
box = 3,
box_hollow = 4,
bar = 5,
/// Create a cursor style from the terminal style request.
pub fn fromTerminal(style: terminal.CursorStyle) ?CursorStyle {
return switch (style) {
.blinking_block, .steady_block => .box,
.blinking_bar, .steady_bar => .bar,
.blinking_underline, .steady_underline => null, // TODO
.default => .box,
else => null,
};
}
};
/// The raw structure that maps directly to the buffer sent to the vertex shader. /// The raw structure that maps directly to the buffer sent to the vertex shader.
/// This must be "extern" so that the field order is not reordered by the /// This must be "extern" so that the field order is not reordered by the
/// Zig compiler. /// Zig compiler.
@ -145,6 +126,14 @@ const GPUCellMode = enum(u8) {
// Non-exhaustive because masks change it // Non-exhaustive because masks change it
_, _,
pub fn fromCursor(cursor: renderer.CursorStyle) GPUCellMode {
return switch (cursor) {
.box => .cursor_rect,
.box_hollow => .cursor_rect_hollow,
.bar => .cursor_bar,
};
}
/// Apply a mask to the mode. /// Apply a mask to the mode.
pub fn mask(self: GPUCellMode, m: GPUCellMode) GPUCellMode { pub fn mask(self: GPUCellMode, m: GPUCellMode) GPUCellMode {
return @intToEnum( return @intToEnum(
@ -468,7 +457,7 @@ pub fn render(
// Setup our cursor state // Setup our cursor state
if (state.focused) { if (state.focused) {
self.cursor_visible = state.cursor.visible and !state.cursor.blink; self.cursor_visible = state.cursor.visible and !state.cursor.blink;
self.cursor_style = CursorStyle.fromTerminal(state.cursor.style) orelse .box; self.cursor_style = renderer.CursorStyle.fromTerminal(state.cursor.style) orelse .box;
} else { } else {
self.cursor_visible = true; self.cursor_visible = true;
self.cursor_style = .box_hollow; self.cursor_style = .box_hollow;
@ -494,6 +483,8 @@ pub fn render(
const devmode_data = devmode_data: { const devmode_data = devmode_data: {
if (state.devmode) |dm| { if (state.devmode) |dm| {
if (dm.visible) { if (dm.visible) {
imgui.ImplOpenGL3.newFrame();
imgui.ImplGlfw.newFrame();
try dm.update(); try dm.update();
break :devmode_data try dm.render(); break :devmode_data try dm.render();
} }
@ -701,13 +692,8 @@ fn addCursor(self: *OpenGL, term: *Terminal) void {
term.screen.cursor.x, term.screen.cursor.x,
); );
var mode: GPUCellMode = @intToEnum(
GPUCellMode,
@enumToInt(self.cursor_style),
);
self.cells.appendAssumeCapacity(.{ self.cells.appendAssumeCapacity(.{
.mode = mode, .mode = GPUCellMode.fromCursor(self.cursor_style),
.grid_col = @intCast(u16, term.screen.cursor.x), .grid_col = @intCast(u16, term.screen.cursor.x),
.grid_row = @intCast(u16, term.screen.cursor.y), .grid_row = @intCast(u16, term.screen.cursor.y),
.grid_width = if (cell.attrs.wide) 2 else 1, .grid_width = if (cell.attrs.wide) 2 else 1,

View File

@ -31,7 +31,7 @@ render_h: libuv.Timer,
window: glfw.Window, window: glfw.Window,
/// The underlying renderer implementation. /// The underlying renderer implementation.
renderer: *renderer.OpenGL, renderer: *renderer.Renderer,
/// Pointer to the shared state that is used to generate the final render. /// Pointer to the shared state that is used to generate the final render.
state: *renderer.State, state: *renderer.State,
@ -42,7 +42,7 @@ state: *renderer.State,
pub fn init( pub fn init(
alloc: Allocator, alloc: Allocator,
window: glfw.Window, window: glfw.Window,
renderer_impl: *renderer.OpenGL, renderer_impl: *renderer.Renderer,
state: *renderer.State, state: *renderer.State,
) !Thread { ) !Thread {
// We always store allocator pointer on the loop data so that // We always store allocator pointer on the loop data so that
@ -143,16 +143,11 @@ pub fn threadMain(self: *Thread) void {
} }
fn threadMain_(self: *Thread) !void { fn threadMain_(self: *Thread) !void {
// Get a copy to our allocator
// const alloc_ptr = self.loop.getData(Allocator).?;
// const alloc = alloc_ptr.*;
// Run our thread start/end callbacks. This is important because some // Run our thread start/end callbacks. This is important because some
// renderers have to do per-thread setup. For example, OpenGL has to set // renderers have to do per-thread setup. For example, OpenGL has to set
// some thread-local state since that is how it works. // some thread-local state since that is how it works.
const Renderer = RendererType(); try self.renderer.threadEnter(self.window);
if (@hasDecl(Renderer, "threadEnter")) try self.renderer.threadEnter(self.window); defer self.renderer.threadExit();
defer if (@hasDecl(Renderer, "threadExit")) self.renderer.threadExit();
// Set up our async handler to support rendering // Set up our async handler to support rendering
self.wakeup.setData(self); self.wakeup.setData(self);
@ -199,14 +194,3 @@ fn renderCallback(h: *libuv.Timer) void {
fn stopCallback(h: *libuv.Async) void { fn stopCallback(h: *libuv.Async) void {
h.loop().stop(); h.loop().stop();
} }
// This is unnecessary right now but is logic we'll need for when we
// abstract renderers out.
fn RendererType() type {
const self: Thread = undefined;
return switch (@typeInfo(@TypeOf(self.renderer))) {
.Pointer => |p| p.child,
.Struct => |s| s,
else => unreachable,
};
}

19
src/renderer/cursor.zig Normal file
View File

@ -0,0 +1,19 @@
const terminal = @import("../terminal/main.zig");
/// Available cursor styles for drawing that renderers must support.
pub const CursorStyle = enum {
box,
box_hollow,
bar,
/// Create a cursor style from the terminal style request.
pub fn fromTerminal(style: terminal.CursorStyle) ?CursorStyle {
return switch (style) {
.blinking_block, .steady_block => .box,
.blinking_bar, .steady_bar => .bar,
.blinking_underline, .steady_underline => null, // TODO
.default => .box,
else => null,
};
}
};

268
src/shaders/cell.metal Normal file
View File

@ -0,0 +1,268 @@
using namespace metal;
// The possible modes that a shader can take.
enum Mode : uint8_t {
MODE_BG = 1u,
MODE_FG = 2u,
MODE_FG_COLOR = 7u,
MODE_CURSOR_RECT = 3u,
MODE_CURSOR_RECT_HOLLOW = 4u,
MODE_CURSOR_BAR = 5u,
MODE_UNDERLINE = 6u,
MODE_STRIKETHROUGH = 8u,
};
struct Uniforms {
float4x4 projection_matrix;
float2 cell_size;
float underline_position;
float underline_thickness;
float strikethrough_position;
float strikethrough_thickness;
};
struct VertexIn {
// The mode for this cell.
uint8_t mode [[ attribute(0) ]];
// The grid coordinates (x, y) where x < columns and y < rows
float2 grid_pos [[ attribute(1) ]];
// The width of the cell in cells (i.e. 2 for double-wide).
uint8_t cell_width [[ attribute(6) ]];
// The color. For BG modes, this is the bg color, for FG modes this is
// the text color. For styles, this is the color of the style.
uchar4 color [[ attribute(5) ]];
// The fields below are present only when rendering text.
// The position of the glyph in the texture (x,y)
uint2 glyph_pos [[ attribute(2) ]];
// The size of the glyph in the texture (w,h)
uint2 glyph_size [[ attribute(3) ]];
// The left and top bearings for the glyph (x,y)
int2 glyph_offset [[ attribute(4) ]];
};
struct VertexOut {
float4 position [[ position ]];
float2 cell_size;
uint8_t mode;
float4 color;
float2 tex_coord;
};
vertex VertexOut uber_vertex(
unsigned int vid [[ vertex_id ]],
VertexIn input [[ stage_in ]],
constant Uniforms &uniforms [[ buffer(1) ]]
) {
// Convert the grid x,y into world space x, y by accounting for cell size
float2 cell_pos = uniforms.cell_size * input.grid_pos;
// Scaled cell size for the cell width
float2 cell_size_scaled = uniforms.cell_size;
cell_size_scaled.x = cell_size_scaled.x * input.cell_width;
// Turn the cell position into a vertex point depending on the
// vertex ID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use vertex ID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
float2 position;
position.x = (vid == 0 || vid == 1) ? 1.0f : 0.0f;
position.y = (vid == 0 || vid == 3) ? 0.0f : 1.0f;
VertexOut out;
out.mode = input.mode;
out.cell_size = uniforms.cell_size;
out.color = float4(input.color) / 255.0f;
switch (input.mode) {
case MODE_BG:
// Calculate the final position of our cell in world space.
// We have to add our cell size since our vertices are offset
// one cell up and to the left. (Do the math to verify yourself)
cell_pos = cell_pos + cell_size_scaled * position;
out.position = uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
break;
case MODE_FG:
case MODE_FG_COLOR: {
float2 glyph_size = float2(input.glyph_size);
float2 glyph_offset = float2(input.glyph_offset);
// If the glyph is larger than our cell, we need to downsample it.
// The "+ 3" here is to give some wiggle room for fonts that are
// BARELY over it.
float2 glyph_size_downsampled = glyph_size;
if (glyph_size_downsampled.y > cell_size_scaled.y + 2) {
// Magic 0.9 and 1.1 are padding to make emoji look better
glyph_size_downsampled.y = cell_size_scaled.y * 0.9;
glyph_size_downsampled.x = glyph_size.x * (glyph_size_downsampled.y / glyph_size.y);
glyph_offset.y = glyph_offset.y * 1.1 * (glyph_size_downsampled.y / glyph_size.y);
}
// The glyph_offset.y is the y bearing, a y value that when added
// to the baseline is the offset (+y is up). Our grid goes down.
// So we flip it with `cell_size.y - glyph_offset.y`.
glyph_offset.y = cell_size_scaled.y - glyph_offset.y;
// Calculate the final position of the cell which uses our glyph size
// and glyph offset to create the correct bounding box for the glyph.
cell_pos = cell_pos + glyph_size_downsampled * position + glyph_offset;
out.position = uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
// Calculate the texture coordinate in pixels. This is NOT normalized
// (between 0.0 and 1.0) and must be done in the fragment shader.
out.tex_coord = float2(input.glyph_pos) + float2(input.glyph_size) * position;
break;
}
case MODE_CURSOR_RECT:
// Same as background since we're taking up the whole cell.
cell_pos = cell_pos + cell_size_scaled * position;
out.position = uniforms.projection_matrix * float4(cell_pos, 0.0f, 1.0);
break;
case MODE_CURSOR_RECT_HOLLOW:
// Top-left position of this cell is needed for the hollow rect.
out.tex_coord = cell_pos;
// Same as background since we're taking up the whole cell.
cell_pos = cell_pos + cell_size_scaled * position;
out.position = uniforms.projection_matrix * float4(cell_pos, 0.0f, 1.0);
break;
case MODE_CURSOR_BAR: {
// Make the bar a smaller version of our cell
float2 bar_size = float2(uniforms.cell_size.x * 0.2, uniforms.cell_size.y);
// Same as background since we're taking up the whole cell.
cell_pos = cell_pos + bar_size * position;
out.position = uniforms.projection_matrix * float4(cell_pos, 0.0f, 1.0);
break;
}
case MODE_UNDERLINE: {
// Underline Y value is just our thickness
float2 underline_size = float2(cell_size_scaled.x, uniforms.underline_thickness);
// Position the underline where we are told to
float2 underline_offset = float2(cell_size_scaled.x, uniforms.underline_position);
// Go to the bottom of the cell, take away the size of the
// underline, and that is our position. We also float it slightly
// above the bottom.
cell_pos = cell_pos + underline_offset - (underline_size * position);
out.position = uniforms.projection_matrix * float4(cell_pos, 0.0f, 1.0);
break;
}
case MODE_STRIKETHROUGH: {
// Strikethrough Y value is just our thickness
float2 strikethrough_size = float2(cell_size_scaled.x, uniforms.strikethrough_thickness);
// Position the strikethrough where we are told to
float2 strikethrough_offset = float2(cell_size_scaled.x, uniforms.strikethrough_position);
// Go to the bottom of the cell, take away the size of the
// strikethrough, and that is our position. We also float it slightly
// above the bottom.
cell_pos = cell_pos + strikethrough_offset - (strikethrough_size * position);
out.position = uniforms.projection_matrix * float4(cell_pos, 0.0f, 1.0);
break;
}
}
return out;
}
fragment float4 uber_fragment(
VertexOut in [[ stage_in ]],
texture2d<float> textureGreyscale [[ texture(0) ]],
texture2d<float> textureColor [[ texture(1) ]]
) {
constexpr sampler textureSampler(address::clamp_to_edge, filter::linear);
switch (in.mode) {
case MODE_BG:
return in.color;
case MODE_FG: {
// Normalize the texture coordinates to [0,1]
float2 size = float2(textureGreyscale.get_width(), textureGreyscale.get_height());
float2 coord = in.tex_coord / size;
float a = textureGreyscale.sample(textureSampler, coord).r;
return float4(in.color.rgb, in.color.a * a);
}
case MODE_FG_COLOR: {
// Normalize the texture coordinates to [0,1]
float2 size = float2(textureColor.get_width(), textureColor.get_height());
float2 coord = in.tex_coord / size;
return textureColor.sample(textureSampler, coord);
}
case MODE_CURSOR_RECT:
return in.color;
case MODE_CURSOR_RECT_HOLLOW: {
// Okay so yeah this is probably horrendously slow and a shader
// should never do this, but we only ever render a cursor for ONE
// rectangle so we take the slowdown for that one.
// We subtracted one from cell size because our coordinates start at 0.
// So a width of 50 means max pixel of 49.
float2 cell_size_coords = in.cell_size - 1;
// Apply padding
float2 padding = float2(1.0f, 1.0f);
cell_size_coords = cell_size_coords - (padding * 2);
float2 screen_cell_pos_padded = in.tex_coord + padding;
// Convert our frag coord to offset of this cell. We have to subtract
// 0.5 because the frag coord is in center pixels.
float2 cell_frag_coord = in.position.xy - screen_cell_pos_padded - 0.5;
// If the frag coords are in the bounds, then we color it.
const float eps = 0.1;
if (cell_frag_coord.x >= 0 && cell_frag_coord.y >= 0 &&
cell_frag_coord.x <= cell_size_coords.x &&
cell_frag_coord.y <= cell_size_coords.y) {
if (abs(cell_frag_coord.x) < eps ||
abs(cell_frag_coord.x - cell_size_coords.x) < eps ||
abs(cell_frag_coord.y) < eps ||
abs(cell_frag_coord.y - cell_size_coords.y) < eps) {
return in.color;
}
}
// Default to no color.
return float4(0.0f);
}
case MODE_CURSOR_BAR:
return in.color;
case MODE_UNDERLINE:
return in.color;
case MODE_STRIKETHROUGH:
return in.color;
}
}

View File

@ -147,7 +147,7 @@ void main() {
glyph_offset_calc.y = cell_size_scaled.y - glyph_offset_calc.y; glyph_offset_calc.y = cell_size_scaled.y - glyph_offset_calc.y;
// Calculate the final position of the cell. // Calculate the final position of the cell.
cell_pos = cell_pos + glyph_size_downsampled * position + glyph_offset_calc; cell_pos = cell_pos + (glyph_size_downsampled * position) + glyph_offset_calc;
gl_Position = projection * vec4(cell_pos, cell_z, 1.0); gl_Position = projection * vec4(cell_pos, cell_z, 1.0);
// We need to convert our texture position and size to normalized // We need to convert our texture position and size to normalized