Merge pull request #915 from mitchellh/opengl-kitty

renderer/opengl: Kitty Images
This commit is contained in:
Mitchell Hashimoto
2023-11-20 12:01:41 -08:00
committed by GitHub
8 changed files with 715 additions and 57 deletions

View File

@ -78,6 +78,7 @@ pub const InternalFormat = enum(c_int) {
pub const Format = enum(c_uint) {
red = c.GL_RED,
rgb = c.GL_RGB,
rgba = c.GL_RGBA,
bgra = c.GL_BGRA,
// There are so many more that I haven't filled in.

View File

@ -755,7 +755,7 @@ pub fn drawFrame(self: *Metal, surface: *apprt.Surface) !void {
try self.drawCells(encoder, &self.buf_cells_bg, self.cells_bg);
// Then draw images under text
try self.drawImagePlacements(encoder, self.image_placements.items[0..self.image_text_end]);
try self.drawImagePlacements(encoder, self.image_placements.items[self.image_bg_end..self.image_text_end]);
// Then draw fg cells
try self.drawCells(encoder, &self.buf_cells, self.cells);

View File

@ -22,7 +22,12 @@ const math = @import("../math.zig");
const Surface = @import("../Surface.zig");
const CellProgram = @import("opengl/CellProgram.zig");
const ImageProgram = @import("opengl/ImageProgram.zig");
const gl_image = @import("opengl/image.zig");
const custom = @import("opengl/custom.zig");
const Image = gl_image.Image;
const ImageMap = gl_image.ImageMap;
const ImagePlacementList = std.ArrayListUnmanaged(gl_image.Placement);
const log = std.log.scoped(.grid);
@ -103,6 +108,12 @@ draw_mutex: DrawMutex = drawMutexZero,
/// terminal is in reversed mode.
draw_background: terminal.color.RGB,
/// The images that we may render.
images: ImageMap = .{},
image_placements: ImagePlacementList = .{},
image_bg_end: u32 = 0,
image_text_end: u32 = 0,
/// Defererred OpenGL operation to update the screen size.
const SetScreenSize = struct {
size: renderer.ScreenSize,
@ -138,7 +149,11 @@ const SetScreenSize = struct {
);
// Update the projection uniform within our shader
try gl_state.cell_program.program.setUniform(
inline for (.{ "cell_program", "image_program" }) |name| {
const program = @field(gl_state, name);
const bind = try program.program.use();
defer bind.unbind();
try program.program.setUniform(
"projection",
// 2D orthographic projection with the full w/h
@ -149,6 +164,7 @@ const SetScreenSize = struct {
-1 * @as(f32, @floatFromInt(padding.top)),
),
);
}
// Update our custom shader resolution
if (gl_state.custom) |*custom_state| {
@ -163,13 +179,21 @@ const SetFontSize = struct {
fn apply(self: SetFontSize, r: *const OpenGL) !void {
const gl_state = r.gl_state orelse return error.OpenGLUninitialized;
try gl_state.cell_program.program.setUniform(
inline for (.{ "cell_program", "image_program" }) |name| {
const program = @field(gl_state, name);
const bind = try program.program.use();
defer bind.unbind();
try program.program.setUniform(
"cell_size",
@Vector(2, f32){
@floatFromInt(self.metrics.cell_width),
@floatFromInt(self.metrics.cell_height),
},
);
}
const bind = try gl_state.cell_program.program.use();
defer bind.unbind();
try gl_state.cell_program.program.setUniform(
"strikethrough_position",
@as(f32, @floatFromInt(self.metrics.strikethrough_position)),
@ -307,6 +331,13 @@ pub fn init(alloc: Allocator, options: renderer.Options) !OpenGL {
pub fn deinit(self: *OpenGL) void {
self.font_shaper.deinit();
{
var it = self.images.iterator();
while (it.next()) |kv| kv.value_ptr.deinit(self.alloc);
self.images.deinit(self.alloc);
}
self.image_placements.deinit(self.alloc);
if (self.gl_state) |*v| v.deinit(self.alloc);
self.cells.deinit(self.alloc);
@ -623,6 +654,13 @@ pub fn updateFrame(
cursor_blink_visible,
);
// If we have Kitty graphics data, we enter a SLOW SLOW SLOW path.
// We only do this if the Kitty image state is dirty meaning only if
// it changes.
if (state.terminal.screen.kitty_images.dirty) {
try self.prepKittyGraphics(state.terminal);
}
break :critical .{
.gl_bg = self.background_color,
.selection = selection,
@ -651,6 +689,158 @@ pub fn updateFrame(
}
}
/// This goes through the Kitty graphic placements and accumulates the
/// placements we need to render on our viewport. It also ensures that
/// the visible images are loaded on the GPU.
fn prepKittyGraphics(
self: *OpenGL,
t: *terminal.Terminal,
) !void {
const storage = &t.screen.kitty_images;
defer storage.dirty = false;
// We always clear our previous placements no matter what because
// we rebuild them from scratch.
self.image_placements.clearRetainingCapacity();
// Go through our known images and if there are any that are no longer
// in use then mark them to be freed.
//
// This never conflicts with the below because a placement can't
// reference an image that doesn't exist.
{
var it = self.images.iterator();
while (it.next()) |kv| {
if (storage.imageById(kv.key_ptr.*) == null) {
kv.value_ptr.markForUnload();
}
}
}
// The top-left and bottom-right corners of our viewport in screen
// points. This lets us determine offsets and containment of placements.
const top = (terminal.point.Viewport{}).toScreen(&t.screen);
const bot = (terminal.point.Viewport{
.x = t.screen.cols - 1,
.y = t.screen.rows - 1,
}).toScreen(&t.screen);
// Go through the placements and ensure the image is loaded on the GPU.
var it = storage.placements.iterator();
while (it.next()) |kv| {
// Find the image in storage
const p = kv.value_ptr;
const image = storage.imageById(kv.key_ptr.image_id) orelse {
log.warn(
"missing image for placement, ignoring image_id={}",
.{kv.key_ptr.image_id},
);
continue;
};
// If the selection isn't within our viewport then skip it.
const rect = p.rect(image, t);
if (rect.top_left.y > bot.y) continue;
if (rect.bottom_right.y < top.y) continue;
// If the top left is outside the viewport we need to calc an offset
// so that we render (0, 0) with some offset for the texture.
const offset_y: u32 = if (rect.top_left.y < t.screen.viewport) offset_y: {
const offset_cells = t.screen.viewport - rect.top_left.y;
const offset_pixels = offset_cells * self.cell_size.height;
break :offset_y @intCast(offset_pixels);
} else 0;
// If we already know about this image then do nothing
const gop = try self.images.getOrPut(self.alloc, kv.key_ptr.image_id);
if (!gop.found_existing) {
// Copy the data into the pending state.
const data = try self.alloc.dupe(u8, image.data);
errdefer self.alloc.free(data);
// Store it in the map
const pending: Image.Pending = .{
.width = image.width,
.height = image.height,
.data = data.ptr,
};
gop.value_ptr.* = switch (image.format) {
.rgb => .{ .pending_rgb = pending },
.rgba => .{ .pending_rgba = pending },
.png => unreachable, // should be decoded by now
};
}
// Convert our screen point to a viewport point
const viewport = p.point.toViewport(&t.screen);
// Calculate the source rectangle
const source_x = @min(image.width, p.source_x);
const source_y = @min(image.height, p.source_y + offset_y);
const source_width = if (p.source_width > 0)
@min(image.width - source_x, p.source_width)
else
image.width;
const source_height = if (p.source_height > 0)
@min(image.height, p.source_height)
else
image.height -| offset_y;
// Calculate the width/height of our image.
const dest_width = if (p.columns > 0) p.columns * self.cell_size.width else source_width;
const dest_height = if (p.rows > 0) p.rows * self.cell_size.height else source_height;
// Accumulate the placement
if (image.width > 0 and image.height > 0) {
try self.image_placements.append(self.alloc, .{
.image_id = kv.key_ptr.image_id,
.x = @intCast(p.point.x),
.y = @intCast(viewport.y),
.z = p.z,
.width = dest_width,
.height = dest_height,
.cell_offset_x = p.x_offset,
.cell_offset_y = p.y_offset,
.source_x = source_x,
.source_y = source_y,
.source_width = source_width,
.source_height = source_height,
});
}
}
// Sort the placements by their Z value.
std.mem.sortUnstable(
gl_image.Placement,
self.image_placements.items,
{},
struct {
fn lessThan(
ctx: void,
lhs: gl_image.Placement,
rhs: gl_image.Placement,
) bool {
_ = ctx;
return lhs.z < rhs.z or (lhs.z == rhs.z and lhs.image_id < rhs.image_id);
}
}.lessThan,
);
// Find our indices
self.image_bg_end = 0;
self.image_text_end = 0;
const bg_limit = std.math.minInt(i32) / 2;
for (self.image_placements.items, 0..) |p, i| {
if (self.image_bg_end == 0 and p.z >= bg_limit) {
self.image_bg_end = @intCast(i);
}
if (self.image_text_end == 0 and p.z >= 0) {
self.image_text_end = @intCast(i);
}
}
}
/// rebuildCells rebuilds all the GPU cells from our CPU state. This is a
/// slow operation but ensures that the GPU state exactly matches the CPU state.
/// In steady-state operation, we use some GPU tricks to send down stale data
@ -1396,6 +1586,27 @@ pub fn drawFrame(self: *OpenGL, surface: *apprt.Surface) !void {
defer if (single_threaded_draw) self.draw_mutex.unlock();
const gl_state: *GLState = if (self.gl_state) |*v| v else return;
// Go through our images and see if we need to setup any textures.
{
var image_it = self.images.iterator();
while (image_it.next()) |kv| {
switch (kv.value_ptr.*) {
.ready => {},
.pending_rgb,
.pending_rgba,
=> try kv.value_ptr.upload(self.alloc),
.unload_pending,
.unload_ready,
=> {
kv.value_ptr.deinit(self.alloc);
self.images.removeByPtr(kv.key_ptr);
},
}
}
}
// Draw our terminal cells
try self.drawCellProgram(gl_state);
@ -1461,6 +1672,113 @@ fn drawCellProgram(
);
gl.clear(gl.c.GL_COLOR_BUFFER_BIT);
// If we have deferred operations, run them.
if (self.deferred_screen_size) |v| {
try v.apply(self);
self.deferred_screen_size = null;
}
if (self.deferred_font_size) |v| {
try v.apply(self);
self.deferred_font_size = null;
}
// Draw background images first
try self.drawImages(
gl_state,
self.image_placements.items[0..self.image_bg_end],
);
// Draw our background
try self.drawCells(gl_state, self.cells_bg);
// Then draw images under text
try self.drawImages(
gl_state,
self.image_placements.items[self.image_bg_end..self.image_text_end],
);
// Drag foreground
try self.drawCells(gl_state, self.cells);
// Draw remaining images
try self.drawImages(
gl_state,
self.image_placements.items[self.image_text_end..],
);
}
/// Runs the image program to draw images.
fn drawImages(
self: *OpenGL,
gl_state: *const GLState,
placements: []const gl_image.Placement,
) !void {
if (placements.len == 0) return;
// Bind our image program
const bind = try gl_state.image_program.bind();
defer bind.unbind();
// For each placement we need to bind the texture
for (placements) |p| {
// Get the image and image texture
const image = self.images.get(p.image_id) orelse {
log.warn("image not found for placement image_id={}", .{p.image_id});
continue;
};
const texture = switch (image) {
.ready => |t| t,
else => {
log.warn("image not ready for placement image_id={}", .{p.image_id});
continue;
},
};
// Bind the texture
try gl.Texture.active(gl.c.GL_TEXTURE0);
var texbind = try texture.bind(.@"2D");
defer texbind.unbind();
// Setup our data
try bind.vbo.setData(ImageProgram.Input{
.grid_col = @intCast(p.x),
.grid_row = @intCast(p.y),
.cell_offset_x = p.cell_offset_x,
.cell_offset_y = p.cell_offset_y,
.source_x = p.source_x,
.source_y = p.source_y,
.source_width = p.source_width,
.source_height = p.source_height,
.dest_width = p.width,
.dest_height = p.height,
}, .static_draw);
try gl.drawElementsInstanced(
gl.c.GL_TRIANGLES,
6,
gl.c.GL_UNSIGNED_BYTE,
1,
);
}
}
/// Loads some set of cell data into our buffer and issues a draw call.
/// This expects all the OpenGL state to be setup.
///
/// Future: when we move to multiple shaders, this will go away and
/// we'll have a draw call per-shader.
fn drawCells(
self: *OpenGL,
gl_state: *const GLState,
cells: std.ArrayListUnmanaged(CellProgram.Cell),
) !void {
// If we have no cells to render, then we render nothing.
if (cells.items.len == 0) return;
// Todo: get rid of this completely
self.gl_cells_written = 0;
// Bind our cell program state, buffers
const bind = try gl_state.cell_program.bind();
defer bind.unbind();
@ -1474,37 +1792,6 @@ fn drawCellProgram(
var texbind1 = try gl_state.texture_color.bind(.@"2D");
defer texbind1.unbind();
// If we have deferred operations, run them.
if (self.deferred_screen_size) |v| {
try v.apply(self);
self.deferred_screen_size = null;
}
if (self.deferred_font_size) |v| {
try v.apply(self);
self.deferred_font_size = null;
}
// Draw our background, then draw the fg on top of it.
try self.drawCells(bind.vbo, self.cells_bg);
try self.drawCells(bind.vbo, self.cells);
}
/// Loads some set of cell data into our buffer and issues a draw call.
/// This expects all the OpenGL state to be setup.
///
/// Future: when we move to multiple shaders, this will go away and
/// we'll have a draw call per-shader.
fn drawCells(
self: *OpenGL,
binding: gl.Buffer.Binding,
cells: std.ArrayListUnmanaged(CellProgram.Cell),
) !void {
// If we have no cells to render, then we render nothing.
if (cells.items.len == 0) return;
// Todo: get rid of this completely
self.gl_cells_written = 0;
// Our allocated buffer on the GPU is smaller than our capacity.
// We reallocate a new buffer with the full new capacity.
if (self.gl_cells_size < cells.capacity) {
@ -1513,7 +1800,7 @@ fn drawCells(
cells.capacity,
});
try binding.setDataNullManual(
try bind.vbo.setDataNullManual(
@sizeOf(CellProgram.Cell) * cells.capacity,
.static_draw,
);
@ -1526,7 +1813,7 @@ fn drawCells(
if (self.gl_cells_written < cells.items.len) {
const data = cells.items[self.gl_cells_written..];
// log.info("sending {} cells to GPU", .{data.len});
try binding.setSubData(self.gl_cells_written * @sizeOf(CellProgram.Cell), data);
try bind.vbo.setSubData(self.gl_cells_written * @sizeOf(CellProgram.Cell), data);
self.gl_cells_written += data.len;
assert(data.len > 0);
@ -1546,6 +1833,7 @@ fn drawCells(
/// OpenGL context is replaced.
const GLState = struct {
cell_program: CellProgram,
image_program: ImageProgram,
texture: gl.Texture,
texture_color: gl.Texture,
custom: ?custom.State,
@ -1633,8 +1921,13 @@ const GLState = struct {
const cell_program = try CellProgram.init();
errdefer cell_program.deinit();
// Build our image renderer
const image_program = try ImageProgram.init();
errdefer image_program.deinit();
return .{
.cell_program = cell_program,
.image_program = image_program,
.texture = tex,
.texture_color = tex_color,
.custom = custom_state,
@ -1645,6 +1938,7 @@ const GLState = struct {
if (self.custom) |v| v.deinit(alloc);
self.texture.destroy();
self.texture_color.destroy();
self.image_program.deinit();
self.cell_program.deinit();
}
};

View File

@ -0,0 +1,134 @@
/// The OpenGL program for rendering terminal cells.
const ImageProgram = @This();
const std = @import("std");
const gl = @import("opengl");
program: gl.Program,
vao: gl.VertexArray,
ebo: gl.Buffer,
vbo: gl.Buffer,
pub const Input = extern struct {
/// vec2 grid_coord
grid_col: u16,
grid_row: u16,
/// vec2 cell_offset
cell_offset_x: u32 = 0,
cell_offset_y: u32 = 0,
/// vec4 source_rect
source_x: u32 = 0,
source_y: u32 = 0,
source_width: u32 = 0,
source_height: u32 = 0,
/// vec2 dest_size
dest_width: u32 = 0,
dest_height: u32 = 0,
};
pub fn init() !ImageProgram {
// Load and compile our shaders.
const program = try gl.Program.createVF(
@embedFile("../shaders/image.v.glsl"),
@embedFile("../shaders/image.f.glsl"),
);
errdefer program.destroy();
// Set our program uniforms
const pbind = try program.use();
defer pbind.unbind();
// Set all of our texture indexes
try program.setUniform("image", 0);
// Setup our VAO
const vao = try gl.VertexArray.create();
errdefer vao.destroy();
const vaobind = try vao.bind();
defer vaobind.unbind();
// Element buffer (EBO)
const ebo = try gl.Buffer.create();
errdefer ebo.destroy();
var ebobind = try ebo.bind(.element_array);
defer ebobind.unbind();
try ebobind.setData([6]u8{
0, 1, 3, // Top-left triangle
1, 2, 3, // Bottom-right triangle
}, .static_draw);
// Vertex buffer (VBO)
const vbo = try gl.Buffer.create();
errdefer vbo.destroy();
var vbobind = try vbo.bind(.array);
defer vbobind.unbind();
var offset: usize = 0;
try vbobind.attributeAdvanced(0, 2, gl.c.GL_UNSIGNED_SHORT, false, @sizeOf(Input), offset);
offset += 2 * @sizeOf(u16);
try vbobind.attributeAdvanced(1, 2, gl.c.GL_UNSIGNED_INT, false, @sizeOf(Input), offset);
offset += 2 * @sizeOf(u32);
try vbobind.attributeAdvanced(2, 4, gl.c.GL_UNSIGNED_INT, false, @sizeOf(Input), offset);
offset += 4 * @sizeOf(u32);
try vbobind.attributeAdvanced(3, 2, gl.c.GL_UNSIGNED_INT, false, @sizeOf(Input), offset);
offset += 2 * @sizeOf(u32);
try vbobind.enableAttribArray(0);
try vbobind.enableAttribArray(1);
try vbobind.enableAttribArray(2);
try vbobind.enableAttribArray(3);
try vbobind.attributeDivisor(0, 1);
try vbobind.attributeDivisor(1, 1);
try vbobind.attributeDivisor(2, 1);
try vbobind.attributeDivisor(3, 1);
return .{
.program = program,
.vao = vao,
.ebo = ebo,
.vbo = vbo,
};
}
pub fn bind(self: ImageProgram) !Binding {
const program = try self.program.use();
errdefer program.unbind();
const vao = try self.vao.bind();
errdefer vao.unbind();
const ebo = try self.ebo.bind(.element_array);
errdefer ebo.unbind();
const vbo = try self.vbo.bind(.array);
errdefer vbo.unbind();
return .{
.program = program,
.vao = vao,
.ebo = ebo,
.vbo = vbo,
};
}
pub fn deinit(self: ImageProgram) void {
self.vbo.destroy();
self.ebo.destroy();
self.vao.destroy();
self.program.destroy();
}
pub const Binding = struct {
program: gl.Program.Binding,
vao: gl.VertexArray.Binding,
ebo: gl.Buffer.Binding,
vbo: gl.Buffer.Binding,
pub fn unbind(self: Binding) void {
self.vbo.unbind();
self.ebo.unbind();
self.vao.unbind();
self.program.unbind();
}
};

View File

@ -0,0 +1,180 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const gl = @import("opengl");
/// Represents a single image placement on the grid. A placement is a
/// request to render an instance of an image.
pub const Placement = struct {
/// The image being rendered. This MUST be in the image map.
image_id: u32,
/// The grid x/y where this placement is located.
x: u32,
y: u32,
z: i32,
/// The width/height of the placed image.
width: u32,
height: u32,
/// The offset in pixels from the top left of the cell. This is
/// clamped to the size of a cell.
cell_offset_x: u32,
cell_offset_y: u32,
/// The source rectangle of the placement.
source_x: u32,
source_y: u32,
source_width: u32,
source_height: u32,
};
/// The map used for storing images.
pub const ImageMap = std.AutoHashMapUnmanaged(u32, Image);
/// The state for a single image that is to be rendered. The image can be
/// pending upload or ready to use with a texture.
pub const Image = union(enum) {
/// The image is pending upload to the GPU. The different keys are
/// different formats since some formats aren't accepted by the GPU
/// and require conversion.
///
/// This data is owned by this union so it must be freed once the
/// image is uploaded.
pending_rgb: Pending,
pending_rgba: Pending,
/// The image is uploaded and ready to be used.
ready: gl.Texture,
/// The image is uploaded but is scheduled to be unloaded.
unload_pending: []u8,
unload_ready: gl.Texture,
/// Pending image data that needs to be uploaded to the GPU.
pub const Pending = struct {
height: u32,
width: u32,
/// Data is always expected to be (width * height * depth). Depth
/// is based on the union key.
data: [*]u8,
pub fn dataSlice(self: Pending, d: u32) []u8 {
return self.data[0..self.len(d)];
}
pub fn len(self: Pending, d: u32) u32 {
return self.width * self.height * d;
}
};
pub fn deinit(self: Image, alloc: Allocator) void {
switch (self) {
.pending_rgb => |p| alloc.free(p.dataSlice(3)),
.pending_rgba => |p| alloc.free(p.dataSlice(4)),
.unload_pending => |data| alloc.free(data),
.ready,
.unload_ready,
=> |tex| tex.destroy(),
}
}
/// Mark this image for unload whatever state it is in.
pub fn markForUnload(self: *Image) void {
self.* = switch (self.*) {
.unload_pending,
.unload_ready,
=> return,
.ready => |obj| .{ .unload_ready = obj },
.pending_rgb => |p| .{ .unload_pending = p.dataSlice(3) },
.pending_rgba => |p| .{ .unload_pending = p.dataSlice(4) },
};
}
/// Returns true if this image is pending upload.
pub fn isPending(self: Image) bool {
return self.pending() != null;
}
/// Returns true if this image is pending an unload.
pub fn isUnloading(self: Image) bool {
return switch (self) {
.unload_pending,
.unload_ready,
=> true,
.ready,
.pending_rgb,
.pending_rgba,
=> false,
};
}
/// Upload the pending image to the GPU and change the state of this
/// image to ready.
pub fn upload(
self: *Image,
alloc: Allocator,
) !void {
// Get our pending info
const p = self.pending().?;
// Get our format
const formats: struct {
internal: gl.Texture.InternalFormat,
format: gl.Texture.Format,
} = switch (self.*) {
.pending_rgb => .{ .internal = .rgb, .format = .rgb },
.pending_rgba => .{ .internal = .rgba, .format = .rgba },
else => unreachable,
};
// Create our texture
const tex = try gl.Texture.create();
errdefer tex.destroy();
const texbind = try tex.bind(.@"2D");
try texbind.parameter(.WrapS, gl.c.GL_CLAMP_TO_EDGE);
try texbind.parameter(.WrapT, gl.c.GL_CLAMP_TO_EDGE);
try texbind.parameter(.MinFilter, gl.c.GL_LINEAR);
try texbind.parameter(.MagFilter, gl.c.GL_LINEAR);
try texbind.image2D(
0,
formats.internal,
@intCast(p.width),
@intCast(p.height),
0,
formats.format,
.UnsignedByte,
p.data,
);
// Uploaded. We can now clear our data and change our state.
self.deinit(alloc);
self.* = .{ .ready = tex };
}
/// Our pixel depth
fn depth(self: Image) u32 {
return switch (self) {
.pending_rgb => 3,
.pending_rgba => 4,
else => unreachable,
};
}
/// Returns true if this image is in a pending state and requires upload.
fn pending(self: Image) ?Pending {
return switch (self) {
.pending_rgb,
.pending_rgba,
=> |p| p,
else => null,
};
}
};

View File

@ -0,0 +1,11 @@
#version 330 core
in vec2 tex_coord;
layout(location = 0) out vec4 out_FragColor;
uniform sampler2D image;
void main() {
out_FragColor = texture(image, tex_coord);
}

View File

@ -0,0 +1,44 @@
#version 330 core
layout (location = 0) in vec2 grid_pos;
layout (location = 1) in vec2 cell_offset;
layout (location = 2) in vec4 source_rect;
layout (location = 3) in vec2 dest_size;
out vec2 tex_coord;
uniform sampler2D image;
uniform vec2 cell_size;
uniform mat4 projection;
void main() {
// The size of the image in pixels
vec2 image_size = textureSize(image, 0);
// Turn the cell position into a vertex point depending on the
// gl_VertexID. Since we use instanced drawing, we have 4 vertices
// for each corner of the cell. We can use gl_VertexID to determine
// which one we're looking at. Using this, we can use 1 or 0 to keep
// or discard the value for the vertex.
//
// 0 = top-right
// 1 = bot-right
// 2 = bot-left
// 3 = top-left
vec2 position;
position.x = (gl_VertexID == 0 || gl_VertexID == 1) ? 1. : 0.;
position.y = (gl_VertexID == 0 || gl_VertexID == 3) ? 0. : 1.;
// The texture coordinates start at our source x/y, then add the width/height
// as enabled by our instance id, then normalize to [0, 1]
tex_coord = source_rect.xy;
tex_coord += source_rect.zw * position;
tex_coord /= image_size;
// The position of our image starts at the top-left of the grid cell and
// adds the source rect width/height components.
vec2 image_pos = (cell_size * grid_pos) + cell_offset;
image_pos += dest_size * position;
gl_Position = projection * vec4(image_pos.xy, 0, 1.0);
}

View File

@ -35,12 +35,6 @@ pub fn execute(
return null;
}
// Only Metal supports rendering the images, right now.
if (comptime renderer.Renderer != renderer.Metal) {
log.warn("kitty graphics not supported on this renderer", .{});
return null;
}
log.debug("executing kitty graphics command: quiet={} control={}", .{
cmd.quiet,
cmd.control,