Merge pull request #75 from mitchellh/gtk

Rearchitect "app runtime" abstraction, minimal GTK implementation
This commit is contained in:
Mitchell Hashimoto
2023-02-24 13:35:14 -08:00
committed by GitHub
26 changed files with 1929 additions and 786 deletions

View File

@ -3,6 +3,7 @@ const builtin = @import("builtin");
const fs = std.fs;
const Builder = std.build.Builder;
const LibExeObjStep = std.build.LibExeObjStep;
const apprt = @import("src/apprt.zig");
const glfw = @import("vendor/mach/libs/glfw/build.zig");
const fontconfig = @import("pkg/fontconfig/build.zig");
const freetype = @import("pkg/freetype/build.zig");
@ -45,6 +46,7 @@ comptime {
var tracy: bool = false;
var enable_coretext: bool = false;
var enable_fontconfig: bool = false;
var app_runtime: apprt.Runtime = .none;
pub fn build(b: *std.build.Builder) !void {
const optimize = b.standardOptimizeOption(.{});
@ -77,6 +79,12 @@ pub fn build(b: *std.build.Builder) !void {
"Enable fontconfig for font discovery (default true on Linux)",
) orelse target.isLinux();
app_runtime = b.option(
apprt.Runtime,
"app-runtime",
"The app runtime to use. Not all values supported on all platforms.",
) orelse apprt.Runtime.default(target);
const static = b.option(
bool,
"static",
@ -111,6 +119,7 @@ pub fn build(b: *std.build.Builder) !void {
exe_options.addOption(bool, "tracy_enabled", tracy);
exe_options.addOption(bool, "coretext", enable_coretext);
exe_options.addOption(bool, "fontconfig", enable_fontconfig);
exe_options.addOption(apprt.Runtime, "app_runtime", app_runtime);
// Exe
{
@ -120,7 +129,7 @@ pub fn build(b: *std.build.Builder) !void {
}
exe.addOptions("build_options", exe_options);
exe.install();
if (app_runtime != .none) exe.install();
// Add the shared dependencies
_ = try addDeps(b, exe, static);
@ -134,7 +143,7 @@ pub fn build(b: *std.build.Builder) !void {
b.installFile("dist/macos/Ghostty.icns", "Ghostty.app/Contents/Resources/Ghostty.icns");
}
// On Mac we can build the app.
// On Mac we can build the embedding library.
if (builtin.target.isDarwin()) {
const static_lib_aarch64 = lib: {
const lib = b.addStaticLibrary(.{
@ -539,22 +548,38 @@ fn addDeps(
}
if (!lib) {
step.addModule("glfw", glfw.module(b));
// We always statically compile glad
step.addIncludePath("vendor/glad/include/");
step.addCSourceFile("vendor/glad/src/gl.c", &.{});
// Glfw
switch (app_runtime) {
.none => {},
.glfw => {
step.addModule("glfw", glfw.module(b));
const glfw_opts: glfw.Options = .{
.metal = step.target.isDarwin(),
.opengl = false,
};
try glfw.link(b, step, glfw_opts);
// Imgui
// Must also link to imgui
const imgui_step = try imgui.link(b, step, imgui_opts);
try glfw.link(b, imgui_step, glfw_opts);
},
.gtk => {
// We need glfw for GTK because we use GLFW to get DPI.
step.addModule("glfw", glfw.module(b));
const glfw_opts: glfw.Options = .{
.metal = step.target.isDarwin(),
.opengl = false,
};
try glfw.link(b, step, glfw_opts);
step.linkSystemLibrary("gtk4");
},
}
}
return static_libs;

View File

@ -51,7 +51,8 @@ typedef enum {
} ghostty_input_mouse_state_e;
typedef enum {
GHOSTTY_MOUSE_LEFT = 1,
GHOSTTY_MOUSE_UNKNOWN,
GHOSTTY_MOUSE_LEFT,
GHOSTTY_MOUSE_RIGHT,
GHOSTTY_MOUSE_MIDDLE,
} ghostty_input_mouse_button_e;

View File

@ -22,6 +22,8 @@
, expat
, fontconfig
, freetype
, glib
, gtk4
, harfbuzz
, libpng
, libGL
@ -53,6 +55,9 @@ let
libXcursor
libXi
libXrandr
gtk4
glib
];
in mkShell rec {
name = "ghostty";
@ -102,6 +107,10 @@ in mkShell rec {
libXi
libXinerama
libXrandr
# Only needed for GTK builds
gtk4
glib
];
# This should be set onto the rpath of the ghostty binary if you want

View File

@ -9,7 +9,7 @@ const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const build_config = @import("build_config.zig");
const apprt = @import("apprt.zig");
const Window = @import("Window.zig");
const Surface = @import("Surface.zig");
const tracy = @import("tracy");
const input = @import("input.zig");
const Config = @import("config.zig").Config;
@ -22,63 +22,31 @@ const DevMode = @import("DevMode.zig");
const log = std.log.scoped(.app);
const WindowList = std.ArrayListUnmanaged(*Window);
/// The type used for sending messages to the app thread.
pub const Mailbox = BlockingQueue(Message, 64);
const SurfaceList = std.ArrayListUnmanaged(*apprt.Surface);
/// General purpose allocator
alloc: Allocator,
/// The runtime for this app.
runtime: apprt.runtime.App,
/// The list of windows that are currently open
windows: WindowList,
/// The list of surfaces that are currently active.
surfaces: SurfaceList,
// The configuration for the app.
config: *const Config,
/// The mailbox that can be used to send this thread messages. Note
/// this is a blocking queue so if it is full you will get errors (or block).
mailbox: *Mailbox,
mailbox: Mailbox.Queue,
/// Set to true once we're quitting. This never goes false again.
quit: bool,
/// Mac settings
darwin: if (Darwin.enabled) Darwin else void,
/// Mac-specific settings. This is only enabled when the target is
/// Mac and the artifact is a standalone exe. We don't target libs because
/// the embedded API doesn't do windowing.
pub const Darwin = struct {
pub const enabled = builtin.target.isDarwin() and build_config.artifact == .exe;
tabbing_id: *macos.foundation.String,
pub fn deinit(self: *Darwin) void {
self.tabbing_id.release();
self.* = undefined;
}
};
/// Initialize the main app instance. This creates the main window, sets
/// up the renderer state, compiles the shaders, etc. This is the primary
/// "startup" logic.
pub fn create(
alloc: Allocator,
rt_opts: apprt.runtime.App.Options,
config: *const Config,
) !*App {
// Initialize app runtime
var app_backend = try apprt.runtime.App.init(rt_opts);
errdefer app_backend.terminate();
// The mailbox for messaging this thread
var mailbox = try Mailbox.create(alloc);
errdefer mailbox.destroy(alloc);
// If we have DevMode on, store the config so we can show it
if (DevMode.enabled) DevMode.instance.config = config;
@ -86,78 +54,36 @@ pub fn create(
errdefer alloc.destroy(app);
app.* = .{
.alloc = alloc,
.runtime = app_backend,
.windows = .{},
.surfaces = .{},
.config = config,
.mailbox = mailbox,
.mailbox = .{},
.quit = false,
.darwin = if (Darwin.enabled) undefined else {},
};
errdefer app.windows.deinit(alloc);
// On Mac, we enable window tabbing. We only do this if we're building
// a standalone exe. In embedded mode the host app handles this for us.
if (Darwin.enabled) {
const NSWindow = objc.Class.getClass("NSWindow").?;
NSWindow.msgSend(void, objc.sel("setAllowsAutomaticWindowTabbing:"), .{true});
// Our tabbing ID allows all of our windows to group together
const tabbing_id = try macos.foundation.String.createWithBytes(
"dev.ghostty.window",
.utf8,
false,
);
errdefer tabbing_id.release();
// Setup our Mac settings
app.darwin = .{
.tabbing_id = tabbing_id,
};
}
errdefer if (comptime builtin.target.isDarwin()) app.darwin.deinit();
errdefer app.surfaces.deinit(alloc);
return app;
}
pub fn destroy(self: *App) void {
// Clean up all our windows
for (self.windows.items) |window| window.destroy();
self.windows.deinit(self.alloc);
if (Darwin.enabled) self.darwin.deinit();
self.mailbox.destroy(self.alloc);
// Clean up all our surfaces
for (self.surfaces.items) |surface| surface.deinit();
self.surfaces.deinit(self.alloc);
self.alloc.destroy(self);
// Close our windowing runtime
self.runtime.terminate();
}
/// Wake up the app event loop. This should be called after any messages
/// are sent to the mailbox.
pub fn wakeup(self: App) void {
self.runtime.wakeup() catch return;
}
/// Run the main event loop for the application. This blocks until the
/// application quits or every window is closed.
pub fn run(self: *App) !void {
while (!self.quit and self.windows.items.len > 0) {
try self.tick();
}
}
/// Tick ticks the app loop. This will drain our mailbox and process those
/// events.
pub fn tick(self: *App) !void {
// Block for any events.
try self.runtime.wait();
// If any windows are closing, destroy them
/// events. This should be called by the application runtime on every loop
/// tick.
///
/// This returns whether the app should quit or not.
pub fn tick(self: *App, rt_app: *apprt.App) !bool {
// If any surfaces are closing, destroy them
var i: usize = 0;
while (i < self.windows.items.len) {
const window = self.windows.items[i];
if (window.shouldClose()) {
window.destroy();
_ = self.windows.swapRemove(i);
while (i < self.surfaces.items.len) {
const surface = self.surfaces.items[i];
if (surface.shouldClose()) {
rt_app.closeSurface(surface);
continue;
}
@ -165,34 +91,27 @@ pub fn tick(self: *App) !void {
}
// Drain our mailbox only if we're not quitting.
if (!self.quit) try self.drainMailbox();
if (!self.quit) try self.drainMailbox(rt_app);
// We quit if our quit flag is on or if we have closed all surfaces.
return self.quit or self.surfaces.items.len == 0;
}
/// Create a new window. This can be called only on the main thread. This
/// can be called prior to ever running the app loop.
pub fn newWindow(self: *App, msg: Message.NewWindow) !*Window {
var window = try Window.create(self.alloc, self, self.config, msg.runtime);
errdefer window.destroy();
try self.windows.append(self.alloc, window);
errdefer _ = self.windows.pop();
// Set initial font size if given
if (msg.font_size) |size| window.setFontSize(size);
return window;
/// Add an initialized surface. This is really only for the runtime
/// implementations to call and should NOT be called by general app users.
/// The surface must be from the pool.
pub fn addSurface(self: *App, rt_surface: *apprt.Surface) !void {
try self.surfaces.append(self.alloc, rt_surface);
}
/// Close a window and free all resources associated with it. This can
/// only be called from the main thread.
pub fn closeWindow(self: *App, window: *Window) void {
/// Delete the surface from the known surface list. This will NOT call the
/// destructor or free the memory.
pub fn deleteSurface(self: *App, rt_surface: *apprt.Surface) void {
var i: usize = 0;
while (i < self.windows.items.len) {
const current = self.windows.items[i];
if (window == current) {
window.destroy();
_ = self.windows.swapRemove(i);
return;
while (i < self.surfaces.items.len) {
if (self.surfaces.items[i] == rt_surface) {
_ = self.surfaces.swapRemove(i);
continue;
}
i += 1;
@ -200,29 +119,51 @@ pub fn closeWindow(self: *App, window: *Window) void {
}
/// Drain the mailbox.
fn drainMailbox(self: *App) !void {
fn drainMailbox(self: *App, rt_app: *apprt.App) !void {
while (self.mailbox.pop()) |message| {
log.debug("mailbox message={s}", .{@tagName(message)});
switch (message) {
.new_window => |msg| _ = try self.newWindow(msg),
.new_tab => |msg| try self.newTab(msg),
.new_window => |msg| try self.newWindow(rt_app, msg),
.new_tab => |msg| try self.newTab(rt_app, msg),
.close => |surface| try self.closeSurface(rt_app, surface),
.quit => try self.setQuit(),
.window_message => |msg| try self.windowMessage(msg.window, msg.message),
.surface_message => |msg| try self.surfaceMessage(msg.surface, msg.message),
.redraw_surface => |surface| try self.redrawSurface(rt_app, surface),
}
}
}
/// Create a new tab in the parent window
fn newTab(self: *App, msg: Message.NewWindow) !void {
if (comptime !builtin.target.isDarwin()) {
log.warn("tabbing is not supported on this platform", .{});
fn closeSurface(self: *App, rt_app: *apprt.App, surface: *Surface) !void {
if (!self.hasSurface(surface)) return;
rt_app.closeSurface(surface.rt_surface);
}
fn redrawSurface(self: *App, rt_app: *apprt.App, surface: *apprt.Surface) !void {
if (!self.hasSurface(&surface.core_surface)) return;
rt_app.redrawSurface(surface);
}
/// Create a new window
fn newWindow(self: *App, rt_app: *apprt.App, msg: Message.NewWindow) !void {
if (!@hasDecl(apprt.App, "newWindow")) {
log.warn("newWindow is not supported by this runtime", .{});
return;
}
// In embedded mode, it is up to the embedder to implement tabbing
// on their own.
if (comptime build_config.artifact != .exe) {
log.warn("tabbing is not supported in embedded mode", .{});
const parent = if (msg.parent) |parent| parent: {
break :parent if (self.hasSurface(parent))
parent
else
null;
} else null;
try rt_app.newWindow(parent);
}
/// Create a new tab in the parent window
fn newTab(self: *App, rt_app: *apprt.App, msg: Message.NewTab) !void {
if (!@hasDecl(apprt.App, "newTab")) {
log.warn("newTab is not supported by this runtime", .{});
return;
}
@ -232,16 +173,12 @@ fn newTab(self: *App, msg: Message.NewWindow) !void {
};
// If the parent was closed prior to us handling the message, we do nothing.
if (!self.hasWindow(parent)) {
if (!self.hasSurface(parent)) {
log.warn("new_tab parent is gone, not launching a new tab", .{});
return;
}
// Create the new window
const window = try self.newWindow(msg);
// Add the window to our parent tab group
parent.addWindow(window);
try rt_app.newTab(parent);
}
/// Start quitting
@ -249,28 +186,28 @@ fn setQuit(self: *App) !void {
if (self.quit) return;
self.quit = true;
// Mark that all our windows should close
for (self.windows.items) |window| {
window.window.setShouldClose();
// Mark that all our surfaces should close
for (self.surfaces.items) |surface| {
surface.setShouldClose();
}
}
/// Handle a window message
fn windowMessage(self: *App, win: *Window, msg: Window.Message) !void {
fn surfaceMessage(self: *App, surface: *Surface, msg: apprt.surface.Message) !void {
// We want to ensure our window is still active. Window messages
// are quite rare and we normally don't have many windows so we do
// a simple linear search here.
if (self.hasWindow(win)) {
try win.handleMessage(msg);
if (self.hasSurface(surface)) {
try surface.handleMessage(msg);
}
// Window was not found, it probably quit before we handled the message.
// Not a problem.
}
fn hasWindow(self: *App, win: *Window) bool {
for (self.windows.items) |window| {
if (window == win) return true;
fn hasSurface(self: *App, surface: *Surface) bool {
for (self.surfaces.items) |v| {
if (&v.core_surface == surface) return true;
}
return false;
@ -284,28 +221,55 @@ pub const Message = union(enum) {
/// Create a new tab within the tab group of the focused window.
/// This does nothing if we're on a platform or using a window
/// environment that doesn't support tabs.
new_tab: NewWindow,
new_tab: NewTab,
/// Close a surface. This notifies the runtime that a surface
/// should close.
close: *Surface,
/// Quit
quit: void,
/// A message for a specific window
window_message: struct {
window: *Window,
message: Window.Message,
/// A message for a specific surface.
surface_message: struct {
surface: *Surface,
message: apprt.surface.Message,
},
/// Redraw a surface. This only has an effect for runtimes that
/// use single-threaded draws. To redraw a surface for all runtimes,
/// wake up the renderer thread. The renderer thread will send this
/// message if it needs to.
redraw_surface: *apprt.Surface,
const NewWindow = struct {
/// Runtime-specific window options.
runtime: apprt.runtime.Window.Options = .{},
/// The parent window, only used for new tabs.
parent: ?*Window = null,
/// The font size to create the window with or null to default to
/// the configuration amount.
font_size: ?font.face.DesiredSize = null,
/// The parent surface
parent: ?*Surface = null,
};
const NewTab = struct {
/// The parent surface
parent: ?*Surface = null,
};
};
/// Mailbox is the way that other threads send the app thread messages.
pub const Mailbox = struct {
/// The type used for sending messages to the app thread.
pub const Queue = BlockingQueue(Message, 64);
rt_app: *apprt.App,
mailbox: *Queue,
/// Send a message to the surface.
pub fn push(self: Mailbox, msg: Message, timeout: Queue.Timeout) Queue.Size {
const result = self.mailbox.push(msg, timeout);
// Wake up our app loop
self.rt_app.wakeup();
return result;
}
};
// Wasm API.
@ -335,147 +299,3 @@ pub const Wasm = if (!builtin.target.isWasm()) struct {} else struct {
// }
// }
};
// C API
pub const CAPI = struct {
const global = &@import("main.zig").state;
/// Create a new app.
export fn ghostty_app_new(
opts: *const apprt.runtime.App.Options,
config: *const Config,
) ?*App {
return app_new_(opts, config) catch |err| {
log.err("error initializing app err={}", .{err});
return null;
};
}
fn app_new_(
opts: *const apprt.runtime.App.Options,
config: *const Config,
) !*App {
const app = try App.create(global.alloc, opts.*, config);
errdefer app.destroy();
return app;
}
/// Tick the event loop. This should be called whenever the "wakeup"
/// callback is invoked for the runtime.
export fn ghostty_app_tick(v: *App) void {
v.tick() catch |err| {
log.err("error app tick err={}", .{err});
};
}
/// Return the userdata associated with the app.
export fn ghostty_app_userdata(v: *App) ?*anyopaque {
return v.runtime.opts.userdata;
}
export fn ghostty_app_free(ptr: ?*App) void {
if (ptr) |v| {
v.destroy();
v.alloc.destroy(v);
}
}
/// Create a new surface as part of an app.
export fn ghostty_surface_new(
app: *App,
opts: *const apprt.runtime.Window.Options,
) ?*Window {
return surface_new_(app, opts) catch |err| {
log.err("error initializing surface err={}", .{err});
return null;
};
}
fn surface_new_(
app: *App,
opts: *const apprt.runtime.Window.Options,
) !*Window {
const w = try app.newWindow(.{
.runtime = opts.*,
});
return w;
}
export fn ghostty_surface_free(ptr: ?*Window) void {
if (ptr) |v| v.app.closeWindow(v);
}
/// Returns the app associated with a surface.
export fn ghostty_surface_app(win: *Window) *App {
return win.app;
}
/// Tell the surface that it needs to schedule a render
export fn ghostty_surface_refresh(win: *Window) void {
win.window.refresh();
}
/// Update the size of a surface. This will trigger resize notifications
/// to the pty and the renderer.
export fn ghostty_surface_set_size(win: *Window, w: u32, h: u32) void {
win.window.updateSize(w, h);
}
/// Update the content scale of the surface.
export fn ghostty_surface_set_content_scale(win: *Window, x: f64, y: f64) void {
win.window.updateContentScale(x, y);
}
/// Update the focused state of a surface.
export fn ghostty_surface_set_focus(win: *Window, focused: bool) void {
win.window.focusCallback(focused);
}
/// Tell the surface that it needs to schedule a render
export fn ghostty_surface_key(
win: *Window,
action: input.Action,
key: input.Key,
mods: c_int,
) void {
win.window.keyCallback(
action,
key,
@bitCast(input.Mods, @truncate(u8, @bitCast(c_uint, mods))),
);
}
/// Tell the surface that it needs to schedule a render
export fn ghostty_surface_char(win: *Window, codepoint: u32) void {
win.window.charCallback(codepoint);
}
/// Tell the surface that it needs to schedule a render
export fn ghostty_surface_mouse_button(
win: *Window,
action: input.MouseButtonState,
button: input.MouseButton,
mods: c_int,
) void {
win.window.mouseButtonCallback(
action,
button,
@bitCast(input.Mods, @truncate(u8, @bitCast(c_uint, mods))),
);
}
/// Update the mouse position within the view.
export fn ghostty_surface_mouse_pos(win: *Window, x: f64, y: f64) void {
win.window.cursorPosCallback(x, y);
}
export fn ghostty_surface_mouse_scroll(win: *Window, x: f64, y: f64) void {
win.window.scrollCallback(x, y);
}
export fn ghostty_surface_ime_point(win: *Window, x: *f64, y: *f64) void {
const pos = win.imePoint();
x.* = pos.x;
y.* = pos.y;
}
};

View File

@ -10,7 +10,7 @@ const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const font = @import("font/main.zig");
const Window = @import("Window.zig");
const Surface = @import("Surface.zig");
const renderer = @import("renderer.zig");
const Config = @import("config.zig").Config;
@ -29,8 +29,8 @@ visible: bool = false,
/// Our app config
config: ?*const Config = null,
/// The window we're tracking.
window: ?*Window = null,
/// The surface we're tracking.
surface: ?*Surface = null,
/// Update the state associated with the dev mode. This should generally
/// only be called paired with a render since it otherwise wastes CPU
@ -86,20 +86,20 @@ pub fn update(self: *const DevMode) !void {
}
}
if (self.window) |window| {
if (self.surface) |surface| {
if (imgui.collapsingHeader("Font Manager", null, .{})) {
imgui.text("Glyphs: %d", window.font_group.glyphs.count());
imgui.text("Glyphs: %d", surface.font_group.glyphs.count());
imgui.sameLine(0, -1);
helpMarker("The number of glyphs loaded and rendered into a " ++
"font atlas currently.");
const Renderer = @TypeOf(window.renderer);
const Renderer = @TypeOf(surface.renderer);
if (imgui.treeNode("Atlas: Greyscale", .{ .default_open = true })) {
defer imgui.treePop();
const atlas = &window.font_group.atlas_greyscale;
const atlas = &surface.font_group.atlas_greyscale;
const tex = switch (Renderer) {
renderer.OpenGL => @intCast(usize, window.renderer.texture.id),
renderer.Metal => @ptrToInt(window.renderer.texture_greyscale.value),
renderer.OpenGL => @intCast(usize, surface.renderer.texture.id),
renderer.Metal => @ptrToInt(surface.renderer.texture_greyscale.value),
else => @compileError("renderer unsupported, add it!"),
};
try self.atlasInfo(atlas, tex);
@ -107,10 +107,10 @@ pub fn update(self: *const DevMode) !void {
if (imgui.treeNode("Atlas: Color (Emoji)", .{ .default_open = true })) {
defer imgui.treePop();
const atlas = &window.font_group.atlas_color;
const atlas = &surface.font_group.atlas_color;
const tex = switch (Renderer) {
renderer.OpenGL => @intCast(usize, window.renderer.texture_color.id),
renderer.Metal => @ptrToInt(window.renderer.texture_color.value),
renderer.OpenGL => @intCast(usize, surface.renderer.texture_color.id),
renderer.Metal => @ptrToInt(surface.renderer.texture_color.value),
else => @compileError("renderer unsupported, add it!"),
};
try self.atlasInfo(atlas, tex);

View File

@ -1,15 +1,19 @@
//! Window represents a single OS window.
//! Surface represents a single terminal "surface". A terminal surface is
//! a minimal "widget" where the terminal is drawn and responds to events
//! such as keyboard and mouse. Each surface also creates and owns its pty
//! session.
//!
//! NOTE(multi-window): This may be premature, but this abstraction is here
//! to pave the way One Day(tm) for multi-window support. At the time of
//! writing, we support exactly one window.
const Window = @This();
//! The word "surface" is used because it is left to the higher level
//! application runtime to determine if the surface is a window, a tab,
//! a split, a preview pane in a larger window, etc. This struct doesn't care:
//! it just draws and responds to events. The events come from the application
//! runtime so the runtime can determine when and how those are delivered
//! (i.e. with focus, without focus, and so on).
const Surface = @This();
// TODO: eventually, I want to extract Window.zig into the "window" package
// so we can also have alternate implementations (i.e. not glfw).
const apprt = @import("apprt.zig");
pub const Mailbox = apprt.Window.Mailbox;
pub const Message = apprt.Window.Message;
pub const Mailbox = apprt.surface.Mailbox;
pub const Message = apprt.surface.Message;
const std = @import("std");
const builtin = @import("builtin");
@ -18,7 +22,6 @@ const Allocator = std.mem.Allocator;
const renderer = @import("renderer.zig");
const termio = @import("termio.zig");
const objc = @import("objc");
const glfw = @import("glfw");
const imgui = @import("imgui");
const Pty = @import("Pty.zig");
const font = @import("font/main.zig");
@ -31,12 +34,7 @@ const DevMode = @import("DevMode.zig");
const App = @import("App.zig");
const internal_os = @import("os/main.zig");
// Get native API access on certain platforms so we can do more customization.
const glfwNative = glfw.Native(.{
.cocoa = builtin.target.isDarwin(),
});
const log = std.log.scoped(.window);
const log = std.log.scoped(.surface);
// The renderer implementation to use.
const Renderer = renderer.Renderer;
@ -44,11 +42,11 @@ const Renderer = renderer.Renderer;
/// Allocator
alloc: Allocator,
/// The app that this window is a part of.
app: *App,
/// The mailbox for sending messages to the main app thread.
app_mailbox: App.Mailbox,
/// The windowing system state
window: apprt.runtime.Window,
/// The windowing system surface
rt_surface: *apprt.runtime.Surface,
/// The font structures
font_lib: font.Library,
@ -58,7 +56,7 @@ font_size: font.face.DesiredSize,
/// Imgui context
imgui_ctx: if (DevMode.enabled) *imgui.Context else void,
/// The renderer for this window.
/// The renderer for this surface.
renderer: Renderer,
/// The render state
@ -96,7 +94,7 @@ config: *const Config,
/// like such as "control-v" will write a "v" even if they're intercepted.
ignore_char: bool = false,
/// Mouse state for the window.
/// Mouse state for the surface.
const Mouse = struct {
/// The last tracked mouse button state by button.
click_state: [input.MouseButton.max]input.MouseButtonState = .{.release} ** input.MouseButton.max,
@ -111,7 +109,7 @@ const Mouse = struct {
/// The starting xpos/ypos of the left click. Note that if scrolling occurs,
/// these will point to different "cells", but the xpos/ypos will stay
/// stable during scrolling relative to the window.
/// stable during scrolling relative to the surface.
left_click_xpos: f64 = 0,
left_click_ypos: f64 = 0,
@ -125,28 +123,22 @@ const Mouse = struct {
event_point: terminal.point.Viewport = .{},
};
/// Create a new window. This allocates and returns a pointer because we
/// need a stable pointer for user data callbacks. Therefore, a stack-only
/// initialization is not currently possible.
pub fn create(
/// Create a new surface. This must be called from the main thread. The
/// pointer to the memory for the surface must be provided and must be
/// stable due to interfacing with various callbacks.
pub fn init(
self: *Surface,
alloc: Allocator,
app: *App,
config: *const Config,
rt_opts: apprt.runtime.Window.Options,
) !*Window {
var self = try alloc.create(Window);
errdefer alloc.destroy(self);
// Create the windowing system
var window = try apprt.runtime.Window.init(app, self, rt_opts);
errdefer window.deinit();
// Initialize our renderer with our initialized windowing system.
try Renderer.windowInit(window);
app_mailbox: App.Mailbox,
rt_surface: *apprt.runtime.Surface,
) !void {
// Initialize our renderer with our initialized surface.
try Renderer.surfaceInit(rt_surface);
// Determine our DPI configurations so we can properly configure
// font points to pixels and handle other high-DPI scaling factors.
const content_scale = try window.getContentScale();
const content_scale = try rt_surface.getContentScale();
const x_dpi = content_scale.x * font.face.default_dpi;
const y_dpi = content_scale.y * font.face.default_dpi;
log.debug("xscale={} yscale={} xdpi={} ydpi={}", .{
@ -156,17 +148,17 @@ pub fn create(
y_dpi,
});
// The font size we desire along with the DPI determiend for the window
// The font size we desire along with the DPI determined for the surface
const font_size: font.face.DesiredSize = .{
.points = config.@"font-size",
.xdpi = @floatToInt(u16, x_dpi),
.ydpi = @floatToInt(u16, y_dpi),
};
// Find all the fonts for this window
// Find all the fonts for this surface
//
// Future: we can share the font group amongst all windows to save
// some new window init time and some memory. This will require making
// Future: we can share the font group amongst all surfaces to save
// some new surface init time and some memory. This will require making
// thread-safe changes to font structs.
var font_lib = try font.Library.init();
errdefer font_lib.deinit();
@ -290,7 +282,7 @@ pub fn create(
.left = padding_x,
};
// Create our terminal grid with the initial window size
// Create our terminal grid with the initial size
var renderer_impl = try Renderer.init(alloc, .{
.config = config,
.font_group = font_group,
@ -298,15 +290,15 @@ pub fn create(
.explicit = padding,
.balance = config.@"window-padding-balance",
},
.window_mailbox = .{ .window = self, .app = app.mailbox },
.surface_mailbox = .{ .surface = self, .app = app_mailbox },
});
errdefer renderer_impl.deinit();
// Calculate our grid size based on known dimensions.
const window_size = try window.getSize();
const surface_size = try rt_surface.getSize();
const screen_size: renderer.ScreenSize = .{
.width = window_size.width,
.height = window_size.height,
.width = surface_size.width,
.height = surface_size.height,
};
const grid_size = renderer.GridSize.init(
screen_size.subPadding(padding),
@ -321,9 +313,10 @@ pub fn create(
// Create the renderer thread
var render_thread = try renderer.Thread.init(
alloc,
window,
rt_surface,
&self.renderer,
&self.renderer_state,
app_mailbox,
);
errdefer render_thread.deinit();
@ -335,7 +328,7 @@ pub fn create(
.renderer_state = &self.renderer_state,
.renderer_wakeup = render_thread.wakeup,
.renderer_mailbox = render_thread.mailbox,
.window_mailbox = .{ .window = self, .app = app.mailbox },
.surface_mailbox = .{ .surface = self, .app = app_mailbox },
});
errdefer io.deinit();
@ -343,15 +336,15 @@ pub fn create(
var io_thread = try termio.Thread.init(alloc, &self.io);
errdefer io_thread.deinit();
// True if this window is hosting devmode. We only host devmode on
// the first window since imgui is not threadsafe. We need to do some
// True if this surface is hosting devmode. We only host devmode on
// the first surface since imgui is not threadsafe. We need to do some
// work to make DevMode work with multiple threads.
const host_devmode = DevMode.enabled and DevMode.instance.window == null;
const host_devmode = DevMode.enabled and DevMode.instance.surface == null;
self.* = .{
.alloc = alloc,
.app = app,
.window = window,
.app_mailbox = app_mailbox,
.rt_surface = rt_surface,
.font_lib = font_lib,
.font_group = font_group,
.font_size = font_size,
@ -384,21 +377,21 @@ pub fn create(
// Set a minimum size that is cols=10 h=4. This matches Mac's Terminal.app
// but is otherwise somewhat arbitrary.
try window.setSizeLimits(.{
try rt_surface.setSizeLimits(.{
.width = @floatToInt(u32, cell_size.width * 10),
.height = @floatToInt(u32, cell_size.height * 4),
}, null);
// Call our size callback which handles all our retina setup
// Note: this shouldn't be necessary and when we clean up the window
// Note: this shouldn't be necessary and when we clean up the surface
// init stuff we should get rid of this. But this is required because
// sizeCallback does retina-aware stuff we don't do here and don't want
// to duplicate.
try self.sizeCallback(window_size);
try self.sizeCallback(surface_size);
// Load imgui. This must be done LAST because it has to be done after
// all our GLFW setup is complete.
if (DevMode.enabled and DevMode.instance.window == null) {
if (DevMode.enabled and DevMode.instance.surface == null) {
const dev_io = try imgui.IO.get();
dev_io.cval().IniFilename = "ghostty_dev_mode.ini";
@ -413,16 +406,16 @@ pub fn create(
const style = try imgui.Style.get();
style.colorsDark();
// Add our window to the instance if it isn't set.
DevMode.instance.window = self;
// Add our surface to the instance if it isn't set.
DevMode.instance.surface = self;
// Let our renderer setup
try renderer_impl.initDevMode(window);
try renderer_impl.initDevMode(rt_surface);
}
// Give the renderer one more opportunity to finalize any window
// Give the renderer one more opportunity to finalize any surface
// setup on the main thread prior to spinning up the rendering thread.
try renderer_impl.finalizeWindowInit(window);
try renderer_impl.finalizeSurfaceInit(rt_surface);
// Start our renderer thread
self.renderer_thr = try std.Thread.spawn(
@ -439,11 +432,9 @@ pub fn create(
.{&self.io_thread},
);
self.io_thr.setName("io") catch {};
return self;
}
pub fn destroy(self: *Window) void {
pub fn deinit(self: *Surface) void {
// Stop rendering thread
{
self.renderer_thread.stop.notify() catch |err|
@ -451,15 +442,15 @@ pub fn destroy(self: *Window) void {
self.renderer_thr.join();
// We need to become the active rendering thread again
self.renderer.threadEnter(self.window) catch unreachable;
self.renderer.threadEnter(self.rt_surface) catch unreachable;
// If we are devmode-owning, clean that up.
if (DevMode.enabled and DevMode.instance.window == self) {
if (DevMode.enabled and DevMode.instance.surface == self) {
// Let our renderer clean up
self.renderer.deinitDevMode();
// Clear the window
DevMode.instance.window = null;
// Clear the surface
DevMode.instance.surface = null;
// Uninitialize imgui
self.imgui_ctx.destroy();
@ -480,62 +471,23 @@ pub fn destroy(self: *Window) void {
self.io_thread.deinit();
self.io.deinit();
self.window.deinit();
self.font_group.deinit(self.alloc);
self.font_lib.deinit();
self.alloc.destroy(self.font_group);
self.alloc.destroy(self.renderer_state.mutex);
self.alloc.destroy(self);
}
pub fn shouldClose(self: Window) bool {
return self.window.shouldClose();
}
/// Add a window to the tab group of this window.
pub fn addWindow(self: *Window, other: *Window) void {
assert(builtin.target.isDarwin());
// This has a hard dependency on GLFW currently. If we want to support
// this in other windowing systems we should abstract this. This is NOT
// the right interface.
const self_win = glfwNative.getCocoaWindow(self.window.window).?;
const other_win = glfwNative.getCocoaWindow(other.window.window).?;
const NSWindowOrderingMode = enum(isize) { below = -1, out = 0, above = 1 };
const nswindow = objc.Object.fromId(self_win);
nswindow.msgSend(void, objc.sel("addTabbedWindow:ordered:"), .{
objc.Object.fromId(other_win),
NSWindowOrderingMode.above,
});
// Adding a new tab can cause the tab bar to appear which changes
// our viewport size. We need to call the size callback in order to
// update values. For example, we need this to set the proper mouse selection
// point in the grid.
const size = self.window.getSize() catch |err| {
log.err("error querying window size for size callback on new tab err={}", .{err});
return;
};
self.sizeCallback(size) catch |err| {
log.err("error in size callback from new tab err={}", .{err});
return;
};
}
/// Called from the app thread to handle mailbox messages to our specific
/// window.
pub fn handleMessage(self: *Window, msg: Message) !void {
/// surface.
pub fn handleMessage(self: *Surface, msg: Message) !void {
switch (msg) {
.set_title => |*v| {
// The ptrCast just gets sliceTo to return the proper type.
// We know that our title should end in 0.
const slice = std.mem.sliceTo(@ptrCast([*:0]const u8, v), 0);
log.debug("changing title \"{s}\"", .{slice});
try self.window.setTitle(slice);
try self.rt_surface.setTitle(slice);
},
.cell_size => |size| try self.setCellSize(size),
@ -555,7 +507,7 @@ pub fn handleMessage(self: *Window, msg: Message) !void {
/// Returns the x/y coordinate of where the IME (Input Method Editor)
/// keyboard should be rendered.
pub fn imePoint(self: *const Window) apprt.IMEPos {
pub fn imePoint(self: *const Surface) apprt.IMEPos {
self.renderer_state.mutex.lock();
const cursor = self.renderer_state.terminal.screen.cursor;
self.renderer_state.mutex.unlock();
@ -564,7 +516,7 @@ pub fn imePoint(self: *const Window) apprt.IMEPos {
// in the visible portion of the screen.
// Our sizes are all scaled so we need to send the unscaled values back.
const content_scale = self.window.getContentScale() catch .{ .x = 1, .y = 1 };
const content_scale = self.rt_surface.getContentScale() catch .{ .x = 1, .y = 1 };
const x: f64 = x: {
// Simple x * cell width gives the top-left corner
@ -595,13 +547,13 @@ pub fn imePoint(self: *const Window) apprt.IMEPos {
return .{ .x = x, .y = y };
}
fn clipboardRead(self: *const Window, kind: u8) !void {
fn clipboardRead(self: *const Surface, kind: u8) !void {
if (!self.config.@"clipboard-read") {
log.info("application attempted to read clipboard, but 'clipboard-read' setting is off", .{});
return;
}
const data = self.window.getClipboardString() catch |err| {
const data = self.rt_surface.getClipboardString() catch |err| {
log.warn("error reading clipboard: {}", .{err});
return;
};
@ -631,7 +583,7 @@ fn clipboardRead(self: *const Window, kind: u8) !void {
self.io_thread.wakeup.notify() catch {};
}
fn clipboardWrite(self: *const Window, data: []const u8) !void {
fn clipboardWrite(self: *const Surface, data: []const u8) !void {
if (!self.config.@"clipboard-write") {
log.info("application attempted to write clipboard, but 'clipboard-write' setting is off", .{});
return;
@ -649,7 +601,7 @@ fn clipboardWrite(self: *const Window, data: []const u8) !void {
try dec.decode(buf, data);
assert(buf[buf.len] == 0);
self.window.setClipboardString(buf) catch |err| {
self.rt_surface.setClipboardString(buf) catch |err| {
log.err("error setting clipboard string err={}", .{err});
return;
};
@ -657,7 +609,7 @@ fn clipboardWrite(self: *const Window, data: []const u8) !void {
/// Change the cell size for the terminal grid. This can happen as
/// a result of changing the font size at runtime.
fn setCellSize(self: *Window, size: renderer.CellSize) !void {
fn setCellSize(self: *Surface, size: renderer.CellSize) !void {
// Update our new cell size for future calcs
self.cell_size = size;
@ -681,7 +633,7 @@ fn setCellSize(self: *Window, size: renderer.CellSize) !void {
/// Change the font size.
///
/// This can only be called from the main thread.
pub fn setFontSize(self: *Window, size: font.face.DesiredSize) void {
pub fn setFontSize(self: *Surface, size: font.face.DesiredSize) void {
// Update our font size so future changes work
self.font_size = size;
@ -697,11 +649,11 @@ pub fn setFontSize(self: *Window, size: font.face.DesiredSize) void {
/// This queues a render operation with the renderer thread. The render
/// isn't guaranteed to happen immediately but it will happen as soon as
/// practical.
fn queueRender(self: *const Window) !void {
fn queueRender(self: *const Surface) !void {
try self.renderer_thread.wakeup.notify();
}
pub fn sizeCallback(self: *Window, size: apprt.WindowSize) !void {
pub fn sizeCallback(self: *Surface, size: apprt.SurfaceSize) !void {
const tracy = trace(@src());
defer tracy.end();
@ -745,7 +697,7 @@ pub fn sizeCallback(self: *Window, size: apprt.WindowSize) !void {
try self.io_thread.wakeup.notify();
}
pub fn charCallback(self: *Window, codepoint: u21) !void {
pub fn charCallback(self: *Surface, codepoint: u21) !void {
const tracy = trace(@src());
defer tracy.end();
@ -796,7 +748,7 @@ pub fn charCallback(self: *Window, codepoint: u21) !void {
}
pub fn keyCallback(
self: *Window,
self: *Surface,
action: input.Action,
key: input.Key,
mods: input.Mods,
@ -879,7 +831,7 @@ pub fn keyCallback(
};
defer self.alloc.free(buf);
self.window.setClipboardString(buf) catch |err| {
self.rt_surface.setClipboardString(buf) catch |err| {
log.err("error setting clipboard string err={}", .{err});
return;
};
@ -887,7 +839,7 @@ pub fn keyCallback(
},
.paste_from_clipboard => {
const data = self.window.getClipboardString() catch |err| {
const data = self.rt_surface.getClipboardString() catch |err| {
log.warn("error reading clipboard: {}", .{err});
return;
};
@ -950,38 +902,29 @@ pub fn keyCallback(
} else log.warn("dev mode was not compiled into this binary", .{}),
.new_window => {
_ = self.app.mailbox.push(.{
_ = self.app_mailbox.push(.{
.new_window = .{
.font_size = if (self.config.@"window-inherit-font-size")
self.font_size
else
null,
.parent = self,
},
}, .{ .instant = {} });
self.app.wakeup();
},
.new_tab => {
_ = self.app.mailbox.push(.{
_ = self.app_mailbox.push(.{
.new_tab = .{
.parent = self,
.font_size = if (self.config.@"window-inherit-font-size")
self.font_size
else
null,
},
}, .{ .instant = {} });
self.app.wakeup();
},
.close_window => self.window.setShouldClose(),
.close_window => {
_ = self.app_mailbox.push(.{ .close = self }, .{ .instant = {} });
},
.quit => {
_ = self.app.mailbox.push(.{
_ = self.app_mailbox.push(.{
.quit = {},
}, .{ .instant = {} });
self.app.wakeup();
},
}
@ -1059,7 +1002,7 @@ pub fn keyCallback(
}
}
pub fn focusCallback(self: *Window, focused: bool) !void {
pub fn focusCallback(self: *Surface, focused: bool) !void {
// Notify our render thread of the new state
_ = self.renderer_thread.mailbox.push(.{
.focus = focused,
@ -1069,17 +1012,17 @@ pub fn focusCallback(self: *Window, focused: bool) !void {
try self.queueRender();
}
pub fn refreshCallback(self: *Window) !void {
pub fn refreshCallback(self: *Surface) !void {
// The point of this callback is to schedule a render, so do that.
try self.queueRender();
}
pub fn scrollCallback(self: *Window, xoff: f64, yoff: f64) !void {
pub fn scrollCallback(self: *Surface, xoff: f64, yoff: f64) !void {
const tracy = trace(@src());
defer tracy.end();
// If our dev mode window is visible then we always schedule a render on
// cursor move because the cursor might touch our windows.
// If our dev mode surface is visible then we always schedule a render on
// cursor move because the cursor might touch our surfaces.
if (DevMode.enabled and DevMode.instance.visible) {
try self.queueRender();
@ -1107,7 +1050,7 @@ pub fn scrollCallback(self: *Window, xoff: f64, yoff: f64) !void {
// If we're scrolling up or down, then send a mouse event. This requires
// a lock since we read terminal state.
if (yoff != 0) {
const pos = try self.window.getCursorPos();
const pos = try self.rt_surface.getCursorPos();
try self.mouseReport(if (yoff < 0) .five else .four, .press, self.mouse.mods, pos);
}
}
@ -1119,14 +1062,14 @@ pub fn scrollCallback(self: *Window, xoff: f64, yoff: f64) !void {
const MouseReportAction = enum { press, release, motion };
fn mouseReport(
self: *Window,
self: *Surface,
button: ?input.MouseButton,
action: MouseReportAction,
mods: input.Mods,
pos: apprt.CursorPos,
) !void {
// TODO: posToViewport currently clamps to the window boundary,
// do we want to not report mouse events at all outside the window?
// TODO: posToViewport currently clamps to the surface boundary,
// do we want to not report mouse events at all outside the surface?
// Depending on the event, we may do nothing at all.
switch (self.io.terminal.modes.mouse_event) {
@ -1314,7 +1257,7 @@ fn mouseReport(
}
pub fn mouseButtonCallback(
self: *Window,
self: *Surface,
action: input.MouseButtonState,
button: input.MouseButton,
mods: input.Mods,
@ -1322,8 +1265,8 @@ pub fn mouseButtonCallback(
const tracy = trace(@src());
defer tracy.end();
// If our dev mode window is visible then we always schedule a render on
// cursor move because the cursor might touch our windows.
// If our dev mode surface is visible then we always schedule a render on
// cursor move because the cursor might touch our surfaces.
if (DevMode.enabled and DevMode.instance.visible) {
try self.queueRender();
@ -1342,7 +1285,7 @@ pub fn mouseButtonCallback(
// Report mouse events if enabled
if (self.io.terminal.modes.mouse_event != .none) {
const pos = try self.window.getCursorPos();
const pos = try self.rt_surface.getCursorPos();
const report_action: MouseReportAction = switch (action) {
.press => .press,
@ -1360,7 +1303,7 @@ pub fn mouseButtonCallback(
// For left button clicks we always record some information for
// selection/highlighting purposes.
if (button == .left and action == .press) {
const pos = try self.window.getCursorPos();
const pos = try self.rt_surface.getCursorPos();
// If we move our cursor too much between clicks then we reset
// the multi-click state.
@ -1433,14 +1376,14 @@ pub fn mouseButtonCallback(
}
pub fn cursorPosCallback(
self: *Window,
self: *Surface,
pos: apprt.CursorPos,
) !void {
const tracy = trace(@src());
defer tracy.end();
// If our dev mode window is visible then we always schedule a render on
// cursor move because the cursor might touch our windows.
// If our dev mode surface is visible then we always schedule a render on
// cursor move because the cursor might touch our surfaces.
if (DevMode.enabled and DevMode.instance.visible) {
try self.queueRender();
@ -1495,7 +1438,7 @@ pub fn cursorPosCallback(
/// Double-click dragging moves the selection one "word" at a time.
fn dragLeftClickDouble(
self: *Window,
self: *Surface,
screen_point: terminal.point.ScreenPoint,
) void {
// Get the word under our current point. If there isn't a word, do nothing.
@ -1520,7 +1463,7 @@ fn dragLeftClickDouble(
/// Triple-click dragging moves the selection one "line" at a time.
fn dragLeftClickTriple(
self: *Window,
self: *Surface,
screen_point: terminal.point.ScreenPoint,
) void {
// Get the word under our current point. If there isn't a word, do nothing.
@ -1544,7 +1487,7 @@ fn dragLeftClickTriple(
}
fn dragLeftClickSingle(
self: *Window,
self: *Surface,
screen_point: terminal.point.ScreenPoint,
xpos: f64,
) void {
@ -1650,10 +1593,10 @@ fn dragLeftClickSingle(
self.io.terminal.selection.?.end = screen_point;
}
fn posToViewport(self: Window, xpos: f64, ypos: f64) terminal.point.Viewport {
fn posToViewport(self: Surface, xpos: f64, ypos: f64) terminal.point.Viewport {
// xpos and ypos can be negative if while dragging, the user moves the
// mouse off the window. Likewise, they can be larger than our window
// width if the user drags out of the window positively.
// mouse off the surface. Likewise, they can be larger than our surface
// width if the user drags out of the surface positively.
return .{
.x = if (xpos < 0) 0 else x: {
// Our cell is the mouse divided by cell width

View File

@ -8,25 +8,56 @@
//! The goal is to have different implementations share as much of the core
//! logic as possible, and to only reach out to platform-specific implementation
//! code when absolutely necessary.
const std = @import("std");
const builtin = @import("builtin");
const build_config = @import("build_config.zig");
pub usingnamespace @import("apprt/structs.zig");
pub const glfw = @import("apprt/glfw.zig");
pub const gtk = @import("apprt/gtk.zig");
pub const browser = @import("apprt/browser.zig");
pub const embedded = @import("apprt/embedded.zig");
pub const Window = @import("apprt/Window.zig");
pub const surface = @import("apprt/surface.zig");
/// The implementation to use for the app runtime. This is comptime chosen
/// so that every build has exactly one application runtime implementation.
/// Note: it is very rare to use Runtime directly; most usage will use
/// Window or something.
pub const runtime = switch (build_config.artifact) {
.exe => glfw,
.exe => switch (build_config.app_runtime) {
.none => @compileError("exe with no runtime not allowed"),
.glfw => glfw,
.gtk => gtk,
},
.lib => embedded,
.wasm_module => browser,
};
pub const App = runtime.App;
pub const Surface = runtime.Surface;
/// Runtime is the runtime to use for Ghostty. All runtimes do not provide
/// equivalent feature sets. For example, GTK offers tabbing and more features
/// that glfw does not provide. However, glfw may require many less
/// dependencies.
pub const Runtime = enum {
/// Will not produce an executable at all when `zig build` is called.
/// This is only useful if you're only interested in the lib only (macOS).
none,
/// Glfw-backed. Very simple. Glfw is statically linked. Tabbing and
/// other rich windowing features are not supported.
glfw,
/// GTK-backed. Rich windowed application. GTK is dynamically linked.
gtk,
pub fn default(target: std.zig.CrossTarget) Runtime {
_ = target;
return .glfw;
}
};
test {
@import("std").testing.refAllDecls(@This());
}

View File

@ -12,7 +12,7 @@ const objc = @import("objc");
const apprt = @import("../apprt.zig");
const input = @import("../input.zig");
const CoreApp = @import("../App.zig");
const CoreWindow = @import("../Window.zig");
const CoreSurface = @import("../Surface.zig");
const log = std.log.scoped(.embedded_window);
@ -46,30 +46,57 @@ pub const App = struct {
write_clipboard: *const fn (SurfaceUD, [*:0]const u8) callconv(.C) void,
};
core_app: *CoreApp,
opts: Options,
pub fn init(opts: Options) !App {
return .{ .opts = opts };
pub fn init(core_app: *CoreApp, opts: Options) !App {
return .{ .core_app = core_app, .opts = opts };
}
pub fn terminate(self: App) void {
_ = self;
}
pub fn wakeup(self: App) !void {
pub fn wakeup(self: App) void {
self.opts.wakeup(self.opts.userdata);
}
pub fn wait(self: App) !void {
_ = self;
}
/// Create a new surface for the app.
fn newSurface(self: *App, opts: Surface.Options) !*Surface {
// Grab a surface allocation because we're going to need it.
var surface = try self.core_app.alloc.create(Surface);
errdefer self.core_app.alloc.destroy(surface);
// Create the surface -- because windows are surfaces for glfw.
try surface.init(self, opts);
errdefer surface.deinit();
return surface;
}
/// Close the given surface.
pub fn closeSurface(self: *App, surface: *Surface) void {
surface.deinit();
self.core_app.alloc.destroy(surface);
}
pub fn redrawSurface(self: *App, surface: *Surface) void {
_ = self;
_ = surface;
// No-op, we use a threaded interface so we're constantly drawing.
}
};
pub const Window = struct {
pub const Surface = struct {
app: *App,
nsview: objc.Object,
core_win: *CoreWindow,
core_surface: CoreSurface,
content_scale: apprt.ContentScale,
size: apprt.WindowSize,
size: apprt.SurfaceSize,
cursor_pos: apprt.CursorPos,
opts: Options,
@ -84,11 +111,10 @@ pub const Window = struct {
scale_factor: f64 = 1,
};
pub fn init(app: *const CoreApp, core_win: *CoreWindow, opts: Options) !Window {
_ = app;
return .{
.core_win = core_win,
pub fn init(self: *Surface, app: *App, opts: Options) !void {
self.* = .{
.app = app,
.core_surface = undefined,
.nsview = objc.Object.fromId(opts.nsview),
.content_scale = .{
.x = @floatCast(f32, opts.scale_factor),
@ -98,104 +124,122 @@ pub const Window = struct {
.cursor_pos = .{ .x = 0, .y = 0 },
.opts = opts,
};
// Add ourselves to the list of surfaces on the app.
try app.core_app.addSurface(self);
errdefer app.core_app.deleteSurface(self);
// Initialize our surface right away. We're given a view that is
// ready to use.
try self.core_surface.init(
app.core_app.alloc,
app.core_app.config,
.{ .rt_app = app, .mailbox = &app.core_app.mailbox },
self,
);
errdefer self.core_surface.deinit();
}
pub fn deinit(self: *Window) void {
_ = self;
pub fn deinit(self: *Surface) void {
// Remove ourselves from the list of known surfaces in the app.
self.app.core_app.deleteSurface(self);
// Clean up our core surface so that all the rendering and IO stop.
self.core_surface.deinit();
}
pub fn getContentScale(self: *const Window) !apprt.ContentScale {
pub fn getContentScale(self: *const Surface) !apprt.ContentScale {
return self.content_scale;
}
pub fn getSize(self: *const Window) !apprt.WindowSize {
pub fn getSize(self: *const Surface) !apprt.SurfaceSize {
return self.size;
}
pub fn setSizeLimits(self: *Window, min: apprt.WindowSize, max_: ?apprt.WindowSize) !void {
pub fn setSizeLimits(self: *Surface, min: apprt.SurfaceSize, max_: ?apprt.SurfaceSize) !void {
_ = self;
_ = min;
_ = max_;
}
pub fn setTitle(self: *Window, slice: [:0]const u8) !void {
self.core_win.app.runtime.opts.set_title(
pub fn setTitle(self: *Surface, slice: [:0]const u8) !void {
self.app.opts.set_title(
self.opts.userdata,
slice.ptr,
);
}
pub fn getClipboardString(self: *const Window) ![:0]const u8 {
const ptr = self.core_win.app.runtime.opts.read_clipboard(self.opts.userdata);
pub fn getClipboardString(self: *const Surface) ![:0]const u8 {
const ptr = self.app.opts.read_clipboard(self.opts.userdata);
return std.mem.sliceTo(ptr, 0);
}
pub fn setClipboardString(self: *const Window, val: [:0]const u8) !void {
self.core_win.app.runtime.opts.write_clipboard(self.opts.userdata, val.ptr);
pub fn setClipboardString(self: *const Surface, val: [:0]const u8) !void {
self.app.opts.write_clipboard(self.opts.userdata, val.ptr);
}
pub fn setShouldClose(self: *Window) void {
pub fn setShouldClose(self: *Surface) void {
_ = self;
}
pub fn shouldClose(self: *const Window) bool {
pub fn shouldClose(self: *const Surface) bool {
_ = self;
return false;
}
pub fn getCursorPos(self: *const Window) !apprt.CursorPos {
pub fn getCursorPos(self: *const Surface) !apprt.CursorPos {
return self.cursor_pos;
}
pub fn refresh(self: *Window) void {
self.core_win.refreshCallback() catch |err| {
pub fn refresh(self: *Surface) void {
self.core_surface.refreshCallback() catch |err| {
log.err("error in refresh callback err={}", .{err});
return;
};
}
pub fn updateContentScale(self: *Window, x: f64, y: f64) void {
pub fn updateContentScale(self: *Surface, x: f64, y: f64) void {
self.content_scale = .{
.x = @floatCast(f32, x),
.y = @floatCast(f32, y),
};
}
pub fn updateSize(self: *Window, width: u32, height: u32) void {
pub fn updateSize(self: *Surface, width: u32, height: u32) void {
self.size = .{
.width = width,
.height = height,
};
// Call the primary callback.
self.core_win.sizeCallback(self.size) catch |err| {
self.core_surface.sizeCallback(self.size) catch |err| {
log.err("error in size callback err={}", .{err});
return;
};
}
pub fn mouseButtonCallback(
self: *const Window,
self: *Surface,
action: input.MouseButtonState,
button: input.MouseButton,
mods: input.Mods,
) void {
self.core_win.mouseButtonCallback(action, button, mods) catch |err| {
self.core_surface.mouseButtonCallback(action, button, mods) catch |err| {
log.err("error in mouse button callback err={}", .{err});
return;
};
}
pub fn scrollCallback(self: *const Window, xoff: f64, yoff: f64) void {
self.core_win.scrollCallback(xoff, yoff) catch |err| {
pub fn scrollCallback(self: *Surface, xoff: f64, yoff: f64) void {
self.core_surface.scrollCallback(xoff, yoff) catch |err| {
log.err("error in scroll callback err={}", .{err});
return;
};
}
pub fn cursorPosCallback(self: *Window, x: f64, y: f64) void {
pub fn cursorPosCallback(self: *Surface, x: f64, y: f64) void {
// Convert our unscaled x/y to scaled.
self.cursor_pos = self.core_win.window.cursorPosToPixels(.{
self.cursor_pos = self.cursorPosToPixels(.{
.x = @floatCast(f32, x),
.y = @floatCast(f32, y),
}) catch |err| {
@ -206,35 +250,35 @@ pub const Window = struct {
return;
};
self.core_win.cursorPosCallback(self.cursor_pos) catch |err| {
self.core_surface.cursorPosCallback(self.cursor_pos) catch |err| {
log.err("error in cursor pos callback err={}", .{err});
return;
};
}
pub fn keyCallback(
self: *const Window,
self: *Surface,
action: input.Action,
key: input.Key,
mods: input.Mods,
) void {
// log.warn("key action={} key={} mods={}", .{ action, key, mods });
self.core_win.keyCallback(action, key, mods) catch |err| {
self.core_surface.keyCallback(action, key, mods) catch |err| {
log.err("error in key callback err={}", .{err});
return;
};
}
pub fn charCallback(self: *const Window, cp_: u32) void {
pub fn charCallback(self: *Surface, cp_: u32) void {
const cp = std.math.cast(u21, cp_) orelse return;
self.core_win.charCallback(cp) catch |err| {
self.core_surface.charCallback(cp) catch |err| {
log.err("error in char callback err={}", .{err});
return;
};
}
pub fn focusCallback(self: *const Window, focused: bool) void {
self.core_win.focusCallback(focused) catch |err| {
pub fn focusCallback(self: *Surface, focused: bool) void {
self.core_surface.focusCallback(focused) catch |err| {
log.err("error in focus callback err={}", .{err});
return;
};
@ -242,8 +286,157 @@ pub const Window = struct {
/// The cursor position from the host directly is in screen coordinates but
/// all our interface works in pixels.
fn cursorPosToPixels(self: *const Window, pos: apprt.CursorPos) !apprt.CursorPos {
fn cursorPosToPixels(self: *const Surface, pos: apprt.CursorPos) !apprt.CursorPos {
const scale = try self.getContentScale();
return .{ .x = pos.x * scale.x, .y = pos.y * scale.y };
}
};
// C API
pub const CAPI = struct {
const global = &@import("../main.zig").state;
const Config = @import("../config.zig").Config;
/// Create a new app.
export fn ghostty_app_new(
opts: *const apprt.runtime.App.Options,
config: *const Config,
) ?*App {
return app_new_(opts, config) catch |err| {
log.err("error initializing app err={}", .{err});
return null;
};
}
fn app_new_(
opts: *const apprt.runtime.App.Options,
config: *const Config,
) !*App {
var core_app = try CoreApp.create(global.alloc, config);
errdefer core_app.destroy();
// Create our runtime app
var app = try global.alloc.create(App);
errdefer global.alloc.destroy(app);
app.* = try App.init(core_app, opts.*);
errdefer app.terminate();
return app;
}
/// Tick the event loop. This should be called whenever the "wakeup"
/// callback is invoked for the runtime.
export fn ghostty_app_tick(v: *App) void {
_ = v.core_app.tick(v) catch |err| {
log.err("error app tick err={}", .{err});
};
}
/// Return the userdata associated with the app.
export fn ghostty_app_userdata(v: *App) ?*anyopaque {
return v.opts.userdata;
}
export fn ghostty_app_free(v: *App) void {
const core_app = v.core_app;
v.terminate();
global.alloc.destroy(v);
core_app.destroy();
}
/// Create a new surface as part of an app.
export fn ghostty_surface_new(
app: *App,
opts: *const apprt.Surface.Options,
) ?*Surface {
return surface_new_(app, opts) catch |err| {
log.err("error initializing surface err={}", .{err});
return null;
};
}
fn surface_new_(
app: *App,
opts: *const apprt.Surface.Options,
) !*Surface {
return try app.newSurface(opts.*);
}
export fn ghostty_surface_free(ptr: *Surface) void {
ptr.app.closeSurface(ptr);
}
/// Returns the app associated with a surface.
export fn ghostty_surface_app(surface: *Surface) *App {
return surface.app;
}
/// Tell the surface that it needs to schedule a render
export fn ghostty_surface_refresh(surface: *Surface) void {
surface.refresh();
}
/// Update the size of a surface. This will trigger resize notifications
/// to the pty and the renderer.
export fn ghostty_surface_set_size(surface: *Surface, w: u32, h: u32) void {
surface.updateSize(w, h);
}
/// Update the content scale of the surface.
export fn ghostty_surface_set_content_scale(surface: *Surface, x: f64, y: f64) void {
surface.updateContentScale(x, y);
}
/// Update the focused state of a surface.
export fn ghostty_surface_set_focus(surface: *Surface, focused: bool) void {
surface.focusCallback(focused);
}
/// Tell the surface that it needs to schedule a render
export fn ghostty_surface_key(
surface: *Surface,
action: input.Action,
key: input.Key,
mods: c_int,
) void {
surface.keyCallback(
action,
key,
@bitCast(input.Mods, @truncate(u8, @bitCast(c_uint, mods))),
);
}
/// Tell the surface that it needs to schedule a render
export fn ghostty_surface_char(surface: *Surface, codepoint: u32) void {
surface.charCallback(codepoint);
}
/// Tell the surface that it needs to schedule a render
export fn ghostty_surface_mouse_button(
surface: *Surface,
action: input.MouseButtonState,
button: input.MouseButton,
mods: c_int,
) void {
surface.mouseButtonCallback(
action,
button,
@bitCast(input.Mods, @truncate(u8, @bitCast(c_uint, mods))),
);
}
/// Update the mouse position within the view.
export fn ghostty_surface_mouse_pos(surface: *Surface, x: f64, y: f64) void {
surface.cursorPosCallback(x, y);
}
export fn ghostty_surface_mouse_scroll(surface: *Surface, x: f64, y: f64) void {
surface.scrollCallback(x, y);
}
export fn ghostty_surface_ime_point(surface: *Surface, x: *f64, y: *f64) void {
const pos = surface.core_surface.imePoint();
x.* = pos.x;
y.* = pos.y;
}
};

View File

@ -5,10 +5,12 @@
const std = @import("std");
const builtin = @import("builtin");
const build_config = @import("../build_config.zig");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const trace = @import("tracy").trace;
const glfw = @import("glfw");
const macos = @import("macos");
const objc = @import("objc");
const input = @import("../input.zig");
const internal_os = @import("../os/main.zig");
@ -16,7 +18,7 @@ const renderer = @import("../renderer.zig");
const Renderer = renderer.Renderer;
const apprt = @import("../apprt.zig");
const CoreApp = @import("../App.zig");
const CoreWindow = @import("../Window.zig");
const CoreSurface = @import("../Surface.zig");
// Get native API access on certain platforms so we can do more customization.
const glfwNative = glfw.Native(.{
@ -26,11 +28,25 @@ const glfwNative = glfw.Native(.{
const log = std.log.scoped(.glfw);
pub const App = struct {
app: *CoreApp,
/// Mac-specific state.
darwin: if (Darwin.enabled) Darwin else void,
pub const Options = struct {};
pub fn init(_: Options) !App {
pub fn init(core_app: *CoreApp, _: Options) !App {
if (!glfw.init(.{})) return error.GlfwInitFailed;
return .{};
glfw.setErrorCallback(glfwErrorCallback);
// Mac-specific state. For example, on Mac we enable window tabbing.
var darwin = if (Darwin.enabled) try Darwin.init() else {};
errdefer if (Darwin.enabled) darwin.deinit();
return .{
.app = core_app,
.darwin = darwin,
};
}
pub fn terminate(self: App) void {
@ -38,31 +54,170 @@ pub const App = struct {
glfw.terminate();
}
/// Run the event loop. This doesn't return until the app exits.
pub fn run(self: *App) !void {
while (true) {
// Wait for any events from the app event loop. wakeup will post
// an empty event so that this will return.
glfw.waitEvents();
// Tick the terminal app
const should_quit = try self.app.tick(self);
if (should_quit) return;
}
}
/// Wakeup the event loop. This should be able to be called from any thread.
pub fn wakeup(self: App) !void {
pub fn wakeup(self: *const App) void {
_ = self;
glfw.postEmptyEvent();
}
/// Wait for events in the event loop to process.
pub fn wait(self: App) !void {
_ = self;
glfw.waitEvents();
/// Create a new window for the app.
pub fn newWindow(self: *App, parent_: ?*CoreSurface) !void {
_ = try self.newSurface(parent_);
}
/// Create a new tab in the parent surface.
pub fn newTab(self: *App, parent: *CoreSurface) !void {
if (!Darwin.enabled) {
log.warn("tabbing is not supported on this platform", .{});
return;
}
// Create the new window
const window = try self.newSurface(parent);
// Add the new window the parent window
const parent_win = glfwNative.getCocoaWindow(parent.rt_surface.window).?;
const other_win = glfwNative.getCocoaWindow(window.window).?;
const NSWindowOrderingMode = enum(isize) { below = -1, out = 0, above = 1 };
const nswindow = objc.Object.fromId(parent_win);
nswindow.msgSend(void, objc.sel("addTabbedWindow:ordered:"), .{
objc.Object.fromId(other_win),
NSWindowOrderingMode.above,
});
// Adding a new tab can cause the tab bar to appear which changes
// our viewport size. We need to call the size callback in order to
// update values. For example, we need this to set the proper mouse selection
// point in the grid.
const size = parent.rt_surface.getSize() catch |err| {
log.err("error querying window size for size callback on new tab err={}", .{err});
return;
};
parent.sizeCallback(size) catch |err| {
log.err("error in size callback from new tab err={}", .{err});
return;
};
}
fn newSurface(self: *App, parent_: ?*CoreSurface) !*Surface {
// Grab a surface allocation because we're going to need it.
var surface = try self.app.alloc.create(Surface);
errdefer self.app.alloc.destroy(surface);
// Create the surface -- because windows are surfaces for glfw.
try surface.init(self);
errdefer surface.deinit();
// If we have a parent, inherit some properties
if (self.app.config.@"window-inherit-font-size") {
if (parent_) |parent| {
surface.core_surface.setFontSize(parent.font_size);
}
}
return surface;
}
/// Close the given surface.
pub fn closeSurface(self: *App, surface: *Surface) void {
surface.deinit();
self.app.alloc.destroy(surface);
}
pub fn redrawSurface(self: *App, surface: *Surface) void {
_ = self;
_ = surface;
@panic("This should never be called for GLFW.");
}
fn glfwErrorCallback(code: glfw.ErrorCode, desc: [:0]const u8) void {
std.log.warn("glfw error={} message={s}", .{ code, desc });
// Workaround for: https://github.com/ocornut/imgui/issues/5908
// If we get an invalid value with "scancode" in the message we assume
// it is from the glfw key callback that imgui sets and we clear the
// error so that our future code doesn't crash.
if (code == glfw.ErrorCode.InvalidValue and
std.mem.indexOf(u8, desc, "scancode") != null)
{
_ = glfw.getError();
}
}
/// Mac-specific settings. This is only enabled when the target is
/// Mac and the artifact is a standalone exe. We don't target libs because
/// the embedded API doesn't do windowing.
const Darwin = struct {
const enabled = builtin.target.isDarwin() and build_config.artifact == .exe;
tabbing_id: *macos.foundation.String,
pub fn init() !Darwin {
const NSWindow = objc.Class.getClass("NSWindow").?;
NSWindow.msgSend(void, objc.sel("setAllowsAutomaticWindowTabbing:"), .{true});
// Our tabbing ID allows all of our windows to group together
const tabbing_id = try macos.foundation.String.createWithBytes(
"com.mitchellh.ghostty.window",
.utf8,
false,
);
errdefer tabbing_id.release();
// Setup our Mac settings
return .{ .tabbing_id = tabbing_id };
}
pub fn deinit(self: *Darwin) void {
self.tabbing_id.release();
self.* = undefined;
}
};
};
pub const Window = struct {
/// Surface represents the drawable surface for glfw. In glfw, a surface
/// is always a window because that is the only abstraction that glfw exposes.
///
/// This means that there is no way for the glfw runtime to support tabs,
/// splits, etc. without considerable effort. In fact, on Darwin, we do
/// support tabs because the minimal tabbing interface is a window abstraction,
/// but this is a bit of a hack. The native Swift runtime should be used instead
/// which uses real native tabbing.
///
/// Other runtimes a surface usually represents the equivalent of a "view"
/// or "widget" level granularity.
pub const Surface = struct {
/// The glfw window handle
window: glfw.Window,
/// The glfw mouse cursor handle.
cursor: glfw.Cursor,
/// The app we're part of
app: *App,
/// A core surface
core_surface: CoreSurface,
pub const Options = struct {};
pub fn init(app: *const CoreApp, core_win: *CoreWindow, opts: Options) !Window {
_ = opts;
/// Initialize the surface into the given self pointer. This gives a
/// stable pointer to the destination that can be used for callbacks.
pub fn init(self: *Surface, app: *App) !void {
// Create our window
const win = glfw.Window.create(
640,
@ -74,9 +229,9 @@ pub const Window = struct {
) orelse return glfw.mustGetErrorCode();
errdefer win.destroy();
if (builtin.mode == .Debug) {
// Get our physical DPI - debug only because we don't have a use for
// this but the logging of it may be useful
if (builtin.mode == .Debug) {
const monitor = win.getMonitor() orelse monitor: {
log.warn("window had null monitor, getting primary monitor", .{});
break :monitor glfw.Monitor.getPrimary().?;
@ -91,8 +246,8 @@ pub const Window = struct {
});
}
// On Mac, enable tabbing
if (comptime builtin.target.isDarwin()) {
// On Mac, enable window tabbing
if (App.Darwin.enabled) {
const NSWindowTabbingMode = enum(usize) { automatic = 0, preferred = 1, disallowed = 2 };
const nswindow = objc.Object.fromId(glfwNative.getCocoaWindow(win).?);
@ -115,7 +270,7 @@ pub const Window = struct {
}
// Set our callbacks
win.setUserPointer(core_win);
win.setUserPointer(&self.core_surface);
win.setSizeCallback(sizeCallback);
win.setCharCallback(charCallback);
win.setKeyCallback(keyCallback);
@ -126,15 +281,37 @@ pub const Window = struct {
win.setMouseButtonCallback(mouseButtonCallback);
// Build our result
return Window{
self.* = .{
.app = app,
.window = win,
.cursor = cursor,
.core_surface = undefined,
};
errdefer self.* = undefined;
// Add ourselves to the list of surfaces on the app.
try app.app.addSurface(self);
errdefer app.app.deleteSurface(self);
// Initialize our surface now that we have the stable pointer.
try self.core_surface.init(
app.app.alloc,
app.app.config,
.{ .rt_app = app, .mailbox = &app.app.mailbox },
self,
);
errdefer self.core_surface.deinit();
}
pub fn deinit(self: *Window) void {
var tabgroup_opt: if (builtin.target.isDarwin()) ?objc.Object else void = undefined;
if (comptime builtin.target.isDarwin()) {
pub fn deinit(self: *Surface) void {
// Remove ourselves from the list of known surfaces in the app.
self.app.app.deleteSurface(self);
// Clean up our core surface so that all the rendering and IO stop.
self.core_surface.deinit();
var tabgroup_opt: if (App.Darwin.enabled) ?objc.Object else void = undefined;
if (App.Darwin.enabled) {
const nswindow = objc.Object.fromId(glfwNative.getCocoaWindow(self.window).?);
const tabgroup = nswindow.getProperty(objc.Object, "tabGroup");
@ -171,7 +348,7 @@ pub const Window = struct {
// If we have a tabgroup set, we want to manually focus the next window.
// We should NOT have to do this usually, see the comments above.
if (comptime builtin.target.isDarwin()) {
if (App.Darwin.enabled) {
if (tabgroup_opt) |tabgroup| {
const selected = tabgroup.getProperty(objc.Object, "selectedWindow");
selected.msgSend(void, objc.sel("makeKeyWindow"), .{});
@ -183,7 +360,7 @@ pub const Window = struct {
/// Note: this interface is not good, we should redo it if we plan
/// to use this more. i.e. you can't set max width but no max height,
/// or no mins.
pub fn setSizeLimits(self: *Window, min: apprt.WindowSize, max_: ?apprt.WindowSize) !void {
pub fn setSizeLimits(self: *Surface, min: apprt.SurfaceSize, max_: ?apprt.SurfaceSize) !void {
self.window.setSizeLimits(.{
.width = min.width,
.height = min.height,
@ -197,7 +374,7 @@ pub const Window = struct {
}
/// Returns the content scale for the created window.
pub fn getContentScale(self: *const Window) !apprt.ContentScale {
pub fn getContentScale(self: *const Surface) !apprt.ContentScale {
const scale = self.window.getContentScale();
return apprt.ContentScale{ .x = scale.x_scale, .y = scale.y_scale };
}
@ -205,14 +382,14 @@ pub const Window = struct {
/// Returns the size of the window in pixels. The pixel size may
/// not match screen coordinate size but we should be able to convert
/// back and forth using getContentScale.
pub fn getSize(self: *const Window) !apprt.WindowSize {
pub fn getSize(self: *const Surface) !apprt.SurfaceSize {
const size = self.window.getFramebufferSize();
return apprt.WindowSize{ .width = size.width, .height = size.height };
return apprt.SurfaceSize{ .width = size.width, .height = size.height };
}
/// Returns the cursor position in scaled pixels relative to the
/// upper-left of the window.
pub fn getCursorPos(self: *const Window) !apprt.CursorPos {
pub fn getCursorPos(self: *const Surface) !apprt.CursorPos {
const unscaled_pos = self.window.getCursorPos();
const pos = try self.cursorPosToPixels(unscaled_pos);
return apprt.CursorPos{
@ -223,37 +400,37 @@ pub const Window = struct {
/// Set the flag that notes this window should be closed for the next
/// iteration of the event loop.
pub fn setShouldClose(self: *Window) void {
pub fn setShouldClose(self: *Surface) void {
self.window.setShouldClose(true);
}
/// Returns true if the window is flagged to close.
pub fn shouldClose(self: *const Window) bool {
pub fn shouldClose(self: *const Surface) bool {
return self.window.shouldClose();
}
/// Set the title of the window.
pub fn setTitle(self: *Window, slice: [:0]const u8) !void {
pub fn setTitle(self: *Surface, slice: [:0]const u8) !void {
self.window.setTitle(slice.ptr);
}
/// Read the clipboard. The windowing system is responsible for allocating
/// a buffer as necessary. This should be a stable pointer until the next
/// time getClipboardString is called.
pub fn getClipboardString(self: *const Window) ![:0]const u8 {
pub fn getClipboardString(self: *const Surface) ![:0]const u8 {
_ = self;
return glfw.getClipboardString() orelse return glfw.mustGetErrorCode();
}
/// Set the clipboard.
pub fn setClipboardString(self: *const Window, val: [:0]const u8) !void {
pub fn setClipboardString(self: *const Surface, val: [:0]const u8) !void {
_ = self;
glfw.setClipboardString(val);
}
/// The cursor position from glfw directly is in screen coordinates but
/// all our interface works in pixels.
fn cursorPosToPixels(self: *const Window, pos: glfw.Window.CursorPos) !glfw.Window.CursorPos {
fn cursorPosToPixels(self: *const Surface, pos: glfw.Window.CursorPos) !glfw.Window.CursorPos {
// The cursor position is in screen coordinates but we
// want it in pixels. we need to get both the size of the
// window in both to get the ratio to make the conversion.
@ -280,8 +457,8 @@ pub const Window = struct {
// Get the size. We are given a width/height but this is in screen
// coordinates and we want raw pixels. The core window uses the content
// scale to scale appropriately.
const core_win = window.getUserPointer(CoreWindow) orelse return;
const size = core_win.window.getSize() catch |err| {
const core_win = window.getUserPointer(CoreSurface) orelse return;
const size = core_win.rt_surface.getSize() catch |err| {
log.err("error querying window size for size callback err={}", .{err});
return;
};
@ -297,7 +474,7 @@ pub const Window = struct {
const tracy = trace(@src());
defer tracy.end();
const core_win = window.getUserPointer(CoreWindow) orelse return;
const core_win = window.getUserPointer(CoreSurface) orelse return;
core_win.charCallback(codepoint) catch |err| {
log.err("error in char callback err={}", .{err});
return;
@ -449,7 +626,7 @@ pub const Window = struct {
=> .invalid,
};
const core_win = window.getUserPointer(CoreWindow) orelse return;
const core_win = window.getUserPointer(CoreSurface) orelse return;
core_win.keyCallback(action, key, mods) catch |err| {
log.err("error in key callback err={}", .{err});
return;
@ -460,7 +637,7 @@ pub const Window = struct {
const tracy = trace(@src());
defer tracy.end();
const core_win = window.getUserPointer(CoreWindow) orelse return;
const core_win = window.getUserPointer(CoreSurface) orelse return;
core_win.focusCallback(focused) catch |err| {
log.err("error in focus callback err={}", .{err});
return;
@ -471,7 +648,7 @@ pub const Window = struct {
const tracy = trace(@src());
defer tracy.end();
const core_win = window.getUserPointer(CoreWindow) orelse return;
const core_win = window.getUserPointer(CoreSurface) orelse return;
core_win.refreshCallback() catch |err| {
log.err("error in refresh callback err={}", .{err});
return;
@ -482,7 +659,7 @@ pub const Window = struct {
const tracy = trace(@src());
defer tracy.end();
const core_win = window.getUserPointer(CoreWindow) orelse return;
const core_win = window.getUserPointer(CoreSurface) orelse return;
core_win.scrollCallback(xoff, yoff) catch |err| {
log.err("error in scroll callback err={}", .{err});
return;
@ -497,10 +674,10 @@ pub const Window = struct {
const tracy = trace(@src());
defer tracy.end();
const core_win = window.getUserPointer(CoreWindow) orelse return;
const core_win = window.getUserPointer(CoreSurface) orelse return;
// Convert our unscaled x/y to scaled.
const pos = core_win.window.cursorPosToPixels(.{
const pos = core_win.rt_surface.cursorPosToPixels(.{
.xpos = unscaled_xpos,
.ypos = unscaled_ypos,
}) catch |err| {
@ -529,7 +706,7 @@ pub const Window = struct {
const tracy = trace(@src());
defer tracy.end();
const core_win = window.getUserPointer(CoreWindow) orelse return;
const core_win = window.getUserPointer(CoreSurface) orelse return;
// Convert glfw button to input button
const mods = @bitCast(input.Mods, glfw_mods);

801
src/apprt/gtk.zig Normal file
View File

@ -0,0 +1,801 @@
//! Application runtime that uses GTK4.
const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const glfw = @import("glfw");
const apprt = @import("../apprt.zig");
const input = @import("../input.zig");
const CoreApp = @import("../App.zig");
const CoreSurface = @import("../Surface.zig");
pub const c = @cImport({
@cInclude("gtk/gtk.h");
});
const log = std.log.scoped(.gtk);
/// App is the entrypoint for the application. This is called after all
/// of the runtime-agnostic initialization is complete and we're ready
/// to start.
///
/// There is only ever one App instance per process. This is because most
/// application frameworks also have this restriction so it simplifies
/// the assumptions.
pub const App = struct {
pub const Options = struct {
/// GTK app ID
id: [:0]const u8 = "com.mitchellh.ghostty",
};
core_app: *CoreApp,
app: *c.GtkApplication,
ctx: *c.GMainContext,
cursor_default: *c.GdkCursor,
cursor_ibeam: *c.GdkCursor,
pub fn init(core_app: *CoreApp, opts: Options) !App {
// This is super weird, but we still use GLFW with GTK only so that
// we can tap into their folklore logic to get screen DPI. If we can
// figure out a reliable way to determine this ourselves, we can get
// rid of this dep.
if (!glfw.init(.{})) return error.GlfwInitFailed;
// Create our GTK Application which encapsulates our process.
const app = @ptrCast(?*c.GtkApplication, c.gtk_application_new(
opts.id.ptr,
c.G_APPLICATION_DEFAULT_FLAGS,
)) orelse return error.GtkInitFailed;
errdefer c.g_object_unref(app);
_ = c.g_signal_connect_data(
app,
"activate",
c.G_CALLBACK(&activate),
null,
null,
c.G_CONNECT_DEFAULT,
);
// We don't use g_application_run, we want to manually control the
// loop so we have to do the same things the run function does:
// https://github.com/GNOME/glib/blob/a8e8b742e7926e33eb635a8edceac74cf239d6ed/gio/gapplication.c#L2533
const ctx = c.g_main_context_default() orelse return error.GtkContextFailed;
if (c.g_main_context_acquire(ctx) == 0) return error.GtkContextAcquireFailed;
errdefer c.g_main_context_release(ctx);
const gapp = @ptrCast(*c.GApplication, app);
var err_: ?*c.GError = null;
if (c.g_application_register(
gapp,
null,
@ptrCast([*c][*c]c.GError, &err_),
) == 0) {
if (err_) |err| {
log.warn("error registering application: {s}", .{err.message});
c.g_error_free(err);
}
return error.GtkApplicationRegisterFailed;
}
// This just calls the "activate" signal but its part of the normal
// startup routine so we just call it:
// https://gitlab.gnome.org/GNOME/glib/-/blob/bd2ccc2f69ecfd78ca3f34ab59e42e2b462bad65/gio/gapplication.c#L2302
c.g_application_activate(gapp);
// Get our cursors
const cursor_default = c.gdk_cursor_new_from_name("default", null).?;
errdefer c.g_object_unref(cursor_default);
const cursor_ibeam = c.gdk_cursor_new_from_name("text", cursor_default).?;
errdefer c.g_object_unref(cursor_ibeam);
return .{
.core_app = core_app,
.app = app,
.ctx = ctx,
.cursor_default = cursor_default,
.cursor_ibeam = cursor_ibeam,
};
}
// Terminate the application. The application will not be restarted after
// this so all global state can be cleaned up.
pub fn terminate(self: App) void {
c.g_settings_sync();
while (c.g_main_context_iteration(self.ctx, 0) != 0) {}
c.g_main_context_release(self.ctx);
c.g_object_unref(self.app);
c.g_object_unref(self.cursor_ibeam);
c.g_object_unref(self.cursor_default);
glfw.terminate();
}
pub fn wakeup(self: App) void {
_ = self;
c.g_main_context_wakeup(null);
}
/// Run the event loop. This doesn't return until the app exits.
pub fn run(self: *App) !void {
while (true) {
_ = c.g_main_context_iteration(self.ctx, 1);
// Tick the terminal app
const should_quit = try self.core_app.tick(self);
if (should_quit) return;
}
}
/// Close the given surface.
pub fn closeSurface(self: *App, surface: *Surface) void {
_ = self;
_ = surface;
// This shouldn't be called because we should be working within
// the GTK lifecycle and we can't just deallocate surfaces here.
@panic("This should not be called with GTK.");
}
pub fn redrawSurface(self: *App, surface: *Surface) void {
_ = self;
surface.invalidate();
}
pub fn newWindow(self: *App, parent_: ?*CoreSurface) !void {
_ = parent_;
// Grab a surface allocation we'll need it later.
var surface = try self.core_app.alloc.create(Surface);
errdefer self.core_app.alloc.destroy(surface);
const window = c.gtk_application_window_new(self.app);
const gtk_window = @ptrCast(*c.GtkWindow, window);
c.gtk_window_set_title(gtk_window, "Ghostty");
c.gtk_window_set_default_size(gtk_window, 200, 200);
c.gtk_widget_show(window);
// Initialize the GtkGLArea and attach it to our surface.
// The surface starts in the "unrealized" state because we have to
// wait for the "realize" callback from GTK to know that the OpenGL
// context is ready. See Surface docs for more info.
const gl_area = c.gtk_gl_area_new();
try surface.init(self, .{
.gl_area = @ptrCast(*c.GtkGLArea, gl_area),
});
errdefer surface.deinit();
c.gtk_window_set_child(gtk_window, gl_area);
// We need to grab focus after it is added to the window. When
// creating a window we want to always focus on the widget.
const widget = @ptrCast(*c.GtkWidget, gl_area);
_ = c.gtk_widget_grab_focus(widget);
}
fn activate(app: *c.GtkApplication, ud: ?*anyopaque) callconv(.C) void {
_ = app;
_ = ud;
// We purposely don't do anything on activation right now. We have
// this callback because if we don't then GTK emits a warning to
// stderr that we don't want. We emit a debug log just so that we know
// we reached this point.
log.debug("application activated", .{});
}
};
pub const Surface = struct {
/// This is detected by the OpenGL renderer to move to a single-threaded
/// draw operation. This basically puts locks around our draw path.
pub const opengl_single_threaded_draw = true;
pub const Options = struct {
gl_area: *c.GtkGLArea,
};
/// Whether the surface has been realized or not yet. When a surface is
/// "realized" it means that the OpenGL context is ready and the core
/// surface has been initialized.
realized: bool = false,
/// The app we're part of
app: *App,
/// Our GTK area
gl_area: *c.GtkGLArea,
/// The core surface backing this surface
core_surface: CoreSurface,
/// Cached metrics about the surface from GTK callbacks.
size: apprt.SurfaceSize,
cursor_pos: apprt.CursorPos,
clipboard: c.GValue,
pub fn init(self: *Surface, app: *App, opts: Options) !void {
const widget = @ptrCast(*c.GtkWidget, opts.gl_area);
c.gtk_gl_area_set_required_version(opts.gl_area, 3, 3);
c.gtk_gl_area_set_has_stencil_buffer(opts.gl_area, 0);
c.gtk_gl_area_set_has_depth_buffer(opts.gl_area, 0);
c.gtk_gl_area_set_use_es(opts.gl_area, 0);
// Key event controller will tell us about raw keypress events.
const ec_key = c.gtk_event_controller_key_new();
errdefer c.g_object_unref(ec_key);
c.gtk_widget_add_controller(widget, ec_key);
errdefer c.gtk_widget_remove_controller(widget, ec_key);
// Focus controller will tell us about focus enter/exit events
const ec_focus = c.gtk_event_controller_focus_new();
errdefer c.g_object_unref(ec_focus);
c.gtk_widget_add_controller(widget, ec_focus);
errdefer c.gtk_widget_remove_controller(widget, ec_focus);
// Tell the key controller that we're interested in getting a full
// input method so raw characters/strings are given too.
const im_context = c.gtk_im_multicontext_new();
errdefer c.g_object_unref(im_context);
c.gtk_event_controller_key_set_im_context(
@ptrCast(*c.GtkEventControllerKey, ec_key),
im_context,
);
// Create a second key controller so we can receive the raw
// key-press events BEFORE the input method gets them.
const ec_key_press = c.gtk_event_controller_key_new();
errdefer c.g_object_unref(ec_key_press);
c.gtk_widget_add_controller(widget, ec_key_press);
errdefer c.gtk_widget_remove_controller(widget, ec_key_press);
// Clicks
const gesture_click = c.gtk_gesture_click_new();
errdefer c.g_object_unref(gesture_click);
c.gtk_gesture_single_set_button(@ptrCast(
*c.GtkGestureSingle,
gesture_click,
), 0);
c.gtk_widget_add_controller(widget, @ptrCast(
*c.GtkEventController,
gesture_click,
));
// Mouse movement
const ec_motion = c.gtk_event_controller_motion_new();
errdefer c.g_object_unref(ec_motion);
c.gtk_widget_add_controller(widget, ec_motion);
// Scroll events
const ec_scroll = c.gtk_event_controller_scroll_new(
c.GTK_EVENT_CONTROLLER_SCROLL_BOTH_AXES |
c.GTK_EVENT_CONTROLLER_SCROLL_DISCRETE,
);
errdefer c.g_object_unref(ec_scroll);
c.gtk_widget_add_controller(widget, ec_scroll);
// The GL area has to be focusable so that it can receive events
c.gtk_widget_set_focusable(widget, 1);
c.gtk_widget_set_focus_on_click(widget, 1);
// When we're over the widget, set the cursor to the ibeam
c.gtk_widget_set_cursor(widget, app.cursor_ibeam);
// Build our result
self.* = .{
.app = app,
.gl_area = opts.gl_area,
.core_surface = undefined,
.size = .{ .width = 800, .height = 600 },
.cursor_pos = .{ .x = 0, .y = 0 },
.clipboard = std.mem.zeroes(c.GValue),
};
errdefer self.* = undefined;
// GL events
_ = c.g_signal_connect_data(opts.gl_area, "realize", c.G_CALLBACK(&gtkRealize), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(opts.gl_area, "destroy", c.G_CALLBACK(&gtkDestroy), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(opts.gl_area, "render", c.G_CALLBACK(&gtkRender), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(opts.gl_area, "resize", c.G_CALLBACK(&gtkResize), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_key_press, "key-pressed", c.G_CALLBACK(&gtkKeyPressed), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_key_press, "key-released", c.G_CALLBACK(&gtkKeyReleased), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_focus, "enter", c.G_CALLBACK(&gtkFocusEnter), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_focus, "leave", c.G_CALLBACK(&gtkFocusLeave), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(im_context, "commit", c.G_CALLBACK(&gtkInputCommit), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(gesture_click, "pressed", c.G_CALLBACK(&gtkMouseDown), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(gesture_click, "released", c.G_CALLBACK(&gtkMouseUp), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_motion, "motion", c.G_CALLBACK(&gtkMouseMotion), self, null, c.G_CONNECT_DEFAULT);
_ = c.g_signal_connect_data(ec_scroll, "scroll", c.G_CALLBACK(&gtkMouseScroll), self, null, c.G_CONNECT_DEFAULT);
}
fn realize(self: *Surface) !void {
// Add ourselves to the list of surfaces on the app.
try self.app.core_app.addSurface(self);
errdefer self.app.core_app.deleteSurface(self);
// Initialize our surface now that we have the stable pointer.
try self.core_surface.init(
self.app.core_app.alloc,
self.app.core_app.config,
.{ .rt_app = self.app, .mailbox = &self.app.core_app.mailbox },
self,
);
errdefer self.core_surface.deinit();
// Note we're realized
self.realized = true;
}
pub fn deinit(self: *Surface) void {
c.g_value_unset(&self.clipboard);
// We don't allocate anything if we aren't realized.
if (!self.realized) return;
// Remove ourselves from the list of known surfaces in the app.
self.app.core_app.deleteSurface(self);
// Clean up our core surface so that all the rendering and IO stop.
self.core_surface.deinit();
self.core_surface = undefined;
}
fn render(self: *Surface) !void {
try self.core_surface.renderer.draw();
}
/// Invalidate the surface so that it forces a redraw on the next tick.
fn invalidate(self: *Surface) void {
c.gtk_gl_area_queue_render(self.gl_area);
}
pub fn setShouldClose(self: *Surface) void {
_ = self;
}
pub fn shouldClose(self: *const Surface) bool {
_ = self;
return false;
}
pub fn getContentScale(self: *const Surface) !apprt.ContentScale {
_ = self;
const monitor = glfw.Monitor.getPrimary() orelse return error.NoMonitor;
const scale = monitor.getContentScale();
return apprt.ContentScale{ .x = scale.x_scale, .y = scale.y_scale };
}
pub fn getSize(self: *const Surface) !apprt.SurfaceSize {
return self.size;
}
pub fn setSizeLimits(self: *Surface, min: apprt.SurfaceSize, max_: ?apprt.SurfaceSize) !void {
_ = self;
_ = min;
_ = max_;
}
pub fn setTitle(self: *Surface, slice: [:0]const u8) !void {
const root = c.gtk_widget_get_root(@ptrCast(
*c.GtkWidget,
self.gl_area,
));
// TODO: we need a way to check if the type is a window
_ = root;
_ = slice;
}
pub fn getClipboardString(self: *Surface) ![:0]const u8 {
const clipboard = c.gtk_widget_get_clipboard(@ptrCast(
*c.GtkWidget,
self.gl_area,
));
const content = c.gdk_clipboard_get_content(clipboard) orelse {
// On my machine, this NEVER works, so we fallback to glfw's
// implementation...
log.debug("no GTK clipboard contents, falling back to glfw", .{});
return glfw.getClipboardString() orelse return glfw.mustGetErrorCode();
};
c.g_value_unset(&self.clipboard);
_ = c.g_value_init(&self.clipboard, c.G_TYPE_STRING);
if (c.gdk_content_provider_get_value(content, &self.clipboard, null) == 0) {
return "";
}
const ptr = c.g_value_get_string(&self.clipboard);
return std.mem.sliceTo(ptr, 0);
}
pub fn setClipboardString(self: *const Surface, val: [:0]const u8) !void {
const clipboard = c.gtk_widget_get_clipboard(@ptrCast(
*c.GtkWidget,
self.gl_area,
));
c.gdk_clipboard_set_text(clipboard, val.ptr);
}
pub fn getCursorPos(self: *const Surface) !apprt.CursorPos {
return self.cursor_pos;
}
fn gtkRealize(area: *c.GtkGLArea, ud: ?*anyopaque) callconv(.C) void {
log.debug("gl surface realized", .{});
// We need to make the context current so we can call GL functions.
c.gtk_gl_area_make_current(area);
if (c.gtk_gl_area_get_error(area)) |err| {
log.err("surface failed to realize: {s}", .{err.*.message});
return;
}
// realize means that our OpenGL context is ready, so we can now
// initialize the core surface which will setup the renderer.
const self = userdataSelf(ud.?);
self.realize() catch |err| {
// TODO: we need to destroy the GL area here.
log.err("surface failed to realize: {}", .{err});
return;
};
}
/// render singal
fn gtkRender(area: *c.GtkGLArea, ctx: *c.GdkGLContext, ud: ?*anyopaque) callconv(.C) c.gboolean {
_ = area;
_ = ctx;
const self = userdataSelf(ud.?);
self.render() catch |err| {
log.err("surface failed to render: {}", .{err});
return 0;
};
return 1;
}
/// render singal
fn gtkResize(area: *c.GtkGLArea, width: c.gint, height: c.gint, ud: ?*anyopaque) callconv(.C) void {
_ = area;
log.debug("gl resize {} {}", .{ width, height });
const self = userdataSelf(ud.?);
self.size = .{
.width = @intCast(u32, width),
.height = @intCast(u32, height),
};
// Call the primary callback.
if (self.realized) {
self.core_surface.sizeCallback(self.size) catch |err| {
log.err("error in size callback err={}", .{err});
return;
};
}
}
/// "destroy" signal for surface
fn gtkDestroy(v: *c.GtkWidget, ud: ?*anyopaque) callconv(.C) void {
_ = v;
log.debug("gl destroy", .{});
const self = userdataSelf(ud.?);
const alloc = self.app.core_app.alloc;
self.deinit();
alloc.destroy(self);
}
fn gtkMouseDown(
gesture: *c.GtkGestureClick,
_: c.gint,
_: c.gdouble,
_: c.gdouble,
ud: ?*anyopaque,
) callconv(.C) void {
const button = translateMouseButton(c.gtk_gesture_single_get_current_button(@ptrCast(
*c.GtkGestureSingle,
gesture,
)));
const self = userdataSelf(ud.?);
self.core_surface.mouseButtonCallback(.press, button, .{}) catch |err| {
log.err("error in key callback err={}", .{err});
return;
};
}
fn gtkMouseUp(
gesture: *c.GtkGestureClick,
_: c.gint,
_: c.gdouble,
_: c.gdouble,
ud: ?*anyopaque,
) callconv(.C) void {
const button = translateMouseButton(c.gtk_gesture_single_get_current_button(@ptrCast(
*c.GtkGestureSingle,
gesture,
)));
const self = userdataSelf(ud.?);
self.core_surface.mouseButtonCallback(.release, button, .{}) catch |err| {
log.err("error in key callback err={}", .{err});
return;
};
}
fn gtkMouseMotion(
_: *c.GtkEventControllerMotion,
x: c.gdouble,
y: c.gdouble,
ud: ?*anyopaque,
) callconv(.C) void {
const self = userdataSelf(ud.?);
self.cursor_pos = .{
.x = @max(0, @floatCast(f32, x)),
.y = @floatCast(f32, y),
};
self.core_surface.cursorPosCallback(self.cursor_pos) catch |err| {
log.err("error in cursor pos callback err={}", .{err});
return;
};
}
fn gtkMouseScroll(
_: *c.GtkEventControllerScroll,
x: c.gdouble,
y: c.gdouble,
ud: ?*anyopaque,
) callconv(.C) void {
const self = userdataSelf(ud.?);
self.core_surface.scrollCallback(x, y * -1) catch |err| {
log.err("error in scroll callback err={}", .{err});
return;
};
}
fn gtkKeyPressed(
_: *c.GtkEventControllerKey,
keyval: c.guint,
keycode: c.guint,
state: c.GdkModifierType,
ud: ?*anyopaque,
) callconv(.C) c.gboolean {
_ = keycode;
const key = translateKey(keyval);
const mods = translateMods(state);
const self = userdataSelf(ud.?);
log.debug("key-press key={} mods={}", .{ key, mods });
self.core_surface.keyCallback(.press, key, mods) catch |err| {
log.err("error in key callback err={}", .{err});
return 0;
};
return 0;
}
fn gtkKeyReleased(
_: *c.GtkEventControllerKey,
keyval: c.guint,
keycode: c.guint,
state: c.GdkModifierType,
ud: ?*anyopaque,
) callconv(.C) c.gboolean {
_ = keycode;
const key = translateKey(keyval);
const mods = translateMods(state);
const self = userdataSelf(ud.?);
self.core_surface.keyCallback(.release, key, mods) catch |err| {
log.err("error in key callback err={}", .{err});
return 0;
};
return 0;
}
fn gtkInputCommit(
_: *c.GtkIMContext,
bytes: [*:0]u8,
ud: ?*anyopaque,
) callconv(.C) void {
const str = std.mem.sliceTo(bytes, 0);
const view = std.unicode.Utf8View.init(str) catch |err| {
log.warn("cannot build utf8 view over input: {}", .{err});
return;
};
const self = userdataSelf(ud.?);
var it = view.iterator();
while (it.nextCodepoint()) |cp| {
self.core_surface.charCallback(cp) catch |err| {
log.err("error in char callback err={}", .{err});
return;
};
}
}
fn gtkFocusEnter(_: *c.GtkEventControllerFocus, ud: ?*anyopaque) callconv(.C) void {
const self = userdataSelf(ud.?);
self.core_surface.focusCallback(true) catch |err| {
log.err("error in focus callback err={}", .{err});
return;
};
}
fn gtkFocusLeave(_: *c.GtkEventControllerFocus, ud: ?*anyopaque) callconv(.C) void {
const self = userdataSelf(ud.?);
self.core_surface.focusCallback(false) catch |err| {
log.err("error in focus callback err={}", .{err});
return;
};
}
fn userdataSelf(ud: *anyopaque) *Surface {
return @ptrCast(*Surface, @alignCast(@alignOf(Surface), ud));
}
};
fn translateMouseButton(button: c.guint) input.MouseButton {
return switch (button) {
1 => .left,
2 => .middle,
3 => .right,
4 => .four,
5 => .five,
6 => .six,
7 => .seven,
8 => .eight,
9 => .nine,
10 => .ten,
11 => .eleven,
else => .unknown,
};
}
fn translateMods(state: c.GdkModifierType) input.Mods {
var mods: input.Mods = .{};
if (state & c.GDK_SHIFT_MASK != 0) mods.shift = true;
if (state & c.GDK_CONTROL_MASK != 0) mods.ctrl = true;
if (state & c.GDK_ALT_MASK != 0) mods.alt = true;
if (state & c.GDK_SUPER_MASK != 0) mods.super = true;
// Lock is dependent on the X settings but we just assume caps lock.
if (state & c.GDK_LOCK_MASK != 0) mods.caps_lock = true;
return mods;
}
fn translateKey(keyval: c.guint) input.Key {
return switch (keyval) {
c.GDK_KEY_a => .a,
c.GDK_KEY_b => .b,
c.GDK_KEY_c => .c,
c.GDK_KEY_d => .d,
c.GDK_KEY_e => .e,
c.GDK_KEY_f => .f,
c.GDK_KEY_g => .g,
c.GDK_KEY_h => .h,
c.GDK_KEY_i => .i,
c.GDK_KEY_j => .j,
c.GDK_KEY_k => .k,
c.GDK_KEY_l => .l,
c.GDK_KEY_m => .m,
c.GDK_KEY_n => .n,
c.GDK_KEY_o => .o,
c.GDK_KEY_p => .p,
c.GDK_KEY_q => .q,
c.GDK_KEY_r => .r,
c.GDK_KEY_s => .s,
c.GDK_KEY_t => .t,
c.GDK_KEY_u => .u,
c.GDK_KEY_v => .v,
c.GDK_KEY_w => .w,
c.GDK_KEY_x => .x,
c.GDK_KEY_y => .y,
c.GDK_KEY_z => .z,
c.GDK_KEY_0 => .zero,
c.GDK_KEY_1 => .one,
c.GDK_KEY_2 => .two,
c.GDK_KEY_3 => .three,
c.GDK_KEY_4 => .four,
c.GDK_KEY_5 => .five,
c.GDK_KEY_6 => .six,
c.GDK_KEY_7 => .seven,
c.GDK_KEY_8 => .eight,
c.GDK_KEY_9 => .nine,
c.GDK_KEY_semicolon => .semicolon,
c.GDK_KEY_space => .space,
c.GDK_KEY_apostrophe => .apostrophe,
c.GDK_KEY_comma => .comma,
c.GDK_KEY_grave => .grave_accent, // `
c.GDK_KEY_period => .period,
c.GDK_KEY_slash => .slash,
c.GDK_KEY_minus => .minus,
c.GDK_KEY_equal => .equal,
c.GDK_KEY_bracketleft => .left_bracket, // [
c.GDK_KEY_bracketright => .right_bracket, // ]
c.GDK_KEY_backslash => .backslash, // /
c.GDK_KEY_Up => .up,
c.GDK_KEY_Down => .down,
c.GDK_KEY_Right => .right,
c.GDK_KEY_Left => .left,
c.GDK_KEY_Home => .home,
c.GDK_KEY_End => .end,
c.GDK_KEY_Insert => .insert,
c.GDK_KEY_Delete => .delete,
c.GDK_KEY_Caps_Lock => .caps_lock,
c.GDK_KEY_Scroll_Lock => .scroll_lock,
c.GDK_KEY_Num_Lock => .num_lock,
c.GDK_KEY_Page_Up => .page_up,
c.GDK_KEY_Page_Down => .page_down,
c.GDK_KEY_Escape => .escape,
c.GDK_KEY_Return => .enter,
c.GDK_KEY_Tab => .tab,
c.GDK_KEY_BackSpace => .backspace,
c.GDK_KEY_Print => .print_screen,
c.GDK_KEY_Pause => .pause,
c.GDK_KEY_F1 => .f1,
c.GDK_KEY_F2 => .f2,
c.GDK_KEY_F3 => .f3,
c.GDK_KEY_F4 => .f4,
c.GDK_KEY_F5 => .f5,
c.GDK_KEY_F6 => .f6,
c.GDK_KEY_F7 => .f7,
c.GDK_KEY_F8 => .f8,
c.GDK_KEY_F9 => .f9,
c.GDK_KEY_F10 => .f10,
c.GDK_KEY_F11 => .f11,
c.GDK_KEY_F12 => .f12,
c.GDK_KEY_F13 => .f13,
c.GDK_KEY_F14 => .f14,
c.GDK_KEY_F15 => .f15,
c.GDK_KEY_F16 => .f16,
c.GDK_KEY_F17 => .f17,
c.GDK_KEY_F18 => .f18,
c.GDK_KEY_F19 => .f19,
c.GDK_KEY_F20 => .f20,
c.GDK_KEY_F21 => .f21,
c.GDK_KEY_F22 => .f22,
c.GDK_KEY_F23 => .f23,
c.GDK_KEY_F24 => .f24,
c.GDK_KEY_F25 => .f25,
c.GDK_KEY_KP_0 => .kp_0,
c.GDK_KEY_KP_1 => .kp_1,
c.GDK_KEY_KP_2 => .kp_2,
c.GDK_KEY_KP_3 => .kp_3,
c.GDK_KEY_KP_4 => .kp_4,
c.GDK_KEY_KP_5 => .kp_5,
c.GDK_KEY_KP_6 => .kp_6,
c.GDK_KEY_KP_7 => .kp_7,
c.GDK_KEY_KP_8 => .kp_8,
c.GDK_KEY_KP_9 => .kp_9,
c.GDK_KEY_KP_Decimal => .kp_decimal,
c.GDK_KEY_KP_Divide => .kp_divide,
c.GDK_KEY_KP_Multiply => .kp_multiply,
c.GDK_KEY_KP_Subtract => .kp_subtract,
c.GDK_KEY_KP_Add => .kp_add,
c.GDK_KEY_KP_Enter => .kp_enter,
c.GDK_KEY_KP_Equal => .kp_equal,
c.GDK_KEY_Shift_L => .left_shift,
c.GDK_KEY_Control_L => .left_control,
c.GDK_KEY_Alt_L => .left_alt,
c.GDK_KEY_Super_L => .left_super,
c.GDK_KEY_Shift_R => .right_shift,
c.GDK_KEY_Control_R => .right_control,
c.GDK_KEY_Alt_R => .right_alt,
c.GDK_KEY_Super_R => .right_super,
else => .invalid,
};
}

View File

@ -6,8 +6,8 @@ pub const ContentScale = struct {
y: f32,
};
/// The size of the window in pixels.
pub const WindowSize = struct {
/// The size of the surface in pixels.
pub const SurfaceSize = struct {
width: u32,
height: u32,
};

View File

@ -1,15 +1,15 @@
const App = @import("../App.zig");
const Window = @import("../Window.zig");
const Surface = @import("../Surface.zig");
const renderer = @import("../renderer.zig");
const termio = @import("../termio.zig");
/// The message types that can be sent to a single window.
/// The message types that can be sent to a single surface.
pub const Message = union(enum) {
/// Represents a write request. Magic number comes from the max size
/// we want this union to be.
pub const WriteReq = termio.MessageData(u8, 256);
/// Set the title of the window.
/// Set the title of the surface.
/// TODO: we should change this to a "WriteReq" style structure in
/// the termio message so that we can more efficiently send strings
/// of any length
@ -25,26 +25,25 @@ pub const Message = union(enum) {
clipboard_write: WriteReq,
};
/// A window mailbox.
/// A surface mailbox.
pub const Mailbox = struct {
window: *Window,
app: *App.Mailbox,
surface: *Surface,
app: App.Mailbox,
/// Send a message to the window.
pub fn push(self: Mailbox, msg: Message, timeout: App.Mailbox.Timeout) App.Mailbox.Size {
// Window message sending is actually implemented on the app
// thread, so we have to rewrap the message with our window
/// Send a message to the surface.
pub fn push(
self: Mailbox,
msg: Message,
timeout: App.Mailbox.Queue.Timeout,
) App.Mailbox.Queue.Size {
// Surface message sending is actually implemented on the app
// thread, so we have to rewrap the message with our surface
// pointer and send it to the app thread.
const result = self.app.push(.{
.window_message = .{
.window = self.window,
return self.app.push(.{
.surface_message = .{
.surface = self.surface,
.message = msg,
},
}, timeout);
// Wake up our app loop
self.window.app.wakeup();
return result;
}
};

View File

@ -4,15 +4,19 @@
//! to shim logic and values into them later.
const std = @import("std");
const builtin = @import("builtin");
const options = @import("build_options");
const assert = std.debug.assert;
/// The artifact we're producing. This can be used to determine if we're
/// building a standalone exe, an embedded lib, etc.
pub const artifact = Artifact.detect();
/// The runtime to back exe artifacts with.
pub const app_runtime = options.app_runtime;
/// Whether our devmode UI is enabled or not. This requires imgui to be
/// compiled.
pub const devmode_enabled = artifact == .exe;
pub const devmode_enabled = artifact == .exe and app_runtime == .glfw;
pub const Artifact = enum {
/// Standalone executable

View File

@ -32,6 +32,7 @@ pub const MouseButton = enum(c_int) {
break :max cur;
};
unknown = 0,
left = 1,
right = 2,
middle = 3,

View File

@ -1,5 +1,6 @@
const std = @import("std");
const builtin = @import("builtin");
const build_config = @import("build_config.zig");
const options = @import("build_options");
const glfw = @import("glfw");
const macos = @import("macos");
@ -10,6 +11,7 @@ const fontconfig = @import("fontconfig");
const harfbuzz = @import("harfbuzz");
const renderer = @import("renderer.zig");
const xdg = @import("xdg.zig");
const apprt = @import("apprt.zig");
const App = @import("App.zig");
const cli_args = @import("cli_args.zig");
@ -86,16 +88,21 @@ pub fn main() !void {
}
}
try config.finalize();
std.log.debug("config={}", .{config});
//std.log.debug("config={}", .{config});
// We want to log all our errors
glfw.setErrorCallback(glfwErrorCallback);
// Run our app with a single initial window to start.
var app = try App.create(alloc, .{}, &config);
// Create our app state
var app = try App.create(alloc, &config);
defer app.destroy();
_ = try app.newWindow(.{});
try app.run();
// Create our runtime app
var app_runtime = try apprt.App.init(app, .{});
defer app_runtime.terminate();
// Create an initial window
try app_runtime.newWindow(null);
// Run the GUI event loop
try app_runtime.run();
}
// Required by tracy/tracy.zig to enable/disable tracy support.
@ -151,20 +158,6 @@ pub const std_options = struct {
}
};
fn glfwErrorCallback(code: glfw.ErrorCode, desc: [:0]const u8) void {
std.log.warn("glfw error={} message={s}", .{ code, desc });
// Workaround for: https://github.com/ocornut/imgui/issues/5908
// If we get an invalid value with "scancode" in the message we assume
// it is from the glfw key callback that imgui sets and we clear the
// error so that our future code doesn't crash.
if (code == glfw.ErrorCode.InvalidValue and
std.mem.indexOf(u8, desc, "scancode") != null)
{
_ = glfw.getError();
}
}
/// This represents the global process state. There should only
/// be one of these at any given moment. This is extracted into a dedicated
/// struct because it is reused by main and the static C lib.

View File

@ -10,10 +10,10 @@ const std = @import("std");
const assert = std.debug.assert;
const builtin = @import("builtin");
const main = @import("main.zig");
const apprt = @import("apprt.zig");
// Some comptime assertions that our C API depends on.
comptime {
const apprt = @import("apprt.zig");
assert(apprt.runtime == apprt.embedded);
}
@ -21,7 +21,7 @@ comptime {
pub const std_options = main.std_options;
pub usingnamespace @import("config.zig").CAPI;
pub usingnamespace @import("App.zig").CAPI;
pub usingnamespace apprt.runtime.CAPI;
/// Initialize ghostty global state. It is possible to have more than
/// one global state but it has zero practical benefit.

View File

@ -16,7 +16,7 @@ const terminal = @import("../terminal/main.zig");
const renderer = @import("../renderer.zig");
const math = @import("../math.zig");
const DevMode = @import("../DevMode.zig");
const Window = @import("../Window.zig");
const Surface = @import("../Surface.zig");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Terminal = terminal.Terminal;
@ -32,7 +32,7 @@ const log = std.log.scoped(.metal);
alloc: std.mem.Allocator,
/// The mailbox for communicating with the window.
window_mailbox: Window.Mailbox,
surface_mailbox: apprt.surface.Mailbox,
/// Current cell dimensions for this grid.
cell_size: renderer.CellSize,
@ -135,8 +135,8 @@ pub fn glfwWindowHints() glfw.Window.Hints {
/// This is called early right after window creation to setup our
/// window surface as necessary.
pub fn windowInit(win: apprt.runtime.Window) !void {
_ = win;
pub fn surfaceInit(surface: *apprt.Surface) !void {
_ = surface;
// We don't do anything else here because we want to set everything
// else up during actual initialization.
@ -240,7 +240,7 @@ pub fn init(alloc: Allocator, options: renderer.Options) !Metal {
return Metal{
.alloc = alloc,
.window_mailbox = options.window_mailbox,
.surface_mailbox = options.surface_mailbox,
.cell_size = .{ .width = metrics.cell_width, .height = metrics.cell_height },
.padding = options.padding,
.focused = true,
@ -304,7 +304,7 @@ pub fn deinit(self: *Metal) void {
/// This is called just prior to spinning up the renderer thread for
/// final main thread setup requirements.
pub fn finalizeWindowInit(self: *const Metal, win: apprt.runtime.Window) !void {
pub fn finalizeSurfaceInit(self: *const Metal, surface: *apprt.Surface) !void {
const Info = struct {
view: objc.Object,
scaleFactor: f64,
@ -315,7 +315,7 @@ pub fn finalizeWindowInit(self: *const Metal, win: apprt.runtime.Window) !void {
apprt.glfw => info: {
// Everything in glfw is window-oriented so we grab the backing
// window, then derive everything from that.
const nswindow = objc.Object.fromId(glfwNative.getCocoaWindow(win.window).?);
const nswindow = objc.Object.fromId(glfwNative.getCocoaWindow(surface.window).?);
const contentView = objc.Object.fromId(nswindow.getProperty(?*anyopaque, "contentView").?);
const scaleFactor = nswindow.getProperty(macos.graphics.c.CGFloat, "backingScaleFactor");
break :info .{
@ -325,8 +325,8 @@ pub fn finalizeWindowInit(self: *const Metal, win: apprt.runtime.Window) !void {
},
apprt.embedded => .{
.view = win.nsview,
.scaleFactor = @floatCast(f64, win.content_scale.x),
.view = surface.nsview,
.scaleFactor = @floatCast(f64, surface.content_scale.x),
},
else => @compileError("unsupported apprt for metal"),
@ -344,11 +344,11 @@ pub fn finalizeWindowInit(self: *const Metal, win: apprt.runtime.Window) !void {
}
/// This is called if this renderer runs DevMode.
pub fn initDevMode(self: *const Metal, win: apprt.runtime.Window) !void {
pub fn initDevMode(self: *const Metal, surface: *apprt.Surface) !void {
if (DevMode.enabled) {
// Initialize for our window
assert(imgui.ImplGlfw.initForOther(
@ptrCast(*imgui.ImplGlfw.GLFWWindow, win.window.handle),
@ptrCast(*imgui.ImplGlfw.GLFWWindow, surface.window.handle),
true,
));
assert(imgui.ImplMetal.init(self.device.value));
@ -366,9 +366,9 @@ pub fn deinitDevMode(self: *const Metal) void {
}
/// Callback called by renderer.Thread when it begins.
pub fn threadEnter(self: *const Metal, win: apprt.runtime.Window) !void {
pub fn threadEnter(self: *const Metal, surface: *apprt.Surface) !void {
_ = self;
_ = win;
_ = surface;
// Metal requires no per-thread state.
}
@ -442,7 +442,7 @@ pub fn setFontSize(self: *Metal, size: font.face.DesiredSize) !void {
};
// Notify the window that the cell size changed.
_ = self.window_mailbox.push(.{
_ = self.surface_mailbox.push(.{
.cell_size = new_cell_size,
}, .{ .forever = {} });
}
@ -450,10 +450,10 @@ pub fn setFontSize(self: *Metal, size: font.face.DesiredSize) !void {
/// The primary render callback that is completely thread-safe.
pub fn render(
self: *Metal,
win: apprt.runtime.Window,
surface: *apprt.Surface,
state: *renderer.State,
) !void {
_ = win;
_ = surface;
// Data we extract out of the critical area.
const Critical = struct {
@ -533,8 +533,8 @@ pub fn render(
critical.draw_cursor,
);
// Get our surface (CAMetalDrawable)
const surface = self.swapchain.msgSend(objc.Object, objc.sel("nextDrawable"), .{});
// Get our drawable (CAMetalDrawable)
const drawable = self.swapchain.msgSend(objc.Object, objc.sel("nextDrawable"), .{});
// If our font atlas changed, sync the texture data
if (self.font_group.atlas_greyscale.modified) {
@ -572,7 +572,7 @@ pub fn render(
// Ghostty in XCode in debug mode it returns a CaptureMTLDrawable
// which ironically doesn't implement CAMetalDrawable as a
// property so we just send a message.
const texture = surface.msgSend(objc.c.id, objc.sel("texture"), .{});
const texture = drawable.msgSend(objc.c.id, objc.sel("texture"), .{});
attachment.setProperty("loadAction", @enumToInt(MTLLoadAction.clear));
attachment.setProperty("storeAction", @enumToInt(MTLStoreAction.store));
attachment.setProperty("texture", texture);
@ -656,7 +656,7 @@ pub fn render(
}
}
buffer.msgSend(void, objc.sel("presentDrawable:"), .{surface.value});
buffer.msgSend(void, objc.sel("presentDrawable:"), .{drawable.value});
buffer.msgSend(void, objc.sel("commit"), .{});
}

View File

@ -18,19 +18,29 @@ const trace = @import("tracy").trace;
const math = @import("../math.zig");
const lru = @import("../lru.zig");
const DevMode = @import("../DevMode.zig");
const Window = @import("../Window.zig");
const Surface = @import("../Surface.zig");
const log = std.log.scoped(.grid);
// The LRU is keyed by (screen, row_id) since we need to cache rows
// separately for alt screens. By storing that in the key, we very likely
// have the cache already for when the primary screen is reactivated.
/// The LRU is keyed by (screen, row_id) since we need to cache rows
/// separately for alt screens. By storing that in the key, we very likely
/// have the cache already for when the primary screen is reactivated.
const CellsLRU = lru.AutoHashMap(struct {
selection: ?terminal.Selection,
screen: terminal.Terminal.ScreenType,
row_id: terminal.Screen.RowHeader.Id,
}, std.ArrayListUnmanaged(GPUCell));
/// The runtime can request a single-threaded draw by setting this boolean
/// to true. In this case, the renderer.draw() call is expected to be called
/// from the runtime.
pub const single_threaded_draw = if (@hasDecl(apprt.Surface, "opengl_single_threaded_draw"))
apprt.Surface.opengl_single_threaded_draw
else
false;
const DrawMutex = if (single_threaded_draw) std.Thread.Mutex else void;
const drawMutexZero = if (DrawMutex == void) void{} else .{};
alloc: std.mem.Allocator,
/// Current cell dimensions for this grid.
@ -89,7 +99,77 @@ focused: bool,
padding: renderer.Options.Padding,
/// The mailbox for communicating with the window.
window_mailbox: Window.Mailbox,
surface_mailbox: apprt.surface.Mailbox,
/// Deferred operations. This is used to apply changes to the OpenGL context.
/// Some runtimes (GTK) do not support multi-threading so to keep our logic
/// simple we apply all OpenGL context changes in the render() call.
deferred_screen_size: ?SetScreenSize = null,
deferred_font_size: ?SetFontSize = null,
/// If we're drawing with single threaded operations
draw_mutex: DrawMutex = drawMutexZero,
/// Current background to draw. This may not match self.background if the
/// terminal is in reversed mode.
draw_background: terminal.color.RGB,
/// Defererred OpenGL operation to update the screen size.
const SetScreenSize = struct {
size: renderer.ScreenSize,
fn apply(self: SetScreenSize, r: *const OpenGL) !void {
// Apply our padding
const padding = r.padding.explicit.add(if (r.padding.balance)
renderer.Padding.balanced(self.size, r.gridSize(self.size), r.cell_size)
else
.{});
const padded_size = self.size.subPadding(padding);
log.debug("GL api: screen size padded={} screen={} grid={} cell={} padding={}", .{
padded_size,
self.size,
r.gridSize(self.size),
r.cell_size,
r.padding.explicit,
});
// Update our viewport for this context to be the entire window.
// OpenGL works in pixels, so we have to use the pixel size.
try gl.viewport(
0,
0,
@intCast(i32, self.size.width),
@intCast(i32, self.size.height),
);
// Update the projection uniform within our shader
try r.program.setUniform(
"projection",
// 2D orthographic projection with the full w/h
math.ortho2d(
-1 * padding.left,
@intToFloat(f32, padded_size.width) + padding.right,
@intToFloat(f32, padded_size.height) + padding.bottom,
-1 * padding.top,
),
);
}
};
const SetFontSize = struct {
metrics: font.face.Metrics,
fn apply(self: SetFontSize, r: *const OpenGL) !void {
try r.program.setUniform(
"cell_size",
@Vector(2, f32){ self.metrics.cell_width, self.metrics.cell_height },
);
try r.program.setUniform("strikethrough_position", self.metrics.strikethrough_position);
try r.program.setUniform("strikethrough_thickness", self.metrics.strikethrough_thickness);
}
};
/// The raw structure that maps directly to the buffer sent to the vertex shader.
/// This must be "extern" so that the field order is not reordered by the
@ -173,14 +253,11 @@ pub fn init(alloc: Allocator, options: renderer.Options) !OpenGL {
);
// Setup our font metrics uniform
const metrics = try resetFontMetrics(alloc, program, options.font_group);
const metrics = try resetFontMetrics(alloc, options.font_group);
// Set our cell dimensions
const pbind = try program.use();
defer pbind.unbind();
try program.setUniform("cell_size", @Vector(2, f32){ metrics.cell_width, metrics.cell_height });
try program.setUniform("strikethrough_position", metrics.strikethrough_position);
try program.setUniform("strikethrough_thickness", metrics.strikethrough_thickness);
// Set all of our texture indexes
try program.setUniform("text", 0);
@ -301,6 +378,7 @@ pub fn init(alloc: Allocator, options: renderer.Options) !OpenGL {
.cursor_color = if (options.config.@"cursor-color") |col| col.toTerminalRGB() else null,
.background = options.config.background.toTerminalRGB(),
.foreground = options.config.foreground.toTerminalRGB(),
.draw_background = options.config.background.toTerminalRGB(),
.selection_background = if (options.config.@"selection-background") |bg|
bg.toTerminalRGB()
else
@ -311,7 +389,8 @@ pub fn init(alloc: Allocator, options: renderer.Options) !OpenGL {
null,
.focused = true,
.padding = options.padding,
.window_mailbox = options.window_mailbox,
.surface_mailbox = options.surface_mailbox,
.deferred_font_size = .{ .metrics = metrics },
};
}
@ -362,12 +441,26 @@ pub fn glfwWindowHints() glfw.Window.Hints {
};
}
/// This is called early right after window creation to setup our
/// window surface as necessary.
pub fn windowInit(win: apprt.runtime.Window) !void {
/// This is called early right after surface creation.
pub fn surfaceInit(surface: *apprt.Surface) !void {
// Treat this like a thread entry
const self: OpenGL = undefined;
try self.threadEnter(win);
switch (apprt.runtime) {
else => @compileError("unsupported app runtime for OpenGL"),
apprt.gtk => {
// GTK uses global OpenGL context so we load from null.
const version = try gl.glad.load(null);
errdefer gl.glad.unload();
log.info("loaded OpenGL {}.{}", .{
gl.glad.versionMajor(@intCast(c_uint, version)),
gl.glad.versionMinor(@intCast(c_uint, version)),
});
},
apprt.glfw => try self.threadEnter(surface),
}
// Blending for text. We use GL_ONE here because we should be using
// premultiplied alpha for all our colors in our fragment shaders.
@ -388,19 +481,19 @@ pub fn windowInit(win: apprt.runtime.Window) !void {
/// This is called just prior to spinning up the renderer thread for
/// final main thread setup requirements.
pub fn finalizeWindowInit(self: *const OpenGL, win: apprt.runtime.Window) !void {
pub fn finalizeSurfaceInit(self: *const OpenGL, surface: *apprt.Surface) !void {
_ = self;
_ = win;
_ = surface;
}
/// This is called if this renderer runs DevMode.
pub fn initDevMode(self: *const OpenGL, win: apprt.runtime.Window) !void {
pub fn initDevMode(self: *const OpenGL, surface: *apprt.Surface) !void {
_ = self;
if (DevMode.enabled) {
// Initialize for our window
assert(imgui.ImplGlfw.initForOpenGL(
@ptrCast(*imgui.ImplGlfw.GLFWWindow, win.window.handle),
@ptrCast(*imgui.ImplGlfw.GLFWWindow, surface.window.handle),
true,
));
assert(imgui.ImplOpenGL3.init("#version 330 core"));
@ -418,15 +511,26 @@ pub fn deinitDevMode(self: *const OpenGL) void {
}
/// Callback called by renderer.Thread when it begins.
pub fn threadEnter(self: *const OpenGL, win: apprt.runtime.Window) !void {
pub fn threadEnter(self: *const OpenGL, surface: *apprt.Surface) !void {
_ = self;
switch (apprt.runtime) {
else => @compileError("unsupported app runtime for OpenGL"),
apprt.gtk => {
// GTK doesn't support threaded OpenGL operations as far as I can
// tell, so we use the renderer thread to setup all the state
// but then do the actual draws and texture syncs and all that
// on the main thread. As such, we don't do anything here.
},
apprt.glfw => {
// We need to make the OpenGL context current. OpenGL requires
// that a single thread own the a single OpenGL context (if any). This
// ensures that the context switches over to our thread. Important:
// the prior thread MUST have detached the context prior to calling
// this entrypoint.
glfw.makeContextCurrent(win.window);
glfw.makeContextCurrent(surface.window);
errdefer glfw.makeContextCurrent(null);
glfw.swapInterval(1);
@ -438,14 +542,27 @@ pub fn threadEnter(self: *const OpenGL, win: apprt.runtime.Window) !void {
gl.glad.versionMajor(@intCast(c_uint, version)),
gl.glad.versionMinor(@intCast(c_uint, version)),
});
},
}
}
/// Callback called by renderer.Thread when it exits.
pub fn threadExit(self: *const OpenGL) void {
_ = self;
switch (apprt.runtime) {
else => @compileError("unsupported app runtime for OpenGL"),
apprt.gtk => {
// We don't need to do any unloading for GTK because we may
// be sharing the global bindings with other windows.
},
apprt.glfw => {
gl.glad.unload();
glfw.makeContextCurrent(null);
},
}
}
/// Callback when the focus changes for the terminal this is rendering.
@ -466,6 +583,9 @@ pub fn blinkCursor(self: *OpenGL, reset: bool) void {
///
/// Must be called on the render thread.
pub fn setFontSize(self: *OpenGL, size: font.face.DesiredSize) !void {
if (single_threaded_draw) self.draw_mutex.lock();
defer if (single_threaded_draw) self.draw_mutex.unlock();
log.info("set font size={}", .{size});
// Set our new size, this will also reset our font atlas.
@ -475,7 +595,10 @@ pub fn setFontSize(self: *OpenGL, size: font.face.DesiredSize) !void {
self.resetCellsLRU();
// Reset our GPU uniforms
const metrics = try resetFontMetrics(self.alloc, self.program, self.font_group);
const metrics = try resetFontMetrics(self.alloc, self.font_group);
// Defer our GPU updates
self.deferred_font_size = .{ .metrics = metrics };
// Recalculate our cell size. If it is the same as before, then we do
// nothing since the grid size couldn't have possibly changed.
@ -484,7 +607,7 @@ pub fn setFontSize(self: *OpenGL, size: font.face.DesiredSize) !void {
self.cell_size = new_cell_size;
// Notify the window that the cell size changed.
_ = self.window_mailbox.push(.{
_ = self.surface_mailbox.push(.{
.cell_size = new_cell_size,
}, .{ .forever = {} });
}
@ -493,7 +616,6 @@ pub fn setFontSize(self: *OpenGL, size: font.face.DesiredSize) !void {
/// down to the GPU.
fn resetFontMetrics(
alloc: Allocator,
program: gl.Program,
font_group: *font.GroupCache,
) !font.face.Metrics {
// Get our cell metrics based on a regular font ascii 'M'. Why 'M'?
@ -514,20 +636,13 @@ fn resetFontMetrics(
.underline_position = @floatToInt(u32, metrics.underline_position),
};
// Set our uniforms that rely on metrics
const pbind = try program.use();
defer pbind.unbind();
try program.setUniform("cell_size", @Vector(2, f32){ metrics.cell_width, metrics.cell_height });
try program.setUniform("strikethrough_position", metrics.strikethrough_position);
try program.setUniform("strikethrough_thickness", metrics.strikethrough_thickness);
return metrics;
}
/// The primary render callback that is completely thread-safe.
pub fn render(
self: *OpenGL,
win: apprt.runtime.Window,
surface: *apprt.Surface,
state: *renderer.State,
) !void {
// Data we extract out of the critical area.
@ -568,6 +683,7 @@ pub fn render(
// Build our devmode draw data
const devmode_data = devmode_data: {
if (DevMode.enabled) {
if (state.devmode) |dm| {
if (dm.visible) {
imgui.ImplOpenGL3.newFrame();
@ -576,6 +692,7 @@ pub fn render(
break :devmode_data try dm.render();
}
}
}
break :devmode_data null;
};
@ -613,6 +730,14 @@ pub fn render(
};
defer critical.screen.deinit();
// Grab our draw mutex if we have it and update our data
{
if (single_threaded_draw) self.draw_mutex.lock();
defer if (single_threaded_draw) self.draw_mutex.unlock();
// Set our draw data
self.draw_background = critical.gl_bg;
// Build our GPU cells
try self.rebuildCells(
critical.active_screen,
@ -620,30 +745,27 @@ pub fn render(
&critical.screen,
critical.draw_cursor,
);
}
// Try to flush our atlas, this will only do something if there
// are changes to the atlas.
try self.flushAtlas();
// We're out of the critical path now. Let's render. We only render if
// we're not single threaded. If we're single threaded we expect the
// runtime to call draw.
if (single_threaded_draw) return;
// Clear the surface
gl.clearColor(
@intToFloat(f32, critical.gl_bg.r) / 255,
@intToFloat(f32, critical.gl_bg.g) / 255,
@intToFloat(f32, critical.gl_bg.b) / 255,
1.0,
);
gl.clear(gl.c.GL_COLOR_BUFFER_BIT);
// We're out of the critical path now. Let's first render our terminal.
try self.draw();
// If we have devmode, then render that
if (DevMode.enabled) {
if (critical.devmode_data) |data| {
imgui.ImplOpenGL3.renderDrawData(data);
}
}
// Swap our window buffers
win.window.swapBuffers();
switch (apprt.runtime) {
else => @compileError("unsupported runtime"),
apprt.glfw => surface.window.swapBuffers(),
}
}
/// rebuildCells rebuilds all the GPU cells from our CPU state. This is a
@ -1050,7 +1172,7 @@ pub fn updateCell(
/// Returns the grid size for a given screen size. This is safe to call
/// on any thread.
fn gridSize(self: *OpenGL, screen_size: renderer.ScreenSize) renderer.GridSize {
fn gridSize(self: *const OpenGL, screen_size: renderer.ScreenSize) renderer.GridSize {
return renderer.GridSize.init(
screen_size.subPadding(self.padding.explicit),
self.cell_size,
@ -1060,17 +1182,13 @@ fn gridSize(self: *OpenGL, screen_size: renderer.ScreenSize) renderer.GridSize {
/// Set the screen size for rendering. This will update the projection
/// used for the shader so that the scaling of the grid is correct.
pub fn setScreenSize(self: *OpenGL, dim: renderer.ScreenSize) !void {
if (single_threaded_draw) self.draw_mutex.lock();
defer if (single_threaded_draw) self.draw_mutex.unlock();
// Recalculate the rows/columns.
const grid_size = self.gridSize(dim);
// Apply our padding
const padding = self.padding.explicit.add(if (self.padding.balance)
renderer.Padding.balanced(dim, grid_size, self.cell_size)
else .{});
const padded_dim = dim.subPadding(padding);
log.debug("screen size padded={} screen={} grid={} cell={} padding={}", .{
padded_dim,
log.debug("screen size screen={} grid={} cell={} padding={}", .{
dim,
grid_size,
self.cell_size,
@ -1092,31 +1210,8 @@ pub fn setScreenSize(self: *OpenGL, dim: renderer.ScreenSize) !void {
self.alloc.free(self.font_shaper.cell_buf);
self.font_shaper.cell_buf = shape_buf;
// Update our viewport for this context to be the entire window.
// OpenGL works in pixels, so we have to use the pixel size.
try gl.viewport(
0,
0,
@intCast(i32, dim.width),
@intCast(i32, dim.height),
);
// Update the projection uniform within our shader
{
const bind = try self.program.use();
defer bind.unbind();
try self.program.setUniform(
"projection",
// 2D orthographic projection with the full w/h
math.ortho2d(
-1 * padding.left,
@intToFloat(f32, padded_dim.width) + padding.right,
@intToFloat(f32, padded_dim.height) + padding.bottom,
-1 * padding.top,
),
);
}
// Defer our OpenGL updates
self.deferred_screen_size = .{ .size = dim };
}
/// Updates the font texture atlas if it is dirty.
@ -1196,9 +1291,26 @@ pub fn draw(self: *OpenGL) !void {
const t = trace(@src());
defer t.end();
// If we're in single-threaded more we grab a lock since we use shared data.
if (single_threaded_draw) self.draw_mutex.lock();
defer if (single_threaded_draw) self.draw_mutex.unlock();
// If we have no cells to render, then we render nothing.
if (self.cells.items.len == 0) return;
// Try to flush our atlas, this will only do something if there
// are changes to the atlas.
try self.flushAtlas();
// Clear the surface
gl.clearColor(
@intToFloat(f32, self.draw_background.r) / 255,
@intToFloat(f32, self.draw_background.g) / 255,
@intToFloat(f32, self.draw_background.b) / 255,
1.0,
);
gl.clear(gl.c.GL_COLOR_BUFFER_BIT);
// Setup our VAO
try self.vao.bind();
defer gl.VertexArray.unbind() catch null;
@ -1224,6 +1336,16 @@ pub fn draw(self: *OpenGL) !void {
const pbind = try self.program.use();
defer pbind.unbind();
// If we have deferred operations, run them.
if (self.deferred_screen_size) |v| {
try v.apply(self);
self.deferred_screen_size = null;
}
if (self.deferred_font_size) |v| {
try v.apply(self);
self.deferred_font_size = null;
}
try self.drawCells(binding, self.cells_bg);
try self.drawCells(binding, self.cells);
}

View File

@ -1,8 +1,8 @@
//! The options that are used to configure a renderer.
const apprt = @import("../apprt.zig");
const font = @import("../font/main.zig");
const renderer = @import("../renderer.zig");
const Window = @import("../Window.zig");
const Config = @import("../config.zig").Config;
/// The app configuration.
@ -14,12 +14,12 @@ font_group: *font.GroupCache,
/// Padding options for the viewport.
padding: Padding,
/// The mailbox for sending the window messages. This is only valid
/// The mailbox for sending the surface messages. This is only valid
/// once the thread has started and should not be used outside of the thread.
window_mailbox: Window.Mailbox,
surface_mailbox: apprt.surface.Mailbox,
pub const Padding = struct {
// Explicit padding options, in pixels. The windowing thread is
// Explicit padding options, in pixels. The surface thread is
// expected to convert points to pixels for a given DPI.
explicit: renderer.Padding,

View File

@ -10,6 +10,7 @@ const apprt = @import("../apprt.zig");
const BlockingQueue = @import("../blocking_queue.zig").BlockingQueue;
const tracy = @import("tracy");
const trace = tracy.trace;
const App = @import("../App.zig");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.renderer_thread);
@ -47,8 +48,8 @@ cursor_h: xev.Timer,
cursor_c: xev.Completion = .{},
cursor_c_cancel: xev.Completion = .{},
/// The window we're rendering to.
window: apprt.runtime.Window,
/// The surface we're rendering to.
surface: *apprt.Surface,
/// The underlying renderer implementation.
renderer: *renderer.Renderer,
@ -60,14 +61,18 @@ state: *renderer.State,
/// this is a blocking queue so if it is full you will get errors (or block).
mailbox: *Mailbox,
/// Mailbox to send messages to the app thread
app_mailbox: App.Mailbox,
/// Initialize the thread. This does not START the thread. This only sets
/// up all the internal state necessary prior to starting the thread. It
/// is up to the caller to start the thread with the threadMain entrypoint.
pub fn init(
alloc: Allocator,
win: apprt.runtime.Window,
surface: *apprt.Surface,
renderer_impl: *renderer.Renderer,
state: *renderer.State,
app_mailbox: App.Mailbox,
) !Thread {
// Create our event loop.
var loop = try xev.Loop.init(.{});
@ -100,10 +105,11 @@ pub fn init(
.stop = stop_h,
.render_h = render_h,
.cursor_h = cursor_timer,
.window = win,
.surface = surface,
.renderer = renderer_impl,
.state = state,
.mailbox = mailbox,
.app_mailbox = app_mailbox,
};
}
@ -135,7 +141,7 @@ fn threadMain_(self: *Thread) !void {
// Run our thread start/end callbacks. This is important because some
// renderers have to do per-thread setup. For example, OpenGL has to set
// some thread-local state since that is how it works.
try self.renderer.threadEnter(self.window);
try self.renderer.threadEnter(self.surface);
defer self.renderer.threadExit();
// Start the async handlers
@ -305,8 +311,17 @@ fn renderCallback(
return .disarm;
};
t.renderer.render(t.window, t.state) catch |err|
t.renderer.render(t.surface, t.state) catch |err|
log.warn("error rendering err={}", .{err});
// If we're doing single-threaded GPU calls then we also wake up the
// app thread to redraw at this point.
if (renderer.Renderer == renderer.OpenGL and
renderer.OpenGL.single_threaded_draw)
{
_ = t.app_mailbox.push(.{ .redraw_surface = t.surface }, .{ .instant = {} });
}
return .disarm;
}

View File

@ -69,6 +69,7 @@ pub inline fn link(p: Program) !void {
pub inline fn use(p: Program) !Binding {
glad.context.UseProgram.?(p.id);
try errors.getError();
return Binding{};
}

View File

@ -9,6 +9,7 @@ id: c.GLuint,
pub inline fn active(target: c.GLenum) !void {
glad.context.ActiveTexture.?(target);
try errors.getError();
}
/// Enun for possible texture binding targets.
@ -153,6 +154,7 @@ pub inline fn create() !Texture {
/// glBindTexture
pub inline fn bind(v: Texture, target: Target) !Binding {
glad.context.BindTexture.?(@enumToInt(target), v.id);
try errors.getError();
return Binding{ .target = target };
}

View File

@ -2,6 +2,7 @@ const VertexArray = @This();
const c = @import("c.zig");
const glad = @import("glad.zig");
const errors = @import("errors.zig");
id: c.GLuint,
@ -20,6 +21,7 @@ pub inline fn unbind() !void {
/// glBindVertexArray
pub inline fn bind(v: VertexArray) !void {
glad.context.BindVertexArray.?(v.id);
try errors.getError();
}
pub inline fn destroy(v: VertexArray) void {

View File

@ -23,6 +23,10 @@ pub fn load(getProcAddress: anytype) !c_int {
getProcAddress,
)),
// null proc address means that we are just loading the globally
// pointed gl functions
@TypeOf(null) => c.gladLoaderLoadGLContext(&context),
// try as-is. If this introduces a compiler error, then add a new case.
else => c.gladLoadGLContext(&context, getProcAddress),
};

View File

@ -8,7 +8,6 @@ const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const termio = @import("../termio.zig");
const Command = @import("../Command.zig");
const Window = @import("../Window.zig");
const Pty = @import("../Pty.zig");
const SegmentedPool = @import("../segmented_pool.zig").SegmentedPool;
const terminal = @import("../terminal/main.zig");
@ -16,6 +15,7 @@ const xev = @import("xev");
const renderer = @import("../renderer.zig");
const tracy = @import("tracy");
const trace = tracy.trace;
const apprt = @import("../apprt.zig");
const fastmem = @import("../fastmem.zig");
const log = std.log.scoped(.io_exec);
@ -51,8 +51,8 @@ renderer_wakeup: xev.Async,
/// The mailbox for notifying the renderer of things.
renderer_mailbox: *renderer.Thread.Mailbox,
/// The mailbox for communicating with the window.
window_mailbox: Window.Mailbox,
/// The mailbox for communicating with the surface.
surface_mailbox: apprt.surface.Mailbox,
/// The cached grid size whenever a resize is called.
grid_size: renderer.GridSize,
@ -83,7 +83,7 @@ pub fn init(alloc: Allocator, opts: termio.Options) !Exec {
.renderer_state = opts.renderer_state,
.renderer_wakeup = opts.renderer_wakeup,
.renderer_mailbox = opts.renderer_mailbox,
.window_mailbox = opts.window_mailbox,
.surface_mailbox = opts.surface_mailbox,
.grid_size = opts.grid_size,
.data = null,
};
@ -131,7 +131,7 @@ pub fn threadEnter(self: *Exec, thread: *termio.Thread) !ThreadData {
.ev = ev_data_ptr,
.terminal = &self.terminal,
.grid_size = &self.grid_size,
.window_mailbox = self.window_mailbox,
.surface_mailbox = self.surface_mailbox,
},
},
};
@ -638,7 +638,7 @@ const StreamHandler = struct {
alloc: Allocator,
grid_size: *renderer.GridSize,
terminal: *terminal.Terminal,
window_mailbox: Window.Mailbox,
surface_mailbox: apprt.surface.Mailbox,
/// This is set to true when a message was written to the writer
/// mailbox. This can be used by callers to determine if they need
@ -983,7 +983,7 @@ const StreamHandler = struct {
std.mem.copy(u8, &buf, title);
buf[title.len] = 0;
_ = self.window_mailbox.push(.{
_ = self.surface_mailbox.push(.{
.set_title = buf,
}, .{ .forever = {} });
}
@ -995,15 +995,15 @@ const StreamHandler = struct {
// Get clipboard contents
if (data.len == 1 and data[0] == '?') {
_ = self.window_mailbox.push(.{
_ = self.surface_mailbox.push(.{
.clipboard_read = kind,
}, .{ .forever = {} });
return;
}
// Write clipboard contents
_ = self.window_mailbox.push(.{
.clipboard_write = try Window.Message.WriteReq.init(
_ = self.surface_mailbox.push(.{
.clipboard_write = try apprt.surface.Message.WriteReq.init(
self.alloc,
data,
),

View File

@ -1,9 +1,9 @@
//! The options that are used to configure a terminal IO implementation.
const xev = @import("xev");
const apprt = @import("../apprt.zig");
const renderer = @import("../renderer.zig");
const Config = @import("../config.zig").Config;
const Window = @import("../Window.zig");
/// The size of the terminal grid.
grid_size: renderer.GridSize,
@ -15,7 +15,7 @@ screen_size: renderer.ScreenSize,
config: *const Config,
/// The render state. The IO implementation can modify anything here. The
/// window thread will setup the initial "terminal" pointer but the IO impl
/// surface thread will setup the initial "terminal" pointer but the IO impl
/// is free to change that if that is useful (i.e. doing some sort of dual
/// terminal implementation.)
renderer_state: *renderer.State,
@ -27,5 +27,5 @@ renderer_wakeup: xev.Async,
/// The mailbox for renderer messages.
renderer_mailbox: *renderer.Thread.Mailbox,
/// The mailbox for sending the window messages.
window_mailbox: Window.Mailbox,
/// The mailbox for sending the surface messages.
surface_mailbox: apprt.surface.Mailbox,