Modern-CPP-Programming/htmls/21.Optimization_II.html
Nitin Bansal f1f39b2bbb adding html's (#60)
Co-authored-by: Nitin Bansal <nitin@192.168.1.5>
2024-02-03 23:44:36 -08:00

2242 lines
1.4 MiB
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!-- Created by pdf2htmlEX (https://github.com/pdf2htmlEX/pdf2htmlEX) -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8"/>
<meta name="generator" content="pdf2htmlEX"/>
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"/>
<style type="text/css">
/*!
* Base CSS for pdf2htmlEX
* Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com>
* https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
*/#sidebar{position:absolute;top:0;left:0;bottom:0;width:250px;padding:0;margin:0;overflow:auto}#page-container{position:absolute;top:0;left:0;margin:0;padding:0;border:0}@media screen{#sidebar.opened+#page-container{left:250px}#page-container{bottom:0;right:0;overflow:auto}.loading-indicator{display:none}.loading-indicator.active{display:block;position:absolute;width:64px;height:64px;top:50%;left:50%;margin-top:-32px;margin-left:-32px}.loading-indicator img{position:absolute;top:0;left:0;bottom:0;right:0}}@media print{@page{margin:0}html{margin:0}body{margin:0;-webkit-print-color-adjust:exact}#sidebar{display:none}#page-container{width:auto;height:auto;overflow:visible;background-color:transparent}.d{display:none}}.pf{position:relative;background-color:white;overflow:hidden;margin:0;border:0}.pc{position:absolute;border:0;padding:0;margin:0;top:0;left:0;width:100%;height:100%;overflow:hidden;display:block;transform-origin:0 0;-ms-transform-origin:0 0;-webkit-transform-origin:0 0}.pc.opened{display:block}.bf{position:absolute;border:0;margin:0;top:0;bottom:0;width:100%;height:100%;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;user-select:none}.bi{position:absolute;border:0;margin:0;-ms-user-select:none;-moz-user-select:none;-webkit-user-select:none;user-select:none}@media print{.pf{margin:0;box-shadow:none;page-break-after:always;page-break-inside:avoid}@-moz-document url-prefix(){.pf{overflow:visible;border:1px solid #fff}.pc{overflow:visible}}}.c{position:absolute;border:0;padding:0;margin:0;overflow:hidden;display:block}.t{position:absolute;white-space:pre;font-size:1px;transform-origin:0 100%;-ms-transform-origin:0 100%;-webkit-transform-origin:0 100%;unicode-bidi:bidi-override;-moz-font-feature-settings:"liga" 0}.t:after{content:''}.t:before{content:'';display:inline-block}.t span{position:relative;unicode-bidi:bidi-override}._{display:inline-block;color:transparent;z-index:-1}::selection{background:rgba(127,255,255,0.4)}::-moz-selection{background:rgba(127,255,255,0.4)}.pi{display:none}.d{position:absolute;transform-origin:0 100%;-ms-transform-origin:0 100%;-webkit-transform-origin:0 100%}.it{border:0;background-color:rgba(255,255,255,0.0)}.ir:hover{cursor:pointer}</style>
<style type="text/css">
/*!
* Fancy styles for pdf2htmlEX
* Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com>
* https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
*/@keyframes fadein{from{opacity:0}to{opacity:1}}@-webkit-keyframes fadein{from{opacity:0}to{opacity:1}}@keyframes swing{0{transform:rotate(0)}10%{transform:rotate(0)}90%{transform:rotate(720deg)}100%{transform:rotate(720deg)}}@-webkit-keyframes swing{0{-webkit-transform:rotate(0)}10%{-webkit-transform:rotate(0)}90%{-webkit-transform:rotate(720deg)}100%{-webkit-transform:rotate(720deg)}}@media screen{#sidebar{background-color:#2f3236;background-image:url("")}#outline{font-family:Georgia,Times,"Times New Roman",serif;font-size:13px;margin:2em 1em}#outline ul{padding:0}#outline li{list-style-type:none;margin:1em 0}#outline li>ul{margin-left:1em}#outline a,#outline a:visited,#outline a:hover,#outline a:active{line-height:1.2;color:#e8e8e8;text-overflow:ellipsis;white-space:nowrap;text-decoration:none;display:block;overflow:hidden;outline:0}#outline a:hover{color:#0cf}#page-container{background-color:#9e9e9e;background-image:url("");-webkit-transition:left 500ms;transition:left 500ms}.pf{margin:13px auto;box-shadow:1px 1px 3px 1px #333;border-collapse:separate}.pc.opened{-webkit-animation:fadein 100ms;animation:fadein 100ms}.loading-indicator.active{-webkit-animation:swing 1.5s ease-in-out .01s infinite alternate none;animation:swing 1.5s ease-in-out .01s infinite alternate none}.checked{background:no-repeat url()}}</style>
<style type="text/css">
.ff0{font-family:sans-serif;visibility:hidden;}
@font-face{font-family:ff1;src:url('data:application/font-woff;base64,d09GRgABAAAAAC9AABAAAAAAViwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAvJAAAABoAAAAcnt++ZUdERUYAAC8IAAAAHAAAAB4AJwBRT1MvMgAAAeAAAABDAAAAVlcVnGZjbWFwAAAC+AAAAN0AAAGi18MHhWN2dCAAAAtoAAAAMgAAAEoFPBFmZnBnbQAAA9gAAAbyAAAOFZ42EsxnYXNwAAAvAAAAAAgAAAAIAAAAEGdseWYAAAw0AAAgPwAAPWRy3MzwaGVhZAAAAWwAAAA0AAAANiaiQlVoaGVhAAABoAAAACAAAAAkBqADNGhtdHgAAAIkAAAA0wAAASyhQA78bG9jYQAAC5wAAACYAAAAmPCD//ZtYXhwAAABwAAAACAAAAAgAXMCH25hbWUAACx0AAABywAAAx6dYsUycG9zdAAALkAAAAC+AAABAfHyRm5wcmVwAAAKzAAAAJoAAACyar3WqHicY2BkYGBgYmSzuPKqNp7f5iuDPPMLoAjDw/v11jD6/87/bMzfmN4BuRwMTCBRAJVpDst4nGNgZGBgevefjYGBhf//zv+Xmb8xAEVQgDcAoGIG2QABAAAASwBqAAQAAAAAAAIAJgBRAI0AAABwAWIAAAAAeJxjYGTcw7SHgZWBgakLSDMw9EBoxgcMhoxMQFEGDmYGGGB2YECAgDTXFCCl8JuZ6d1/NqDKdwy/gHxGkBwAEmMMZAB4nDWOvQ4BURCFz9xVEgXFIlYUBIVkFTR7Oxo/iQrJ6vYBNKJSiU7rAVQqL6DyDmrb0yslnHtxky8z59w5mREX9smImLrASk6YEK2q6DozaGlhSj9pKj3jD0nzR4lU/trOxGiQUF2gnTzrhkQITS8DzNWLukd9/XpEcza0RPCZrdmZGIVEGq468D+FuvJ5y4O7fFTkjZKM4XFnjjrg7W3x3meVQY+9diIExrf3MWczS+aPzO2RtZkn8uoOl9VQlBv/tijLztLh3Z7qf3HW8D5s1S++AHicY2BgYGaAYBkGRgYQmAPkMYL5LAwNYFoAKMLDoMigz2DOYMXgxuDJEMAQzhDFUMWwmWHnb+b//4GqFBg0GAyBso4MHgzeDEFA2USGTUBZhv///z/+f/f/nf+3/l/5f/n/pf8X/5//f/L/pP+9rO5QG3ECRjYGuBJGJiDBhK4A6HQWCJOVjZ2Dk4ubh4GXj19AUEiYgUEEIiEqJi4hKcUgLcMgKyevoKjEoKyiqqauwcCgCZHX0tbR1dM3MDQyNjE1M7ewtLK2sbWzd3B0csbvOKoAD09CKgAdXy8EAAAAeJytV2tbG8cVntUNjAEDkrCbdd1RxqIuO5JJ6zjEVhyyy6I4SlKBcbvrNO0uEu79kvRGr+n9ovyZs6J96nzLT8t7ZlYKOOA+fZ7yQeedmXfmXOfMQkJLEg+jMJay90Qs7vao8uBRRLdcuhEnj+XoYUSFZvrRrJgVg4E6cBsNEjGJQG2PhSOCxG+Ro0kmj1tU0KqhGi0qajk8Ltbqwg+oGsgk8bNCLfCzZjGgQrB/JGleAQTpkEr9o3GhUMAx1Di82uDZ8WLd8a9KQOWPq04Va4pEPzqMx6tOwSgsaSp6VA8i1kerQZATXDmU9HGfSmuPxjechSAchFQJowYVm/HeOxHI7iiS1O9jagts2mS0Gccys2xYdANT+UjSBq9vMPPjfiQRjVEqaa4fJZiRvDbH6Daj24mbxHHsIlo0HwxI7EUkekxuYOz26Bqja730yZIYMONJWRzE8TCNyfHiOPcglkP4o/y4RWUtYUGpmcKnmaAf0YzyaVb5yAC2JC2qmHAjEnKYzRz4khfZXdeaz79USMIBldcbWAzkSI6gK9soNxGh3Sjpu+leHKm4EUvaehBhzeW45Ka0aEbThcAbi4JN8yyGylcoF+WnVDh4TM4AhtDMeosuaMnWLsKtkjiQfAJtJTFTkm1j7ZweX1gUQeivN6aFc1GfLqR5e4rjwYQAricyHKmUk2qCLVxOCEkXRk6sRGpVum1VLJyzna5jl3A/de3kpkVtHDpemBfFEFpc1YjXUcSXdFYohDRMt1u0pEGVki4Fb/ABAMgQLfFoD6Mlk69lHLRkgiIRgwE003KQyFEiaRlha9GK7u1HWWm4HV+nhUN11KKq7u1GvQd20m1gvmrmazoTK8HDKFtZCchJfVr2+MqhtPzsEv8s4YecVeSi2OxHGYcP/vojZBhql9YbCtsm2LXrvAU3mWdieNKF/V3Mnk7WOSnMhKgqxCsgcW/sOI7JVl2LTBTC/YhWlC9DWkT5LeBiJyjFGmYS2PCfK1ccsSyqwvd9jkQNhmAtq8169KHnPo+4rcLZuteiyzpzWF5B4Fl+TmdFls/prMTS1VmZ5VWdVVh+XmczLK/pbJblF3R2gaWn1SQRVEkQciXb5LzL16ZF+sTi6nTxPbvYOrG4Nl183y5KLeiSd57D7Ou/ra/s6En/GvBPwq7n4R9LBf9YXod/LJvwj+Ua/GP5RfjH8gb8Y/kl+MdyHf6xbGvZMZV7U0PtlUSi+zlJYHKL29jm4t3QdNOjm7iYL+BOdOU5aVXppuIO/0yGy95/eZLrbLEScunRC+tZ2amHEboje/mVE+E5j3NLyxeN5S/iNMsJP6sT9/dMW3herP5L8N/2PbWZ3XLq7OttxAMOnG0/bk262aKXdPtyp0Wb/42KCh+A/jJSJFabsi273BsQ2vujUVd10UwivIBov3iaNh2nXkOE76CJrdJl0Eroq01Dy+aFTxcD73DUVlJ2Rjjz7mmabNvzqILbkLMlJdxctnaj45IsS/e4tFZ+Lva55c6heyuzQ+0kVAmevrcJtz37PJWCZKiojNcVy6UgdYETbnlP70lhGh4CtYMcK2jY4adrLjBacN4ZSpRtrhVcYiSjjIIrf+ZUnMhGNNmIIn7zlvqpLhRCZxILidnyWh4L1UGYXpku0ZxZ31FdVspZvDcNITtjI01iP2rLDl52tj6flGxXngqqNDG6f/IjxibxrGrPs6W45F89YUkwSVfCXzpPuzxJ8Rb6R5ujuEOXg6jv4nGVnbidbTg13NvXTq3uuf1Tq/6Ze5+1I9B0x3uWwm1Nd70RbOMag1PnUpHQNm1gR2hc5vpcs5FP8aXmW9e5QBWuTxs3z56/o7M5PDqTLf9jSXf/X1XMPnEf6yi0qhP10ohzO7towHe8SVRex+iu11B5XHJvpiG4jxDU7bXHZwlueLVNt3HL3zhnvofjnFqVXgJ+U9PLEG9xFEOEW+7gBZ5E623NBU1vAX5Vj4XYAegDOAx29dgxM3sAZuYBc7oA+8xh8JA5DL7GHAZf18fohQFQBOQYFOtjx849ArJz7zDPYfQN5hn0LvMM+ibzDPoW6wwBEtbJIGWdDA5YJ4MBc14HGDKHwSFzGDxmDoNvG7u2gb5j7GL0XWMXo+8Zuxh939jF6AfGLkY/NHYx+pGxi9GPEePONIE/MSPaAnzPwtcA3+egm5GP0U/x1uacn1nInJ8bjpNzfoHNr0xP/aUZmR1HFvKOX1nI9F/jnJzwGwuZ8FsLmfA7cO9Nz/u9GRn6BxYy/Q8WMv2P2JkT/mQhE/5sIRP+Au6r0/P+akaG/jcLmf53C5n+D+zMCf+0kAkjC5nwoR5fNJ+4VHHHpUIxxH9PaIOx79HsIRWv948mj3XrE9bVA/cAAHicY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2J02M0gxMWiBWFvlWfg5mLggbGUmcTYwm9NpNwcDCwMDEwM3kMfttJvBAQhBvJ0MzAwMLhtVGDsCIzY4dESA+CkuGzVA/B0cDBABBpdI6Y3qIKFdHA0MjCwOHckhMAkQ2KrIJMjGxKe1g/F/6waW3o1MDC6bWVPYGFxcAJvyK4cAAHicY2DACTqB0JvBm2kzAwPTNsbbDAz/jZm2/X8FYv//+t+YQQICmc4wygOxEABuaA6uAAAAAAAAAAAAAAAAAFoAlADOAUABeAHKAeoCGAJEAqgDJgP2BFYFMgXiBiAGegbeB14H0ggiCIII0gkmCVQJpgnkCmYKtAsoC3oL9AyqDPANSA2YDhwOcg8SD6wQBhCWEPIRhhJcErgTIBOWFAAULhSyFRoVWBXqFlQWqhcUF3gX7Bg8GLYZGhmEGdwaNhqgGtwbrhyoHXgesnicpXsJlGRVmea9b4/txfKW2Jf3Ys2IXCJjzcqszIzakoSqTKqoNaGwSIqlsgBZBhGwxQQBsdV26ekeEUcRwW66RyyUqhpOH1tF9Ija7Uzb3R5pbWF6nHEUSxg2QSuY/973YsvKAuw5pyoy3l3y/fv//f+9iRh0E0LoNeYECqECmtl+LL3zQEuDIXwIYawsIJZllhHDBJjF6HrjGrO4dKJem2pwYqSkqIImyriEzVGcH8V1+FdrTOGK7lcFGMxNY+tRe00QsaiOuyQRYx6LjsBCwKHG0jEVPuIK87nCvalnVAlzPPvXofhXq15BOL0a1bRoOqrpEYTRvjcE/E7mFEoif0uGZ3wXUHbThgojhkq89a58zl9rNGcwvC+BNVWUWU3Vgzp+p9sb8Hq8X1856HHJAadDEqK5sci5U+5fOzhefgRXP/36opvDgsBKqZnrvnDkxI/mPYRtNA3v3EvfGWh5u++MheuMGCxlVaHDeL3WnGHrNSDAZh5euveMtwEVPrf366933saJxsx1Dx05/qNzPTwlhL5zK87gZ+GdG9BUa6KUZViuOZqO+AUBsbLEYMTuQByLuSUes/CEWbSCOA4vI8zhXflcMZ8zBTFWwqqQNsdwkv7M1RuzWKRfarOYElmtJPEYJj91TfDiJv2iejEQ/qyh+vyXxbikriVZHLs8IKuGcdfdqbMM48eCad/B9yuBSCTgZ95/0JcOplzFotNYf9iW64fYCLOCFDTcGrLYEXjG5ufKHj+wWEGBgGEGDFGMlpCaNvyqWfcbZq1q+GsVzW+wkXr7hT3t5+t17NuDvTjT/e6r19vPI/q+/W/8OXoavR9F0cL2Yy6wdj+MYnQ9GDN5Ew7gxajlBj6y/O7+8TVDGl5cWjpeD9VZMVxqgsQ6JkAMr9ln7087apLkdTsdolNgXWzYIaoLihRV5N1uHpSf8EopCYZUUVQpjW70DTyOHUhEyVaMAeoQ3g8/MDpEZs+HNSLix1kwPKTCG2tTGI+Xv1Uufws75ucJj7CC8OhFBYsVF7I2owACLrpPGlpceqxO3aa5xkWflhRKD6VTsh86fvALsEkvCrU0CTHwu3Z03SGXIb8LqyK2LKyJiTHhXwjtL7mSgZCAd5EfzJOS9/fvMcN+ycveZYYtveyAjx8z30dhdOtxCTMs3rH9mA6kRxCLGLBvYtrBBTANoP0SmxOLuQhYDXdXZ9ngirNOEtaXIHggeGEoY5jGOLGqDFgVEacfyK9VZxjiCxA+/FX843L738rlxbGx8vDIvO6TdVVj5+bn5xnOM49DPlkO+OTT/wX4GAU+TgEfw+jm40EMr7P5iAMFHGa4VRAYuwzxM7gAHHWVYrES7S5iEZHBSv+Ss89SZk5O5gLFCg9cQDQCNoguZ3EDQlHaFGkEaNiuLWMIVl5cbVaCuoZPqbH2wzHV+bVLJxr7UrxDdFQCzca+o7dnM1nHBHvnA1trolYm4VdSnN9fubC281rF3dpSGv7AoeJCISuVmfdizpEmOhx945f4VeB9E/pVyzWLWQ7vEEEE2y0JjCCB53iBSIAF6plVxCFwd3YF8by4jEQRJMIwaBkYCnUlUjpjE5i+IPIr3c0DW0b+kC1RItTyW69GiFmy9zBo1xLYjWvIzAcbZtaUxAQVN/F6It2gXq3MMCBz25maEArAivqUAF4xw4JVQT4SExi/euMfTV1VdQsi5zzvsDEUEPKzw+BqTFLRYq5kfHhPVRJEKSZ60yPn5MLDs8Opq7ec872Vm0tFxzaXc04rFhJbtohqQGcxUCt7cjPFwrkud8EhsHoqpvFqesvoVVP+JURoT8KHALk+hbLo/OMmcEesk4hZB8/gSMzl0FGwTUjwdsRbb4LEvZZsGEbWyKYn0lVTtIyuBInWjiJpi3uFJmAdHKii5/1pgWWEYLioxmJx5dm4Iv2rpAbOjanFqPbfsHz/d2LKCknwK3okrHnxvV5Ji7avV1W8r9x+msaILNjXKaB/EuvHG5gVCfUOoH6Y5A2wtlXqFsxtoEKWE0F1gsAfAutS1hiWCntG1+7prWVZao7qOub4h75p5A/aQw1y6GzLiR2iy7u7BPB5YopmvpkeMgt9pgjwo2uLbG2UBdOTQSOjTB0wUdWggEhmQFs0OJ96362F+dG0N+sURGHkHYmi5sJYdEeUVsbp1z2yT9QjWNeDLCNp/ifTuWsO//SWW4PJdIjlpj3uA0qonJxJlUPKlF9kJNWHK7GAz+/3ePzipz1/hKjddeKCiZroyeNJLPCdqJhHAGpYGtJYmlMhBvA8twyRDcQPQGdQ/NnucgA/ENFXzrZ45O0tpgI3z1gnIPh3eXc5TyTdcuby2bRWyIhinOI9Imm+7iPijGM1beZzVM4iCJWpjXJpU9DUBENUgF/VM5NXl3eU0z4HxqlszeHmnYncpSmXwA3t+uaHMef0x9TKiBDIxbREwMU9t2VfYVNyeH7DniED36w6A9mo6Nsbq5y31D7VSpaDEeeF27LNZtwR1sesuPsyyPck+He4pYMQmUNgUWBWlMG5CYpPICkzLEELNAA10yIQbGV7vkLikPT3XHk0rrCh4sHZh+caohYdmsUxRWWZOyPO9un21/J6JFZ7343/eY5Ee4/hxQE/0S3FGvi7gAeS6MD2Y/H++kGldcIhu36wVKgAvRBYAdr1TZ05SgoLqCzq9YpdWQygk7UFRR9a6X3Dl3aH2lf3YRgGFeHjyxBHYiiDdrWcKQiEMoQ4xg6GGg/RDiMOH6ERD6KflX/XGSeZt+WJx+OZeKZZUcYFIDZLpTyGDZEQWSdRkKFlSFDR82wunwaQzXw53zCCLrP9q7w8nsnzPxTDAfmAHAiLP+SfOSQKWIrNR6Oh5CXXFqKihzmoqiyrqqcf9HwPh9V45oJ/BBGz6CLg47PARxTl0Ai67XjEjuguijdYBAUUdyVBq0QZfuJZa/DGGYuUgUVvNm8BKIeRHR/eVidlRlaVWQI7SJAh7PKQDEQ9X4M4Q5xAsb4wnx2aWGzE26diqhZ9xRveUGpkwtvnjv3Ffe+6UQ7XMvHYI7d9/L4nqjvyQV6LMvtiKsSiaHYqO7ngiz+6/EPs0cbaP7/9N3bt8DJzN/ME6HOl5VQgARahZiRaHALeMuDWPMvwq4jnWJ67rS/CAGwa8P6BZZ0g0FsEbGrZjJ7LWmyK1PdJ6UTxFGAo+jyKSYr3kajbpEhLY+4WpkqFc05edPDgxccnLqxLCuPi2ezOyjsbzWbzms2ZfEVg3JMSZ7pdF1706JcvutCncs6rnKyZaG1q/37TrNuTZ1xgr0TPPwE9e1GiV6P3NMKyPY2tM040dcIoWJ6ELWxoZ4KgLkJ+KGE/0RDzk09/sf1bohcsfWnvto/x4ZEDM6u3T+8fDfN432f+q6WOlf33lyZ3jmdOv2KM7Zi0sDuhbzfzFUAVu85iV/63sCv/gF21HOMZA1zfknc/wXqcMJBPawYBsjCjzdICn9kNKPYIpf2DcSWS+tU4FqNaMNx+7RP3aYqPwldmd0zVI5LhZR9XozHl7xiG1YNd+mtAfwJts+gPwSBJvlfCNHcITMFPpBlggfT1pzR2celkvZoxKAC3aaRgu4eKOixoTC2S/B+lXxD6fqHGqpTqW+IK8x4g7VuEtN/1yO3S97eg/zTa1NG+FYiuhMofColehDpz3JJnValXlY48LWIMf48sEkTj2LA7Fhrzt0BWXGl/06YOvuNpOlQmAA07269QCvcRCk+dol0ZQudB+PwNtdO+ujO40F930qcz684OEdpveq8s995hy+Cr8LtNNNlymmEJUDqUQ3bE9oBCmOAC7sih75laf73eoNZvMZ9nRW3Na/2Y/ARIzjNf9SkbTd8z16oxkxBiAu+btey06W6/FlcdGh5e+cseYe3ncFnVnK5Xu3rSgUYdVTstBMoxwLtuQTo4RKg7nq5XSIbus3SLpmYlAXlQB8t+yBbJaz5NYvrkcvpnnOTzuOx3szfBuxvo8MlSSCLlgI2xAhzuIPqupXTMCLMk665aK/rM6Ixxu8SsT0U7JaYlv7QgsjIL2JJmtkGTgnwXrDa6RQB7kxqLgjTdU6uiV/elfLpXvHGbC8MoYW93xb+6ScCODXe6UqE9tqkx/PCftL/tC4gMIwZ8OP7w6Onfddgfaj/5YKjwx3hrzLvGTwzUOBESmbdvH41B+8BrGcFVf59rXFzR2r/ukA0PWMGUM6C4wGinX+wQWDj9K8ZjOQcDueqXEMO/D2g+g26xFKN1GklBGqsHoa5ix5mVwamR9aZoIgv1RsEUluw5lhasJxIh06Dh32ek/PAfECpvypCiE3xlhmN+0j7WfhTvxOf/KRY9sfzM4nQ+5hHxwMO+9n/EV+Ob2rdNGJtLzVQwaDRLm8xoLDM3OpUJhzNTY3PIzlW3gw4UwIPdaMohUkB2wV2vvFx/ihSYJ41MvWra0XQghhI9iKTCtrLW7Xfc8kk7aLx+850fai6959Z8M+Hn8L8ePfKTjiqOvrO1uf07bzCb6tD4ERpLSujdEE0w5pGN/wh0CiPyyGPSfWQPAWX+NX5zxoI+3znLXAculbZV1aoNl+xOObvG2ghyEpuEQcggDeYjbrdnyuP2ig9CSCoTNp/3RSZHmtnwZ5SJXXfcsaeekGWGcbpxsv1ah18seRKFTYUP5Y5NTDw7RXxjHOwvC/Y3g/7Gsr4MZGDMW3UmT+pMnu/0pc4oe821a1mKltZpvrzVSmqq+bMuOrPV4m7WK+NDeSVhCnaMNMfwqEC617TGrdRreXLcwBBANgP1VpCUt14sWBWZpupJnMBMdvXG884VBFlTVNnBeDmn4D5wKunNliulqdDE+AXzQ5ftUkQywflnLn73ROySxZXvXH9NkGEEyeF0ODhe2h9wn7+cS8oel9udDE8tbl7KywUnlOMw45veny0KeuBmGocKQP1jzDFgtmHJz09MwDaljumvGSM2f6KRrqYtlAYFe75rFiKYCal1LPTwmC8Q+A61+KcCAR/oexiww81BnWVP/5zqP8oCsJE6eRP0fj+19QWbFhZ3MtCg6tZMUE3JdteBTmFakmWbWStUAty3ewp2TQbIt9F9ZO7PT14wl29cfLBBU1dr975NaqwQV34+8456yqlVV7bj+2kKPXjBzgt24c/bZztReN83aAyvnghb7WWLbjeD+8FE75Hm0Klmw65yWdLaoH4FBtGpu4J2EcZ8g/+ZGPF7D5JS6xk+3/D6I+IDolr7gBgJePN55j7We/rzqgbVlsIc8rJRqLram7TJT+H/AINEtyFQ2itA3xY03XJOFBLefhwicywzkGj6BwidJ6dnGtMNK6r1U5qnebTzmO/RXW3MYot0vZtOWXhiX+Ee5IN+77zsD/JXaF7sVlcEeN7shecHuSETxoV9QxIU4eEDdCIcla4OQn4NHuVkxePUhph7efn0gwqpLBV8y8I5U+e0b9F0yvlBJU4Y//q9Fdeew3geWPdH21ftMUZ24z/2gZuQ2gv0dITaVbci6TUeBiuSM8Zpzs02ujnX7lY3cZonFmUbuiriLEVARwAB1WOqEx9Nt3+nwPsDCXwi5XO2P4lnfV5FtJrTugf/nvSoApFgKBLytAWONKxo/2nojZfx0/hfwC8n0F+2nAZmeQmLAmMDpBwCLbEcswpLBZERSF7llyEeqgtIFNEyHgj+xTdZDevIFprUo8TJ33yx1r+Y9PKaSt5MFzIVu5dn9Tiso5QZvtrtItNjO1piinWZ01Ta6MNPq7FsXGlcMbsrMdxqzMbkZP6ilsC7GNHpW9j/3Xu8sUY+mU/wshHWKLhSzz8wkRhP6C4Bp8dGtgiuCb8kianPPrAfMx5tKJYYxs5AjmKXlxkXrT9q6AFLZt4w5tiRYYbnnJDt2B3RgREMI0vWwigi9k+SIUkuKq3zqESjXYkm1y4hSJWu64ShdVZo/StIak2XcvVKnqTWjCrzIKQ11Q3JDQlOtPqhfioyxoUlb6o0N7xlFI8VSGoFAUqxrdk8hTwfwC61EK/mkmOpEd3F/NYMNwuVVLCS78Dv/+PQInqqUqgXk0Y9pqfbr+eD8YZh96pfxk+BzRWhXmkOYY6gAo7ZcZamhNrflDCLmaCZsYs1ou96zeozqN1GAznOTrCk0wBGoOOnJG3b3l//3/GN+ZCbhdSWqI3GizqESJdaTOyehREBbMqVfuFlOeByamWPK6ypsfFcIpqsJ0ITTk+e+gmh+UWq5wb6YEuOYo7JQp4WqYY76rRPrujxf586A33qXLOEegXP97xinRVa/wqizqFsbTQ9ULFaDVfiCJVgp1Jl6zkiDEsWMxi/CCkmojfOG9pUSHgg+Elyori5eF6NusY9qVGqSKrWVEx1gBeo0ckgaLAR8vnDDardfyOucfrVF5LBWMOYIXoNyH6rj50E+fwMdGqgPJppTalQY+EdJEdBBlgVsUCOVwDK9trM9lFflF00TTNv5jOZgplNS/RQHjK8keAsFVLlCvaxPHkWaTcJ/8zn97afx7wvUk7t2eISRI7lnMqOvTffectNV19+LVtoXiliDoJ2yByNq5NORzDllhyO3HtuufG2G96xZds9Vn8mAR/vZb6BhtBXrA5tBgYAfjDkMNI+eiMdA2ZZwFQfHBfgetjPXisQsAaxjF3p7equHHkbKzVY2Up1Xy0CZSJe6VtMl1iHGqpSNbKmQgIhERXFcjITx9WKCsC/A4zofYsqcQ+C+vB7seB2xEvBuJOtlstlUHpM9SnaxDcz8bCTuYacv8fcIZ98zXz7EZIz8AWM35/Z+RcC7wiQUin8RoXR8T+hKmT3RfSjlncEIlnezTBSBjtY4gJEeDUkgRdLDGGOB4mRYA4ugjrfQeGOQ8jhAKN3Oqkl6F0RVbp7WeRwso4rz/Y7+na2NiAkSiKSVt9kM8h4nb0gSt/ijvltuYI5nJ9LK36XmCzZhxVgcSRIampQt4sOGlvqtWYO/lGZWpYJIZPpnmY0SB/XlAFiV0FWHkEaqiWf2jnGaHKlnM9vy5XDgdevmypmtkSj408t1SenPQIr/piVk+Fy2Po88p4bfQH1Tz+B/8zDuXKbH4q42ZDmxoJLNyrGn0SV2cR0NH0gW9r5UDotKukj4WjcPVyhn+2vVVhdn6M2vRE+XoJYlUfzx5O4BxN1K7ZgbPtgtzBbb4JCsny9nh1sapA8K8Tx2h5RlaQQXcMvURwbMktb4IudNbAzee7owjarP6YUzC3TP+3rEp1Ss4UtCzSGNODzKeZz9Lzkxu3HonYfgMYJWgioHYhrWZvSvf8wMJVeM0VzB+XzjFFaevbOUtZ23Nbe/HiCug1lSlTi1USg0/gDfzlKuHkyHAyGFbuv8cbjb1TRM8BPFGrpG47ztiai1s0Nlsrav2BFeaDnUqBH7/JGqn+WsU7kB+cJbGDJrabV7pLe7NLSyXq9WTSIzoKqddFkBncP3zuM1dcw9syfjR12ibzASLG0FnUyNCf0OEx90ZC5mCJxAQgRHvwPhMF+VsHmtsHHC2BzBXSw5cwYUafII9pmi9N7RBSjEHgymA+7E71EuXaMqgg0tGGc6ztAkvGZfcqm1af0YhrwXsiU9YDnDikpqbEAUZoWVz4WzE6a3k89wvG67vD9lRgXj/RZ4sN3a5okf/R/Ci7Wyg2A49ET/3892z6LGezZgo+yOYink+iaE/XRvlpOI/UkvwwQnAQsDipOW14j609qtLNCxoVlyLOCjTs6c9YxOLgxOHIfdD7Tkdfza8gpFEvTaKexOerToXRx6+AXqxOs5Eem3+drXE09HRxCGTI2z/x07dfrCP+Vobhx+DB4vR2rQA4FdGggVgUoQCBNVrWvwzSyzoxmRbBu8KKW0+vLFt5eCANWyd2T9UIYYU5Uc9PZM2OYzY4cywXtGAY4iBEAB4kQw5KtWKeNqS70NySDVscxq1r4FbIIZ5JiJcES5C289OJLL96DBVnP13JBD4AAl1aaKeou/Oxzz71+KhIbjcTcnlh4LBpJmY2YrscaJrL6qDMA2/8JxQHNPNKSI4BRTdypQjoYlSBLFnfxKaGIhBcddyJPEtk4p78qGVw2Qpett8JmlywjzBM8c/k6C2nYbTlyZrpey9stP1KXrPXpBhEOoD16QRWyKilKksPbhreNdNJLRJ/ef/yeK6sZ0R9MXP+//XYd8jh1tuGYCiD2+QeM570et9/G8TP4RZBRDLLj4ZasgoziICOJ1mUWZ2tkZCHvhU70Nc42aw/SMyUTNJehCJ3vK1XJ7ZMBgF6z2nDVCgXncaV6bn1xKCT89x3DNADfFdGN666ofYIY3RNTmco59fgLW2jIbf/9txPh4INf6MYpfBnwlELbjwf7fIj2gfoS48jAmGYduXTSSzcdHi/UN1j9InJx9+x+cpkgN/fb4S0FLuIbHk7IHh5/SAHcvW3TiZ5/bMpVddHpp7SSOuHD4B8TqNGqCqQ62HGWZqva325LR4bTQcOylL4inxhFvdbtccKAdXus2+FMQDJggjr+8KOTze0eDAWgNLm0mIzqWWPYP/6VxjBWvAEXKQydE+fOxwwzFi0p5Y980h8KCOdwXmlbQ42KnCip3uGpj7oFQXLwUCI6x8YDIYfAi5q/BDypwNO7mAWUQ4c6NQTLsHcBghewKKzyIHEGAhaVtCDQVG2fr/cv4wj7WGTwSt8iEr3TRrpqmGkrehPWyB2y2lTnBrkN/Gmrwy6Y8Lu21+orarkc1KLJuLJULi+pSn4IErzASWOq7vvY6Xl6hLp7/rmxTEJ0+mIUNwIfL+Hvogy647hEEEbvlIzSDhHs0l7+Jozq9gwtY6Fev9QuY228SWYt9DUw2zeh9U8sEfSSrWf6w7Xd4xnspHZxCwnW4Chjl+4+X4uCA2lD1Sb1JBqoI3s3LuAYze3/MhSZq//a7qNGyH1a4DOM5k8onT5qfB2H6TiRdYW321u1Hi1nadZrneaqdX7a7axGMT3cwz/m3y2Pnzsuv5svhPSYyB8+LIYTWgE/wsvtjxaL+HqZj3lluf0PeDRo3XEOQTD5AdBXRbtbjmEj5OasNmq820Zdi6PoKGLuGmyu2gNWHswXmlNV2l1lrdMV8Ji82L2bn2c7ndTO1V7KAPnC/OAqKZTcGgjKAr9BwNyUI2TE/IGgcBT7PB41EZJ2ysUYJ+e0iMTt3eWMZBW/Fz/SXo0qQkD2/6CJx/7Z0FnQ1qrHwyiR9s9H71sWg16f3P5HbGYDjMfiGZO7UgW0s+XMxQJeie8x7bHC7SDPdLAPN/Y9W5ixMdHsYcZRPIYtXjuX+wm3SXLxt4Madfx0epicJl2xz+8LlTLOz/wnZ3pYUd37zpfkRCnt/PgDLl3HDufHViNOXXJ/8zGXpIveq6+SvLrD/eUnZKK7+BtValsjaOFkJozss+Y4PRmzb9Fa0IUEty6kB4eAlXeRdHlX38TSyckNaS3f7Ymzdhlq43ncbDRtewOnD9JL2ZbFfZ5Xi+eUtroY0cOKhhnOyJIofpXPRzKR4B4IssMF1pvTC/hLoqed82YbGZmdk7ycFosGw358v5uLRKt/U018/AYuSGI2MPY48BTt3WKz+9bqQD+7U3oxhFN85UCr+4xRS0e1Ws3WUdqg98HSotW4MMiNA7baJBfwHi+3v112v5T9uKJoZVyAr6P3qqqazRYDPlxnmIA/B9/a32NYK8cYOIkvo/fMR1sl66L52hvmRveGuYkWJ7NmscJL9nHq274dfplXfVXxih88p5CfCbKiIGTkfG5m4eJoJCrkuEveNZ7jvXijD5AH5xZunW0ky5vdUm5Yj+ycDI+GNT7KbscsryGb5gA+CjQ30MbWhjpmWAeImNlBeqEcz6723fQXliE/GN2cnUGLQ2ZWrw0ZohSnDQxy39o2kUbvuvUs4eLMy9YgZR0f/WJxIetwsGJ9fjgSG0nJPB/K+4NaamNW4HhB5V1hoxL788XD+N4PhCP8kCgUi7lCgXe5PAzL+IPZcGhYEEM8x3gUv/vKTWl6zRE1QQ976d8tlFoFB/3DhT4+jAXe/rsNooOMaQbMcUEi7T/qpOQvDQg6bnT/0KCC96b/Lp2eMLcm54pOn9fLVNK4pmk6bkjwkZJcDqn9KbCzBMTPL9Ge3g70z5bFFiVs99ZArlhc9mDSeHPxDOnsOQUaUt24v7dX6O4g02Ql6cP17+6tH3nb62mfL9ddChOwgrT6+jfZCwlE1ufnNs9unNzQrJRDncafTBtVb7Pxx599Yac1eJvdGkw42Vq5PN5tDT5JWoN4/IzZuPLk22gajq6Zhbrpl3Y3kfQTiY48oCPS65nDze3HQiDDKnI4kdOBVpHTiZelzilm5yvkHqgk3C6RJQEUwph9d5YoeLxvq7SMJMneid5sY5q2He2NsAjEv7Tefmsns9zbOfLv2Kkx9G8qOnRK8ENyrnQ2n20Lvcmup1KpudS2LZtbM8QKMqRh5aFmMNjHYdfUT7mzGkacdtnBMkwwC8ZDQRP9wFTD9OM75Q1dY/hcNBwg7QWR92/eyBwi+izQ04CHqWqPks/ygBlc8JDIOQJVwqQ5fQOy/dINOs9DZJA6l9x5gRVIgANouuzA5A+Z6OH/slNkiLKI5gPd2rTUXe5wBBfoHvQmW4h+hzpbyGznTwEHd/c2jLz9DRqmtzU69HDkb2WElbV77JVUiQDu6pWRIrCfMwvUmV1inP6Z2luoKE10pKxRLd66nnYEJWFs/G1Phfi76+iEuKYrOn1D+wp6j2yf1cTjiH7YWdsnW2gFX2p55aQTixKSRLQK5beEl/0C03VM+7vXwxAP87kDDo6oQOaZfudsDvwGYdkPpPZ7yZtsJyqc6G4nC4m3rP9r7P3Mct/+kX/3fuquje5WWAy7REFa6fySN9lI9W2mUpcfXr7k4EUH9l6w8/yF8+bntqZaqVmzkLEcWPlDHXg9s8h3H4Q3TwTs7Lo+/lR5glrRA5GgYvt3ypj6X/CNF0PZZGCqbC8gZvZoKqJLb+X8zz3Ec1KgRsJ/cvqGz8NPMWkmrh2ww11foJng/wGqLandAHiclVJNb9NAEH3rJhUcirgh9TSVOCRIXmwnh37cUjVFUdNWcVP16rROYiXyVrbbKGf+DvA/+AX8HZ7XSxFwwqudeTM783Zm1gDe4BsUmu/2BSu8Uu8c9tBSHxzeQVd9driFPfXd4TbeewcO72LPmzFStV7T+mKzaqzwVrUd9sgvDu9goj463MK++upwG5/UD4d3se8NcQqDR2xRIMMCS1QQRAi4evC5GnxE74xRggE05QgJ7rFi7gYldUZfghwP9kxjbKMu7XkTWUd0aOeWKeVNCdaY0zJW3tB3Rz1FjDNMKAXn1Ff0XNPqkhGn5nFbZItlJVEQ9Hyf8khmWxloGSX3K7MpV5kk+YOM9FjLpdnQmUnH5DJLl8l6LmYuN+mdTOOzSSznk6vpddwl7wULjm0DJUK2i4txnORlSDRgfWv2hYFZUw5tC5XVBQeW2nFp5giOuf9m8l8ImvMevb7d9WAj9Elp8mpoikUqkQ7kWH7d7dc30u6FfshOo/6/df5mxx9Z9W+Xsr6SY29G3tQY8D7BCXfFNSfTE7XhY2S2q/qJnsmsccgdcui4TYsy4wBZW9CXE6mqefJUmWWWV9J5DvWhDrv/UdhPyIKCkwB4nG2OXUvCABiFn3daBq2ZoWWCd6WGolPJVPBGcpaVH6XlV5cDvXEyN/ot/lodMuqmA4eH5+ocFA7Zbfngv7x4FRQCBDlF5QyNMOdEuCBKjEuuiHNNgiQ33JIiTYY7suTIU0CnSIky91R4oEqNOg0eaWHQ5olnOt7GK2906dFnwLv3ZMiIT74YM2HKjDnfokhAgnIkxxKSE9X5sfIbd23aS8vWnIVtmr+qWqs/CbmrpdHUdZ9FnyWf5T3vCSh4AAAAAQAB//8AD3icY2BkYGDgAWIxIGZiYARCLyBmAfMYAAbMAHl4nGNgYGBkAILbCvvfgeiH9+utYTQAU3EHngAA')format("woff");}.ff1{font-family:ff1;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff2;src:url('data:application/font-woff;base64,d09GRgABAAAAABaAABAAAAAAI/gAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAWZAAAABoAAAAcnt++ZUdERUYAABZIAAAAHAAAAB4AJwAeT1MvMgAAAeAAAABBAAAAVlTVYARjbWFwAAACgAAAAKkAAAGiWbtLZGN2dCAAAAqsAAAAIQAAADQJ6QRVZnBnbQAAAywAAAbwAAAOFZ42EcpnYXNwAAAWQAAAAAgAAAAIAAAAEGdseWYAAAsEAAAJGAAADNhErd2zaGVhZAAAAWwAAAAzAAAANiYYQwxoaGVhAAABoAAAAB4AAAAkBcYDT2htdHgAAAIkAAAAWgAAAGAwAwRTbG9jYQAACtAAAAAyAAAAMiIWHsRtYXhwAAABwAAAACAAAAAgASQA4m5hbWUAABQcAAAB5AAAA3thMAX+cG9zdAAAFgAAAABAAAAAUgI0AoRwcmVwAAAKHAAAAI8AAACnaEbInHicY2BkYGBgYmTL/sYsFc9v85VBnvkFUITh4f16azit9P8VMzPTQSCXg4EJJAoAT1kMBAB4nGNgZGBgOvj/FQMDsw8DEDAzMzAyoAIJAFiiAxwAAAABAAAAGABGAAIAAAAAAAIAGgA/AI0AAABiAFsAAAAAeJxjYGTSYZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM8AAIwMSCEhzTQFSCgxVTAf/vwKqPMggBlMDAMBxCoUAAAB4nGOUYAADRl8QAUT2DFlMmgz5QOzELMTgwTiNwYjZh8GD6RmDJVMqgxKTP4MxUyGDLpMegzaTBIM2ox6DOtNrBn2gnDZTDVBODygXBcT+DCqM3xiMAQD2DH8AAHicY2BgYGaAYBkGRgYQmAPkMYL5LAwNYFoAKMLDoMCgx2DE4MzgyRDAkMiQxpDJUMBQxFDCUPX/P1AVSNYQLOsPlE0GyubCZP8//n/t/5X/R/7v/7/r/6r/K/8v/7/k/+L/i/7PhdqIEzCyMcCVMDIBCSZ0BRCnIwALAwMrG7ox7GCSA0xycqHLcjPw8PLxMwB9ycAgKCQswiDKIAaWEMfvODoBALb+JagAAAB4nK1Xa1sbxxWe1Q2MAQOSsJt13VHGoi47kknrOMRWHLLLojhKUoFxu+s07S4S7v2S9Eav6f2i/Jmzon3qfMtPy3tmVgo44D59nvJB552Zd+Zc58xCQksSD6MwlrL3RCzu9qjy4FFEt1y6ESeP5ehhRIVm+tGsmBWDgTpwGw0SMYlAbY+FI4LEb5GjSSaPW1TQqqEaLSpqOTwu1urCD6gayCTxs0It8LNmMaBCsH8kaV4BBOmQSv2jcaFQwDHUOLza4NnxYt3xr0pA5Y+rThVrikQ/OozHq07BKCxpKnpUDyLWR6tBkBNcOZT0cZ9Ka4/GN5yFIByEVAmjBhWb8d47EcjuKJLU72NqC2zaZLQZxzKzbFh0A1P5SNIGr28w8+N+JBGNUSpprh8lmJG8NsfoNqPbiZvEcewiWjQfDEjsRSR6TG5g7PboGqNrvfTJkhgw40lZHMTxMI3J8eI49yCWQ/ij/LhFZS1hQamZwqeZoB/RjPJpVvnIALYkLaqYcCMScpjNHPiSF9ld15rPv+CFAyqvN7AYyJEcQVe2UW4iQrtR0nfTvThScSOWtPUgwprLcclNadGMpguBNxYFm+ZZDJWvUC7KT6lw8JicARTQzHqLLmjJ1i7CrZI4kHwCbSUxU5JtY+2cHl9YFEHorzemhXNRny6keXuK48GEAK4nMhyplJNqgi1cTghJF0ZOrERqVbptVSycs52uY5dwP3Xt5KZFbRw6XpgXxRBaXNWI11HEl3RWKIQ0TLdbtKRBlZIuBW/wAQDIEC3xaA+jJZOvZRy0ZIIiEYMBNNNykMhRImkZYWvRiu7tR1lpuB1fp4VDddSiqu7tRr0HdtJtYL5q5ms6EyvBwyhbWUEKU5+WPb5yKC0/u8Q/S/ghZxW5KDb7Ucbhg7/+CBmG2qX1hsK2CXbtOm/BTeaZGJ50YX8Xs6eTdU4KMyGqCvEKSNwbO45jslXXIhOFcD+iFeXLkBZRfgtQnKAUa5hJYMN/rlxxxLKoCt/3ORI1GIK1rDbr0Yee+zzitgpn616LLuvMYXkFgWf5OZ0VWT6nsxJLV2dllld1VmH5eZ3NsLyms1mWX9DZBZaeVpNEUCVByJVsk/MuX5sW6ROLq9PF9+xi68Ti2nTxfbsotaBL3nkOs6//tr6yoyf9a8A/Cbueh38sFfxjeR3+sWzCP5Zr8I/lF+Efyxvwj+WX4B/LdfjHsq1lx1TuTQ21VxIZsAmByS1uY5uLd0PTTY9u4mK+gDvRleekVaWbijv8Mxkue//lSa6zxUrIpUcvrGdlpx5G6I7s5VdOhOc8zi0tXzSWv4jTLCf8rE7c3zNt4Xmx+i/Bf9v31GZ2y6mzr7cRDzhwtv24Nelmi17S7cudFm3+NyoqfAD6y0iRWG3Ktuxyb0Bo749GXdVFM4nwAqL94mnadJx6DRG+gya2SpdBK6GvNg0tmxc+XQy8w1FbSdkZ4cy7p2mybc+jCm5DzpaUcHPZ2o2OS7Is3ePSWvm52OeWO4furcwOtZNQJXj63ibc9uzzVAqSoaIyXlcsl4LUBU645T29J4VpeAjUDnKsoGGHn665wGjBeWcoUba5VnCJkYwyCq78mVNxIhvRZCOK+M1b6qe6UAidSSwkZstreSxUB2F6ZbpEc2Z9R3VZKWfx3jSE7IyNNIn9qC07eNnZ+nxSsl15KqjSxOj+yY8Ym8Szqj3PluKSf/WEJcEkXQl/6Tzt8iTFW+gfbY7iDl0Oor6Lx1V24na24dRwb187tbrn9k+t+mfufdaOQNMd71kKtzXd9UawjWsMTp1LRULbtIEdoXGZ63PNRj7Fl5pvXecCVbg+bdw8e/6Ozubw6Ey2/I8l3f1/VTH7xH2so9CqTtRLI87t7KIB3/EmUXkdo7teQ+Vxyb2ZhuA+QlC31x6fJbjh1Tbdxi1/45z5Ho5zalV6CfhNTS9DvMVRDBFuuYMXeBKttzUXNL0F+FU9FmIHoA/gMNjVY8fM7AGYmQfM6QLsM4fBQ+Yw+BpzGHxdH6MXBkARkGNQrI8dO/cIyM69wzyH0TeYZ9C7zDPom8wz6FusMwRIWCeDlHUyOGCdDAbMeR1gyBwGh8xh8Jg5DL5t7NoG+o6xi9F3jV2MvmfsYvR9YxejHxi7GP3Q2MXoR8YuRj9GjDvTBP7EjGgL8D0LXwN8n4NuRj5GP8Vbm3N+ZiFzfm44Ts75BTa/Mj31l2ZkdhxZyDt+ZSHTf41zcsJvLGTCby1kwu/AvTc97/dmZOgfWMj0P1jI9D9iZ074k4VM+LOFTPgLuK9Oz/urGRn63yxk+t8tZPo/sDMn/NNCJowsZMKHenzRfOJSxR2XCsUQ/z2hDca+R7OHVLzeP5o81q1PALgKA/R4nGPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdidNokzMmiBGJt5OBi5ICwRNjCLw2kXswMDIwM3kM3ptIsBwt7JwMzA4LJRhbEjMGKDQ0cEiJ/islEDxN/BwQARYHCJlN6oDhLaxdHAwMji0JEcApMAgc18bIx8WjsY/7duYOndyMTgspk1hY3BxQUAq0Yq9QB4nGNgwALCgFCSQZLp4P9XTEAAEoKyBf5/YmAAAHaGCEYAAAAAAAAAAAAAAAAAABwAXADAASIBYgGiAhACbgLQAxQDegPQBAQEaAS+BPwFTAXUBh4GbAAAeJx9Vn1sG2cdfn/vfbzns33xnX12HNtx7s4fSZw4iT+TJk29pu2Sxcmapg1rO+p11Za2tOsHGuoo2yI2pglpHUPsQ1s7NAQT1aYC05BAbEidtJWKwSQoaEiIP5AYGgi07i+kUZffe3aalA2ky5uz7+T3+T2/5/k9LwFymBByBVdGgrUAASD78QuDzAcNyjpzlZBsZ0qVwpXkQDI5MMuXJD4nQI7h8jZ9nnSS4dqgClSAukAomSGiIH6N4C0I9JAEaz+Y0XXT1mUWz1mZHlYuFiahrMtOuVAthE091A3jAG+nmv9KOUP9bHThKzV8t3/IEYSkLxCiLJasKca190IBX2v/zbh8gPvnyWRtXMPNoM5AFiRBllaISICKcIgIAt1PKI3MEUkijRYOXPMkn8uEQr26gmjSzCpVNkGlXMo4tswqRYQTkh07D+VS64NGmQYdUCxUK1X4IN48JbA/3Ds/VZgPCJ5o3NGZET+21Fgx+pNJpeZ5/OJu5tUuXDBU9pejB7buG81D0ox1CfHorfcdWbJGKz0JVvKcZp4Ft47p63+jl+lFMkwmamNeEMR+kGRaJ4Ioi4K8QmRJlKWHiCjCfopsam4pnNIOpLQ/YwZTNmOJXJpDzriII9VKIZyAVg3ZPDi2JpihbqFYqFQrpUmsg15+4dQz77//9LGlkhIQRB+TKeiP7Owa3zE52Lfx9lu69zwhA5VE/4d3ffvKc89e2T3n83T8I6AIsnLsIV//lod3bj+9bVD78rIkShRrKGAhB+grJEFytd5gBxVuE10pCCJ8SgZp207bVksGjs11UCnrpUwOymEk2MQWoBjCqIUDzpfud7pGu/Bau0M1GAnakTCS7t21qwkDd0IOsdMXiZckSbIWx47DfuJyJQirXPVmUrbIunKwRlSYlfIU2aHIDkU9UkH41VNP/pr/LQ/NLvb3LcwN5WcXc3076kOw+Mxvf/Psc7//3deXHp1OOdOPfm7vE7dnM3NnCO4/hss5rD+Oytr7uqZSOjP7w/D2O2pJtBUBRpZlEEWpga3T5gQkw1WlQedjtQSR8BmTxEOrr65/vrvmdaoWUubYCuvm2HNgcnbM/+LOcosRcsDpw1IEeu6pfT+OVjqdE8edzkoU7+DowSeXqWFtHb7H7nhmeKtlULg6e/ifq1y6rN5XN2PFZFTran7clSzGsDYba5uiQZIiWVKrbcyAIvtQLpTWQ0BmPKCg0xW6TGQ5MsckAdGThgitVqfT2XQ2lDUsM6QPq1gAtpyVC+XSEDgykg4RM4tlTArVIJdlJNgNxSFgdGo6erhsht+zxXBwsdcKW6ZHfklkqqa8qnb1//Lz+wQhGldKo7tVJRCCKH4CLaZ3wDmvEm5u6dLOX73qeqt4/WMapwHsCiJX0Vu9LW/dGBNtU0W4UG7ctv3Vyf3lpB1nnb/a9ioW0F4aGuuz3RW//86TL798ctdEVpVUkGWP6F/eaPRtzNtWfiIXnEI/cHP96NZTL/75xU1FX+d5ryL5d+9RuguNTZONQlLZU3edxbU1iMtGSkmAWMSp9aCjqNBAuIE511XtoVYuW6Zuc1dxoFa5JQynpYtspqULLhycYXTjmUPNv45EIiMQPfzE4kDxzrmY3x+bO1BKXTv4dDSQhJPJQPSFw18cvUVLNB9LaNNV5DKHOHS4jv8XavNEZDIT5RUfeD2Kx6vgmCIer+zhIlaAKcvSGkx1HUxccySXTVlJ3XAKGAi67mdJPoLXEEecPHC8CeDyLpoOF7grenRoleqJZtXF/mYw6hnfdW/Mv63SE432VLb5Y0eGJ9I6e+stXsMxrOH8zgkt8T2ndKnk/DSh6YNjhVZ2YC3wEdaSJptrmwgRKMbVCnItiVTC0CCiLIjLHsStNoiqBuYUbCJrEMYMNp9OObZuBW1eQMCL4OF/4C2aWbZWFXwUVcZ3NGL+qUoyGk1WpronTh9z63gNlnaNa4kfuDC/n9K4nNv4OdYsnwrYf/P/dN/Usfs97kxdt2ekara6XgR2/Hg5Eim3Vvz9DguOWx1R9675DasD9xnC/r6B+wyT8dqooykCyFAPuhbnxWNXGfZy1eD4It94eKi/L2OFdNsM68OcjJbBEUBWkO2swPRQ0Wx53oWEMzcSg0mM+lVo9I0D0sGRCPxcCSs/g+n0yNJ0ZOQB3Se9+oqsGg9whlp8nIXmoGHAu9B8vM6B12EXMiT5m3vhu5qEbzTPJANtnW5AeGkyVqt0m6qAAVW3Qb5NA5hh3FRyg/czMMfJhP183Bowb4etIJaRCnh4S23Ehn7PQnZdAS5+nFmglxwMqyrdMC2qHqX5jurCDpVOeRVZAnM6M7wEH9abDwZUL7zuaz7fxvsgi4LEmg9DH/+Ce5vPpxmcTx5MjnW5FbmRWziDOjMho51bbmzdnFpoCTpz7o/nzv7p7FJqfCwR37AhnRob3zA+liLXT5w9e+L4Sy/ds/nuAtJ4YPO2g9VotHqQrM4V+AR5ipAMGaz1fyqoAq2garSCyKmgwlD161PoZoEXwjLiWjXCJMAnR2cfi4wcOeKKvGPxyJJkjg5sjfmPDoyacP/Yju9g+1qt5eNm1/xAPBfREm9Gcm18yM0C4iuRrWS+NptFM44AVXB6K8ATZ4WoBBQV0KeSJDfIakddexhzaNZVBjfXJsbsARd/n8NFml6d3eUSHpA+w62tIyDrppFwhJ9KSsWCgOmKSdAqjtIFbzaxzQqr1KP2FPZERr5wmJf50e4H6qNOvyobHn84x3z+n4Tiw058kPnuyI9H2BbNtq1wOh/rjHt7LtxU/kIlN6X5hxJde/XOST/0JnNhH0ULvRbuTbRmVgpJycG/8YRTrA0H/FSYkQFPuYCTi48Cdzy1GdjPGRDmdSNt4xVwe+bwpGpngJlZOzvwIy8eMWguygo7coGuqpl9J2tWuwK5nSMsqsHfYXFfwdvT/FZPkMMN9sCRHm9h3/lWvuJyCXsU4/lqAAgSEBE7RIEn3IoMkojXQyjp9tDCxCV33YiCGImlLSNtMRbjEcDlXYU2IN4B5nJdhUu+5jd1D4Py6fnbxKgCdwdU1nz3q8VbLJ9w+bLoRRX8orb9vKgytTkWLlby5D+DeO0ceJytUstu00AUPeMmkZCAHRvE4iKxSCrZ2EkWfaibhrYoatrKaapuJ62dWEk8ke00yjfwIywQW/6Fr+F4bCGBgBUezb3nPuc+DOAlvkKh+u5+YoUX6m2NHbTUSY33EKjPNW7gldOqcRPvnLjGLeq/0VM1nlH6YqNKrPBaNWvs4Ll6X+M9TNWHGjewr77XuImPzpsat7DvfMIABmvskCHBDHMUEHTh8/Tg8lT4kNopvQSn8EiH0HjAgrFb5OQJdRopHq3Nw8h6XVl75Vl6tCmnNlPElzSWiCkZS2+puyefYIwzhKSCC/Jram4odZgRA7PeZclsXkjX93uuS3oo052cejLUDwuzzReJ6PRRht7IkyuzpTKRtkllGs31MhYTy210L5PxWTiWi/B6cjPuMO8lCw5ZyMo2MSBds62AjeNyFJqVTgd6nQcUy5Yy67ekYLKVJj+3fRWWZ5xiZGfoMVxwxPv39C71ESM2TKcZW/n3aHPtLaffRZ9PmLQ4N9kskq7ny5H8UpYbRrPNUmfU9wI34Fi6/X819fur+GO28t+NaM25u2pvVU8+6xEc8xY8MTNsyA03mtgplHt+4jseDngDbg53UZYn3AJr9/tyLEUR601h5klaSPsp8A68oPMfCv4BQ12cFHicbcNLCkBQAADA8ZxAUU4gCyuuIJ+y8ElWLuPiyNrUCD73pfQnf0eCWCKVKVRqjVanNxhNZovVZnc4H88sBrgAAQAB//8AD3icY2BkYGDgAWIxIGZiYARCcSBmAfMYAASbAEZ4nGNgYGBkAILbCvvfgeiH9+utYTQAU3EHngAA')format("woff");}.ff2{font-family:ff2;line-height:0.727000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff3;src:url('data:application/font-woff;base64,d09GRgABAAAAABH4ABAAAAAAHQAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAR3AAAABoAAAAcnt++ZUdERUYAABHAAAAAHAAAAB4AJwAWT1MvMgAAAeQAAABDAAAAVlS/XyhjbWFwAAACaAAAAIAAAAF6FyEeZWN2dCAAAApoAAAAGgAAACgEvwSlZnBnbQAAAugAAAbwAAAOFZ42EcpnYXNwAAARuAAAAAgAAAAIAAAAEGdseWYAAAqoAAAE+gAABpDoJS6OaGVhZAAAAWwAAAAzAAAANiXKQw1oaGVhAAABoAAAACEAAAAkBYMCi2htdHgAAAIoAAAAPwAAAEAXOQNpbG9jYQAACoQAAAAiAAAAIguqChhtYXhwAAABxAAAACAAAAAgAPkAv25hbWUAAA+kAAAB2wAAAz98F6BPcG9zdAAAEYAAAAA1AAAAQgEoAdZwcmVwAAAJ2AAAAI4AAACnZUDAnHicY2BkYGBgYmR79uVjQjy/zVcGeeYXQBGGh/frreG00v9vTFuZtgG5HAxMIFEAovoOYwB4nGNgZGBg2vb/G5DsYmD4P51pK0MKgygDMhAAAJXSBhEAAAAAAQAAABAALAADAAAAAAACAA4ALQCNAAAASgBkAAAAAHicY2BknMU4gYGVgYGpi2kPgyxDD4j+P5fxAYMhIxNQlIGVmQEGGBmQQECaawqQUmAoZdr2/xtQ5TYGLpgaAFD5DJAAeJxjlGAAA0ZfEMHAwNTFEMukwxDFeJXBk3Ezgx3jNyDezGDD8IzBj/EVgwVQnR9jOYMSYxJDMlAuAgAoLwuyAHicY2BgYGaAYBkGRgYQKAHyGMF8FoYIIC3EIAAUYWJQYHBicGNIZEhlyGTIZyj9/x8oBxNLBosV/f////H/Q//3/1/6f8n/hf/n/J8FNRMNMLIxwCUYmYAEE7oCiJPwAxYgZsUtzcbAzsEJpLnAPG4GBh5ePn6ChtINAADnGhioeJytV2tbG8cVntUNjAEDkrCbdd1RxqIuO5JJ6zjEVhyyy6I4SlKBcbvrNO0uEu79kvRGr+n9ovyZs6J96nzLT8t7ZlYKOOA+fZ7yQeedmXfmXOfMQkJLEg+jMJay90Qs7vao8uBRRLdcuhEnj+XoYUSFZvrRrJgVg4E6cBsNEjGJQG2PhSOCxG+Ro0kmj1tU0KqhGi0qajk8Ltbqwg+oGsgk8bNCLfCzZjGgQrB/JGleAQTpkEr9o3GhUMAx1Di82uDZ8WLd8a9KQOWPq04Va4pEPzqMx6tOwSgsaSp6VA8i1kerQZATXDmU9HGfSmuPxjechSAchFQJowYVm/HeOxHI7iiS1O9jagts2mS0Gccys2xYdANT+UjSBq9vMPPjfiQRjVEqaa4fJZiRvDbH6Daj24mbxHHsIlo0HwxI7EUkekxuYOz26Bqja730yZIYMONJWRzE8TCNyfHiOPcglkP4o/y4RWUtYUGpmcKnmaAf0YzyaVb5yAC2JC2qmHAjEnKYzRz4khfZXdeaz7/ghQMqrzewGMiRHEFXtlFuIkK7UdJ30704UnEjlrT1IMKay3HJTWnRjKYLgTcWBZvmWQyVr1Auyk+pcPCYnAEU0Mx6iy5oydYuwq2SOJB8Am0lMVOSbWPtnB5fWBRB6K83poVzUZ8upHl7iuPBhACuJzIcqZSTaoItXE4ISRdGTqxEalW6bVUsnLOdrmOXcD917eSmRW0cOl6YF8UQWlzViNdRxJd0ViiENEy3W7SkQZWSLgVv8AEAyBAt8WgPoyWTr2UctGSCIhGDATTTcpDIUSJpGWFr0Yru7UdZabgdX6eFQ3XUoqru7Ua9B3bSbWC+auZrOhMrwcMoW1lBClOflj2+cigtP7vEP0v4IWcVuSg2+1HG4YO//ggZhtql9YbCtgl27TpvwU3mmRiedGF/F7Onk3VOCjMhqgrxCkjcGzuOY7JV1yIThXA/ohXly5AWUX4LUJygFGuYSWDDf65cccSyqArf9zkSNRiCtaw269GHnvs84rYKZ+teiy7rzGF5BYFn+TmdFVk+p7MSS1dnZZZXdVZh+XmdzbC8prNZll/Q2QWWnlaTRFAlQciVbJPzLl+bFukTi6vTxffsYuvE4tp08X27KLWgS955DrOv/7a+sqMn/WvAPwm7nod/LBX8Y3kd/rFswj+Wa/CP5RfhH8sb8I/ll+Afy3X4x7KtZcdU7k0NtVcSGbAJgcktbmObi3dD002PbuJivoA70ZXnpFWlm4o7/DMZLnv/5Umus8VKyKVHL6xnZaceRuiO7OVXToTnPM4tLV80lr+I0ywn/KxO3N8zbeF5sfovwX/b99Rmdsups6+3EQ84cLb9uDXpZote0u3LnRZt/jcqKnwA+stIkVhtyrbscm9AaO+PRl3VRTOJ8AKi/eJp2nSceg0RvoMmtkqXQSuhrzYNLZsXPl0MvMNRW0nZGeHMu6dpsm3PowpuQ86WlHBz2dqNjkuyLN3j0lr5udjnljuH7q3MDrWTUCV4+t4m3Pbs81QKkqGiMl5XLJeC1AVOuOU9vSeFaXgI1A5yrKBhh5+uucBowXlnKFG2uVZwiZGMMgqu/JlTcSIb0WQjivjNW+qnulAInUksJGbLa3ksVAdhemW6RHNmfUd1WSln8d40hOyMjTSJ/agtO3jZ2fp8UrJdeSqo0sTo/smPGJvEs6o9z5bikn/1hCXBJF0Jf+k87fIkxVvoH22O4g5dDqK+i8dVduJ2tuHUcG9fO7W65/ZPrfpn7n3WjkDTHe9ZCrc13fVGsI1rDE6dS0VC27SBHaFxmetzzUY+xZeab13nAlW4Pm3cPHv+js7m8OhMtvyPJd39f1Ux+8R9rKPQqk7USyPO7eyiAd/xJlF5HaO7XkPlccm9mYbgPkJQt9cenyW44dU23cYtf+Oc+R6Oc2pVegn4TU0vQ7zFUQwRbrmDF3gSrbc1FzS9BfhVPRZiB6AP4DDY1WPHzOwBmJkHzOkC7DOHwUPmMPgacxh8XR+jFwZAEZBjUKyPHTv3CMjOvcM8h9E3mGfQu8wz6JvMM+hbrDMESFgng5R1MjhgnQwGzHkdYMgcBofMYfCYOQy+bezaBvqOsYvRd41djL5n7GL0fWMXox8Yuxj90NjF6EfGLkY/Row70wT+xIxoC/A9C18DfJ+DbkY+Rj/FW5tzfmYhc35uOE7O+QU2vzI99ZdmZHYcWcg7fmUh03+Nc3LCbyxkwm8tZMLvwL03Pe/3ZmToH1jI9D9YyPQ/YmdO+JOFTPizhUz4C7ivTs/7qxkZ+t8sZPrfLWT6P7AzJ/zTQiaMLGTCh3p80XziUsUdlwrFEP89oQ3Gvkezh1S83j+aPNatTwC4CgP0eJw1yb0NwjAUBOB7OAHzo0jQ0iKBMoVluaMCUTh1MkBGoEFyA7P44cbxBGwFmIirvrvDMeJ1tkz0aDwNEhJtz5jp54ZQZ4RVSYtRa/GT1EkoEJZfz3XC6AECMLwjd7JeOZt7Z/iQe5QYB5hmy/s8JXkFFcq1l/+REypBVR3pffPFnScwoeymMOYDo+Eq5AAAeJxjYMABbBlsmbYx7mFgAJKn/38DAB5XBWkAAAAAAAAAAAAAAAAAUAB+AO4BLgGIAdQB9gIuAlgCtAMEA0gAAHicdZRLbBtVFIbvufNKbMcez/gRP5PxeJwmTt3Wk8wkTppMIE5b13Ecu81LScwk0FCBECBg00pRQaUtIFRUKiGEgA2iEkJiQdtNFyAhumDBkkWRKlZIILYgITCcGSethEpkKWPf0T3f+c//H8KQDULoTXqL+EmU9JND1rAPWAaqhCEsx7A7hFJoEQD/POE40iKEiKSmZJUhJcMLybzmB1WR9WJE8IOQBsbI5UHQi4b7wOADPSd+stNuv/vzzisB79by/NoR71b93Oj5hQuKb3v9Yul6Y/fOyRforbPlw8sR3zZ4i+U/TrZ/HVtq/7aAxYCsId91+iXpIarVj98pA3QHT9gWYVmkYhiRqQXxr84JiTyoGYdAERRGlRV6+XO+l79gwGBP+4fHl67BDfoytCfb3+B9eC058c/vcB++I3EyQJ60PCGgDAXC0+rJL6L1FSuNr3A85c5iEdbGctI84XliA7gqJKzMI17AI+ctsFE0GWqrlicXUtWoKgpCKq+oJgqWKVDTMI1pMHJqRjANlC8AZsZPBT6iF00D3ql09dnD6UE/x4kvzpzt9mpavdbVWJw7Lj7nT0wf0zk+f2A4q2mRWCKXD1ayIW5wpFR8bGjz+EczQlDtTeZCIdRqCvv7BfuLkbx1wAsUeqM+hqG06kzVAZQc/YiN0DKpZbWswgrxvMajiOYUIFZUKCAu3+ESQvBxc2V1MxS6vnWwlIv364XyRiBgHm022KGRy/b61WBsJhZ6eq5ijyXjjr5Yn0643oqRTcuLzqIipRy7L3ACq+MIWZbaSCS5Fnuobt9/T11pOe6htN1ZVcpmRMeIqOwD7KisM2Zunxs+rXqr9WPlUPjVYwv6dOXuod5x4xlZmhqd0Y9esu1LI5D9+6v7o821pdPIPIma3UPNQiRFRq0ijzhQ5YFDL3JkB2kYG7mQBsDlkmktHA6nwqmBrJbBISfymtKRC8s/IIoIRoE6RHC3/X3AmqjXGRaap1Za4dC1xc1UdJZK/clAfjH2U80eTyjs6JUt+8r8xLA2EumeHXG0rCHAIH0bcymQlBXH/xQYTAJAYL6TSsyA6MxPV2XdVE39vcpmRVmSluDO+SXi+n0M5xHA3rwkQvqs5CNdoGazGdcFjlH3bCA4RvUDdmXAn+H3V5e3w+EPVpftlmSNG2eyR0tjZ3584vWL9vZbb641lk/f2FwnbnYd5g/hW+IhipXucpV0OGyMMA04CopQk4KySw1+CACSC4YJV+deChyqtMpS41l4DTYq9+DrlXXo3JnB+XyGPeTJYetgEiVI8SgEh3czuLSYfa9gsb2G+tOJmIot9XZaGjDdjBXoQAEGsD8WpyM4OeTTNIqfCJzzrS03TyRKzfUA60uHg4cHw33erqF8KeavTMZLJ5o9rCcZltR+1R/fNRvDs8WynBB51hMMZ0e00VgP7ZvRpqSYn2eF7oiU73BvI/c1OoFEG5ZHBh6BO5vGg0FIEUwl8zwHaKoW21HH2TSdDhI4KoYyF//nGFdMxlmAkuKsGCe9pozjN3VBF1SBx26h2iwvxscbvlOJcuIN3xuGeEQvpAZ2oae0u1v6q6Eiywp6g4c7RCKzNx1nwV5Gpb166JCtB9GM7P3oJpJhYGsvkbdlVc6IziLezyNG0UmDgQ9wo+KtP1XK9MxV57oiR/QF32S1ODldgvn2bU0pmZAm/wLLYBAMAAB4nJ1SzW7aQBD+lgBqparKrdc59ABSvbKBSiG5JUpSoQARDhGnSnZiwIJ4E9sEcesb9EWqPEGepa/QV+jntdsDvdWr2flm9tvZ+TGA93iBQvnd/sUKb9SHCtfQVLrCB/ikvle4jkP1s8INfKz1K9zEYe0bmar+ltYPe6vAivxGhWt4p6TCB5ipzxWuQ9RrhRv4on5VuAmpfcUZDB6xQ4oYCyyRQ9CBy9WFw1XiPr0hWYJTaO4DBLjDine3yKhj+gIkuLdnGkPLGtnzklkwWrQTGyniSwHWmNMydr+hb0Y9hY9zTLgLLqnH9FzTajMizszjLo0Xy1w6rtt1HO59CXdyqmUQ3K3MNlvFEiT3MtBDLSOzpTOWlkkkjJbBei5mLjfRTKb++cSXy8l4eu23GfeKCfu2gAweS8bV0A+SzCMqakjxYLPFyKQPAfWFLSS3OmXbIts0zUYJjin78RyWETJAjCdsLLtgdXnmWCma3EGPgU2SX5h0EUlHu3Isf/JwxuE6ftpEdHU9x2Phnd6/ae8/g/3rxe8YMeOMlHIUZdYu3xacUHKuOUNuqA2HFNs6i9E98wmNI4rHYeA2SrOYjWWebk9OJM/nwSY3yzjJpfXs6SPttf8nw99sGo0UAHicY2BiYPj/BYjTGXQYsAEBIGZkYGJgZlBl0GRwYXBjcGfwYPBhCGIIZQhjCGeIAAD5OAb9AAAAAAEAAf//AA94nGNgZGBg4AFiMSBmYmAEQn4gZgHzGAAEQwA+eJxjYGBgZACC2wr734Hoh/frrWE0AFNxB54AAA==')format("woff");}.ff3{font-family:ff3;line-height:0.704000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff4;src:url('data:application/font-woff;base64,d09GRgABAAAAACtwABAAAAAATcAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAArVAAAABoAAAAcnt++ZUdERUYAACs4AAAAHAAAAB4AJwBZT1MvMgAAAeAAAABGAAAAVlXoGT9jbWFwAAADIAAAANsAAAGSsIqMH2N2dCAAAAt8AAAAKgAAADQLcgJwZnBnbQAAA/wAAAbwAAAOFZ42EcpnYXNwAAArMAAAAAgAAAAIAAAAEGdseWYAAAxQAAAcVwAANPjqRiRcaGVhZAAAAWwAAAA0AAAANiZXQlVoaGVhAAABoAAAACAAAAAkBlUC4WhtdHgAAAIoAAAA9wAAAUyl4xJcbG9jYQAAC6gAAACoAAAAqPwUCZBtYXhwAAABwAAAACAAAAAgAXQBr25hbWUAACioAAAB2gAAAz92JptBcG9zdAAAKoQAAACrAAAA6EFGhSRwcmVwAAAK7AAAAI8AAACnaEbInHicY2BkYGBgYmRTfpLyJ57f5iuDPPMLoAjDw/v11jD6/+H/bMwLmd4BuRwMTCBRAI8ZDnR4nGNgZGBgevefjYGBecP/w/+vMy9kAIqggGAAqvQHOgABAAAAUwBJAAUAAAAAAAIAIABIAI0AAABuARwAAAAAeJxjYGScyjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqCgAwMCBKS5pgAphd/MTO/+swFVvmP4BeQzguQADJIMiwAAeJxNkDFLw1AUhc+9jwy2kEUIhZSAtCCE4NChBCft4lBKSamCS2hEBPFHZLJ/or+guBQcnJx07dIpo46dXEpXe96Lg4Ev59173uG9+6QF98mIvx/AXCKVZ4xJKjtcmAY1QEG/6XTn+jG5/VNLm5z+q2u4Xxdok0JLDHSDmV4j13OyYP2JnHtyqRDrG70IuXnCPfsz/ULKTK1zaoJEl+jqymV9s4IvJ3gggXyjrx4m8k7fQ5fakR5Cey/WGecaSvP3Q7aYcp2ZEJnt049szmVumC85xyOOnbeGry88Y8234Vpe6dn5K8edOcJerxBqq8acITwAgxY/uQB4nGNgYGBmgGAZBkYGEOgB8hjBfBaGAiAtwSAAFOFgUGBQZbBiCGeIZohlqFKQVJBVUPrN/P8/UAVIRoPBESyTCJSRAcow/P////H/+//v/r/+/8r/y/8vPDB6YPBAh9UfagtWwMjGAJdmZAISTOgKIE4FuoyBlY2dg5OLm4eXj19AUEhYRFRMHKJGQlJKWkZWTl5BUUlZRVVNXUNTS1tHVw8oo89gACQNjYxNTM3MLSytrG1s7ewdHJ2cXVzd3D08vXA7DB34Ea+UgcHHl8Ebxg4IJKQaADLBKcgAeJytV2tbG8cVntUNjAEDkrCbdd1RxqIuO5JJ6zjEVhyyy6I4SlKBcbvrNO0uEu79kvRGr+n9ovyZs6J96nzLT8t7ZlYKOOA+fZ7yQeedmXfmXOfMQkJLEg+jMJay90Qs7vao8uBRRLdcuhEnj+XoYUSFZvrRrJgVg4E6cBsNEjGJQG2PhSOCxG+Ro0kmj1tU0KqhGi0qajk8Ltbqwg+oGsgk8bNCLfCzZjGgQrB/JGleAQTpkEr9o3GhUMAx1Di82uDZ8WLd8a9KQOWPq04Va4pEPzqMx6tOwSgsaSp6VA8i1kerQZATXDmU9HGfSmuPxjechSAchFQJowYVm/HeOxHI7iiS1O9jagts2mS0Gccys2xYdANT+UjSBq9vMPPjfiQRjVEqaa4fJZiRvDbH6Daj24mbxHHsIlo0HwxI7EUkekxuYOz26Bqja730yZIYMONJWRzE8TCNyfHiOPcglkP4o/y4RWUtYUGpmcKnmaAf0YzyaVb5yAC2JC2qmHAjEnKYzRz4khfZXdeaz7/ghQMqrzewGMiRHEFXtlFuIkK7UdJ30704UnEjlrT1IMKay3HJTWnRjKYLgTcWBZvmWQyVr1Auyk+pcPCYnAEU0Mx6iy5oydYuwq2SOJB8Am0lMVOSbWPtnB5fWBRB6K83poVzUZ8upHl7iuPBhACuJzIcqZSTaoItXE4ISRdGTqxEalW6bVUsnLOdrmOXcD917eSmRW0cOl6YF8UQWlzViNdRxJd0ViiENEy3W7SkQZWSLgVv8AEAyBAt8WgPoyWTr2UctGSCIhGDATTTcpDIUSJpGWFr0Yru7UdZabgdX6eFQ3XUoqru7Ua9B3bSbWC+auZrOhMrwcMoW1lBClOflj2+cigtP7vEP0v4IWcVuSg2+1HG4YO//ggZhtql9YbCtgl27TpvwU3mmRiedGF/F7Onk3VOCjMhqgrxCkjcGzuOY7JV1yIThXA/ohXly5AWUX4LUJygFGuYSWDDf65cccSyqArf9zkSNRiCtaw269GHnvs84rYKZ+teiy7rzGF5BYFn+TmdFVk+p7MSS1dnZZZXdVZh+XmdzbC8prNZll/Q2QWWnlaTRFAlQciVbJPzLl+bFukTi6vTxffsYuvE4tp08X27KLWgS955DrOv/7a+sqMn/WvAPwm7nod/LBX8Y3kd/rFswj+Wa/CP5RfhH8sb8I/ll+Afy3X4x7KtZcdU7k0NtVcSGbAJgcktbmObi3dD002PbuJivoA70ZXnpFWlm4o7/DMZLnv/5Umus8VKyKVHL6xnZaceRuiO7OVXToTnPM4tLV80lr+I0ywn/KxO3N8zbeF5sfovwX/b99Rmdsups6+3EQ84cLb9uDXpZote0u3LnRZt/jcqKnwA+stIkVhtyrbscm9AaO+PRl3VRTOJ8AKi/eJp2nSceg0RvoMmtkqXQSuhrzYNLZsXPl0MvMNRW0nZGeHMu6dpsm3PowpuQ86WlHBz2dqNjkuyLN3j0lr5udjnljuH7q3MDrWTUCV4+t4m3Pbs81QKkqGiMl5XLJeC1AVOuOU9vSeFaXgI1A5yrKBhh5+uucBowXlnKFG2uVZwiZGMMgqu/JlTcSIb0WQjivjNW+qnulAInUksJGbLa3ksVAdhemW6RHNmfUd1WSln8d40hOyMjTSJ/agtO3jZ2fp8UrJdeSqo0sTo/smPGJvEs6o9z5bikn/1hCXBJF0Jf+k87fIkxVvoH22O4g5dDqK+i8dVduJ2tuHUcG9fO7W65/ZPrfpn7n3WjkDTHe9ZCrc13fVGsI1rDE6dS0VC27SBHaFxmetzzUY+xZeab13nAlW4Pm3cPHv+js7m8OhMtvyPJd39f1Ux+8R9rKPQqk7USyPO7eyiAd/xJlF5HaO7XkPlccm9mYbgPkJQt9cenyW44dU23cYtf+Oc+R6Oc2pVegn4TU0vQ7zFUQwRbrmDF3gSrbc1FzS9BfhVPRZiB6AP4DDY1WPHzOwBmJkHzOkC7DOHwUPmMPgacxh8XR+jFwZAEZBjUKyPHTv3CMjOvcM8h9E3mGfQu8wz6JvMM+hbrDMESFgng5R1MjhgnQwGzHkdYMgcBofMYfCYOQy+bezaBvqOsYvRd41djL5n7GL0fWMXox8Yuxj90NjF6EfGLkY/Row70wT+xIxoC/A9C18DfJ+DbkY+Rj/FW5tzfmYhc35uOE7O+QU2vzI99ZdmZHYcWcg7fmUh03+Nc3LCbyxkwm8tZMLvwL03Pe/3ZmToH1jI9D9YyPQ/YmdO+JOFTPizhUz4C7ivTs/7qxkZ+t8sZPrfLWT6P7AzJ/zTQiaMLGTCh3p80XziUsUdlwrFEP89oQ3Gvkezh1S83j+aPNatTwC4CgP0eJxj8N7BcCIoYiMjY1/kBsadHAwcDMkFGxnYnTaJMzJogRibeTgYuSAsETYwi8NpF7MDAyMDN5DN6bSLAcLeycDMwOCyUYWxIzBig0NHBIif4rJRA8TfwcEAEWBwiZTeqA4S2sXRwMDI4tCRHAKTAIHNfGyMfFo7GP+3bmDp3cjE4LKZNYWNwcUFAKtGKvUAeJxjYMAC/IDQjsGOaRsDA9M2xj0MDP/tmA7+f8V0kPHs/6//jQGH6wvmAAAAAAAAAAAAAAAAAIgAtADgAVIBjAHGAeACAAIoAqIC9ANoA/wEQATWBXIFuAZQBugHKAdyB9AIGghaCKII3gkuCWYJhgnOCgQKMAqOCsQLGgteC+AMLgymDNwNIA1aDbIN1A32DoYPFA9gD+IQPhCiEV4RshHuEjgSfBKcEwITUBOUFAIUXhSgFRIVWhW6FfwWWhaaFuoXPBdqF5YX1BfuGHgZFhmmGnx4nK17CXRb15ne/e97eAAIEMDDyhUkdi4iKREEwUWkQHEVwR0kRVCUuEiyRNuR7ThjWxNbli1LtpUoXuKZjDteJq09dsdOq0YSlUlUn1g5ObFiJ52kk/HMtKl92pM0mdNkpnU8mTgR1P/e9x4WEnKSnp5DAQ/3/u/d//7r9//viuhIx423BAP9OSkh5SRI2skI6U50CABE0oO0TvSE6PRkneiIwagzrBMjpcY0MRrpqgjUSKeHB52NzqDL7Q7aS/Q1jeCU/OFYW3u01R1y4gMC+CsO7KcjNwNt4YDfIricXiHa2r7p1/jMsbnZjvgMDBkyE0azwayHC6YSg/kP1PEMiVRLpU6ryWx1maTqCHyt8DcNzn3q7r3zd9+9LJmv22xmg53+k818/d+ro9DTMSvIVfFwpKPSRlOZVwp+EiCTNyQYQ3k4iZyw4G84TQi5p9xG9WWNukBYbov3CvGopJcYwzDW8/UWW11zmaNnoXFbdbCz5qPzMPBnJxr3xMvtC8cffGnpzw7uC+IDAOUsQWzLcys87LkoKougD7TH22NtzUIk6oZY4VPdPV//aPNT3ef5cxPQChfwub1kR6K5syVUYZMkgowRUQAxrQOB4loCalAUYZWACNPhsDcc9kv6KqatgL8F3C4nV1RbXK98t++CZhphF601oCrN5dTHlW/JCl7qccMFt9nk2m9wWcxuw4rdZHabrJ/w9XoEi7vMulZkGC7KDlviPodsl+2O+/pLHXKp2dBtry2lRrvsMA0WnVFl9yX6PTpMHGR7ogk3Jp5mAjwj6ahAiLCXfQtkGTcqkEm8wUHsdp/f7tPrKxuJM+CTnf6Y7PO3RX1yW6tL9tHv+TI/rcv8xOeDsjrwgCV7XebzZX5C+JqrN06RiyRFJDJ7iQBQGEueL5laSMg4CeQuQiks45UVJiqT5/04YWN3nckf3zRkh4l0+pIsy4K+vDGuD8QDsejFhvry8hSceCDFSE3kTXCSX+M2yhIu/E1gL1tsmc1NytwEQ76YD5yZX4LxzS6FT/xkfAqkTuHDpN5CrARZyP6yk4n0ReUZUbZwKpXK2uXX0H6sBXbpcTJC0Fy4TfFh+Jou85pkNZh1MMe+6N/rSn8z4zQbdKXCv3Oa8UZKGm78A1yjf452HibHk+drkSMXkwDaHljGCSqKcewimtgcuCYVgK4XTjUVmypjOyrLjaLy0+qcQKbT6fRGuKE+KOorGOcWCPibgVlxvBeQeY+b2iLNQsDPXNfjjrbG4VpdWTpe273L4Q9XLbVuS1c1TzgkY0Vj5VStLNfMTNXA0Bf2tnU5u5pSn/uT2d72lrZ05n8C7bDKde7D8U+f7Dl2G5dhGj9exT2byScvYVgUmK2wjZcjWxQ9kDmfZVwHeYpRNl+uGLNKVUBwszmmx3TCiGZkl23MieshFpUlfaw9HpWj8Grm8gPRqVPdzge6qMFNu3Q915/hPDbgx5vIYyM5nDB5ZCZB9Bc6pqkITXwV9aSoqJBLB6qVxZH1/Kmto5yzjaXGBhvTALK1C3qFGI/uVB+OYERR4ocF9MofhvtugDczd90/7q2ukyf6fdtr7EZZB6JR1/zMyh8EamuNQyX6uxyfkMqkjcT9wzU1He3e3n3lO1r8ZTqQzPqXHliMJEO1xp1G6ZgNlH2q9tdA/iJhqavxOkQqYIAAqm21mlkP8n0S+RZXuWaYjxRaZWWWSEQhicJ6IUnTx5FwK63dOovcpVUa4NZ6OVQXDvp1GKVCLABH4l60U5YCaCOgOnuBC0/SR7j9YuDVewGuHU/fP22qvbW9o99UEQ8PJ8Wmzu6G7fOuYM2RruRtHfGOmYvTx4/u3NE+s9O9rcXbI0HJeEvTjo7W9rauhUTr/mp5P/PTKuTiXfok5n0LmbgoYWJIKlt3E0EUTqPIRJY5RHJUi2bFJlhMS1hMJpPFZEGDlG0s5oYCrkDMF3OgPQZkSYB3D05mfnl938HX4euvvfZaD9roAty/K/MNrq8I6utN5KOWfDthqgKKmZUZPCqrGpkJofCYQzEx6iRRdwRNVFolkiQXUVpgC7GEWpBoEeX9VlKuxLqbU21RZqLEjy5Z5/Lr9dWKPsOKQlUfkPQB2efyuXgcffOhxe5DtT73/A6Do6m2cmd9XZdlN0xmftXcM3HH2wdOtW/rqG+j9pqBltREkx/uSny3/lRebK0g28jFhM2GLiyjrIJ+t6ATBdW+a/KirSgKq2jmnnGi020SVnU2jN6EqOnjiVQrz8ViUSeIDCcSXVql0SmCMdaFAoFIkMUqlAuDGM0CxxQeF5cLk4i+LcKuXZKLocB4O1yrDnSnqmJdDVUvfCIejbWNHDEOHB5amvH4e7sHEXmWtYV6w2X/rWsyMmBrGT0x/fy3nN2uBz6VOndwrL73wE6zzdMwvK23nqgx4UOU25MYt3K5nMnAwkIYxtcj2XDXtGnUznbpUtM43rlXTeYUJlkun3GxXA6IXgM2B/KPfuuDa4H+0abZnx3HoPUGvEgnI0effetWmAIdDKOYNB16SIC0kJc2XEaMDpCNTZocczrcornKrULfrLebkvweWgsGgw0NflVrCiyMN4MGBlksErhdu5yYS9sdeddw7b6F+eOTXb09d85M3dXT2zE9298ZH2D/hPHW7RMj8bZRjFH3zfTudzpTTcNHjw43pZyOJRCiu/vaYn19mQ+GR4ZHBkb35Nl8OWau1zHUgE6UUBE6hmqzUtOhcnQ5Ky0e0XObVYiLRPSbkKhS2zK7NQgYww2hYCAHriNxJpA4wyIMiKDsvBRtPR+GoLj++JahXTXNnYllQ+1iy9BS365UsC8RmQcocbf6eyLVaPSdwzD5wreaY+FP313XeO7gbUP93uEnPLK+vG13Q2dzaqJ+5xLh+IvjQbiCzOrJorJ1F3MChkBlltzpMhqXlWqbLjJppzy94/YEIEfyRjG9I+7g6d2BGFJWcWQK1lOZgZSyPuYVeoJu4OoyGbtkAsW4ORuY2PGhIhzlKsIkogCJIuMMSiRKDQaDbJDZihKu6AtEfPoARB1COBKQGH6gJ5bGMj8cHwXdwvC+agGkWLml4p136EZmAiDl9j0zEh4mDBqiTOga8mQhblJDFi6Z87jSXO6IBtMVl8vCnI+Z51wafQFfgy/rJz456x7htnAjuDDMsW8cbqdrT9ya+ZefrT95YGT6zvVPpU58avWxT08/9ez03VeSd9GNo0PxWXvp2t8dGvzlt7tnMj8f57Fr940PaZJexfzYkIhYMfDU2qiAYEaLEM7xPHQcjoQCTDshHmYjYRuzOI/bg/ArnAd82+M02R0M9Z9ePnBg+XR7fWOrpbE+El0ZHBgYXNkdCMWbgkbT+jrU3bpuMDhnvGbz/N4/PL533mwKcx2v4MezKE8D6rhXs7GcePJRYpFxJrYNX9DnV4A6k5mPZQBNSs9eeDDzK5BOXpg/e+uzz956FuY+9y268Z+ePvXn17/6IpfJAVy/gV7AQm/6/5MSp2V5WoPTmKbRW1F1mK5ljlFpQ6YN3riMAf0sjGY2vocXJ+iFPvhZT+Y6qPxYkJ9SMqjwo9UoLIWIywrGFASrkFe+FE7ZhYn0ZWbqUwwOQm59BA3Uch4XPAXNme+n4Tz9JPy6J/NNXE2xjXluG92JjlK0DQvGpSoQmDsJ4hgGKhGBwZGipiLb0Vh83Gw/zlRi6ON0/tAxxVQ6W9qardu2NXYopjK465Hvh3cohmKylM+ErDbFUFwv92h6Oox2YiJ9mpUonn5EB4UhYOu4ohdZdf8qdH+ZSSOKn1F6OJ15LZ2GuTRTB/r796BFXY9cxvUKamHLeH4tzH8V1MJy9HI6jTeptcMjeGkjc4kSLcvQMa2+59XRlqxROM5TRSlPDeQwm2FR85I74GdAIZRNCQgKsVh7ZHlq76yldcK3w10K83+UWmhIdrgqwvYS6uV2zvzsM1x+nQmjyYB1BMlil1K0IVwXNBHm/eYOZpcdPFD7AoLexeQGUaCfWfrw9Nwc3LY/8wu4/fH/gZI7B3dnfq7KDj7AtSQS1fbLpUVpzo0Kh9gyl3yyje0MvQbRfgg+yNyW3gEmunH9LFWw1yEMwBI+t5wcvOw0saKI7cCDC9hFUFO1NWsJmpmAwHLPSXGzmWwZ50Xn5TLZ5bYxz0EriUhWEAIsSTBz8Tjcnmh73BEVJEwK9dtP73kmYYCJu/zPl+vBPP3wJ+ntIN3zYOYlOP1q/fVn6MbezNpgTdv3IaXK/yDyXkraN0oE+rsL3yk7NeErbDg8KB568P4P+2GCf8CPH7/+FMq/4nF6B4+pHTf+gb5C38F6zE2W82JqoePmzK7I5G9rj2wEA0EedIlNBXTR1nzcRl/5ywcf+OpXTp5YeWRf+vSppcVH4BeZb//1f37uT/8289zD//qLpz77H85n4/8QyqUEI3A24omEFYVZuKAoFjhHxaZY5XgZs4DMC2BMAxj9A3I0PxEMPXbglfSvDj82vTp97lxqGf7X7L2Z9+jGfTN905kfprjMTnGZ2YiPfCFhrq2mok7Ckk3UfNZPMOhjCDypIHhcn/U4nKwwgjVkwgWaOH8bZRnbSaiQiBJBR7GyFwHEtEoowgyDgc5AMOh3qjBQ7wlEsgJn+0OJ25jAd0Ek6kGxD43de2S+uZXL/i/nT+/fd+bMUmmV3nA4PXkLpPe+vPOF43amhb/900dffz3zf14VqfDE+n6S1cU6t1E3mbpUClhmjGnNJR2yqcM6BmHxciHmusmcimjqfNmgKwQUrTBIE89qZj195YX5/33r0/vH02uzTz45two9mW/QjTuSPWuejXgy85tR7vvbMJ5+gPqpI3clbOVYqVYotT1rZiU1G8+JektoLTKp2jiKHmixpspGwBvgNp6Lte0xBNwQUXqB7a2Y4bjFe7zA/tzwwcmV48esK/f2TTe4Qn2xXdXtJ95KWcf2754KuIItY7t8sf84d2JwenqqrTNot9pKK2s6hybubZ1KjLTs8NqtJkdVoEuJdUHUxSP0PIq4XdmdzISqyldzh01jzA82EHxMcTTEEz9KXK0l6SNnMPWn04v4eYau0Dvg+pP0Tuhj8RrjxTTqXSbj6loCaNG5UIqbJrgEWY2Lf4f5FOtLbzgCjpzcwpidZB4T8IJOP3XLkT9Kr/YPHJr46e2f//zt8J1M6/KRowfgu8iHBZ/zWZ6jui7pMV3mQiTGp7zkm/ebW5kJL0zEJMsiZmEjMGCvRGr62cw/LmX+cf+X2iUw7juNqWQU42TiSe/2n8C8ImdcU/girukluy9X2HRCLjBbdSKaTH5oLhhR6gp8hpd4y2SPzOoKNVlIevzGOK2mC4cXaoBdCV98e+/d2/UgJQ5Nvz0/3RLC2m9kcXqtOiiIIO3Zx/iDp/6iNfpe5mXk88ev/Cu54zfQkXnt8DmHs/PX0IX83nJDghL6c6yJ/ImaLP7j7y5UUCyQSa2y0qG/sYQNJS+9tLT0kfCTnt88jfe4b0jkq9lnKF3hI1veEajP8KjV2VfxCS991CMc6+Gxov3Gh/AsfAcjRS25krDIiBRt6EZokJKgJmUvkukkqlvXuqOecSJJZBUKErS/CBXOM1Kek8ry4moxSnsBJZbWWpNUI95EwvtrAWcg4PTbWH/NF4hpLQneXNMrrWV9TMlk8XZ4Ntmz3tXx/H2toekhKTkztDzxnXi4pcYfbJlu3NVPG2M9rbsbV5PP95YMegMOhxJLZ1A+7/M6sZy8pcjDWoK1ostJdSJiQZ0wVlkwAjiSVggrlcRW2CdjUivLSq1mMwlDPvmdGUVkRcjshW23/DaRZcs870Ngppftue5NhEPAbPrRu3jj4f1jYyO9E8mR9OD+iZnYQCTQG1987+Cjnc1oyH/T/fjy3tnuHybm1NiGsnkRbcdD9iRMJVhreEy8Dt2ERjyFaKTYK5z0RigU8CllKiqRJ0WPvhljnwUU9cGLo+ml+48fbE5sM9ftrG/trxjv3TtYFz37xpP28r4Ke0eycXSlXdEZ4+vLXGeV5PWECUt7aqOoHDqm6YUHWlHkiSRPL9Y8vWwi4aas020y5SJk9gIy9moB9ULFdYVy07zSVQvYg341t8ayoMAjR4VYFoih+X55oi81cujI6NTu5ES4O7443d5Q62vb9eja6mNxCF//wVvx2fT8XJVXkUEAZfAC6saOdrvGKxeiRw1pyvFKoEMV6siRAqPi2yhjvZ4qzZ5yhLnpdMLicDjKHeWssaX0932srx335Nh3c/VJengh8zad2zk7II3sXTxxT2pxe12ncWBb47D5v+xZ6ehrO3tw9eye3rZE71AHs6lK/NhH30SbejBR4sEoxCKZht2qcGu81e8cF4GV7Qw1yFodrezs5jR2VmtX4E/+Po5X2yqhWm2zgMKKS5ePBRTgb6mqgUXeAIucyr5gX6ShtMLnuutYcnR0eTi4jd4t66yBinu7Mifg4a7F0VUTi91VN1rhR/At0kTiZIhcTtgbMVYEwUCwJjf4wIi1uLKnBmJAdzDQdVQPIbpVlLeOe4xxmRiNaHQlJTxIlovaDj/+DnvBHYk6nGV0Bh1Z1+4rSoq7tw327+wMBOyNdW0h2WdiZzeYAQYiymmACJpiN7R6xezZgDD+KVJpj0ocwzJbdbQ1Aj+9wQPKj+rt5qhJ9O3vb603dS3I5R31jWUP7V96KFFR7TvQF68bnf03sZA/HveHnnh00V1rNUB6V28aHsNc2hTvX6m2uGNUclRFfZ2Tkx194dqF+saOgeXa2r+7va31ztZMZtAilxlF/7ZtPCZN48cF9H0nOXzJloc93Bq4UjNOrrpsusks7/M71S7EOimsLv2yI6xVl22sdStVgxpOXXBhAkyOSGXbjolkx/zjELA4fC7bYveHGEKvjTyv+GcSP1+iT/Ce7Lz2TjWbwpnB5vO3ZcquRNLcaN7rVi3jsz4GO1DwXDJpSKfhyh+mCb3xjRtR8hVc14p12mxhR6NJrdlY2mUNotz7tHK22uaXm0fyZlmjyhXgZZsn19CgiBRZs+grydbeLldtQ4mzSk6m0939k/6eGrG01kMBeQIyy987Mry4T+tpZHuxsvYCWh6HApVtmuACyY6RZQ3a5Xc9IkrXIx7Vw7szz00Njry9+Or7qXOolva/el2xHfLc798rQvkqvSK8n15Dn/eT2za8FTRnfC6GqXWresQxOnlcRNSdt5Eik3wzHgSY/NAV8Fc1y9oMOqrJj/YXcoRsBr1XsUCqWmDuKupS/LLVRa9N6ORGX7RV+xrpWjhU1bEfLdNRFXSiYeYuro6Mz8w8r/kR7sVJ9hf4kR0vhVXWbJE3+dDmmS3+w4/jfLz/uDb5z0jnQp7/wNXhsefRd7yY236Auc2EWWLn/wvYCAaD+YVNXg2uBq0fPLQv/fDJpcWHJma7OuZmO7tT/3X1zOm1g587t5jaOz87t7RfwYa98D7KiOGMRxMWBIHUCRoq1KAGwwasFSTn8BjzKwfkYzu5yHvZLFketstNqU1rB/CjH6Ei0M6VB+3Ut0rvY87qmUgO7x9KT0x27q4rCUS7Ft47dKbzn+iJHTvPHhg82HXNaW1Z4xiqF76Me7NhXbQvYbLgvmAM6xxWpDcVbMyTAzTMORyEoweGedK5CUbIQ5SDtxOCQacKeXR5kAdL71hUfTWeQz39s8Nrx8YCuyuNyWSspXNhsrM3VHL1Fz2PrRw6U1NhGsh887Oh0ZXRocOdrMc6g3Y7jHyXkIVLBvSeXBxBjWmK0M5oNW2dsDOB2/EhlKQFyD+mlQ0kWB2rxhqH4dGV5FDiDniErib/Bq7uW2a9/yq0z6Non1EylbDWYMys1WOYltTXkwVdDE9hF8OR62JkRxly93mrAgFRORaohVd+LlA5k9crRJUeBjuA6GFlqleEo9sb90wtmPfMHLDIXrvVX+GzttdE4hXW5KA5MTFntta4XY3NlYJoKDFIJ4dCtdsGdgxayyxmUdBLpab67lCs3EJr+8K9FnepSRIN9jJRLJEd5TzPOnCPY7Qb9Tl3yQESjw8K/BKocJphLrosKkLFWnFN22AFnxZZ0gGJvU/PTSrHJWTZztEXqwNiHHVFXYjAXE5WA4zt2ZOa3Tt47lx0R31l+GEwdT34YNdHKR+LV8jPBbiC4eXhSywn5nWUORPo/muFEN+tznBkLwjZlp6KCLKz9oJZZULJtvkT7OwO65eoQS22uWMCF5L9t3a3TFTviA5ObO/u6YbJzKVQbWcM/Fr/At5A/k1kqkjPZBMcyBu0ZxspyjE9NUHkd1KAdzFYE2MXwBuvL7w+sRqUwNA2CVcyA/jv+pq/5bG/Uvs2zyEPlWTxssdapIeyOQcXDNtzrRVCT2fzL++tVJJKT663EmG9FSsgVx6FK+2bPvf4wp5qAcT63snHx9p26EC3rXOorx6/6xOM239Zbmp59Ltw5Uv/tmXnuSs/eLxu25m/VmpR9vEOl98kwxC6Le9FNvOeN2jP9usLcIPdnsUNgXgk6mG44Z3UHz81c/VK6uyZmctXrvzo3ZdfflftP92Icv2VkeHLLoteUE6U8LwooohUMLWmgSk+CPR03mA6YeaOUOYKBHTsCInAjgi0AENSsAtQWF6KUnLAG39fFasNBaS6cInZYw5enWw3+JoRmj0MV67/dLDJ0GcTKysX4coD9qkz3kHo5fyxs11PI38yuSVRYgIW2ZSjfn7tqN8y0RxlucDYikza8w/7HSk87Dcjz2iH/UBtWbpAOdb3dOYsmCakMukzcEvmn+fw4vP1kIbuSOZV/nJsFX5MLvL3Td1Fz9eqfFjyztHmhrLHaB35x2jpIX6OlrJnwz382aUkkKg1Uv7qRscqQZw9JCpNT3Zezc7zkiMQQ31HPcrXxRR72lX+CT+ewWfiP47j1/C596rPHdrQ40OzbDsF4HyLPBjqQOXcwYbJmYJR/loT15b50soGPMrXJb6Pq7ndzPAdse3/MzmOgOMLH382WPZRZ+a/g/c4eBm/WF/TO3l93Uj+JGFu9FAilSHX2Rrbh9EH62ITsMLYiKATUyC6Ews3JZBfaP8WQl5t17ABNsfq7Xx6lQLDg72hjnUR0OiV0tuslp1FSm9dwXDxahxc2YHixXl/doC61Vqd9RyuoUxYLVZN3kuUuMAIbiBGrWHUgMUyrBpAxf/apQTsTUmJnjLIyzSpHKFhUqzDOwyrxGBw8huU8wU3oW/6nen5KZx6HKaCuLfYHZxWsSp+Ngdr+uqqcg8XLSsLeU2P8hQQvugLZMvP3aFo4VoqJSaTL96D8hzvqPRV1ZaFjtNDqet74IoixH2jK6YBe7DxOFHtCb6JsnNhCPuuIq2SUgSLFhB0dKySIUdBB2OlYIBkWusn63QiilAUnePKiw+JFw16yD8778et8SMZvCS/GWXT70DJIV2tpP23hyObyFUSJiyzLDu4HdqMXFDFBORgffhwgXheTCbh4axs+mWUTWaAlYRY/DB/e0+1rXKyA6rUHvIO0EOFnRI9HZMBRjGgFY5kpbXdCHo9rFolmrU+9brURJl9WEoMAtuqWUfzLbCJ3SetWrm75Szk5jc1/X43cVtsZjPMGIvfp9xAl7UbmIwrtjc3NtTXRcLM66srFXmjxG2bTbNA6pHiEYG+p1nreEdtFVfGdV/I7K6wHWcamksEfTnbpZ7RlZIBpp3LsmT1l9+nBoXkCoNL/xeH9ISqAHicnVLNbtpAEP6WAGqlqsqt1zn0AFK8soFKIbklSlKhQCIcIk6VlsSABfFGtgni1jfoi1R9gjxLX6Gv0M9rtwd6q1c78+3sN7PzYwDv8QMK5Xf/Fyu8UR8qXENT6Qof4Eh9q3Adh+pnhRv4WOtXuInD2lcyVf0tT9+dV4EV+Y0K1/BOSYUPMFWfKlyHqNcKN/BZ/apwE1L7gnNYPGOHFDEWWCKHoAOfqwuPq8R9WmdkCc6gKQcweMCKvltk1DFtBgke3Z3G0LFG7r5kFowWz4mLFPElgzXmPFkn72ibUk8Q4gJjSsEV9Q0ttzy1GRHn9nmXxotlLh3f73oeZV9mOznTMjAPK7vNVrGY5FEGeqhlZLc0xtKyicyipVnPxc7lLprKJLwYh3I1vpnchm3GvWbCoSsgQ8BycT0MTZIFREUNKZ5cthjZ9MlQX7pCcqdTti1yTdP0FJxw78fzWEhE3oZBDD1KVpd3nttFkzvoMbBN8kubLiLpaF9O5E8e3jhabNYmpakbeAEL7/T+TXv/Gey7F79jxIuM4yhHUWbt823BKXfONafzhtpySLGrsxjdC5/QOOYOOAzcR2kWs7HM0+/JqeT53Gxyu4yTXFovgT7WQft/MvwNYuWNCgAAeJxtzskuQ3EARvHf/5aQtKihaty1Zno7GBciQtVU88wD2HTnBWy8EPF43MhdOsmXszv5RP74eTfnP66SBZGMXlk5ffoNyBs0ZNiIglFFY8ZNmDRlWknZjNmkN2/BoiXLVlTEqmrqGlatWbdh05ZtO/bsazrQcujIsROn2s6cu3CZPLh249adew8ePXn24tunLx8hCpnQFbp73jqvzd04Tl1NXUtd/wVYdBwYAAABAAH//wAPeJxjYGRgYOABYjEgZmJgBMIgIGYB8xgAByQAgXicY2BgYGQAgtsK+9+B6If3661hNABTcQeeAAA=')format("woff");}.ff4{font-family:ff4;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff5;src:url('data:application/font-woff;base64,d09GRgABAAAAACRIABAAAAAAPJgAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAkLAAAABoAAAAcnt++ZUdERUYAACQQAAAAHAAAAB4AJwA8T1MvMgAAAeAAAAA/AAAAVla9YgRjbWFwAAACiAAAAOoAAAHSdL9qe2N2dCAAAAr0AAAAKQAAADQKJwJNZnBnbQAAA3QAAAbwAAAOFZ42EcpnYXNwAAAkCAAAAAgAAAAIAAAAEGdseWYAAAuQAAAWPQAAJPx0ADzZaGVhZAAAAWwAAAAyAAAANiT9QjZoaGVhAAABoAAAAB0AAAAkBMABNGhtdHgAAAIgAAAAaAAAAHYKDQPXbG9jYQAACyAAAABuAAAAbuJY2MRtYXhwAAABwAAAACAAAAAgAU4BVm5hbWUAACHQAAAB0AAAAzaQceDZcG9zdAAAI6AAAABoAAAAjgWIBehwcmVwAAAKZAAAAI8AAACnaEbInHicY2BkYGBgYmSzVXVbHM9v85VBnvkFUITh4f16awT9X5GJi2kLkMvBwAQSBQA2lArfAAB4nGNgZGBg2vJfEUjyMgABExcDIwMqYAUAOmcB+QAAAAABAAAANgBRAAMAAAAAAAIAHgBFAI0AAABpAL4AAAAAeJxjYGRiYtrDwMrAwNQFpBkYeiA04wMGQ0YmoCgDBzMDDDAyIIGANNcUIKXAUMW05b8iUOUWhvswNQC7iwpxAHicHYxBDkNQFEUPQw0TwafJlwiRNB00KCuoCWbWYG/dhmVYjcsb3Jzcc/Mcw33OcgW4Pn9WSr4MbDS8eNIqd3UpETOWTLbBcGhTiT94jBR01Fo/mHgTyiHu5Sw/EnFMoB+G/ARqjgnpeJy1kEsvg1EQhp+vrSpFUZe6fyhaVdULEYkFO4nogp004h+IpV/VPbqSaMRC0rjb+SGvaY90YdWNNzlz5vJMMjNAEPem8Wjq0SKvFYeo2p/CNy9iNk2GLDlKbLHNDrvsc8AhZU6ocMYFV5J1+NbjyHyb3GuRRxxzauQ5l5K+9aVPfehdb3rVi57V0JMeVNe97lTTrW50/TtVR/LCtHEvYCbwF3CrNhXqIky37dXTG+2jnwFiMGiFoWEHxGGE0THzxhMuMzE5ZVeZmZ3z5xcWk0vLK6n0amaN7HpuI18oljY7H/Qf9QPkRzfvAAB4nK1Xa1sbxxWe1Q2MAQOSsJt13VHGoi47kknrOMRWHLLLojhKUoFxu+s07S4S7v2S9Eav6f2i/Jmzon3qfMtPy3tmVgo44D59nvJB552Zd+Zc58xCQksSD6MwlrL3RCzu9qjy4FFEt1y6ESeP5ehhRIVm+tGsmBWDgTpwGw0SMYlAbY+FI4LEb5GjSSaPW1TQqqEaLSpqOTwu1urCD6gayCTxs0It8LNmMaBCsH8kaV4BBOmQSv2jcaFQwDHUOLza4NnxYt3xr0pA5Y+rThVrikQ/OozHq07BKCxpKnpUDyLWR6tBkBNcOZT0cZ9Ka4/GN5yFIByEVAmjBhWb8d47EcjuKJLU72NqC2zaZLQZxzKzbFh0A1P5SNIGr28w8+N+JBGNUSpprh8lmJG8NsfoNqPbiZvEcewiWjQfDEjsRSR6TG5g7PboGqNrvfTJkhgw40lZHMTxMI3J8eI49yCWQ/ij/LhFZS1hQamZwqeZoB/RjPJpVvnIALYkLaqYcCMScpjNHPiSF9ld15rPv+CFAyqvN7AYyJEcQVe2UW4iQrtR0nfTvThScSOWtPUgwprLcclNadGMpguBNxYFm+ZZDJWvUC7KT6lw8JicARTQzHqLLmjJ1i7CrZI4kHwCbSUxU5JtY+2cHl9YFEHorzemhXNRny6keXuK48GEAK4nMhyplJNqgi1cTghJF0ZOrERqVbptVSycs52uY5dwP3Xt5KZFbRw6XpgXxRBaXNWI11HEl3RWKIQ0TLdbtKRBlZIuBW/wAQDIEC3xaA+jJZOvZRy0ZIIiEYMBNNNykMhRImkZYWvRiu7tR1lpuB1fp4VDddSiqu7tRr0HdtJtYL5q5ms6EyvBwyhbWUEKU5+WPb5yKC0/u8Q/S/ghZxW5KDb7Ucbhg7/+CBmG2qX1hsK2CXbtOm/BTeaZGJ50YX8Xs6eTdU4KMyGqCvEKSNwbO45jslXXIhOFcD+iFeXLkBZRfgtQnKAUa5hJYMN/rlxxxLKoCt/3ORI1GIK1rDbr0Yee+zzitgpn616LLuvMYXkFgWf5OZ0VWT6nsxJLV2dllld1VmH5eZ3NsLyms1mWX9DZBZaeVpNEUCVByJVsk/MuX5sW6ROLq9PF9+xi68Ti2nTxfbsotaBL3nkOs6//tr6yoyf9a8A/Cbueh38sFfxjeR3+sWzCP5Zr8I/lF+Efyxvwj+WX4B/LdfjHsq1lx1TuTQ21VxIZsAmByS1uY5uLd0PTTY9u4mK+gDvRleekVaWbijv8Mxkue//lSa6zxUrIpUcvrGdlpx5G6I7s5VdOhOc8zi0tXzSWv4jTLCf8rE7c3zNt4Xmx+i/Bf9v31GZ2y6mzr7cRDzhwtv24Nelmi17S7cudFm3+NyoqfAD6y0iRWG3Ktuxyb0Bo749GXdVFM4nwAqL94mnadJx6DRG+gya2SpdBK6GvNg0tmxc+XQy8w1FbSdkZ4cy7p2mybc+jCm5DzpaUcHPZ2o2OS7Is3ePSWvm52OeWO4furcwOtZNQJXj63ibc9uzzVAqSoaIyXlcsl4LUBU645T29J4VpeAjUDnKsoGGHn665wGjBeWcoUba5VnCJkYwyCq78mVNxIhvRZCOK+M1b6qe6UAidSSwkZstreSxUB2F6ZbpEc2Z9R3VZKWfx3jSE7IyNNIn9qC07eNnZ+nxSsl15KqjSxOj+yY8Ym8Szqj3PluKSf/WEJcEkXQl/6Tzt8iTFW+gfbY7iDl0Oor6Lx1V24na24dRwb187tbrn9k+t+mfufdaOQNMd71kKtzXd9UawjWsMTp1LRULbtIEdoXGZ63PNRj7Fl5pvXecCVbg+bdw8e/6Ozubw6Ey2/I8l3f1/VTH7xH2so9CqTtRLI87t7KIB3/EmUXkdo7teQ+Vxyb2ZhuA+QlC31x6fJbjh1Tbdxi1/45z5Ho5zalV6CfhNTS9DvMVRDBFuuYMXeBKttzUXNL0F+FU9FmIHoA/gMNjVY8fM7AGYmQfM6QLsM4fBQ+Yw+BpzGHxdH6MXBkARkGNQrI8dO/cIyM69wzyH0TeYZ9C7zDPom8wz6FusMwRIWCeDlHUyOGCdDAbMeR1gyBwGh8xh8Jg5DL5t7NoG+o6xi9F3jV2MvmfsYvR9YxejHxi7GP3Q2MXoR8YuRj9GjDvTBP7EjGgL8D0LXwN8n4NuRj5GP8Vbm3N+ZiFzfm44Ts75BTa/Mj31l2ZkdhxZyDt+ZSHTf41zcsJvLGTCby1kwu/AvTc97/dmZOgfWMj0P1jI9D9iZ074k4VM+LOFTPgLuK9Oz/urGRn63yxk+t8tZPo/sDMn/NNCJowsZMKHenzRfOJSxR2XCsUQ/z2hDca+R7OHVLzeP5o81q1PALgKA/R4nGPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdidNokzMmiBGJt5OBi5ICwRNjCLw2kXswMDIwM3kM3ptIsBwt7JwMzA4LJRhbEjMGKDQ0cEiJ/islEDxN/BwQARYHCJlN6oDhLaxdHAwMji0JEcApMAgc18bIx8WjsY/7duYOndyMTgspk1hY3BxQUAq0Yq9QB4nGNgwAKCgdCbwZspmYGBKZlxCwPDfw2m5P9fgew9/3/9VwIAdecKeAAAAAAAAAAAAAAAAAAAOgB0AKgAygD2AUYBzAJYAr4DSgO4A+4EMgSiBPgFLAWEBdgGNgbMBzAHZgeOB8QH6giKCQAJkAoMClwKtAtwC8YMDAx8DN4NEA2iDgwOPg6+DzgPuhAQEHQQthEcEXwR+BJ+AAB4nJVaeZAbZ5X/vj4lja4+pNatkdTd0kgz6h6d9oxnLHvG58z4HHsyvibCJsYJCWYgCUVC4thxQVLLuYQiu9Qu7HIsSxXYW3GWLEsojiqobMH+QSVZwrJbpCgSskctAVLAgrzv+1qXHTuwLo/UUn9Sv/e+33vv93sthNHnr17CTzFPoASKtEIII4RXEcaoDQdo/1iWESMlXhVyWTNv1muzbLUSDqmC6MchNaylMH4qGFbbxr7S7HzVEw56Arcs7V2WPBNebam2/sGdD69sSWlen3dk0xeWVz+/wetFiHzvMlzzFL1mtBW+/prRiMGIWgmrfhauWq81mrO4Xisz5PqNSlgL41P0aqpMrjaS3t1U5AKYgCv0cpERr98Dl0tvOb6m++SRCBhCvldHe/HLTAgpaLw1hjgWc6sCz7AMRphFpxHH4TbCHN4PBipIljNZOSOK8RJSS+BqdgbnsrVpsKOSxFX8cuP88vkGecDHli80Ghfog+NbHbvw8/gYElG6lWAwcW4FnjBaI2f3whoR8ZMseIjUXCZbq2bw843OM40GbsCXLdPvaF79En4W4hMge+JCDARnEd7GF+HsPaZO9gSrIhZofJq4AZuCn3V3nvYl5IgbbyVPzKOi+vtbR6OSqDKfHI06tt0GD19l7kIxtO+KGzMsXly4NL7vllYUsYjBLHMGwuBf4om1t8IHAmhPHM5xLHext2D43GrLnc3J2eykICZKBsQpW4cQSWAVGNVoglUhqVoBjHy1/CvL2m9Z+dJm3Rs19vuCkmEYJr6QNcCX5YTd8bEysa8CDy+AfSX0oSsShqiBfQmwLwcX5zHDn0M8x/FnIRxsG7Gsfwns7VvquKIPLcU898CN17ay1y9jEYnHmaFFq8Q/TTcLFcc/AXarXtuMG/WamcsKIskDB6A0JyAlxKpzjF+QE50rlvT8XSsz+sYR76giZ86urJ1/a+h87J+CsbjPTiqm7H9y9eDUFj0ZULRELDF/+s7VM7cqd4Qj4ahGYlG8+iv8IsSiiR5q+Q0s8HXMcn4ICtvdtAkk8BwvcOcAwGA6cw5xCFDNnkE8L7aRKILLDEOSCoWIy6XXrQcgCiJ/pv+5werV1ohuGLmqqWddYoo6P+RpClcrjZpJNxzeajoReV1AYOdffPetaw+mQuGkR17UNy3sbk1YaauaM2fK8ykhraijp48cun13ecPl3evLc7FEKqR4Y+Ftt2w3I8FEajI1FvH6tGQi1pg/PL2yIXoAQSrEITg/Z96GcshEx6+QwBCUFCEgCZfICBykiYBuhxj4l1gAK7MGbgUY8D8B3vIXh9YMn15tBXVdN3Uz14SczGTcYpJCOkQAHOphu+4knDKLpzG4COjOSSz+uTVf8wcl60uWVf/vhOL5t5FgKJ6S562vfOMZ4wgrA9jNI3Ii6sfHgy4l2bmMJzv/jIgvVdjjH8Aep9E4erzlCQME44BGBhzyO1hmOZZZhw2CfYONYllSpDBsrCD0N9ZBg+Gs5c698WKSSt11GEHxY8/01w9WAfI9hp4zdDMr0jjAtpaZ3r52qw7NAfKOSNMhpGphQAX+wf2HCjta5qfu2D6f1MIJIRibPeOfWjp494FtjdouV2ZfdfFbq/ek5x849OG/21KKJlMh2e1+y8rEvYfri1OlTPS2BUjFHvbDKAO1YOVJ1c1w/WKVhAUcz3IErz0PeX7gYRw8I/g+0183OAsprapqMZbtpbTTYMqYthbS2FI43/UnXGloNbN7hF984MTxB+fq1Q33Xrp3Q7U2f+vOWn3H7lO7fUvvWtq3vu/y4tm3L1T3q6H5QuvUyS2FuXBo/0/1RkM36/Wfj2/bNm7NzSG6598A/C7gJ9AI0kiHIHWZOCEtwYYxbQeNAMUsJ8agyA8SSho6xgv5VHxs+A/fFR8rJOPFQufL9GAsT66lo6fxy/izkOgBtHfhUg6ip/LQ7qDtnSQXXuMgBSQaNI50Khaj03CeYdgVeGJJcrDM3tWW7HIh5Aq4fF437V7CUPcK97rYy7XOp2sb8YGNGztf3FjDx/Bnl5c/Shoag6D94F9AzhqogG69kscuoZezSTeG/oZdzFsAf/4lkQfUQquEDHXqdBIJLuFif9F151dbkmmaBbOgKGpdkkKTHlqsIFvpjjbzOZFkrx/T/IWOBJkLDEKpaOH8CMa/qJwMSFIkqXxESUYkKXCyEnKn7hYjUxHx7rQr9GSzaRisJGl+fPgw9muSxBqRERb/JukPJDsuzv1FzHV+B1EDZCH8EwhpBPBaRNWWHaZlCfFIwLxwmsMQ0TXahMQuEyDWZ/RMsZLJVroVttc/c/RpCI20ChEsOgf4J2v7/8eyZdm2/nXfmj1WnT49UV0/tmkqVKs9+M7mpi9sPQO99bum0Z4tblPlgy+lmldmfmlu/+4mygEW4eHrYKuGcq3RIcv4YcuyYFe3rdOu1zWrmqmQWgh1D3/d7vyHbbfbto1D9BmKnEGuahqdKrlOCh5egeuk0aGFS17Y6hQSoKML69dfs9+T02QBI+BzN1kBVUmViGWVXlXKXBMxxzQgqZjUbPyKnOx8xLISCcv6C8uyfsiqpsJC5yXBMUxi5nRQCgSDQYcbxeDhVbC3hOzWRM4LvRAvijyDkNB2YYJNYhVuk6YRwHsqOrHDyEGjSEOawoVpkcR5FoLT7xf9vdSU3iF+1ZLUhCwp4meClnXasiTJsrZGY27nJTNjdCJpiZUV/LXOKbMb00C0swV/wjBJLtWhNj4PtVEDSzc5FTE0VAlZdlAJlUEl7L+7+mRhLB4mxQWpfi5b5mqzXCXFirV8GZOKTgo57e/NBn6eUyK16dum6xGZ4+RI3Tnc63VXmlOTHrfXbU1tslwj+MFPnFgyIgIf0/cc/8SJPXqMF6LG0l9fmMiF4+Pj9zxq64lUvkb4HdhO+N0sur/lN7HIqVBseGhEA04jilybx4SGQkHoHxJmQgpUyHGQHhIPTSQKnLgKqwA7nHDmJguBzmSNXNGEwk6STSd7lfeDvzO4NsuQFq+Fafuq1yxMS0e1os1CFJKgQmBZvtsR0hhW4hduP3RiVpSCBiPIAVlhMTtRmqnOnD47u+2OA0tNEdgtqyo6r95hbS6m97TqyVc/dGchLNsPeb1B0e/31ZOx2fwBNS4dqc+fKoQU+yGAYeaddT014ZYDYdoToJYg/EvAYx7d4uRPWgDaAnJlneSEuEYJXj9TAixEY7S7gjl3kyUQhwZNIVUhcSDOAWZB21wL2lDvfYhDhvDZX9LceXvJsj5vWaV1+kpJ4vckZfyfASkoBQPjnaoD1nHn9Y6kojp+vABa5iXQMhrKQoY7gDwNNROxK2SL1kj93JvR65MEkzwxwqxLtcY07hIvR0K8VL6ckOXEZZAO5fe/Hx7HDTXBfCahEnr1+w8T+XCNbpJa/oFgGojYPHY6qIZBMEXkhK/zVRd5wnOuvBRNM59SXPD0+zXFqQkGfF+lb7sjgU5TvbqC+oqultErju1Ct/HQxHcOSPQqw3YTPzKO2czbyCMNE9GNV9v4+atXoL/mLwun5v+AdrwsoHnuev24QOUj1Aj76m8ZN/5HyiufXrhUAPR4Ehi4PoY0WYz3X7iYxdWFSxE4bYLKA2K4Dh8WBUYkFYNvA3HSlkjxcxLJEVnky/LOapAQf2B5y7r5yh7hDCwhl4uWrwgm1NOry3oum1GzWVJbKUnL94iamRNJPsIxsKAkhpTN1+koAlTILMO446l98Y0HF4//5UXurI1H5VDqsTefDOasJ9tna4VKNhBkzKgvmTu4YftedplNRBORvWubvyts3s0VM3EjKKo+Gj/P1d/S3hWD7LuvG78wEPN+/JwXWKDxI6dHUb9lgXNcG3Rk10MSiggJhX7DJdBN+pGI0B5n6HpFzw6Yd542lnq/lyTxgHVDfaKs+5X3LE9bjKmorG7ZO5JyrbX/7gPbq6W5hl3d88KJ84Us9Dn8smGqiU+a54/PrMwUdowtHyKo2g6+PgtY0dHfL1wKO2Kb5Ynq4DmWKmNHR2hUQHfNBBxoXYECS6mKfqO1kT/2a/+4b1wl0jyXz+RM3eEofoZigpRyqk8snPWzXVRAFcfPBvWFyolzseqtM4+nwpO4qjdHQ+Lh6a2aIAeL6+7c+OjDx/SF7RN7I4km1rKlXHB2pSG5CRaykEsMYCEJzO58FwtB2HmotTzFQveF2MdCBozm1lC3h1FOrwHxIyqknxdjN1pDhMqakxGi2M8IkOJ6rpLVc5OuHrs1830toNX7fFEi2dATL4AKhrF3JCSmsmX/PfcDPBxk6NbnNhWre7ZX7M2mKYUnzh9feyh3ngCjE3n3tvzModbMCuXsNcDF9wEXceC0G1p1xIEU4NhzIihn6LRQBnm+tzNddgE7k0gkMolMNgfdVncNtqarHCF1M4Rb0E2hPVXE31cLi1b7veeOnDgNTbDzkm+ltkODFlo87G+Xd3rXvXox9fA/PHzf0ZDKNjY3gp633TljE9yCwMFfBmpTQtOtDajb98Aedxu53YRoE/3iguYnLQlAIvg1MDjA7ymYWcJu9ayU9VDqRjIsm8TVQbsJqdcSSxrnFIO/nFYM7/6zpIifPWrbnV/b9tGjln3kxFZvtBBl8lqiOG+Skt55kfbClGGWWrvZEWDC0DviVzP4Kn4aVYH97EMfa6k2wIZzQUUZCzBYNEDecMCCygCgKpR5zIj4TJ8CQZAR6h8yjKsNNRNg4nbT4VaUdP/Jaz6Fuh/qFdsbfWa15d+7Z4euZMfDOws0HMiZ9PaGW3khFNZSDGnGGgmP4Ch/54+AD/7ErkYGwCm1Mpftkkiima8m5ZG4oEnaye1lg8VuPuiK4G1HG3rukW89sk2RU2/aURm3NhYer+ysVPRc9Xafko2XY5FGKmisvW8NP16OBiXOVRibb4dGeGUE4IKTytZMa+XwlqVyyjSShfrWdnz0b3SAvd6od74TjARHBJbzaPl0uez01REAM4b8nUBTraaJGRfoMkHokqNeWLQl97XKcqJECX4ul5300C7UmwB1y+6NSD4tzOQUg8uP2XYqki3uzNnWn5etnF62IPfqc+/NWWTy+WxRb81+xjQcKaImPl386Ask5xbA4GeYE0BZ02iiVYSdE9pUF/dah7TEDck0VckRneZ0iuvEEC0HrLNjjUoYP2N3fmzbd91m248m5RP2oxk7A//pGBYCCdn/bfzDSCYT0TIZh0OMX83id4EtaTSG3nrF353GhilXICMCvD5kXreYSZSpvwk+HyVFLt+fNL7xSiLsQhWocgZxhaeDf2fQQVt8szFofqHmwKV3emL5ueKH0iFlVI5PxkP3WvafJWXO8SwXLtcK8QORRELjWTNt4/eSQP9Vz0WMgOLhDuCiilqtGTvjcXNYJJK9Z6kbi6JrDbAhLXmg9pGosw42qpPWRM2BhzI5MkBHo5kXQzcCRkhqkkM6NSRnRQ16Usd+hxWO3ratYFkfs6wCPLUS8gWpLAV9H7Pt9NlH4yCpjXAAP9ya7+lA2Kav3GdIMmsatz9B+C748Bz4EEIZkNd9ejGMEYoQXozfBCH4OavzNcu+x4ndvRSdDiY7ESd/CBg8+Ck0j+55cgp6ygjuVqlRjwCNcaTt8zIjI9KS3y3yLE8u7OKYbpcrCFB/vW0f9nqhBHk8I21046Wrrcjc1pnpjc16xSpPjFeVnAJ/8mRgEN1mL/VIJ+nG+/VvVSWCDlKvuuUpxZDTjMfeNZ73BZKlZGRi10RI8QVSxaQ2cciOplJRO22Iemkylt8wWgpyqSgEQWd+OJae2/i5gEb3AF5snaIvtABOwbOWGB/PNTOBnwT6NQZiNI7aVwxSg7shihP/xbYLoCRdX2HoKLZXfXoV6XWroESPF3P/71KkvWElSsj4RqUI+pWk0kpE8r8B/f856P9upNI5ZXfEcE27V6F3EOnjTFJJUoqD4Sl+7v7lQ/fd97f3HdxdrSzsvm038NCHnr5w4ZbZAwdnWseOUZ5dwK9A3IhOueiEzBPHHO9Ikzh5IfJ9nUJOZ0XSy9sCsCmJ6AbHksGkXyGT/iJEkmYxZY20899sMcgNQ6fxHZYbN8xi7ca0u0wCa9k5Qq9iCq5uvY55f4nG9jXDDMr5Yebdm5H9DPzPoY9cSYOcILhJE6mPBkpfaAPlEqRrpX43A9GQ3L/hOgjF8ESA3BXS6ExNWEPXL14lTJMiTZad6QCptH78Bs0ujH+WLCQXl08BG7KsHTss646kPHd0qojvDscjMnNm+7rDhEjp8s+ViM/bAFffA1zNo12t7UUsciK5EbHYH/xoS8OspzfPiQzmOYC7qQ21ykRpLJ8zskAzY12aSUgxGeiAvb1pTpnJl1nntrWTEnScU8bdgU4apzj8vWB+/8ZdFV+cTG1CQT52dHoqPJ6MjG/YmhEjhV2TU0VXjJyTFA4Ly9Mb628OJutG8nyoOJGAVnMCpFVA2Z+NB7WAwIm+uJ3xxfW4IknWPFBan99nxdWEV2ZENW47+65BDL7JlAD1FVDI0CMvItg8LAp0m5g1jtLWIVlogqNqNid3R8VZk9yPdooAnXb29iikpkADzdK36dzkm2sPHNxTtpboyObjlvVxoKOaP5lkFVlV2Atbds5t/6lh7iRj0GBgp2n82BuM+l2pqC8YCAYc/gT6B+MngAUcuQKpyBGMEpUT5Sl2BExYCcnKIXWTGT4HO9tTNc5N9q6qyVV0E7JuoGqc/Rt0J5VohVk8/BapaNaOvGjP/KlDqfjRUXWsSHIvoehl04ym3/Mq7V6/kVXZM2F8h774NvgRvvo7/Br4kUb5lq6BqXiRh74O1LxnJzUMLAL1nSFEhIx12e5Ud2jEHO/Zg1+zInd5rYAUEu6KWNa6ZQXX1oLkAH/A6DxlspKMd9BJ809xzDTABj/Y0AEbqqjWmhzLjrAk5ZEAZwR8jtzbAJIPmoXQIzL2AXNqQIqqiqHL7q5YYQnSLeyMQfJst9ulML3JoZGb7uE0bvbHT7gTiU8xQljNBMyoVx1Ny9xUPDJ5NiDBv4BZMn2ZeMivFE14Y/LsJP5gxN/5WjDgC334WCWiRvAWf8Rg5azE/vqhWKy28BqRNw6GyT2dV8GXCtrYaljZsNsFKYsX3SLwb6i5LlqhPSyZYq0xDjAqdnm8KssQ4mr4euI0dJe1me9HW9SaXUf6vOlVe90KhXZu00LWum3n3nFnzoZ3CtMbVbVM3jhzb44Qp1CAOXkSB8JQfB97BGqQzuzZg4MhOHrkMWe+CvyW4KGGTrc845hBCmG1AG7JGeeQ23HrosDBnvS8IcOINwFMophgnCxBDCjim62B3kLQlDd1s3+bgPVzQ7fI/Uyo0mjOMs2b4usx1p0crSXMSlwLJyCwgTE/H/TjP4lSvPlOHu7jbZc7bOvJei6cSIR5F2RaNu6ZKEPTpgj8X8ybBvWb9JYfgd8l9Ijja/enEOuD31Y4SuPa31Yog59hrA/9tOL1S2/4C4zXLSMTHFVr6Fr3TqyY6d6yw3T6nBuMn6nuFPHgvs6PEp0PBKSgKOHsv7CKqiismsCLUMFEqfPvrzh3ecZEVlECPgkrMhQ2KRiYSKjkHX+w819JUuukAPo/DWN/qAAAAHiclVLNattAEP7WsUPbQ3PprRDmEIpNkdCPC/m5OSQpxkqCHRtf5USyhY02yJu4foi8Sei9j9JH6Fv000okUHKplp35Znb+RwA+4icUqm/yghU+qM81bqCpvBrv4Kt6qnETe+p3jVs4aIQ13sVe4wctVfM9pWfrVWKFT6pV4wbeqS813sFEfatxE/vqV41b+K7+1HgX+40pTqFxjy0KZJhjAQNBAI8nhMNT4SNqZ7QS9OCS9hHjFkv6brAmz6iLkePOvrmIrNWlfa8sS4s25dxGSpgpxgopJW3pDXVT8jFGOMOQVHBBfkXNNaUOI+JU32+LbL4wEnhe6DikRzLbSs+Vfny71Jv1MpM4v5O+G7lyqTdUZtLWucySRbxKRadyk0xlPDobjuRieDW+HnUYd8CCI1ucJjbw2TIGUaRzPTA+cY8PK3aHnl6RnltbY3nBsSV2aC69BMe8b8VzXoJUNiG1jr3liAN0GVbn5lwX80QC15Njea3AKfNSE/qOz66D7ts1v+bAP77lj5iw1jUXUS2hqtdjXsEJr+FJuZQHcs31ZLbDcmmPjO3ikNfnGjBJinXGkbJGrysnYkwaPxi9yHIj7UffPXT9zn+X9xcJnIlTeJxtzcsKQWEAAOHPsSRJLknKgp0SC3ZIHPd77ryO1+bP2tTspkbkx+ft4B/dYEIkKSUtIysnr6CopKyiqqauoamlrRP6nr6BoZGxidjUzNzC0sraxtbOPtyOTs4urm7uHp5eX7fODXAAAQAB//8AD3icY2BkYGDgAWIxIGZiYARCUyBmAfMYAAXlAGR4nGNgYGBkAILbCvvfgeiH9+utYTQAU3EHngAA')format("woff");}.ff5{font-family:ff5;line-height:0.915000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff6;src:url('data:application/font-woff;base64,d09GRgABAAAAABNMABAAAAAAH4AAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAATMAAAABoAAAAcnt++ZUdERUYAABMUAAAAHAAAAB4AJwAYT1MvMgAAAeAAAABBAAAAVlXmXvFjbWFwAAACVAAAAGkAAAFaKhUlmGN2dCAAAApAAAAAGgAAACQEIwCGZnBnbQAAAsAAAAbwAAAOFZ42EcpnYXNwAAATDAAAAAgAAAAIAAAAEGdseWYAAAqEAAAGeQAACTAX4iMvaGVhZAAAAWwAAAAzAAAANiT2QlVoaGVhAAABoAAAAB0AAAAkBOQBLGhtdHgAAAIkAAAAMAAAAEgd3wKibG9jYQAAClwAAAAmAAAAJhFSDxBtYXhwAAABwAAAACAAAAAgAQIA/m5hbWUAABEAAAAB1AAAAzNRHKvNcG9zdAAAEtQAAAA1AAAARgCYAQBwcmVwAAAJsAAAAI0AAACnZD69nHicY2BkYGBgYmRbfO7+uXh+m68M8swvgCIMD+/XW8Np/v9sjF+Y3gG5HAxMIFEAld4NyQB4nGNgZGBgevefDUgKMwAB4xcGRgZUIAQAUEsDFAAAAAABAAAAEgAxAAMAAAAAAAIADgAtAI0AAABRAJ4AAAAAeJxjYGS8wjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZoABRgYkEJDmmgKkFBjKmN79ZwOqfMfwC6YGAPXdC4IAAAB4nGOUYAADRl8QAUTqDGlMwgzWQKwFxDFArAPFckCsgcQHY8bpDHKMrxj4AZsLBZ14nGNgYGBmgGAZBkYGEAgB8hjBfBYGCyDNxcDBwASECgyWDMUMZf//A8UUGPQg7P+P/1/7P/f/bKheKGBkY4ALMDIBCSYGVMAIsRIBWFjZ2Dk4ubh5ePn4GcgFAgwMgmRrpjYAAIZ5DvEAAAB4nK1Xa1sbxxWe1Q2MAQOSsJt13VHGoi47kknrOMRWHLLLojhKUoFxu+s07S4S7v2S9Eav6f2i/Jmzon3qfMtPy3tmVgo44D59nvJB552Zd+Zc58xCQksSD6MwlrL3RCzu9qjy4FFEt1y6ESeP5ehhRIVm+tGsmBWDgTpwGw0SMYlAbY+FI4LEb5GjSSaPW1TQqqEaLSpqOTwu1urCD6gayCTxs0It8LNmMaBCsH8kaV4BBOmQSv2jcaFQwDHUOLza4NnxYt3xr0pA5Y+rThVrikQ/OozHq07BKCxpKnpUDyLWR6tBkBNcOZT0cZ9Ka4/GN5yFIByEVAmjBhWb8d47EcjuKJLU72NqC2zaZLQZxzKzbFh0A1P5SNIGr28w8+N+JBGNUSpprh8lmJG8NsfoNqPbiZvEcewiWjQfDEjsRSR6TG5g7PboGqNrvfTJkhgw40lZHMTxMI3J8eI49yCWQ/ij/LhFZS1hQamZwqeZoB/RjPJpVvnIALYkLaqYcCMScpjNHPiSF9ld15rPv+CFAyqvN7AYyJEcQVe2UW4iQrtR0nfTvThScSOWtPUgwprLcclNadGMpguBNxYFm+ZZDJWvUC7KT6lw8JicARTQzHqLLmjJ1i7CrZI4kHwCbSUxU5JtY+2cHl9YFEHorzemhXNRny6keXuK48GEAK4nMhyplJNqgi1cTghJF0ZOrERqVbptVSycs52uY5dwP3Xt5KZFbRw6XpgXxRBaXNWI11HEl3RWKIQ0TLdbtKRBlZIuBW/wAQDIEC3xaA+jJZOvZRy0ZIIiEYMBNNNykMhRImkZYWvRiu7tR1lpuB1fp4VDddSiqu7tRr0HdtJtYL5q5ms6EyvBwyhbWUEKU5+WPb5yKC0/u8Q/S/ghZxW5KDb7Ucbhg7/+CBmG2qX1hsK2CXbtOm/BTeaZGJ50YX8Xs6eTdU4KMyGqCvEKSNwbO45jslXXIhOFcD+iFeXLkBZRfgtQnKAUa5hJYMN/rlxxxLKoCt/3ORI1GIK1rDbr0Yee+zzitgpn616LLuvMYXkFgWf5OZ0VWT6nsxJLV2dllld1VmH5eZ3NsLyms1mWX9DZBZaeVpNEUCVByJVsk/MuX5sW6ROLq9PF9+xi68Ti2nTxfbsotaBL3nkOs6//tr6yoyf9a8A/Cbueh38sFfxjeR3+sWzCP5Zr8I/lF+Efyxvwj+WX4B/LdfjHsq1lx1TuTQ21VxIZsAmByS1uY5uLd0PTTY9u4mK+gDvRleekVaWbijv8Mxkue//lSa6zxUrIpUcvrGdlpx5G6I7s5VdOhOc8zi0tXzSWv4jTLCf8rE7c3zNt4Xmx+i/Bf9v31GZ2y6mzr7cRDzhwtv24Nelmi17S7cudFm3+NyoqfAD6y0iRWG3Ktuxyb0Bo749GXdVFM4nwAqL94mnadJx6DRG+gya2SpdBK6GvNg0tmxc+XQy8w1FbSdkZ4cy7p2mybc+jCm5DzpaUcHPZ2o2OS7Is3ePSWvm52OeWO4furcwOtZNQJXj63ibc9uzzVAqSoaIyXlcsl4LUBU645T29J4VpeAjUDnKsoGGHn665wGjBeWcoUba5VnCJkYwyCq78mVNxIhvRZCOK+M1b6qe6UAidSSwkZstreSxUB2F6ZbpEc2Z9R3VZKWfx3jSE7IyNNIn9qC07eNnZ+nxSsl15KqjSxOj+yY8Ym8Szqj3PluKSf/WEJcEkXQl/6Tzt8iTFW+gfbY7iDl0Oor6Lx1V24na24dRwb187tbrn9k+t+mfufdaOQNMd71kKtzXd9UawjWsMTp1LRULbtIEdoXGZ63PNRj7Fl5pvXecCVbg+bdw8e/6Ozubw6Ey2/I8l3f1/VTH7xH2so9CqTtRLI87t7KIB3/EmUXkdo7teQ+Vxyb2ZhuA+QlC31x6fJbjh1Tbdxi1/45z5Ho5zalV6CfhNTS9DvMVRDBFuuYMXeBKttzUXNL0F+FU9FmIHoA/gMNjVY8fM7AGYmQfM6QLsM4fBQ+Yw+BpzGHxdH6MXBkARkGNQrI8dO/cIyM69wzyH0TeYZ9C7zDPom8wz6FusMwRIWCeDlHUyOGCdDAbMeR1gyBwGh8xh8Jg5DL5t7NoG+o6xi9F3jV2MvmfsYvR9YxejHxi7GP3Q2MXoR8YuRj9GjDvTBP7EjGgL8D0LXwN8n4NuRj5GP8Vbm3N+ZiFzfm44Ts75BTa/Mj31l2ZkdhxZyDt+ZSHTf41zcsJvLGTCby1kwu/AvTc97/dmZOgfWMj0P1jI9D9iZ074k4VM+LOFTPgLuK9Oz/urGRn63yxk+t8tZPo/sDMn/NNCJowsZMKHenzRfOJSxR2XCsUQ/z2hDca+R7OHVLzeP5o81q1PALgKA/R4nDXJPQ7CIBwF8PenqPiRpruriaanIITNSeNA5/YAPYKLCYueBWShnMBbqUh80++9h2PE62w80aNzNAkI9KPHQj0bQpsRNpxWRQ37SahUSRDWXy9VQvGECtB+R/ZknLQm90H7Q+5RoAzQ3dbv85TEFcSl7S//IyfUjOo20vvm+N0z6DAb5tD6A6E7Kt4AAAB4nGNgwAIigNCJwYlxz/9vjKf/fwMAJDkGqAAAAAAAAAAAAAAAAAAiAFQArADyAVIBwgIKAooC9AMgA5AECARiBJgAAHicdVbbTxtnFv/ONzewwcwYjzHY2NhjzxgMxncXTOwxCeFiMBTSgmlCIJcS97qbbpJNtFqyValUbStV1Wq13Vbt0wrtPnT70BKpykNV9ar8AZEqRfsWRaq0T1Wfus6ezxdIgyqNxp++c2bmd37n9zufCZBnCSGfk3XCkZHSx/GlNdNKAMhZ3O0iZbcpEyAEVpt7QBYrnygylVyRpJZOfr6+vs42cw9FuEv/S1TiMlUroZg9j9uwi2+5OmiwdHBIYOO0gJ5OZSHPJRNOuCvU3uWo2CZaOgXYbq7oXbHj54rEW7hOi9jB7dVXBF859PAHeED/gahCpFD6eASRduM3KAe0SjiObLUQuw53CeEqzRhHnqzsD/XqGi/1MTCiFjAYlkwy0eOUUlE+YONVR48XkolsBh7o4zu/H4smxl+5khtdpaLdE5+Me+wiVZWCVg64YOovC9erKx/8c+VCdflv/nApluzrS8ZKYf+umYiumQjhNBLzNeK1kac/5QEBzTfo7SU8x+8iHgocrQqAxG62oPsejzHqWylAlipmu9Kt2BVZlDyRQUgnFVFK52k2qSTh69r7u6nVwcyy17lbgJ9VWgDJ6/nf39mDw3i7h1h0Mm9au+2MHSAcbSLqZg3jKNRpPHtI48EusrfajHEogP1ngiMyoxER5CHLLppO6VpAlAyk06k6bFSyQRdSmckB3Kutyec72ktWIxg4ZU4UHaPpd7f/oOguV9sJy3uXRZf4xZTtjLW9aA2Fp43jywszuQ93Kr503OWU0u1vAMOPvb+P+AfJBVP29lOON5BRSaR4n29owU0EJE/gq032tpliDzQxcDSKlFSaOYDaMNtDuhIMBRizIQeqQzeyTAwZrCwC6QyW2aoxD/UiRckLcP9PmxOXI53Bl7NjU8VieYZL58ZHhiueQf/zhaXLE9n8yv6TN5Kx4miyPJFdmRSgvTw8FI9lxkdzFTNxxmPfYNr2IoYf6dvEgmpZ/UQEHkqN1jgJx3O7okB5bBjw5BIi7oK6UliAeex1FiWEX2W/PNnERJ4pxWa1Wm1WG6pFkSXJHQlpqpb2pwG1oikiBz9eerr2AKznL92C7/b29iZhr1aBq7naV/jSMPJ9D/H4yAem1Q1UZFTX9eJGUCGUDhP0TfyQIPLCNqFU3CKiaFt4lPRGX7QjySK6U0R3Ptqf8K9nPdanimkJKIpdDwUkqf8XnToQoab4Vb/KlAj33jiXey6k91YSzqGIuxAOFpRZuFj7IVZYuXbn9Gup6EQkbvMfjz510jDg6tR34VcJ60dLb33EIGfNLhntomD9AScV+Jbg+g/GDM9zW2gPeYEIwmFJfQdxgeB18SCNLzOxaZqmhxpik2xUC0QRPZtFar0EBl5K4UoVVWd9It0vOvwFfXDuRHjvylgmm126aFm6MLN5+kb+JDheKITc/6lOOfpc/tm3tt77xlFQd6pLb174aGNMUP/9xFB9Bjz8CWt6m8ikn2HDkuaZw9EO2w3IyorKSb0RnNKqlrJn8eOoez/cN2ZK0Y3XrvwRjXoHPqNz4ef/+uX2vyD+CiywedDiSiV+EiHr+91tlK8Pu4YrD2cxL3Dov0cpGjgaRaoqzRyh7kqHIzjUZ2+6kp0emWwUnZhpOZCr91x1IEuZ7pReXyaQrpuf3SxPpuevfXStlCkunp6aOHZiLvvELMz9Zq70Uml/+fr15fENh1JOn6xWT6YWFccGCAnTTKSP5Ws/FWdni8enp3+hBR+JkXPoKhB4EdkT0HqHs+cQPwXhMW0PHI0emT3OiGFo9dkDTNFGlpWTtfGN8zJPkwkvJ6WMKB6gElbYUy/xwxfLhUD02OQ5C2/V9ImBmc1J1TM16BvLRdybAB2uRKCg+zz+G9Ow+P630XH9d78VOjwO+a3zzx1Xe9z2WOkGlcX+zLFQZvjU0lAKTyyE40Wd7MAdPDNi5ogPVT8goffFerkoX7qFbpcfNbrm93o0PFZdTMot8OlUlBp4Ifw8j7KWsEvYmR4v7XHCTnx0cX3NNvvMlhzsdQUCUdlQjeCo2rFY6pwtryWyXl9EGX51KhQYLiULiqtLFMR2pxyMD8TceAb7pvUxr8siSg45TOqYu/D2PdzG+Tn+qQTs30djfHZylALgWGq2opMlv97YBLShFQMWYlEUhh44jUv2OHuSmW74/taZW6eWcm3Q9me4XTsBt795JzwMT5H/A6vifTkAAAB4nJVSzW7aQBD+lgBVpSo59dhoDj2AIq9swyE/t0RJKlRIhEOU65IYsEi8kW2CeIU+S9VjH6WP0Ofox3pVqdzq1c58Mzv/YwD7+AGF+rv/ixXeqY8eN9BWRx7v4Uh987iJA/XL4xY+N0KP2zhorGipmu8pfXdeW6ywr1oeN/BBffJ4D/cq9riJQ/XT4xa+qN8et3HYmOACFq/YoECGORaoIIgR8vQQ8NT4hNoprQTn0KQDGDxiSd81SvKMOoMcT+5NY+isRu69ttxadCjnLlLKTAbPmFGyjt5R90A+QYJLjEkF1+Q31NxS6jIiLuzrpsjmi0riMOwFAemJTDdyrmVgHpd2XS4zMfmTDPRQy8iuqcykY3OZpgvzPBM7k7v0QSbJ5TiR6/HN5DbpMu5XFpy4BkocUxwmJi8Jtg0UeHGlYmSLF0N+5bqoHC84s9RNTHNKglPef4MF7CGl1YohDO1rmx4ivkR+vjH6DGvz6soW81RiHcqp+CKCcTpfPZuCml4URGw57u8WvJsDO77bvzClvuQW6g3U9YbMKzjjrXhm9F2RW+4mcx1uN/bGKjVzaPIuA6VFmXGerDHsy5lU1cysKrvI8ko6b5E+1lH3v8v7A/wmi3J4nGNgYgCD/3MZVBiwASEgZmRgYmBmEASyhRlEGEQZxBjEGSQYJBmkGKQZZBjCGCIBgLQDmAAAAAABAAH//wAPeJxjYGRgYOABYjEgZmJgBEJBIGYB8xgABFkAQHicY2BgYGQAgtsK+9+B6If3661hNABTcQeeAAA=')format("woff");}.ff6{font-family:ff6;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff7;src:url('data:application/font-woff;base64,d09GRgABAAAAADEgABAAAAAAUvgAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAxBAAAABoAAAAcnt++ZUdERUYAADDoAAAAHAAAAB4AJwBWT1MvMgAAAeAAAABBAAAAVlWZXrdjbWFwAAACtAAAAOMAAAGa3bsU7mN2dCAAAAsYAAAAKQAAADQKCwIcZnBnbQAAA5gAAAbwAAAOFZ42EcpnYXNwAAAw4AAAAAgAAAAIAAAAEGdseWYAAAvoAAAiigAAOvDJkiyXaGVhZAAAAWwAAAA0AAAANiUIQjJoaGVhAAABoAAAAB8AAAAkBM4BImhtdHgAAAIkAAAAjQAAAKoMXghpbG9jYQAAC0QAAACiAAAAoi94H9htYXhwAAABwAAAACAAAAAgAXQBvm5hbWUAAC50AAAB2QAAAz+ANKFDcG9zdAAAMFAAAACPAAAAwgeRB9ZwcmVwAAAKiAAAAI8AAACnaEbInHicY2BkYGBgYmSzn1zmEs9v85VBnvkFUITh4f16axj9/89/aSZJpm1ALgcDE0gUAGW6DSZ4nGNgZGBg2vZfGkjy/v/z/wuTJANQBAWwAgCTjgXyAAABAAAAUABSAAUAAAAAAAIAIgBLAI0AAABvAR8AAAAAeJxjYGTcxjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZoABRgYkEJDmmgKkFBhqmbb9lwaq3MbwFKYGAOcGCvsAAAB4nB2MQQqCYBCFP8NdBhlUZgWG8WPRQkRJXbeoRbntCp3CE7nzEJ2iTdcI9NkM783jzbyxPP5l3QeC0YSaUL2h4ckFQ0vOm5KEFykntuJMM5M77IywZkmEr5RhQUWAK53LSQWbGWPdfDjoi8ONPWeO+uTwIGZO2f2kCyFS9spKymOqjM9O/peiBxBfEssAAAB4nGNgYGBmgGAZBkYGEJgC5DGC+SwMFUBaikEAKMLFoMCgzKDGYMZgx+DM4MkQwBDBEM0Qy1D7/z9QjQKDEoMqgwaDBYMjgyuDD0MwWC7x////j/8/+v/w/4P/9//f/X/n/63/N/5f+3/1/yWoXTgAIxsDXAEjE5BgQlcAcjILKwMbOwMHJxc3Dy8fv4CgkLCIqBiDuISklLSMLAODnLwCg6KSsooqA4OauoamFgODto6unr4BA4MhgxHQDGMTUzNzC0sraxtbO3sHRydnF1c3dw9PL28fXz9/fK6jDwAA7mMudwB4nK1Xa1sbxxWe1Q2MAQOSsJt13VHGoi47kknrOMRWHLLLojhKUoFxu+s07S4S7v2S9Eav6f2i/Jmzon3qfMtPy3tmVgo44D59nvJB552Zd+Zc58xCQksSD6MwlrL3RCzu9qjy4FFEt1y6ESeP5ehhRIVm+tGsmBWDgTpwGw0SMYlAbY+FI4LEb5GjSSaPW1TQqqEaLSpqOTwu1urCD6gayCTxs0It8LNmMaBCsH8kaV4BBOmQSv2jcaFQwDHUOLza4NnxYt3xr0pA5Y+rThVrikQ/OozHq07BKCxpKnpUDyLWR6tBkBNcOZT0cZ9Ka4/GN5yFIByEVAmjBhWb8d47EcjuKJLU72NqC2zaZLQZxzKzbFh0A1P5SNIGr28w8+N+JBGNUSpprh8lmJG8NsfoNqPbiZvEcewiWjQfDEjsRSR6TG5g7PboGqNrvfTJkhgw40lZHMTxMI3J8eI49yCWQ/ij/LhFZS1hQamZwqeZoB/RjPJpVvnIALYkLaqYcCMScpjNHPiSF9ld15rPv+CFAyqvN7AYyJEcQVe2UW4iQrtR0nfTvThScSOWtPUgwprLcclNadGMpguBNxYFm+ZZDJWvUC7KT6lw8JicARTQzHqLLmjJ1i7CrZI4kHwCbSUxU5JtY+2cHl9YFEHorzemhXNRny6keXuK48GEAK4nMhyplJNqgi1cTghJF0ZOrERqVbptVSycs52uY5dwP3Xt5KZFbRw6XpgXxRBaXNWI11HEl3RWKIQ0TLdbtKRBlZIuBW/wAQDIEC3xaA+jJZOvZRy0ZIIiEYMBNNNykMhRImkZYWvRiu7tR1lpuB1fp4VDddSiqu7tRr0HdtJtYL5q5ms6EyvBwyhbWUEKU5+WPb5yKC0/u8Q/S/ghZxW5KDb7Ucbhg7/+CBmG2qX1hsK2CXbtOm/BTeaZGJ50YX8Xs6eTdU4KMyGqCvEKSNwbO45jslXXIhOFcD+iFeXLkBZRfgtQnKAUa5hJYMN/rlxxxLKoCt/3ORI1GIK1rDbr0Yee+zzitgpn616LLuvMYXkFgWf5OZ0VWT6nsxJLV2dllld1VmH5eZ3NsLyms1mWX9DZBZaeVpNEUCVByJVsk/MuX5sW6ROLq9PF9+xi68Ti2nTxfbsotaBL3nkOs6//tr6yoyf9a8A/Cbueh38sFfxjeR3+sWzCP5Zr8I/lF+Efyxvwj+WX4B/LdfjHsq1lx1TuTQ21VxIZsAmByS1uY5uLd0PTTY9u4mK+gDvRleekVaWbijv8Mxkue//lSa6zxUrIpUcvrGdlpx5G6I7s5VdOhOc8zi0tXzSWv4jTLCf8rE7c3zNt4Xmx+i/Bf9v31GZ2y6mzr7cRDzhwtv24Nelmi17S7cudFm3+NyoqfAD6y0iRWG3Ktuxyb0Bo749GXdVFM4nwAqL94mnadJx6DRG+gya2SpdBK6GvNg0tmxc+XQy8w1FbSdkZ4cy7p2mybc+jCm5DzpaUcHPZ2o2OS7Is3ePSWvm52OeWO4furcwOtZNQJXj63ibc9uzzVAqSoaIyXlcsl4LUBU645T29J4VpeAjUDnKsoGGHn665wGjBeWcoUba5VnCJkYwyCq78mVNxIhvRZCOK+M1b6qe6UAidSSwkZstreSxUB2F6ZbpEc2Z9R3VZKWfx3jSE7IyNNIn9qC07eNnZ+nxSsl15KqjSxOj+yY8Ym8Szqj3PluKSf/WEJcEkXQl/6Tzt8iTFW+gfbY7iDl0Oor6Lx1V24na24dRwb187tbrn9k+t+mfufdaOQNMd71kKtzXd9UawjWsMTp1LRULbtIEdoXGZ63PNRj7Fl5pvXecCVbg+bdw8e/6Ozubw6Ey2/I8l3f1/VTH7xH2so9CqTtRLI87t7KIB3/EmUXkdo7teQ+Vxyb2ZhuA+QlC31x6fJbjh1Tbdxi1/45z5Ho5zalV6CfhNTS9DvMVRDBFuuYMXeBKttzUXNL0F+FU9FmIHoA/gMNjVY8fM7AGYmQfM6QLsM4fBQ+Yw+BpzGHxdH6MXBkARkGNQrI8dO/cIyM69wzyH0TeYZ9C7zDPom8wz6FusMwRIWCeDlHUyOGCdDAbMeR1gyBwGh8xh8Jg5DL5t7NoG+o6xi9F3jV2MvmfsYvR9YxejHxi7GP3Q2MXoR8YuRj9GjDvTBP7EjGgL8D0LXwN8n4NuRj5GP8Vbm3N+ZiFzfm44Ts75BTa/Mj31l2ZkdhxZyDt+ZSHTf41zcsJvLGTCby1kwu/AvTc97/dmZOgfWMj0P1jI9D9iZ074k4VM+LOFTPgLuK9Oz/urGRn63yxk+t8tZPo/sDMn/NNCJowsZMKHenzRfOJSxR2XCsUQ/z2hDca+R7OHVLzeP5o81q1PALgKA/R4nGPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdidNokzMmiBGJt5OBi5ICwRNjCLw2kXswMDIwM3kM3ptIsBwt7JwMzA4LJRhbEjMGKDQ0cEiJ/islEDxN/BwQARYHCJlN6oDhLaxdHAwMji0JEcApMAgc18bIx8WjsY/7duYOndyMTgspk1hY3BxQUAq0Yq9QB4nGNgwAJcgdCWwZYpmYGBKZlxPQPDfyWm5P9fgewd/3/9lwEAbwoKKwAAAAAAAAAAAAAAAAAARADUAUoCGAJUAooC5gMaA0wDbgOOA7oD/ARQBNgFaAXUBjgGrgccB5YHzAgOCEIIhgi6CS4Jggn4CqoLLAwIDHwMsA0MDY4N9A5KDo4PKg+SD9gQLBCgEQoRQBF2EiASmBL8E3gTyhQeFNoVMBVyFd4WShZ+Fx4Xhhe2GDQYlBkKGYgZ4BpKGpwbHBuCHA4ckhz0HQ4deAAAeJyde3mQHFeZ53svrzrzqMq6uq6uqqwjq49SXV19qbvU6m6pJXWrW4etttRqt7WyLFu+5AN8y7ZkzBBjg5nZMMeyY2YCmCAM5pAg/AexQMTC4o3dGewBzxAzawzLYDaCMYQNLFil/d7LrKMl2QOrUGVlvnzZ+b7j/b7f971XiKBH8E785+Q25EYhVNv9wtDyoaaXYITwBocxltFStOmHM2hYpQ1oA25itLJ6wTCMNC/1DWBJzKRLODdSrQQV3D3HH/KSeILAwacmvtJzThr/PWO8FO8LJ+1vhBBBGXjDG+QYqqMx9NgFn5O+Zs/uF+IwnoKiejmBJwRhAZ1wYYdDXpQ9RBSldbeTSJK2SEemYBhqjjbQe4Ik3nyVx+yOq80EQmOjjRF4Xa1a3jI8YOZz6VQqZaT1dEqTkgOGbgmWq9camc5JujaB7aMlbrX9XaH9q/mMVMVvlPaoUlzR1RPWV75UKvu2l0qLCpdSgpx8wv7OlUpbfDPvO+E78cb8/WZAFh6wjvPPzN9nBiN3scP8M888A/oRUObS86CfC2CnKOhqCAY+15zxYBHrmDjJHmoiUcLiSSRBbwmdhEccTsFxM3IS4lxFTifZ4GnPlXpN1/1+PZcz0i4Q1K9bwlE5GrqEbVExvfbpYjpXG6ngWi4tBvRgZQTRMzj5+0rWqNLPT8XWL91hOSBizRtS9FplV6Wyq/W6HtQDegCH4RDQyZbRxT3j8DEl5eJiPCBLCvlSMnDxv92xuHjHIr4/XizGk6bZIpOmOWkiDsUuvY1/AT45imbRCjrf9I9hybGwfbDIExRwiRwmHLiGAq5hgudgTE4jh0PYQIIgL4rgqtI6ol7hBGNzN/CY4wLcUtTy7SJ9ABF85o94olnodAZlSoLj5Lt1XV1tyit787XwYDrnM1JUr5g5kBSsVhq1aiWBA1TPeVu7lSncsHUe0KVgaKSRHsZ1cCvomK8NkwxVd2iEy+VzeRkeTYCD4V8UkpORvsFCWohxTrUyND4xtr0xm8GJNBebKm4ZPK6NxSY8slI44vEqvyWi6vHH1VleiyZcOd3RFyjhDyc+OT0wPpYkqlLcNT9/aHLrYCrLHVia372vse/k8JHGJ4giJ4iyQ/In9MHCeGNP66uhciVYNNJa1gA3BG08f+kL+Dz4YRKFmroGkxTvgVZ8Dm7ea6aJFB4QmEflQb4pjgkoY0km4D6hBMHnZU1fz64MbJ2tujRZlFzTK7H917od4ojTv1i7++mdZw/NJPxOyS1IA/ffOrr2pQmH4KbvPQTvvR7eG0O+ptJ5YySUJVIIlC1zlmanQI3DJG8rNxTE17NXqUroyLK7f++Yqqj0/bhiv0hRpr6y2j97w7GcS2EjoO+aRdfh7xInKqOBZmEwlwzKkog4EJRHmMfHKTxyGwKYXkNLemBAD6ZFKTaQZRbO5UHiNIxEgsMUnsb2WJIYvitg7QYcFJwgMLbv+mVX9KCTm+EeLDgl56lbw37ZKZ9i15FTUmPYLf/AE1CrQn5fsbgvvzPllAVhYsLr9wSc0+02nzLBx8IOCcadQyv4Z8SP/GgQZgbPYX5VFAhHoZRDJxDP4w0qwApozo98vlTal5Kk6AACV4Uxb8UM2WCUcVzFPys9Nf9UiR7wwfmnS6Wn2cHyga9eugdfhx5COko2Yy6Yf6AaaH4CEULfQBHWyKc5KWLphNplpNGFGXzdsYxHj00oLlefkY6ny5GdR3SP7tCnuEwskh1l7xiFv/IKPghwBu8gLABdS2gAWqd390IfCQllDoyP9EwqXaum8Cul1rdKJTwFA55nf+O7cJiDcbqRv6kiGrygWUFLBvPTbA/y4TkjGsnSz1Q4Z0ThQ58fB8z9PvicgsLNgINBTdfZcwb9I/gyyMTfd7QueIOK7sC76Bf5qOi7uBQLyKKPfDkWQCzWVQDf/onF3ACatHAp0NadvIg4jg00wGIvBSAAvJM9rasXdN2OvT0iSB2Qxv/08DUHH6GfuWtOX3Pg3gO4/MSF80/C56Fb/uxDN9/2yU/CHz0JAr4IY4ih5fNuAFQabOlAIoC/BHPwQp6XFwWq8estrUXhHs/x59odeu+tNp3pjC9tlK2JMICZ809gDcbHrA8jDGgUB/GLhT8UFK/ncLWeys6aLj1xGOAqkUjICsGfGUzEiXQ4bF78HVEsX6vB4VUY5yD68HkNPI2Osw/GmYFBCJgIgM08L9wBmuM2QEegPp7vjNgSyejpigX+4av3baYv78YhqpeTPZ0A552ZkJErVNoTPgXiTeORei0HmC0FAz0GgbkOyFcFPdAL/Koabj1vKv9819qMuc0tRzU1fvs1Rx+9Nfwfw78kqhZym2EtKXtfvP7a6R3FjDugR0KRmeO3HDqxEXxQ9ylyQGf6GATfeQ30MYYebcp5LAoNzPFeUAxnG3AIiQIviPwZmPTUc84AagEScMAIBGkDYheIDZyo42EDV/SHiSVKwsnOc93eq023Echmazk97ZAS3RnEhKVBiioCjE+D2Qi1OtMLU0tXKyL0xK/dt3704b5cxKNdU9i2b2VuGJwgUppMFbdXl5POaDp2fHX/yQGzOvWFhTtWZkLhPp/fk4zuLm9ZhBCluzgumq6nS0mnT4+EQ/Xm/vHi3r7QQZhbcVDSv5HbUR4V0dp5ExREPaYIiok5JCLyMH1FdBML/JQMknUQTyGghxhILZzr6dN7e7WpFgqFYqGYaaSMWirllOLMzQNWaO/4e92CAj89B1mZx+c1Dv9bYWkKJCx8lbr+1Dth1flTp+yPRdQlaP3Cv3wncYpGXjoHTqnhoBffqIhqpPVXRNHwWuuv2TwAu78K/LiEZpvbBjAHvkUw2UNRnuOBoVBXJQ+D7TheApuJorDOhOyxXtoYSRtZY7PpbApimQ5sBc1gPQ1upGzRAgzXXn3s6P4746oW9fYfah6eGz9Q9PgUhahh7KWCvTkyc/C2b+y/97rpvmA44PdOr0zUD1YUxevFrrBGhftG/P0U++ogxw/BfxNoAJ1qugIw7j6YbcT23iygHc8RnnotOKVAca+Ni6LY9dpMpx9GEOC4k53+3V6rTVfWyGT1XFpi5qKikY4XMkOxWWujp0W6qCbwDx84UNgxnX3ulu0z4KMuNT9/t6t5cP9dc7snxvY6jEOj+7556O7+7Q8f/MiXtxaDEXBOl3r/8fF7D47v31Ya8N+2TLGL68zVIEoBfl17QXcSvgO0cejACxx/sgf5BaErYbSL/Ha/7l2AId3Qi31d3kFN2WDTrj3F8rZEEBBC3VP82kNrRx5enpiYuecL92ybnFjevzQ2vrh827K8f2bbgWsfvPYLu26/fdfIAc2/Y2B64/rmwLyuHXijMDlZKE5MvFXevWdLbWGh1479aJjaUcecqDCPbNuxjSaUOYkMffgNFlM2oU+mB6Vs+9n9e1HHZRTAkEFmR9yxY8dzu9wiQcCQeVtaZslnTwxNR91gRWdwcMdJB7Xiw9fk5qayS2okXR+7ZvfE5CIeffqrQSOhUEtqbu3Ro2DJQ3cntj/irJaSA8vT4/tnWdxmfAJ/keXKwEooHlPDaTRkkw0LKTppcc8E067KNNoffIdNOVpf6XAPwjjWLvauBMrS2MSRJ3peyPMshCnckhGENwpA43rf6O/yritfLByOenS97k33Z6KJXPf1H15Y0z2qK1bPRfqMCuVgwMJeIYPA8xLNqK/N9RFetbkURiv5LpXKZ3O1RtYGFC8O4leCXpfa+ooviBdUlzcYbv0YJ8OHVb/r772G8j9dftWvnD+vgKw59G38M/wcgJeC9u5+IQP+owO9pjIfozKv8wDFGpsUPGWCHEYn4D4h3LWUhVOQ5sje1abP4UDIoTi8Hidjh2IPOwy2WeLPhlofH6ri66rV1meqQ/hG/Nz8/LOUMF4mr/uq8hYZ60O6JNgKHsKWfkMCyNv6GhMUJ1s/DlPh8SKe7RHVT2UHeaPwp34FMcoEVLj+/AB2iO0YFXdi4JnYQW4CHJMXJYGjiT3Ib3OUOBId4rlOp8vurza1YrE4WBzU9cyIpgXLLob0dkAGHpLPSAzUZcwiFrAy/xSBlpC/Egrm3Rj/auBGr6wo/mDo06GgX1Fk740Dmpi9j1dVQ1P4+7Ki9rczM4kEkWVFJjfdROBLJgkANuLxaRzn8118m5O+iMdb/xVgKwRyvg4mDAP+maja3BJk4RiyaREL4gkegwXXGRGTbGZPpUgZqWIlla7YYYqNFJhkhn31oBuLviM++wS/fnTvbwpmNGoWXl86OlGemL+uMvbQiW3NwPjYnz0y+dnmiUQSv5FMrE8OL2jyNf8nvfV7s63/dWDP62DVAmDZTwHLBtDtTZcbMqQCDK+NZCYSOYETgRbS/ImmIIyid057MTvd7UuTL5q2cCLmNkO3K2NkszmjG5RsB5oidfiKQy6LaQzOD+MOjFH6jH96z8FjTz99w8KYKHIeNUE0VVY54tpZmrvllvniPoH0Zz43f+uFDzxxYYvbK2LN/JBXlt0uz8TsR0/d+tGxbXHGH/vg8BuwyRh6afcLLpCvjngiEf40cjswdp8G/HU6ROcJmEAOt+QAlt8xkqs3Gdj9ggceHul52OHGZ/7Yp5sN60HpzJ/4JDBwX6Ne3lIazmU0f476iUdKdqi47SfAXYK2InOQ1gZsEt5uqmcCqXqbl/8GePk9pplImCa+J6KAWkPutx/nFGDkRFXD7sexm7UBPbc8SAsvgGIDev2liN8b0NfgIpj58Rxrs3IWiAz4F6DjKnrAUtMwNABonYa5D1RHOEFDugghnRaRXOvI5ZIXHZjWM4GeKxKop2Q9wJ35I58AfloeHiymaykf1UvGzSpQ7yF/D2/t0VkAhk1l/f2TXfmfrFF+93HTTKVAQw9FFPwrS/wf9Ij/A0ZfQT2JpBZmOsjBnHoT5lQDJ5sumPecB2OJzimqjwGwNUaSE1G6xm3QKhqbSZ1TSbLmFy3qWpW+0r/3CHSmz7E4HCD0seCf/qah/583NQuQQnHiKtxGgpMDDtP5A5d1XV2llcJGLQ1sJmMYut/FfBeMQjGZonQPHOAOGGyCgky7VIjfVFSVqP0aGV44fPbs4W01j6xQWEhy7rnM1o31qYEpZ5Ea733mm5BZfA4sBf/qFCGGYhY8xHdOPHPbqY/uXab2Y3YL2viwHU01J5AT4oyTnPC4HBwrt2OaPno3R51t01OTo/VyaXgIMiP4rxllmYllxx2aFV2eJzGPY0mSnWNU65luCZS2WMWC3xTeRwWIvBJhctDsKRKhx03N7DzCyghUjtdfbydT4I9wpFff+55V2pQTrRBRrAoS/gbIGUKZZn9PJBJ6I1Ea8MUuaVwGL/YQ8TfM1k9M89QpmBpx9g2zIEFRIgkvovrsh8PP4T0ZdNDC2wQSwd/E05e/swONSdqBiPjMu/SgdFiDmW5U2hEkdYVWreF1MO7ngHFPUrVls/T4adMc/VUH1Dp6okOek2WY1DBuDcb9Bxj3TuoH9T4XByPag+AAgzvjpNCz4WDe4NrsDfNzs9vHa5pe68vrZXfbD9hItIxMJKtGOszlM1qvS1S1tvlDvlB1ZBpPESYGuD/th/9Q2FdQfDoWyoPEG/S7hQAO9UV4rPsU6w49Gc271iQs6dtFKaCP2q2JRAKoCv7n8Mce54OKOEV27t2ntjLAXKwbb9CzcOuNVHrye6rXTdvAReQ2jr8JOmigLc2hooeuJO2RBIKQuEHBV16kFrIWygA+alnq/rlMymmX/xnth0DOZbSO+1tCah1nD4b81d7JgN8sRLSIqvjEr2Pm3Dd3nLswGwo5oJVakLaS2USLi8qcquG3Wtm2e4M8cPSGWh78I8v5rZrjKODxK6zet4XlLlcrNxYGJnJW7iLzMEK+NsXDwEWpZgGQRPNjVuVpjOBXeF+oNlGpjtdCPp6ej1dz5eFo2O0kcx73yGSz7nR7nLXmtjpE9/LS2pIREcWIsbT2ybW9cMp5tKy5Y6n8ZCkfiQ0MP/ZUNd+fHhixxko5ymuMN/ajoWaRLmlhCZ0QMc/bVY3e2kwqU2ETlfJFRPkigM3m0Eb13KaJr5088BCE+ketiP/a/uzCzM03z+C3n7nt68mEFeD/95E9b6FuzeU2wMIHm3IWS7wfkg4BwnK31iZJ/IaAWVorip1TmrvSRCVgaZed0qmdQ5LIS6vQC+Y4L558l46rTXcuaxRz2Uy3VpOngWArZjMaCHswZJVsSpgl/Yw+9sQL3ooXSUy74ldP7r9pq6Sw4KCoBHODwztGZ26/a3Lu5MrBhiAqbnonwXOC3ldL1WaH0yvNenzLZ+ZvGe7TzbMQJzwe90QsOTuwGo5qh2ozN5R8qpfdiGm+gUhwopCuuHxKMFbrcMxfg/0G0CEr3idFSKYIECCKY4yzWHOHoZtCl9r67R7kzLt0AZ3UDQ3Ciz9DddIlN1fOrUD7HitiAfz9mmHdWUZknqeH2jnWokbwB7p8hgaG9hyqs6aFiApsBiP+0tvEAfIYKN80RJ5wkIKuS21ewOZRAC9VMpl0JeNPWcNj0x9iedsBGSKzCN5pIg4zcfuzt9veuDA0uIudkrlk6zOHH3zwML6OemTr87sPHNyFDyat+Oy79Dv8exhLkY4F8AIgSbBHJLbpSRjAKKTXdMNvFUxAHZxMLCxqAw9TEuR51ZGGv8Mofq/6g2d5n6r5VFU4G/Sr5o2m6gtueAUsphaDPnpN5gAhL/7Wp3Kc5gO12DjaeqBu5M+BUHBNx+m+9DuIYsfQNKo1yxXDzWEaP0S4A5GN5q0I8esONl0o/aJDLppGJV1MaxZ+Zjjq9cMkn5HZSjzAaLqHH/iDgeoUoYlRSE8QJkYHRgnO7RSMlISjcXD2BueKG8JOnDX3MiytOTCJhokr0e9UfT54uTLIMHWvCYh68e1MhNzzQb3vd5KeIe5EklGGu6fU2OM388EQnjtwJNh3F16k0MrsEbVjxBiaaI6OFPpcPIYU1+WQOEEQ150sTLjBQDREclaIHGvUq+Vhn15JGzWfXvZsCpJ5aTNT8uc7DgQGCzW69hvAkh8A7U3zpoKiKMeOABukp15P8Nz7QyY9leXFHYqqFG4yzeCdfx4yrVWWb32rQ48cP06yk2eeoU3JxGut31KZ/uXS8/gn5AJwozSwEasMSTMQxF1LYWqd1jb3pox6mQYLgY41RyvGl3G3nxTORxQ1fJ4q/dln4ViH1Il8zaoGX7yTBSaMTHjXcOdd1tLSCVZ1uRZ1Vvso2bHeJV4thgbwcO976HuL1mvI0/TIUhK27vZ7IuGvoyyqoG/vfiEHyORKY8kB2AOpSbRz4SR7Vq30IY8EjnACTdwcEnGcpBmAuAFQH1p0AvuxENtKh+lfK1jdyZl/t39zy3t0RbQnJXuLyOlk8ALTg2YOw4M+IwPkT09nOplDe1PBSIPV72UcsHK8Gkv4AHDydbqFgG5EmCJEUjTfwdD4oV2H//qDs5NBWRFxTPH3feTYsUC+8Le3PDg+VDd8Pi4JM7o/tzwyv0iqVYx5MRIIBxeObn3VsXCAq2QTA5ojpDKdei79nvHbKCrQbJfpNIQFHsKkyHRqXQBtpDqlt/tRh9a2i8Ihq7hPlROmyjGu2oUlU3Z5P2yX942KoXcrKXk7i+pE/TjuFvchOLKS8M8f2D9TYXnTUMFciCgjC8t3zS02Srsm642Drx49U1Vh4shefJHmshfKjx6ZOTo7uDB0+Ajz1wWQ9/vgQwY6arkIXYkAU56GPJ1jq4bWekWILS7aQ2US0V5scfFdu9HVxVw6kzOslINCNt1FQSifodLVMmm2kYKaku4I+b6a2bVl7ZFI7ejWv+zzD+DJ0lxKXmvuiAmynLnVmRpIPH7YWNgxuBCIlJ3GaDk4uzYpO6y5YMBcQGC3OESSx2y7qWAlcH+B2c2+kDp2S8GY+XVkcx2W0oYWJUxLWx2vNq/Wh1a/1i13ptm27c5Nt2FkAAIzZUe7SpnrSX/rnXqfRl241q3pE2QuxDwjO5fvvn//TNWy4VDh4zOlxsHFkfpcMqknRh89cvTM0KeoAVvcuR0Ds0fmZo4eZnI3wH5/B/aLQUY2yopfHOG5MxIWETAygB47oIc6xBgME4/HM/EMxPdcxnB0bWMvJcF5itJiZhSbKuO/0/O7hq9/4uHVteOi1+1q/cCzPrHURw2zQ5wv1Zbdt7ozZuzxrz9+32GvKuGpXWCZ0/PjCw3wsSI42nlyEg2iMi0dIccGopvXRJptrNNSqbZI695M0Qq/lElT/muYPitwinQGgKPEcbWLx4FNCeyExRnx+Wh/QNJCWf1+Cpv3HzfN1q9M8/jxgvkf1prXkyE9HPDxnDcTLbEw+BJNa3E9kaxP7aAxIH4pii/iF1EVovwS+k/NUEkkkkBrHwXsQArGDgM7iWCT5RpyAMVz4JPgBcKGCI4DOkaofQoxhjg3APDATVwuNucjPLhUZdNjyH7KRsqrP7TaVBf3zG83jPRgsBwspK1qGNuV1F6jz4sBSqGDNOFkm7Os5UDrQ/2vd1GQep3f2pYl2ctoFyOKO8ynIn3Xz9WzInZ7Ao7A/OGRTPrJbz25K6T3Q/NgaSJrfHW0kB+jn1PpnZXhsX6feeMzN+KzekD1cfLA4PajEcUblMFY/un+6QP7m3uHkmY+bo5sW09kUmcLkxNF+LS+ncgpHO/pG0zX6+AfHurIMHeH0HizkaPKAWYl2qQZphzzF4g4mzPzoQGDJkrgxWVXl3JQV7DQ8WpZE8NPeougwsdMGFlueO+gWfjPBXPQmnj1pccGKa9I/qRkzs9+KdkpAr5Y//DP6TCXwJe/Q9YgrYmzXA5Y0QZb22hDvLbI95Rc/H6azZUtRN/sshYUkPaexO+YrX80zfvuNM2nIspJ86l4MR4v0pHgOq3Rtr5GONoShzFsuRTDd8IY+iFGHd/9gg7OmKPrjgSf7hmPPaE0lr7dAMOJUETLdxYo37snRCN/oGJkM1k6doFtSOtdXm90eX8wMNIW4g5nX37G/FDUp0Vxom8k2vdYwfwUpCRMmMHAcLXQtycQiehOjs9lGvhjTLOWWOAHATi8A34wjprNrY2CG7inRJdX2gOllMOxDr6gLbo2U9Dx0ZFajZXrMpdXafJS4N2rFQGtsanGJIUARd4x7y0o/uD7lsusUkwPZXa6LaJ8mhWcPm6amQf+MmlatZhP7FrZXK0Aa/3Vs1YF6q5v0X1XINfLrDaXaia6VKDXT5iX0FXPq3sJ0M+XC62vFcxHLYU+Zu0xsn2zxVHyiS+9Aw7K4/Pgo/de2D5NiJsuwzGK4hIJXG54PcTt1hZlJyQsAn25gyd2pCtQNPZseLHHE6LY495AV++62gzv2T0/O9OcHKOcrObP6PRTVjZpvT0JN9XErtqodeukIRuoEoT1Iby521QVr8+fKtPcbdPFIRNyO3rS7/HKOF+qh7JTyYLMQ5OVFrwxbCxMf4Wlc5uvaJGsTs+ILBu1WqqRUH9t1ccYDoH+BtHG+SwGam2rL0p1Y9UHtctRiG3daCNUG7Wu6AVcd7CY+ZPhKvCeaBXzXA2tIJz5YxSsCBoDbvAycAMH8vXWyDZRAd2v+2gqguwtTZVQd9/dy/d97r77PldbuW1l+Y5lXH/x0TNH1x7/x+2rq9vnjh1jXDmNfw76SoLGztmcK4p5YBzIwThXFEv2hc250hKtebEICWjjcFij6Ja//HT5oQgabGcOdoXs3TqvNj1Zg+k1nXba62bp/FULZoF3Yc49Cu2Tr+DO/4PqlPgTSV+klzmDQS6lSQRkT6MSGmuOBLDIucFlyJ7OIkuos1IS7lbh/WjJyGWyRtpgNFHoWVTockVGke15z22iipHCZxkcNZb333fmml1VLMnekJuC06e217eu7h8d2/VfGBD9cPLRI2uPNnyKJgT0iy8TBd+dH1ldm92+dtha06N1/H+F8RfRvcw05w22PyBKvyHh7+Q2PVUscQNYpahdVukqAOUhAnSBx9l+PEaQxXV0eVfKkGnim/GlrZISIzBt1wfUuwKdWbROEPyvEc0XxgfXbwc+9wcq/8oKPd4WUXYci5s+Cb/PH+7z3bn4UNIC4boFwukVb8BPZd0J8+AlmAczaKE5P4gl3kE3We3pFDtD3WJnqFvsDHdrmDBPJsdHaqWhATOTTWcdMF+yLCLSXNUuYrYrmMMkP8xbe8VDm9a/LTMmcRC/5IyY80NLNU+E1il9Xj5+rNkMl5JRw5xKRaRwfueW6UExbC+JY/HotqmN2eceUvuzMV8uZ254IZ1TVwsJf1STeFHyh80+bzTd5wsETLps6/a4R9OhotcTAdkjIPs3SRENo0qzBFJz5xBYEUsiMylZpxbSetPQHEwoI53x2ZVaVpO0gcpedG2H04CeAD+dsm9AiPrm0fuXDxXMa1kx8m+oif6G86ajan+KUxVVIw9PzW/b/lYiuY9VI/dRK/1S9scVZybmlr2yl2EwzePwF4ELXndewohvY3DEWkCnNUFtkaJIT5aW6r1Hiw12dmZtELezs0wlm6/Y0669lkd38/bEWUse0hbYJmiQnoEolbmnLIYI6UNMSRUi7UQtmSSKkns/RiwS/1rVgi7JP9j/D+zya2yuhS+9g98CmUxa44xfUePU2jXOtFEzjJRV4xzAnRLnZWuLUdyztIjfKiTuEnQFNOoX70pQcnIPVXzs1ltj9Jte4A8nWp9XVEJUFR9oLyC2voFnLNZi4YEKY3wHxjhH65uNQfld65tau75Zz+WyIwHT8Dvbi/NsxJAw5jOixJye2PVZe/Rsn46/OmX92igUDFX9VJTOWtE7iuaf5HhdS3iEHAwgJPviis/JkUm/Rvfu3EX38sjecg1zJueORzQ5LOBK2WqlN/FHaOX2Bdnr1txn08V9W4KCx+XGy9a2HqLE4O4P5I+IwXDlQBwXWQMN/e26J8jfoHXPWi58Zd1Tu7zuScuepUFa90y/d91zAjfeq+oZYlXPewqK5lu9RtfAaKZZePDegknbVG3PLs1uO32mYFPOBx5gVCb53F9ABgvXx4/T62TiL55j6xWQH1B/m0I3Nd2lPgA0utBDNyvoVr2K7u87LYk8GFUAo7L4CnzlBvDDCP3ZWYp2QYQ78659IPDW8kat4DdynfVBjq6ytffgSiMN+muR2hXuS80+Mn25D3+Cl2LJaswohXV/WKjGRb8o8U8lO/4cWfMT7PDt3OTUY25fNR0vp/Rw2B/kGu5GIMi58PG2i79Zk9K1f+g4OUYpOPwI9FJEH7Q2Ydhb5E9399xbGdzmPfd6d3v+6Z4t91d2verO/Cu60U33RqhuhOzdrlLK3l+OL1vpYXm8hLtbe34UbJ2DiS4pePT/thd8DrCG1nex11oAz4gwzb0eBRf6GMoOR1SrofVqztrSg4EXPg/5yAVUpTGhaP3ehaOVI7p5F2GBYPpzOySs2vu8BLQylC1k6LSO0VSQLckBTEL0ZtYGS8OQ6aS2fxcmQVAXJbo/J0FCFfwyTM/rGuEIRz6Q9jl25CJurL8A09XnuN/PkdFxITS5JV0DqyW8xWjwM3UhCXHPHUletyQeB/OpcsGx7Wwl1d98TtXCHsxs+ROQwQQZJKQ15c6PWPya9YstgPVaJYDN+XmjVCKfL5XYM225G5SxJYHnRDFBdM854gT2gwLg/wICHYBKVm22TPBKoz48WMhlC2CviEVbAN1ANntvOWhgimckoEEtB6BnIUAlRPOYIJXf55inQvu/7JFVn6M4HlMIH4+A3FvLKVX2HGa6eSKNy5fJjZ3ugNfzZUkvysnmc5oGfyNhqakv8Nm6iP4foz2HFAAAeJydUsFu2kAQfesAaqWqyq3XOfQAUryyDZVCckuUpEIxiSBEnCqZxAYL4o2MCeLWP+iPVP2CfEt/ob/Q57XbA73Vq9l5M/tmdmbHAN7jBxSq7/4vVnijPtTYQUvpGh/gSH2rcQOH6meNm/jo9GvcwqHzlUzVeEvru40qsSK/WWMH75TU+ABT9anGDYh6rXETn9WvGrcgzhecw+AZO+RIMccCBQQBPK4uXK4K9+mdkSU4g+Y+QIQHLBm7xZo6pS9Chkd7phFa1tCeV8yS0aad2Uwxb4qwQkLL2P2Ovin1BGNcYMRdcEV9Q88trQ4z4tw87/J0vigk8Lyu63Lvy2wnZ1oG0cPSbNfLVKLsUQY61DI0WzpTaZtMZvEiWiViErmLpzIZX4zGcjW6mdyOO8x7zYJDW5yBz3ZxHYYmMz5R2UOOJ1sthiZ/iqgvLbewOuezxfbRNCMFJ5T9fC4bicnbMEnEiIrV5ZlrpXzkAD0mNllxafJ5LIH25ET+1OGO4vlmFeV0dX3XZ+NB79+y96/Bfnj5O8Y8WHMc1Siqqj3eLTilFFwJgzfUhkNKbZ/l6F54hcYxxecwcB/n65QPyzq9npxKUSTRpjCLNCuk/eLrY+13/qfC335djSoAAAB4nG3NyUpCAQBA0ZORFFkOpRkNFqQ0gUOgpRAtysypyVJT0x/x2/PhugN3fYUs/c09+c9b0IqQVWvC1m3YFLFlW1RMXMKOXUkpe9L2HTh05FjGiVNnsnLOXbh05VpeQVHJjbKKW3eqau49eAz+dc8aXjS1tHV0vQb/dx8+9Xz51jcw9GNkbOLX1GwBnl8RZwAAAQAB//8AD3icY2BkYGDgAWIxIGZiYARCfyBmAfMYAAcDAH54nGNgYGBkAILbCvvfgeiH9+utYTQAU3EHngAA')format("woff");}.ff7{font-family:ff7;line-height:0.923000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff8;src:url('data:application/font-woff;base64,d09GRgABAAAAACtkABAAAAAATagAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAArSAAAABoAAAAcnt++Z0dERUYAACssAAAAHAAAAB4AJwBZT1MvMgAAAeAAAABGAAAAVlXoGRdjbWFwAAADIAAAANsAAAGSsIqMH2N2dCAAAAt8AAAAKgAAADQLcgJwZnBnbQAAA/wAAAbwAAAOFZ42EcpnYXNwAAArJAAAAAgAAAAIAAAAEGdseWYAAAxQAAAcVwAANPjqRiRcaGVhZAAAAWwAAAA0AAAANiZXQldoaGVhAAABoAAAACAAAAAkBlUC4GhtdHgAAAIoAAAA9QAAAUykzBJcbG9jYQAAC6gAAACoAAAAqPwUCZBtYXhwAAABwAAAACAAAAAgAXQBr25hbWUAACioAAAB2gAAAz92JptBcG9zdAAAKoQAAACgAAAAz3Lx2XhwcmVwAAAK7AAAAI8AAACnaEbInHicY2BkYGBgYmQ7tHvP/3h+m68M8swvgCIMD+/X28Do/4f/szEvZHoH5HIwMIFEAbRFD0d4nGNgZGBgevefjYGBecP/w/+vMS9kAIqggGAAqt8HOQABAAAAUwBJAAUAAAAAAAIAIABIAI0AAABuARwAAAAAeJxjYGTMZZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM4BBA1DQgQEBAtJcU4CUwm9mpnf/2YAq3zH8AvIZQXIA/4sMYwAAeJxNkL1qAkEUhc+9YxOFbUKCuBoEhYDGIo1sOrWxkBBW3CLNoiEExHfQJr6ETyBYJFiksjOtjZWlpVUqSRvPzKZw4Jsz9545zI9k4YY82gkwTQTyjicSyBENc0G9woB+xunR9Svk+V8teXJ7Vidwv86QJwMdo6Vb9DVCrA9kxvobMffEskNFv+gVEJsRXtnv6x4BM4lOqVXc6Rxl/XBZz3zCkyLeyLXsUdcUurKin0KZWpJ7+PZerEP8oCPpv7Uc0OM6NDmEtk//xuZcJmJ+wncMcem8DTxd8IwNv4VrWdKz7985Xkwav9qGr9kEU4N/AkFWPqIAAAB4nGNgYGBmgGAZBkYGEOgB8hjBfBaGAiAtwSAAFOFgUGBQZbBiCGeIZohlqFKQVJBVUPrN/P8/UAVIRoPBESyTCJSRAcow/P////H/+//v/r/+/8r/y/8vPDB6YPBAh9UfagtWwMjGAJdmZAISTOgKIE4FuoyBlY2dg5OLm4eXj19AUEhYRFRMHKJGQlJKWkZWTl5BUUlZRVVNXUNTS1tHVw8oo89gACQNjYxNTM3MLSytrG1s7ewdHJ2cXVzd3D08vXA7DB34Ea+UgcHHl8Ebxg4IJKQaADLBKcgAeJytV2tbG8cVntUNjAEDkrCbdd1RxqIuO5JJ6zjEVhyyy6I4SlKBcbvrNO0uEu79kvRGr+n9ovyZs6J96nzLT8t7ZlYKOOA+fZ7yQeedmXfmXOfMQkJLEg+jMJay90Qs7vao8uBRRLdcuhEnj+XoYUSFZvrRrJgVg4E6cBsNEjGJQG2PhSOCxG+Ro0kmj1tU0KqhGi0qajk8Ltbqwg+oGsgk8bNCLfCzZjGgQrB/JGleAQTpkEr9o3GhUMAx1Di82uDZ8WLd8a9KQOWPq04Va4pEPzqMx6tOwSgsaSp6VA8i1kerQZATXDmU9HGfSmuPxjechSAchFQJowYVm/HeOxHI7iiS1O9jagts2mS0Gccys2xYdANT+UjSBq9vMPPjfiQRjVEqaa4fJZiRvDbH6Daj24mbxHHsIlo0HwxI7EUkekxuYOz26Bqja730yZIYMONJWRzE8TCNyfHiOPcglkP4o/y4RWUtYUGpmcKnmaAf0YzyaVb5yAC2JC2qmHAjEnKYzRz4khfZXdeaz7/ghQMqrzewGMiRHEFXtlFuIkK7UdJ30704UnEjlrT1IMKay3HJTWnRjKYLgTcWBZvmWQyVr1Auyk+pcPCYnAEU0Mx6iy5oydYuwq2SOJB8Am0lMVOSbWPtnB5fWBRB6K83poVzUZ8upHl7iuPBhACuJzIcqZSTaoItXE4ISRdGTqxEalW6bVUsnLOdrmOXcD917eSmRW0cOl6YF8UQWlzViNdRxJd0ViiENEy3W7SkQZWSLgVv8AEAyBAt8WgPoyWTr2UctGSCIhGDATTTcpDIUSJpGWFr0Yru7UdZabgdX6eFQ3XUoqru7Ua9B3bSbWC+auZrOhMrwcMoW1lBClOflj2+cigtP7vEP0v4IWcVuSg2+1HG4YO//ggZhtql9YbCtgl27TpvwU3mmRiedGF/F7Onk3VOCjMhqgrxCkjcGzuOY7JV1yIThXA/ohXly5AWUX4LUJygFGuYSWDDf65cccSyqArf9zkSNRiCtaw269GHnvs84rYKZ+teiy7rzGF5BYFn+TmdFVk+p7MSS1dnZZZXdVZh+XmdzbC8prNZll/Q2QWWnlaTRFAlQciVbJPzLl+bFukTi6vTxffsYuvE4tp08X27KLWgS955DrOv/7a+sqMn/WvAPwm7nod/LBX8Y3kd/rFswj+Wa/CP5RfhH8sb8I/ll+Afy3X4x7KtZcdU7k0NtVcSGbAJgcktbmObi3dD002PbuJivoA70ZXnpFWlm4o7/DMZLnv/5Umus8VKyKVHL6xnZaceRuiO7OVXToTnPM4tLV80lr+I0ywn/KxO3N8zbeF5sfovwX/b99Rmdsups6+3EQ84cLb9uDXpZote0u3LnRZt/jcqKnwA+stIkVhtyrbscm9AaO+PRl3VRTOJ8AKi/eJp2nSceg0RvoMmtkqXQSuhrzYNLZsXPl0MvMNRW0nZGeHMu6dpsm3PowpuQ86WlHBz2dqNjkuyLN3j0lr5udjnljuH7q3MDrWTUCV4+t4m3Pbs81QKkqGiMl5XLJeC1AVOuOU9vSeFaXgI1A5yrKBhh5+uucBowXlnKFG2uVZwiZGMMgqu/JlTcSIb0WQjivjNW+qnulAInUksJGbLa3ksVAdhemW6RHNmfUd1WSln8d40hOyMjTSJ/agtO3jZ2fp8UrJdeSqo0sTo/smPGJvEs6o9z5bikn/1hCXBJF0Jf+k87fIkxVvoH22O4g5dDqK+i8dVduJ2tuHUcG9fO7W65/ZPrfpn7n3WjkDTHe9ZCrc13fVGsI1rDE6dS0VC27SBHaFxmetzzUY+xZeab13nAlW4Pm3cPHv+js7m8OhMtvyPJd39f1Ux+8R9rKPQqk7USyPO7eyiAd/xJlF5HaO7XkPlccm9mYbgPkJQt9cenyW44dU23cYtf+Oc+R6Oc2pVegn4TU0vQ7zFUQwRbrmDF3gSrbc1FzS9BfhVPRZiB6AP4DDY1WPHzOwBmJkHzOkC7DOHwUPmMPgacxh8XR+jFwZAEZBjUKyPHTv3CMjOvcM8h9E3mGfQu8wz6JvMM+hbrDMESFgng5R1MjhgnQwGzHkdYMgcBofMYfCYOQy+bezaBvqOsYvRd41djL5n7GL0fWMXox8Yuxj90NjF6EfGLkY/Row70wT+xIxoC/A9C18DfJ+DbkY+Rj/FW5tzfmYhc35uOE7O+QU2vzI99ZdmZHYcWcg7fmUh03+Nc3LCbyxkwm8tZMLvwL03Pe/3ZmToH1jI9D9YyPQ/YmdO+JOFTPizhUz4C7ivTs/7qxkZ+t8sZPrfLWT6P7AzJ/zTQiaMLGTCh3p80XziUsUdlwrFEP89oQ3Gvkezh1S83j+aPNatTwC4CgP0eJxj8N7BcCIoYiMjY1/kBsadHAwcDMkFGxnYnTaJMzJogRibeTgYuSAsETYwi8NpF7MDAyMDN5DN6bSLAcLeycDMwOCyUYWxIzBig0NHBIif4rJRA8TfwcEAEWBwiZTeqA4S2sXRwMDI4tCRHAKTAIHNfGyMfFo7GP+3bmDp3cjE4LKZNYWNwcUFAKtGKvUAeJxjYMAC/IDQjsGOaRsDA9M2xj0MDP/tmA7+f8V0kPHs/6//jQGH6wvmAAAAAAAAAAAAAAAAAIgAtADgAVIBjAHGAeACAAIoAqIC9ANoA/wEQATWBXIFuAZQBugHKAdyB9AIGghaCKII3gkuCWYJhgnOCgQKMAqOCsQLGgteC+AMLgymDNwNIA1aDbIN1A32DoYPFA9gD+IQPhCiEV4RshHuEjgSfBKcEwITUBOUFAIUXhSgFRIVWhW6FfwWWhaaFuoXPBdqF5YX1BfuGHgZFhmmGnx4nK17CXRb15ne/e97eAAIEMDDyhUkdi4iKREEwUWkQHEVwR0kRVCUuEiyRNuR7ThjWxNbli1LtpUoXuKZjDteJq09dsdOq0YSlUlUn1g5ObFiJ52kk/HMtKl92pM0mdNkpnU8mTgR1P/e9x4WEnKSnp5DAQ/3/u/d//7r9//viuhIx423BAP9OSkh5SRI2skI6U50CABE0oO0TvSE6PRkneiIwagzrBMjpcY0MRrpqgjUSKeHB52NzqDL7Q7aS/Q1jeCU/OFYW3u01R1y4gMC+CsO7KcjNwNt4YDfIricXiHa2r7p1/jMsbnZjvgMDBkyE0azwayHC6YSg/kP1PEMiVRLpU6ryWx1maTqCHyt8DcNzn3q7r3zd9+9LJmv22xmg53+k818/d+ro9DTMSvIVfFwpKPSRlOZVwp+EiCTNyQYQ3k4iZyw4G84TQi5p9xG9WWNukBYbov3CvGopJcYwzDW8/UWW11zmaNnoXFbdbCz5qPzMPBnJxr3xMvtC8cffGnpzw7uC+IDAOUsQWzLcys87LkoKougD7TH22NtzUIk6oZY4VPdPV//aPNT3ef5cxPQChfwub1kR6K5syVUYZMkgowRUQAxrQOB4loCalAUYZWACNPhsDcc9kv6KqatgL8F3C4nV1RbXK98t++CZhphF601oCrN5dTHlW/JCl7qccMFt9nk2m9wWcxuw4rdZHabrJ/w9XoEi7vMulZkGC7KDlviPodsl+2O+/pLHXKp2dBtry2lRrvsMA0WnVFl9yX6PTpMHGR7ogk3Jp5mAjwj6ahAiLCXfQtkGTcqkEm8wUHsdp/f7tPrKxuJM+CTnf6Y7PO3RX1yW6tL9tHv+TI/rcv8xOeDsjrwgCV7XebzZX5C+JqrN06RiyRFJDJ7iQBQGEueL5laSMg4CeQuQiks45UVJiqT5/04YWN3nckf3zRkh4l0+pIsy4K+vDGuD8QDsejFhvry8hSceCDFSE3kTXCSX+M2yhIu/E1gL1tsmc1NytwEQ76YD5yZX4LxzS6FT/xkfAqkTuHDpN5CrARZyP6yk4n0ReUZUbZwKpXK2uXX0H6sBXbpcTJC0Fy4TfFh+Jou85pkNZh1MMe+6N/rSn8z4zQbdKXCv3Oa8UZKGm78A1yjf452HibHk+drkSMXkwDaHljGCSqKcewimtgcuCYVgK4XTjUVmypjOyrLjaLy0+qcQKbT6fRGuKE+KOorGOcWCPibgVlxvBeQeY+b2iLNQsDPXNfjjrbG4VpdWTpe273L4Q9XLbVuS1c1TzgkY0Vj5VStLNfMTNXA0Bf2tnU5u5pSn/uT2d72lrZ05n8C7bDKde7D8U+f7Dl2G5dhGj9exT2byScvYVgUmK2wjZcjWxQ9kDmfZVwHeYpRNl+uGLNKVUBwszmmx3TCiGZkl23MieshFpUlfaw9HpWj8Grm8gPRqVPdzge6qMFNu3Q915/hPDbgx5vIYyM5nDB5ZCZB9Bc6pqkITXwV9aSoqJBLB6qVxZH1/Kmto5yzjaXGBhvTALK1C3qFGI/uVB+OYERR4ocF9MofhvtugDczd90/7q2ukyf6fdtr7EZZB6JR1/zMyh8EamuNQyX6uxyfkMqkjcT9wzU1He3e3n3lO1r8ZTqQzPqXHliMJEO1xp1G6ZgNlH2q9tdA/iJhqavxOkQqYIAAqm21mlkP8n0S+RZXuWaYjxRaZWWWSEQhicJ6IUnTx5FwK63dOovcpVUa4NZ6OVQXDvp1GKVCLABH4l60U5YCaCOgOnuBC0/SR7j9YuDVewGuHU/fP22qvbW9o99UEQ8PJ8Wmzu6G7fOuYM2RruRtHfGOmYvTx4/u3NE+s9O9rcXbI0HJeEvTjo7W9rauhUTr/mp5P/PTKuTiXfok5n0LmbgoYWJIKlt3E0EUTqPIRJY5RHJUi2bFJlhMS1hMJpPFZEGDlG0s5oYCrkDMF3OgPQZkSYB3D05mfnl938HX4euvvfZaD9roAty/K/MNrq8I6utN5KOWfDthqgKKmZUZPCqrGpkJofCYQzEx6iRRdwRNVFolkiQXUVpgC7GEWpBoEeX9VlKuxLqbU21RZqLEjy5Z5/Lr9dWKPsOKQlUfkPQB2efyuXgcffOhxe5DtT73/A6Do6m2cmd9XZdlN0xmftXcM3HH2wdOtW/rqG+j9pqBltREkx/uSny3/lRebK0g28jFhM2GLiyjrIJ+t6ATBdW+a/KirSgKq2jmnnGi020SVnU2jN6EqOnjiVQrz8ViUSeIDCcSXVql0SmCMdaFAoFIkMUqlAuDGM0CxxQeF5cLk4i+LcKuXZKLocB4O1yrDnSnqmJdDVUvfCIejbWNHDEOHB5amvH4e7sHEXmWtYV6w2X/rWsyMmBrGT0x/fy3nN2uBz6VOndwrL73wE6zzdMwvK23nqgx4UOU25MYt3K5nMnAwkIYxtcj2XDXtGnUznbpUtM43rlXTeYUJlkun3GxXA6IXgM2B/KPfuuDa4H+0abZnx3HoPUGvEgnI0effetWmAIdDKOYNB16SIC0kJc2XEaMDpCNTZocczrcornKrULfrLebkvweWgsGgw0NflVrCiyMN4MGBlksErhdu5yYS9sdeddw7b6F+eOTXb09d85M3dXT2zE9298ZH2D/hPHW7RMj8bZRjFH3zfTudzpTTcNHjw43pZyOJRCiu/vaYn19mQ+GR4ZHBkb35Nl8OWau1zHUgE6UUBE6hmqzUtOhcnQ5Ky0e0XObVYiLRPSbkKhS2zK7NQgYww2hYCAHriNxJpA4wyIMiKDsvBRtPR+GoLj++JahXTXNnYllQ+1iy9BS365UsC8RmQcocbf6eyLVaPSdwzD5wreaY+FP313XeO7gbUP93uEnPLK+vG13Q2dzaqJ+5xLh+IvjQbiCzOrJorJ1F3MChkBlltzpMhqXlWqbLjJppzy94/YEIEfyRjG9I+7g6d2BGFJWcWQK1lOZgZSyPuYVeoJu4OoyGbtkAsW4ORuY2PGhIhzlKsIkogCJIuMMSiRKDQaDbJDZihKu6AtEfPoARB1COBKQGH6gJ5bGMj8cHwXdwvC+agGkWLml4p136EZmAiDl9j0zEh4mDBqiTOga8mQhblJDFi6Z87jSXO6IBtMVl8vCnI+Z51wafQFfgy/rJz456x7htnAjuDDMsW8cbqdrT9ya+ZefrT95YGT6zvVPpU58avWxT08/9ez03VeSd9GNo0PxWXvp2t8dGvzlt7tnMj8f57Fr940PaZJexfzYkIhYMfDU2qiAYEaLEM7xPHQcjoQCTDshHmYjYRuzOI/bg/ArnAd82+M02R0M9Z9ePnBg+XR7fWOrpbE+El0ZHBgYXNkdCMWbgkbT+jrU3bpuMDhnvGbz/N4/PL533mwKcx2v4MezKE8D6rhXs7GcePJRYpFxJrYNX9DnV4A6k5mPZQBNSs9eeDDzK5BOXpg/e+uzz956FuY+9y268Z+ePvXn17/6IpfJAVy/gV7AQm/6/5MSp2V5WoPTmKbRW1F1mK5ljlFpQ6YN3riMAf0sjGY2vocXJ+iFPvhZT+Y6qPxYkJ9SMqjwo9UoLIWIywrGFASrkFe+FE7ZhYn0ZWbqUwwOQm59BA3Uch4XPAXNme+n4Tz9JPy6J/NNXE2xjXluG92JjlK0DQvGpSoQmDsJ4hgGKhGBwZGipiLb0Vh83Gw/zlRi6ON0/tAxxVQ6W9qardu2NXYopjK465Hvh3cohmKylM+ErDbFUFwv92h6Oox2YiJ9mpUonn5EB4UhYOu4ohdZdf8qdH+ZSSOKn1F6OJ15LZ2GuTRTB/r796BFXY9cxvUKamHLeH4tzH8V1MJy9HI6jTeptcMjeGkjc4kSLcvQMa2+59XRlqxROM5TRSlPDeQwm2FR85I74GdAIZRNCQgKsVh7ZHlq76yldcK3w10K83+UWmhIdrgqwvYS6uV2zvzsM1x+nQmjyYB1BMlil1K0IVwXNBHm/eYOZpcdPFD7AoLexeQGUaCfWfrw9Nwc3LY/8wu4/fH/gZI7B3dnfq7KDj7AtSQS1fbLpUVpzo0Kh9gyl3yyje0MvQbRfgg+yNyW3gEmunH9LFWw1yEMwBI+t5wcvOw0saKI7cCDC9hFUFO1NWsJmpmAwHLPSXGzmWwZ50Xn5TLZ5bYxz0EriUhWEAIsSTBz8Tjcnmh73BEVJEwK9dtP73kmYYCJu/zPl+vBPP3wJ+ntIN3zYOYlOP1q/fVn6MbezNpgTdv3IaXK/yDyXkraN0oE+rsL3yk7NeErbDg8KB568P4P+2GCf8CPH7/+FMq/4nF6B4+pHTf+gb5C38F6zE2W82JqoePmzK7I5G9rj2wEA0EedIlNBXTR1nzcRl/5ywcf+OpXTp5YeWRf+vSppcVH4BeZb//1f37uT/8289zD//qLpz77H85n4/8QyqUEI3A24omEFYVZuKAoFjhHxaZY5XgZs4DMC2BMAxj9A3I0PxEMPXbglfSvDj82vTp97lxqGf7X7L2Z9+jGfTN905kfprjMTnGZ2YiPfCFhrq2mok7Ckk3UfNZPMOhjCDypIHhcn/U4nKwwgjVkwgWaOH8bZRnbSaiQiBJBR7GyFwHEtEoowgyDgc5AMOh3qjBQ7wlEsgJn+0OJ25jAd0Ek6kGxD43de2S+uZXL/i/nT+/fd+bMUmmV3nA4PXkLpPe+vPOF43amhb/900dffz3zf14VqfDE+n6S1cU6t1E3mbpUClhmjGnNJR2yqcM6BmHxciHmusmcimjqfNmgKwQUrTBIE89qZj195YX5/33r0/vH02uzTz45two9mW/QjTuSPWuejXgy85tR7vvbMJ5+gPqpI3clbOVYqVYotT1rZiU1G8+JektoLTKp2jiKHmixpspGwBvgNp6Lte0xBNwQUXqB7a2Y4bjFe7zA/tzwwcmV48esK/f2TTe4Qn2xXdXtJ95KWcf2754KuIItY7t8sf84d2JwenqqrTNot9pKK2s6hybubZ1KjLTs8NqtJkdVoEuJdUHUxSP0PIq4XdmdzISqyldzh01jzA82EHxMcTTEEz9KXK0l6SNnMPWn04v4eYau0Dvg+pP0Tuhj8RrjxTTqXSbj6loCaNG5UIqbJrgEWY2Lf4f5FOtLbzgCjpzcwpidZB4T8IJOP3XLkT9Kr/YPHJr46e2f//zt8J1M6/KRowfgu8iHBZ/zWZ6jui7pMV3mQiTGp7zkm/ebW5kJL0zEJMsiZmEjMGCvRGr62cw/LmX+cf+X2iUw7juNqWQU42TiSe/2n8C8ImdcU/girukluy9X2HRCLjBbdSKaTH5oLhhR6gp8hpd4y2SPzOoKNVlIevzGOK2mC4cXaoBdCV98e+/d2/UgJQ5Nvz0/3RLC2m9kcXqtOiiIIO3Zx/iDp/6iNfpe5mXk88ev/Cu54zfQkXnt8DmHs/PX0IX83nJDghL6c6yJ/ImaLP7j7y5UUCyQSa2y0qG/sYQNJS+9tLT0kfCTnt88jfe4b0jkq9lnKF3hI1veEajP8KjV2VfxCS991CMc6+Gxov3Gh/AsfAcjRS25krDIiBRt6EZokJKgJmUvkukkqlvXuqOecSJJZBUKErS/CBXOM1Kek8ry4moxSnsBJZbWWpNUI95EwvtrAWcg4PTbWH/NF4hpLQneXNMrrWV9TMlk8XZ4Ntmz3tXx/H2toekhKTkztDzxnXi4pcYfbJlu3NVPG2M9rbsbV5PP95YMegMOhxJLZ1A+7/M6sZy8pcjDWoK1ostJdSJiQZ0wVlkwAjiSVggrlcRW2CdjUivLSq1mMwlDPvmdGUVkRcjshW23/DaRZcs870Ngppftue5NhEPAbPrRu3jj4f1jYyO9E8mR9OD+iZnYQCTQG1987+Cjnc1oyH/T/fjy3tnuHybm1NiGsnkRbcdD9iRMJVhreEy8Dt2ERjyFaKTYK5z0RigU8CllKiqRJ0WPvhljnwUU9cGLo+ml+48fbE5sM9ftrG/trxjv3TtYFz37xpP28r4Ke0eycXSlXdEZ4+vLXGeV5PWECUt7aqOoHDqm6YUHWlHkiSRPL9Y8vWwi4aas020y5SJk9gIy9moB9ULFdYVy07zSVQvYg341t8ayoMAjR4VYFoih+X55oi81cujI6NTu5ES4O7443d5Q62vb9eja6mNxCF//wVvx2fT8XJVXkUEAZfAC6saOdrvGKxeiRw1pyvFKoEMV6siRAqPi2yhjvZ4qzZ5yhLnpdMLicDjKHeWssaX0932srx335Nh3c/VJengh8zad2zk7II3sXTxxT2pxe12ncWBb47D5v+xZ6ehrO3tw9eye3rZE71AHs6lK/NhH30SbejBR4sEoxCKZht2qcGu81e8cF4GV7Qw1yFodrezs5jR2VmtX4E/+Po5X2yqhWm2zgMKKS5ePBRTgb6mqgUXeAIucyr5gX6ShtMLnuutYcnR0eTi4jd4t66yBinu7Mifg4a7F0VUTi91VN1rhR/At0kTiZIhcTtgbMVYEwUCwJjf4wIi1uLKnBmJAdzDQdVQPIbpVlLeOe4xxmRiNaHQlJTxIlovaDj/+DnvBHYk6nGV0Bh1Z1+4rSoq7tw327+wMBOyNdW0h2WdiZzeYAQYiymmACJpiN7R6xezZgDD+KVJpj0ocwzJbdbQ1Aj+9wQPKj+rt5qhJ9O3vb603dS3I5R31jWUP7V96KFFR7TvQF68bnf03sZA/HveHnnh00V1rNUB6V28aHsNc2hTvX6m2uGNUclRFfZ2Tkx194dqF+saOgeXa2r+7va31ztZMZtAilxlF/7ZtPCZN48cF9H0nOXzJloc93Bq4UjNOrrpsusks7/M71S7EOimsLv2yI6xVl22sdStVgxpOXXBhAkyOSGXbjolkx/zjELA4fC7bYveHGEKvjTyv+GcSP1+iT/Ce7Lz2TjWbwpnB5vO3ZcquRNLcaN7rVi3jsz4GO1DwXDJpSKfhyh+mCb3xjRtR8hVc14p12mxhR6NJrdlY2mUNotz7tHK22uaXm0fyZlmjyhXgZZsn19CgiBRZs+grydbeLldtQ4mzSk6m0939k/6eGrG01kMBeQIyy987Mry4T+tpZHuxsvYCWh6HApVtmuACyY6RZQ3a5Xc9IkrXIx7Vw7szz00Njry9+Or7qXOolva/el2xHfLc798rQvkqvSK8n15Dn/eT2za8FTRnfC6GqXWresQxOnlcRNSdt5Eik3wzHgSY/NAV8Fc1y9oMOqrJj/YXcoRsBr1XsUCqWmDuKupS/LLVRa9N6ORGX7RV+xrpWjhU1bEfLdNRFXSiYeYuro6Mz8w8r/kR7sVJ9hf4kR0vhVXWbJE3+dDmmS3+w4/jfLz/uDb5z0jnQp7/wNXhsefRd7yY236Auc2EWWLn/wvYCAaD+YVNXg2uBq0fPLQv/fDJpcWHJma7OuZmO7tT/3X1zOm1g587t5jaOz87t7RfwYa98D7KiOGMRxMWBIHUCRoq1KAGwwasFSTn8BjzKwfkYzu5yHvZLFketstNqU1rB/CjH6Ei0M6VB+3Ut0rvY87qmUgO7x9KT0x27q4rCUS7Ft47dKbzn+iJHTvPHhg82HXNaW1Z4xiqF76Me7NhXbQvYbLgvmAM6xxWpDcVbMyTAzTMORyEoweGedK5CUbIQ5SDtxOCQacKeXR5kAdL71hUfTWeQz39s8Nrx8YCuyuNyWSspXNhsrM3VHL1Fz2PrRw6U1NhGsh887Oh0ZXRocOdrMc6g3Y7jHyXkIVLBvSeXBxBjWmK0M5oNW2dsDOB2/EhlKQFyD+mlQ0kWB2rxhqH4dGV5FDiDniErib/Bq7uW2a9/yq0z6Non1EylbDWYMys1WOYltTXkwVdDE9hF8OR62JkRxly93mrAgFRORaohVd+LlA5k9crRJUeBjuA6GFlqleEo9sb90wtmPfMHLDIXrvVX+GzttdE4hXW5KA5MTFntta4XY3NlYJoKDFIJ4dCtdsGdgxayyxmUdBLpab67lCs3EJr+8K9FnepSRIN9jJRLJEd5TzPOnCPY7Qb9Tl3yQESjw8K/BKocJphLrosKkLFWnFN22AFnxZZ0gGJvU/PTSrHJWTZztEXqwNiHHVFXYjAXE5WA4zt2ZOa3Tt47lx0R31l+GEwdT34YNdHKR+LV8jPBbiC4eXhSywn5nWUORPo/muFEN+tznBkLwjZlp6KCLKz9oJZZULJtvkT7OwO65eoQS22uWMCF5L9t3a3TFTviA5ObO/u6YbJzKVQbWcM/Fr/At5A/k1kqkjPZBMcyBu0ZxspyjE9NUHkd1KAdzFYE2MXwBuvL7w+sRqUwNA2CVcyA/jv+pq/5bG/Uvs2zyEPlWTxssdapIeyOQcXDNtzrRVCT2fzL++tVJJKT663EmG9FSsgVx6FK+2bPvf4wp5qAcT63snHx9p26EC3rXOorx6/6xOM239Zbmp59Ltw5Uv/tmXnuSs/eLxu25m/VmpR9vEOl98kwxC6Le9FNvOeN2jP9usLcIPdnsUNgXgk6mG44Z3UHz81c/VK6uyZmctXrvzo3ZdfflftP92Icv2VkeHLLoteUE6U8LwooohUMLWmgSk+CPR03mA6YeaOUOYKBHTsCInAjgi0AENSsAtQWF6KUnLAG39fFasNBaS6cInZYw5enWw3+JoRmj0MV67/dLDJ0GcTKysX4coD9qkz3kHo5fyxs11PI38yuSVRYgIW2ZSjfn7tqN8y0RxlucDYikza8w/7HSk87Dcjz2iH/UBtWbpAOdb3dOYsmCakMukzcEvmn+fw4vP1kIbuSOZV/nJsFX5MLvL3Td1Fz9eqfFjyztHmhrLHaB35x2jpIX6OlrJnwz382aUkkKg1Uv7qRscqQZw9JCpNT3Zezc7zkiMQQ31HPcrXxRR72lX+CT+ewWfiP47j1/C596rPHdrQ40OzbDsF4HyLPBjqQOXcwYbJmYJR/loT15b50soGPMrXJb6Pq7ndzPAdse3/MzmOgOMLH382WPZRZ+a/g/c4eBm/WF/TO3l93Uj+JGFu9FAilSHX2Rrbh9EH62ITsMLYiKATUyC6Ews3JZBfaP8WQl5t17ABNsfq7Xx6lQLDg72hjnUR0OiV0tuslp1FSm9dwXDxahxc2YHixXl/doC61Vqd9RyuoUxYLVZN3kuUuMAIbiBGrWHUgMUyrBpAxf/apQTsTUmJnjLIyzSpHKFhUqzDOwyrxGBw8huU8wU3oW/6nen5KZx6HKaCuLfYHZxWsSp+Ngdr+uqqcg8XLSsLeU2P8hQQvugLZMvP3aFo4VoqJSaTL96D8hzvqPRV1ZaFjtNDqet74IoixH2jK6YBe7DxOFHtCb6JsnNhCPuuIq2SUgSLFhB0dKySIUdBB2OlYIBkWusn63QiilAUnePKiw+JFw16yD8778et8SMZvCS/GWXT70DJIV2tpP23hyObyFUSJiyzLDu4HdqMXFDFBORgffhwgXheTCbh4axs+mWUTWaAlYRY/DB/e0+1rXKyA6rUHvIO0EOFnRI9HZMBRjGgFY5kpbXdCHo9rFolmrU+9brURJl9WEoMAtuqWUfzLbCJ3SetWrm75Szk5jc1/X43cVtsZjPMGIvfp9xAl7UbmIwrtjc3NtTXRcLM66srFXmjxG2bTbNA6pHiEYG+p1nreEdtFVfGdV/I7K6wHWcamksEfTnbpZ7RlZIBpp3LsmT1l9+nBoXkCoNL/xeH9ISqAHicnVLNbtpAEP6WAGqlqsqt1zn0AFK8soFKIbklSlKhQCIcIk6VlsSABfFGtgni1jfoi1R9gjxLX6Gv0M9rtwd6q1c78+3sN7PzYwDv8QMK5Xf/Fyu8UR8qXENT6Qof4Eh9q3Adh+pnhRv4WOtXuInD2lcyVf0tT9+dV4EV+Y0K1/BOSYUPMFWfKlyHqNcKN/BZ/apwE1L7gnNYPGOHFDEWWCKHoAOfqwuPq8R9WmdkCc6gKQcweMCKvltk1DFtBgke3Z3G0LFG7r5kFowWz4mLFPElgzXmPFkn72ibUk8Q4gJjSsEV9Q0ttzy1GRHn9nmXxotlLh3f73oeZV9mOznTMjAPK7vNVrGY5FEGeqhlZLc0xtKyicyipVnPxc7lLprKJLwYh3I1vpnchm3GvWbCoSsgQ8BycT0MTZIFREUNKZ5cthjZ9MlQX7pCcqdTti1yTdP0FJxw78fzWEhE3oZBDD1KVpd3nttFkzvoMbBN8kubLiLpaF9O5E8e3jhabNYmpakbeAEL7/T+TXv/Gey7F79jxIuM4yhHUWbt823BKXfONafzhtpySLGrsxjdC5/QOOYOOAzcR2kWs7HM0+/JqeT53Gxyu4yTXFovgT7WQft/MvwNYuWNCgAAeJxtzrlOAgEAANG3uw2Jigco4NEJKqiAildBLFQ8UbxBaTfxN2z8IQ0tfpluqJ1k2skIjfj9sOo/7hMDoUjKmHET0iZNmTYjI2vWnJy8gnkLFi1ZVlSykvTWlFWs27CpqqZuy7YdDbv27DtwqOnIsROnWs6cu3DpyrW2G7c67pKDB4+ePHvR1fPqTd/Al2+fQWjoJ4jCOI7i+P0P+2wWogABAAH//wAPeJxjYGRgYOABYjEgZmJgBMIgIGYB8xgAByQAgXicY2BgYGQAgtsK+9+B6If3621gNABTewegAAA=')format("woff");}.ff8{font-family:ff8;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff9;src:url('data:application/font-woff;base64,d09GRgABAAAAAATIAA0AAAAABtQAAwACAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAErAAAABoAAAAcnt++Z0dERUYAAASQAAAAGwAAAB4AJwALT1MvMgAAAaQAAABDAAAAVlZLXqpjbWFwAAAB/AAAAEsAAAFKAK0Ko2dhc3AAAASIAAAACAAAAAj//wADZ2x5ZgAAAlQAAABAAAAAQCG9w3BoZWFkAAABMAAAADMAAAA2JNNB1GhoZWEAAAFkAAAAIAAAACQExQFjaG10eAAAAegAAAAUAAAAFAU2ADdsb2NhAAACSAAAAAwAAAAMAAAAIG1heHAAAAGEAAAAHQAAACAASAAUbmFtZQAAApQAAAHQAAADBuBvx8Vwb3N0AAAEZAAAACEAAAAs/7H2NXicY2BkYGBgZmhOOjhlXTy/zVcGbuYXQBGGh/frbeC0+X82xj1M74BcDgYmkCgAibENawB4nGNgZGBgevefjYGB8QsDEDDuYUhhkGRABqwAaf8EK3icY2BkYGBgZRBkANEMDExAzAhmO4D5DAAEgABdAAAAeJxjYGT4xfiFgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMbMAAOMDEggIM01BUgpMMQwvfvPBlT5juEXTA0Aiy8NngAB9AAAAAAAAAFNAAAAAQAAAfQAN3icY2BgYGaAYBkGRgYQcAHyGMF8FgYNIM0GpBkZmBgUGGL+/wfywfT/x/9XQNUDASMbA5zDyAQkmBhQASPECnIBCwV66QUAKqUJVAAAAAAAAAAAAAAAACAAAQA3/wYBvALuABAAAAUBJjU0NjMyFhcBFhUUBiMiAZH+qwUMCAkIBQFWBQwIDuIDrAwECAwKDvxUDAQIDAAAeJxtkcFq20AURa8UxxAIbb6gPLqywZbHciDIhEBQ8U6BxlDIUsiDLYgkI40jvOgXdNcP6fd0UfIj2fTOeLoI1IM1Z968ue++GQAf8AsBTr8ar54DfAwqzyGGwQ/PZ/gc/PY8wDC88HyOqzD2PGT8KzODwQVXf9wpywE+BZnnEJfBd89n+BL89Dxg/M3zOSS88jzEZZgiRYM9jmhRYosdDAQjFBhzniPhuMGEHENxJKR7VNAuv0DO/gQZZ8OzmjuWTjvP3FlTveBaM3p0yreuhmHNJWYcvRsR8yt0nBsqb3HH+rZqz7NWWfBIjc7VfeF3w8iKubXz++BOa1JKL2s80bmiFtJmf2zL7c7IqBjLPEluJhIrlch9pduyyGvJcrPTVW64eJZ1U5TaHGV0uzNmv5zN+r6P8qqLmnZ7N55IX5qdPOpOty96I6umNvKQV1rSbP00V7YeLVVs7UBb1qq9moZmLdfWTrU/GN1K1mx0y0DmWimZX3GhN+WB87++Vv4utLv9iB0J7+x9j6fIgjx1f/tKMa4pQnMr2tYSR0qW3iJhMZ/Op7GKr/FOCKcE4Jsz29FU497WvvrCVbfKwgTddmVTi1KLSKlY/q/zFyjVgnF4nGNgYmD4//Hrof9bGYwYsAFWIGZkYGJgZrAHANEWBdoAAAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCFjAG8RgAA8oAMwB4nGNgYGBkAILbCvvfgeiH9+ttYDQAU3sHoAAA')format("woff");}.ff9{font-family:ff9;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ffa;src:url('data:application/font-woff;base64,d09GRgABAAAAAB3wABAAAAAAMPgAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAd1AAAABoAAAAcnt++Z0dERUYAAB24AAAAHAAAAB4AJwA3T1MvMgAAAeQAAABKAAAAVlXpGU5jbWFwAAAC3AAAANsAAAHCUBHymWN2dCAAAAs4AAAAJwAAADQLPAIMZnBnbQAAA7gAAAbwAAAOFZ42EcpnYXNwAAAdsAAAAAgAAAAIAAAAEGdseWYAAAvEAAAPmgAAGSB/1rq9aGVhZAAAAWwAAAA0AAAANiYsQldoaGVhAAABoAAAACIAAAAkBj8CSWhtdHgAAAIwAAAAqgAAAMRapw3tbG9jYQAAC2AAAABkAAAAZIN8idhtYXhwAAABxAAAACAAAAAgATsBK25hbWUAABtgAAAB2wAAAz94E5xLcG9zdAAAHTwAAABzAAAAlKIARMtwcmVwAAAKqAAAAI8AAACnaEbInHicY2BkYGBgYmSrzVl8J57f5iuDPPMLoAjDw/v1NjD6//z/bMyzmN4BuRwMTCBRAI0QDkx4nGNgZGBgevefjYGBOfv//P/OzLMYUhhEGZCBIQCb/gaMAAAAAQAAADEASgADAAAAAAACABgAPACNAAAAYQCjAAAAAHicY2BkfM04gYGVgYGpi2kPgyxDD4j+P5fxAYMhIxNQlIGVmQEMGhgYGB0YECAgzTUFSCn8ZmJ6958NqPIdwy8gnxEkBwCWzw6ZAAB4nGOUYAADRl8g8R5IizG4AdkmjF8YWIHsRKbZDDJM9Qw5TJcYEoD8OKZtDAnM2QwpTEcYEpgeALEOgxnTBoYKoLpFjA8ZPJlYGYIY9zLYA2k7IG3HaMSQCjSLEcgPBJofyMj9fz7jS4YQEJtZiiEQJA6UtwDSmoxhQL31DMqMmQypQH4M41mgvasZcoA0AxAzMm5mkAG64QTjDTA+yeQOVCfBkAoAH1Mn1gAAeJxjYGBgZoBgGQZGBhDYA+QxgvksDAuAtAqDApDFAiR1GfQZrBgcGVwYPBm8GfwZghnCGAoYqhQkFWR/M/xm+v8fqFqBQQeqyhmsyheoKpQhkaEIqEoGour/4/83/l//f/b/8f/H/h/6f/D/gf97/+/5v+n/xgfCDwRZ9Vn1oC4hCBjZGOBKGZmABBO6AojXYICFlYENwWOHUBwMnFwgmpuBh4GXjx/IEmAQFEIoExYRFROXkJSSlpGVk1dQVGJQVlFVU9fQ1NImzpEkA109YBjCgAEh1QAr6C/LAHicrVdrWxvHFZ7VDYwBA5Kwm3XdUcaiLjuSSes4xFYcssuiOEpSgXG76zTtLhLu/ZL0Rq/p/aL8mbOifep8y0/Le2ZWCjjgPn2e8kHnnZl35lznzEJCSxIPozCWsvdELO72qPLgUUS3XLoRJ4/l6GFEhWb60ayYFYOBOnAbDRIxiUBtj4UjgsRvkaNJJo9bVNCqoRotKmo5PC7W6sIPqBrIJPGzQi3ws2YxoEKwfyRpXgEE6ZBK/aNxoVDAMdQ4vNrg2fFi3fGvSkDlj6tOFWuKRD86jMerTsEoLGkqelQPItZHq0GQE1w5lPRxn0prj8Y3nIUgHIRUCaMGFZvx3jsRyO4oktTvY2oLbNpktBnHMrNsWHQDU/lI0gavbzDz434kEY1RKmmuHyWYkbw2x+g2o9uJm8Rx7CJaNB8MSOxFJHpMbmDs9ugao2u99MmSGDDjSVkcxPEwjcnx4jj3IJZD+KP8uEVlLWFBqZnCp5mgH9GM8mlW+cgAtiQtqphwIxJymM0c+JIX2V3Xms+/4IUDKq83sBjIkRxBV7ZRbiJCu1HSd9O9OFJxI5a09SDCmstxyU1p0YymC4E3FgWb5lkMla9QLspPqXDwmJwBFNDMeosuaMnWLsKtkjiQfAJtJTFTkm1j7ZweX1gUQeivN6aFc1GfLqR5e4rjwYQAricyHKmUk2qCLVxOCEkXRk6sRGpVum1VLJyzna5jl3A/de3kpkVtHDpemBfFEFpc1YjXUcSXdFYohDRMt1u0pEGVki4Fb/ABAMgQLfFoD6Mlk69lHLRkgiIRgwE003KQyFEiaRlha9GK7u1HWWm4HV+nhUN11KKq7u1GvQd20m1gvmrmazoTK8HDKFtZQQpTn5Y9vnIoLT+7xD9L+CFnFbkoNvtRxuGDv/4IGYbapfWGwrYJdu06b8FN5pkYnnRhfxezp5N1TgozIaoK8QpI3Bs7jmOyVdciE4VwP6IV5cuQFlF+C1CcoBRrmElgw3+uXHHEsqgK3/c5EjUYgrWsNuvRh577POK2CmfrXosu68xheQWBZ/k5nRVZPqezEktXZ2WWV3VWYfl5nc2wvKazWZZf0NkFlp5Wk0RQJUHIlWyT8y5fmxbpE4ur08X37GLrxOLadPF9uyi1oEveeQ6zr/+2vrKjJ/1rwD8Ju56HfywV/GN5Hf6xbMI/lmvwj+UX4R/LG/CP5ZfgH8t1+MeyrWXHVO5NDbVXEhmwCYHJLW5jm4t3Q9NNj27iYr6AO9GV56RVpZuKO/wzGS57/+VJrrPFSsilRy+sZ2WnHkbojuzlV06E5zzOLS1fNJa/iNMsJ/ysTtzfM23hebH6L8F/2/fUZnbLqbOvtxEPOHC2/bg16WaLXtLty50Wbf43Kip8APrLSJFYbcq27HJvQGjvj0Zd1UUzifACov3iadp0nHoNEb6DJrZKl0Eroa82DS2bFz5dDLzDUVtJ2RnhzLunabJtz6MKbkPOlpRwc9najY5Lsizd49Ja+bnY55Y7h+6tzA61k1AlePreJtz27PNUCpKhojJeVyyXgtQFTrjlPb0nhWl4CNQOcqygYYefrrnAaMF5ZyhRtrlWcImRjDIKrvyZU3EiG9FkI4r4zVvqp7pQCJ1JLCRmy2t5LFQHYXplukRzZn1HdVkpZ/HeNITsjI00if2oLTt42dn6fFKyXXkqqNLE6P7JjxibxLOqPc+W4pJ/9YQlwSRdCX/pPO3yJMVb6B9tjuIOXQ6ivovHVXbidrbh1HBvXzu1uuf2T636Z+591o5A0x3vWQq3Nd31RrCNawxOnUtFQtu0gR2hcZnrc81GPsWXmm9d5wJVuD5t3Dx7/o7O5vDoTLb8jyXd/X9VMfvEfayj0KpO1Esjzu3sogHf8SZReR2ju15D5XHJvZmG4D5CULfXHp8luOHVNt3GLX/jnPkejnNqVXoJ+E1NL0O8xVEMEW65gxd4Eq23NRc0vQX4VT0WYgegD+Aw2NVjx8zsAZiZB8zpAuwzh8FD5jD4GnMYfF0foxcGQBGQY1Csjx079wjIzr3DPIfRN5hn0LvMM+ibzDPoW6wzBEhYJ4OUdTI4YJ0MBsx5HWDIHAaHzGHwmDkMvm3s2gb6jrGL0XeNXYy+Z+xi9H1jF6MfGLsY/dDYxehHxi5GP0aMO9ME/sSMaAvwPQtfA3yfg25GPkY/xVubc35mIXN+bjhOzvkFNr8yPfWXZmR2HFnIO35lIdN/jXNywm8sZMJvLWTC78C9Nz3v92Zk6B9YyPQ/WMj0P2JnTviThUz4s4VM+Au4r07P+6sZGfrfLGT63y1k+j+wMyf800ImjCxkwod6fNF84lLFHZcKxRD/PaENxr5Hs4dUvN4/mjzWrU8AuAoD9HicY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2J02iTMyaIEYm3k4GLkgLBE2MIvDaRezAwMjAzeQzem0iwHC3snAzMDgslGFsSMwYoNDRwSIn+KyUQPE38HBABFgcImU3qgOEtrF0cDAyOLQkRwCkwCBzXxsjHxaOxj/t25g6d3IxOCymTWFjcHFBQCrRir1AHicY2DAAewY7JgO/X/FtI1xDwPDfzumM0D2Qcaz/7/+NwYAoEwNSgAAAAAAAAAAAAAAAB4AOABiAJQAzgEYAUoBYAGKAdwCCAJCApwCzAL4A3YD8gQ+BK4FCAVcBgwGTgaABs4HBgccB3wHwAgICHoIsAkiCYQJ2AoQCmIKlgrmCyQLQgtsC5gMEgyQeJydWGtwG9d1vufuLhbEg8Au3g+BABYESILUg6AIPiRyRYoUSUggBT5EUJQgkKppauTEsVtZTi2ZYz1syZE9tjWTyrGSqdtklDrJKElFTTLsdOxpG3ui2Jnm4fThSTKunUl+uJlmXLduBfbcXYCAFDk/OkOAi3vv3nse3znnO5cAGV4/Q/6BTBID8aluQoCcJ5RCgQDIkJUkiRN9ybSopJV06q+Hmjt88iScPjVJCFvaQV6FUfI/hCNe1YW/CRzA90iBzY1Ldip6k42RdAR2lj6yQN2rPWxcWDfQWfoBsRFJrcffcA63OuFxssVgEMGgROPpzjR0ptrddAaMt9812YwmCka6SXv4Z8H6vzmnxShYuW84LUwOSoq4sQxrKIdIdmSut03Mojg4xrSQ9hGOowVUSqbZgOpgYnJAlmpG86uop50X/UlALTn8AExKk4cnUdflydLuSXZGEL9O01U8QSJJtckMPAd7BeBxPx7ux93s+yhuLZOs0WiUjBLb0oBbRpRERFQgZYZ4WjGI9SDS0/OR0jsnx+DKrDtmBjDPNLubb92iq6UswJQreGVPfES37/H1D+mb9DXSQFrUhA0oNNgpR+le5qEi6lbPdGPaEy/JNiYaFaZDo0FEGybichpN6HF7xHgirkTxYI871Y6WpdOD8aaBc6Mj6h+fONuZSLY2xBKxjsLsTEd7qjAQT/S3xerMy8vQdGzZaHTmNlktM7P/cWDGYo5rtj7CzId2MKIdGtRgBSx2TRT0PLNAJBaJauasByXiiLS7xc54ErhUeyf9Zeidx0v/fRkMK0+eCN537MpjV469AtPPfI+uvvX8ma/c/u6XmN6H8SuDZ3DEodr1zbV9dUilFEfqZv5yHhfgWiaPhI9mJo3ZSDlCYS9KSO37QPeHLDk050YUzgb4LgcpoE/PX3t56/Tl6XH47qHSd+D4hXfR/pfg4dIHuOdR3PNF3NNHhm46zZQDdHXmugdhJfPAPM2io+LuAIM+xzC1ok+Wx/M3vZLLbRfEAJ7sSBhswCkcYoBDETwOtyfVmUZZDNmzQAcyb40OBAHOZi9/xjZUR8Fz6vsP0ePAn3y89Jdw7hvK7ct09UBpYSCa+hGUYw/1ph+hjFYSUgMmjv6e2k7JWVE7oR3q8KQcKbr42DNxdtBjl+JwLgvvX7j9HGruv0A/rcfSkfXfoD1voT09Ff8yqDk3oGYj2VgstuFfjNY+SGkuVqIIPTfz8m/Dv3r81KVI9L2V00+fCC4czF8LhA7Nz/0V5L/w4x+99IWf/exzT7z852c+983rui6d67+hBTyziWxRW33AUb+B4jeGF0CGBWoRxXAyq1ckUEKKJkEjkyCRZoemOxObgf0xgdoR9po4nhCwPzcNyC8WHy2Exx/ZtWC2RKVoX3u3p8Umff710bA6P1AwmYJyuG2k29f8N9Onh/bvn+jojsk2uzXQ0D2cfaR9Qh3ZkgrKNrMjqPRoMp9Emd9D+0skoHo50EBKaUU+h+KoyhfXHK3JiA444/nmfUsnvAv5RWdmcPdnnYvZXx9/4YXj8INSe2Hp/sPwpm6TlxGDYQ3XETUkYp5E96IvNmIBv83ELEk8RkQdKFzK4RYZpLhw6eD8qUP7vACeC2/S1dtj6F712Yb0L2GG+Xd0/UN4H36AGSNKLqkmGTCjADHQMsBDuEQwUGEZzc4XCc979hGDgRTLoAro2TV6j1U4z5ZqaPEChkWY8ISjPLe8sfiuJfm8alKciuKO2kVxEwI1jYlrM0X39QNDk8gymNsGaR1W6U64kjHuWW5oqTcI9a+crLPEGyf2G6dyw2P2T1vfshm2xrco8diWQDxp7x+kye072weSxczVPtNQSHE4UIoc5tMY2rQeI/uLur71JkzkLhB4AUsTtzdQOwA4kNeXBQiLLFSUK6LKqK0g6Dbxbtik4e4lLEdo6/T8HFA3YULjBY4/pq+8ax6tUafEopKMsA2WgS2ydNVZiS4baMFlc13cO7rNlL2cUafzQ+qiQ92+u2OLqz99/OeLT3ZvRnf/tPdC4cBU7zvqtI6lfvT579DnHjKqms1YRzwWrY5USmU5xj215UQvlZj76HLNaH411hiL6GVmI/Q94maoxH4ark3n5wtO558tbt6R8Ee7m0fnbbauvgP7m1IXC4efk327/PLy0NiRTvRHH/pjWPNHgJxVzRbgqZ1Sga+AMaCVVTSplgBqrC7XWP2uJRrGBKEKw014EC9Qfllfedc8s3pMkWNRO7O6DkFdLQ+aPr2R0xB838qas5MjIy7X2bHxdH/m71r8venjDrm/szmR6Oh/cqH4VBrit3/yenoqPzMdDOn6wbtodxnxduiGASWHss1DBhDQMwLykFrAaEp4GU8JlrGyXF1Ync6r9Q6Hw+fwNcYUFjsBpFmakGJV+kpCxrzyfau6YxIDZWau6HJenpwLB3YL6dbkjPdfRo907eq4uFi8OLpzu9o33IUe/yM87d/pq4iV6RseTAwViZH/EEMRo9e9jwdW9Fly1siVzKG8fvyJ4wiXpepCfZJFOaNDrgiLckCp6qkNUiIrSsi1dHHhF0qLNdAYFPyfsXwql8mNWcac9of3RFvpw5JgU/yP9JROwxM9c2NFM8M0R2C9nfbC90gbSZNRck51JDGAY4QaiRWoMQx1HF+WvAW5CuWMdFkESohQRIsKGtTrCqSuDtFgMmk5zMejHk04y9YZBbJcee+eS/OqfWS4f4eiyG3xjkYpYhYbNN0MSsItasGLwOmF9hAVK1UyzYht2T2dKQPzTz0LaUfnZpoEtIro0stnV5Ns6TDzXkv9Q4OpiI0398wG27KKyfL8ofkHLUJzk9NUF8fZh3d1hfdP/aO3pTE64G1VGmeFwPZN0pw/LteBON7ftwhPcTy0dg0e2WRzbTe4+7d2j493+bpd4dbW5tb07kI4/E/HO9ofbC+VvA1mTvZLBoi2tmo5Yz8WCwfGpp0M37Bo5Ue3ppuUCVA572+wICfRufAxcgcJikqOaIUEdaJ5dAqGOU2Eb2f7PAsdQ5YOTGWDIzNPRUBZmuv9EBPYGyNXWa1CGWALfVbj9Tv14x2EETyOLunUvny2mwAjQGRlY1Y/fYPYM87IWpiXMocz0bwjD2ufzWt8Z/1L6ykYxDNsxEGmVBMGKcVSAJXk6C0XsSWMPGmDgfjYoQGWHbF4rmwsqc7mbyLelSjT27NBUfpoWpfilfr59p2pqK/F5Ap5hQcyfpSod3A8urOBt4Y9FHTZgEyhgA0aB+i/qVFbruIFSS8hHCdV6F6gOkYK5bH8apX7JnTDp1MivJ07vhAaujyy8NHcrV9MXkJ7d/7wa2Wfw9Y/yLtfylzO6Lwb13JJjL8omVgN+WkVIC5GhoSiiBVfkPbxyIl08fxIAsAgwAr2eLgEM8tyZTKvmqOIk0ZHo90ohhhS+kArKUzmmseU2KmFTrtI38j28WCKR1JD1o7axyMj9szsonns0EUFXwjGnAio6sNrI/tyuatVfKP8Mhm6A98yPnJFxuSlKrY9BOMIG76VMsaXN+Aduxe8xT56J76PjNjqwhNNFYTDa3vMgfhVjW93YQ30YY1gfHvH/6sgl8l44yeRcd519WD+Ppfri/Nzi0V5oKdrSZbV7t6lfy2eP7ew+MyluckDM1PT84d0/t+83kcVtAuryedVE7IhFg9CtSSzUssaDUkrxwtMDBYXDqglQtJdXOmOZcgMKcdjyKxUitzdS1hVbrwHFxJruJDBU2FDmbFtqeyTGdPk4eHeBVtP92Aqiay4o+eBnx893/1benrbjouHhxZ73nDYtyxovs/h1zXU0UR6bxhrqrLELFBRTrsACag2jlUN/CzrI9WYwu6nDMo0XBn7E3tb5siwc+pBOEuLmZ/CawcL7EKEKMgBvoX+3UYmVFsD5ouwiBnKgIdyG/yr3OF4NvJL2d2Utdrccs0o44iRUFBRGO0vd/ppjZ5spgn8Q/8LKb35EQ0hiq1PA4Q4OGPr2jY6PuHfNXHYxltCHjni22Rts4ihlnib0zLW70+PT1t5U8jna066eU4UYWVPLNy6e9uQI2ATedFgNTf3NmwNSAYa3hXvk702o2CUvUjDvX7GGVDHF2kvRsQK6yiYcnpHYUL1kPVSyj3I6AIt8LptWUdBaskz0h3KnfukNZg72DTPUjNga3h/zSRrImRGL2SNXjBamtZoRUpEiiEakJHmciM5f/eU5UBgKHDJcmm7dBR7hCfA3PP44z0fT0b0XDuPcSjBGuqweIOVkJqOXxMHQ27hTurpLs9ojJLjYKHCONkER8/dPZHP32RtYTlb6ESzpjGEb2dME8u9Ucue7LDRvS2VM+/Mbu3d2QvjpRuN4e7tENXvhBCiQZTTTHpuiDV5y6p1h9WSqP3Wb9f0DHvvhrEfaLD0n7PZbIudgmPiT2GttBs/t/PJ9nM/rJz3MZ4XIAM3PTZBu17RT7QJPAKX1lSg8ki1/qhWPDVAAh7JI7HLMOCUBLsGs7HzPfr5lf/041/NOo0CWIePjSf32q0CSGPFYaeFB8vIA0ys/5pr33r+TVj7+tdau55b+8lTzZHnfqz7joWtT7NJt1pnNiLZr0pp1cN5Q0btd22FlOVKhRSVdCLlYRXy1uSnvpP73bOTS1/N/dva2ntvf/nLb7NzYD2l2d5N9qoWR72IWxlquIKMOe33WII2CIiGGnKgsntLN3G7FEUQfeiNKkXA1rdsGQc65kayPxyLGmMJk2WTnD46Hmwxgvz3sHb710Ntxl12PhCYg7VTf7tnCPqYfMjR4QOUT6pWEhZQpALgQgUcLLUwjC/VjOZXc1JOM0UzpFnFTUI6ImI16ewFeL50sQ6msgav4WkL3GcsfX0aH19ohjz0JkrXWLy/Du/DCFKDmnvk8tn2jXtk0O+RoVO/SKZHtZtkyt6lJu1dKwmqPoH1ETi8yLNrFXwb41vW+jNQEC9iyqP/g8CkzHa6rv+D93O4H360OvYG7mku79mgBjkm43leSzAClIVieUPbVpfLUxYvrYt3vUbKXPnOm7L+iOO1/ihJ7l9Nemi1RUJrsdbHDKz3qUNyg10SgpFFpQnKfVIDG2BzrFOqXV9ekVfllibW1iE29KbJUm4s7tE0CXcM/+E+Cgx3TDz0Cc3V4MYAdZd7LU1nmkedXYjev9DToskKAl8PHBKDgGpmD7DXCkbI5Cv3SILAF43A826NRnEFg0apRNDrauUeyWi079OWkk9aqYYNDKrsjnXpruXlJVgCLJLk0Axmr2PmusNK2k0gGgmTbwpOnqgYpdjli9g8EW9bnf/RXUhr4QnNCAfHjqARYslHS7vp6v8Bl/UN9gAAeJydUk1u2kAU/oYAaqWqyq7bt+gCpHpkA5VCskuUpEIBIhwiVpXsxIAF8SS2CWLXG/QiVU6Qs/QKvUI/j90u6K4evXnfe/O9vxkDeI8XKJTf7V+s8EZ9qHANTaUrfIBP6nuF6zhUPyvcwMdav8JNHNa+kanqb2n9sFEFVuQ3KlzDOyUVPsBMfa5wHaJeK9zAF/Wrwk1I7SvOYPCIHVLEWGCJHIIOXK4uHK4S9+kNyRKcQnMfIMAdVozdIqOO6QuQ4N6eaQwta2TPS2bBaNFObKaIlQKsMadl7H5D34x6Ch/nmHAXXFKP6bmm1WZGnJnHXRovlrl0XLfrONz7Eu7kVMsguFuZbbaKJUjuZaCHWkZmS2csLZNIGC2D9VzMXG6imUz984kvl5Px9NpvM+8VG/btABk8jouroR8kmUdUzJDiwXaLkUkfAuoLO0hudcpri+ylaUYKjin7+RyOETJBjCdsLLtgdXnmWCkuuYMeE5skvzDpIpKOduVY/vThjMN1/LSJ6Op6jsfBO71/294vg/3w4neM2HFGSvkUZdcuawtOKDnXnCk31IaPFNs5i6d7ZgmNI4rHx8BtlGYxL5Z9uj05kTyfB5vcLOMkl9azp4+01/6fDn8DXsqNBAB4nG3JOQ4BAQBA0TejUBK9TlCIjCmEVuz7EjsH0OhcwJmIi+mZQuknP7/4Qj7vxLuyf9QSA6GUjKycvIKikoqqKLmxuoamto6unr6BoZGxiamZuYWllbWNrZ29g6OTs5eHZxAGqfTteum2oujX+AvEJhShAAABAAH//wAPeJxjYGRgYOABYjEgZmJgBEIDIGYB8xgABa4AX3icY2BgYGQAgtsK+9+B6If3621gNABTewegAAA=')format("woff");}.ffa{font-family:ffa;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ffb;src:url('data:application/font-woff;base64,d09GRgABAAAAADB8ABAAAAAATxwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAwYAAAABoAAAAcnt++Z0dERUYAADBEAAAAHAAAAB4AJwBQT1MvMgAAAeAAAABDAAAAVlWZXmVjbWFwAAACtAAAAN8AAAGylzA46mN2dCAAAAsUAAAAIgAAADQKBAITZnBnbQAAA5QAAAbwAAAOFZ42EcpnYXNwAAAwPAAAAAgAAAAIAAAAEGdseWYAAAvQAAAh8AAANxjvd7JcaGVhZAAAAWwAAAAzAAAANiWXQjVoaGVhAAABoAAAACAAAAAkBWsBBmhtdHgAAAIkAAAAjQAAAJ4Tng2KbG9jYQAACzgAAACWAAAAlsIXtCZtYXhwAAABwAAAACAAAAAgAW0B625hbWUAAC3AAAAB2AAAAzbjZv42cG9zdAAAL5gAAACkAAAAxtAYHslwcmVwAAAKhAAAAI8AAACnaEbInHicY2BkYGBgYmT7XCC/OZ7f5iuDPPMLoAjDw/v1NnCa+78M00ymbUAuBwMTSBQAaGoMYgB4nGNgZGBg2vZfBkjyMjD8L2GayZDCIMmADFgBbCkEdAABAAAASgBPAAMAAAAAAAIAIgBLAI0AAABwAU8AAAAAeJxjYGTcxjiBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAOMDEggIM01BUgpMNQybfsvA1S5jeEJTA0AUnYMpwB4nCXMMYvBcQDG8c/fKjO5TmHUWW66Ud0mUSJFcklnMqBsZFBYzMrmrXgBNrPN4j344Rmeep5vzxOlvBRVnkYs4eqm4a5sYm/lomhs5kdFMpCRf3Xt0D9pT1VOxlDaQFNKXkfWp52js4+wmVramNv68qsVSNufk281C3FrXX2HkGrh7+0rhaj0AF94HC4AAAB4nGNgYGBmgGAZBkYGEFgD5DGC+SwME4C0AhCyAGllBk0GOwYXBncGT4YAhiCGEIYwhmiGWIZ4hmqG2v//wSo1GLQZHMEqfFFUJIJU/H/8//7/e//v/L/1/+b/a/+v/r/y//L/8//P/T/7/8z/01Db8QJGNga4MkYmIMGErgDoFRZWNhCTnYOBk4ubh5ePX0BQSFhEVExcQlJKWoaBQVZOXoGBQZFBCeQnFVU1BnWgszVBWrSArtdh0NXTNzA0MjYxNTO3sLSytrG1s3dwdHJ2cXVzZ/Ag7EZaAwAH+TTCAHicrVdrWxvHFZ7VDYwBA5Kwm3XdUcaiLjuSSes4xFYcssuiOEpSgXG76zTtLhLu/ZL0Rq/p/aL8mbOifep8y0/Le2ZWCjjgPn2e8kHnnZl35lznzEJCSxIPozCWsvdELO72qPLgUUS3XLoRJ4/l6GFEhWb60ayYFYOBOnAbDRIxiUBtj4UjgsRvkaNJJo9bVNCqoRotKmo5PC7W6sIPqBrIJPGzQi3ws2YxoEKwfyRpXgEE6ZBK/aNxoVDAMdQ4vNrg2fFi3fGvSkDlj6tOFWuKRD86jMerTsEoLGkqelQPItZHq0GQE1w5lPRxn0prj8Y3nIUgHIRUCaMGFZvx3jsRyO4oktTvY2oLbNpktBnHMrNsWHQDU/lI0gavbzDz434kEY1RKmmuHyWYkbw2x+g2o9uJm8Rx7CJaNB8MSOxFJHpMbmDs9ugao2u99MmSGDDjSVkcxPEwjcnx4jj3IJZD+KP8uEVlLWFBqZnCp5mgH9GM8mlW+cgAtiQtqphwIxJymM0c+JIX2V3Xms+/4IUDKq83sBjIkRxBV7ZRbiJCu1HSd9O9OFJxI5a09SDCmstxyU1p0YymC4E3FgWb5lkMla9QLspPqXDwmJwBFNDMeosuaMnWLsKtkjiQfAJtJTFTkm1j7ZweX1gUQeivN6aFc1GfLqR5e4rjwYQAricyHKmUk2qCLVxOCEkXRk6sRGpVum1VLJyzna5jl3A/de3kpkVtHDpemBfFEFpc1YjXUcSXdFYohDRMt1u0pEGVki4Fb/ABAMgQLfFoD6Mlk69lHLRkgiIRgwE003KQyFEiaRlha9GK7u1HWWm4HV+nhUN11KKq7u1GvQd20m1gvmrmazoTK8HDKFtZQQpTn5Y9vnIoLT+7xD9L+CFnFbkoNvtRxuGDv/4IGYbapfWGwrYJdu06b8FN5pkYnnRhfxezp5N1TgozIaoK8QpI3Bs7jmOyVdciE4VwP6IV5cuQFlF+C1CcoBRrmElgw3+uXHHEsqgK3/c5EjUYgrWsNuvRh577POK2CmfrXosu68xheQWBZ/k5nRVZPqezEktXZ2WWV3VWYfl5nc2wvKazWZZf0NkFlp5Wk0RQJUHIlWyT8y5fmxbpE4ur08X37GLrxOLadPF9uyi1oEveeQ6zr/+2vrKjJ/1rwD8Ju56HfywV/GN5Hf6xbMI/lmvwj+UX4R/LG/CP5ZfgH8t1+MeyrWXHVO5NDbVXEhmwCYHJLW5jm4t3Q9NNj27iYr6AO9GV56RVpZuKO/wzGS57/+VJrrPFSsilRy+sZ2WnHkbojuzlV06E5zzOLS1fNJa/iNMsJ/ysTtzfM23hebH6L8F/2/fUZnbLqbOvtxEPOHC2/bg16WaLXtLty50Wbf43Kip8APrLSJFYbcq27HJvQGjvj0Zd1UUzifACov3iadp0nHoNEb6DJrZKl0Eroa82DS2bFz5dDLzDUVtJ2RnhzLunabJtz6MKbkPOlpRwc9najY5Lsizd49Ja+bnY55Y7h+6tzA61k1AlePreJtz27PNUCpKhojJeVyyXgtQFTrjlPb0nhWl4CNQOcqygYYefrrnAaMF5ZyhRtrlWcImRjDIKrvyZU3EiG9FkI4r4zVvqp7pQCJ1JLCRmy2t5LFQHYXplukRzZn1HdVkpZ/HeNITsjI00if2oLTt42dn6fFKyXXkqqNLE6P7JjxibxLOqPc+W4pJ/9YQlwSRdCX/pPO3yJMVb6B9tjuIOXQ6ivovHVXbidrbh1HBvXzu1uuf2T636Z+591o5A0x3vWQq3Nd31RrCNawxOnUtFQtu0gR2hcZnrc81GPsWXmm9d5wJVuD5t3Dx7/o7O5vDoTLb8jyXd/X9VMfvEfayj0KpO1Esjzu3sogHf8SZReR2ju15D5XHJvZmG4D5CULfXHp8luOHVNt3GLX/jnPkejnNqVXoJ+E1NL0O8xVEMEW65gxd4Eq23NRc0vQX4VT0WYgegD+Aw2NVjx8zsAZiZB8zpAuwzh8FD5jD4GnMYfF0foxcGQBGQY1Csjx079wjIzr3DPIfRN5hn0LvMM+ibzDPoW6wzBEhYJ4OUdTI4YJ0MBsx5HWDIHAaHzGHwmDkMvm3s2gb6jrGL0XeNXYy+Z+xi9H1jF6MfGLsY/dDYxehHxi5GP0aMO9ME/sSMaAvwPQtfA3yfg25GPkY/xVubc35mIXN+bjhOzvkFNr8yPfWXZmR2HFnIO35lIdN/jXNywm8sZMJvLWTC78C9Nz3v92Zk6B9YyPQ/WMj0P2JnTviThUz4s4VM+Au4r07P+6sZGfrfLGT63y1k+j+wMyf800ImjCxkwod6fNF84lLFHZcKxRD/PaENxr5Hs4dUvN4/mjzWrU8AuAoD9HicY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2J02iTMyaIEYm3k4GLkgLBE2MIvDaRezAwMjAzeQzem0iwHC3snAzMDgslGFsSMwYoNDRwSIn+KyUQPE38HBABFgcImU3qgOEtrF0cDAyOLQkRwCkwCBzXxsjHxaOxj/t25g6d3IxOCymTWFjcHFBQCrRir1AHicY2DAAlyA0JbBlin5/1emWMat/3/9V2LKg7NlALebDhgAAAAAAAAAAAAAAAAARgCQASQBXgGQAdgCCgIsAkwCdAKwAvQDagPcBO4FWAXcBkgGpgcQB0YHige8CAAIMgiQCO4JUgmYCioKYArcCzoLgAvIDF4MyA0cDVINiA2uDjIOgg7SD0IPnBBwEQIRdBHgEmgTFhNeE+4UZhScFQwVaBXOFl4W5heGF94YbBkkGfIaeBrkG1objAAAeJylegmQJFeZXr6XV2Vl5VWVWWdWdVVW1n1119n31HT39KE+pjWjuSXNtGaknpGQQBJIYlhGI4RkxKUBVoCAhUWwwbEr0GKkwIQ3MMbeWFjvru1wYOwIYoP12iEI7wbY62URoR7/LzOru3p0sF7PRNSRldnvP7//+//3KEz9hKLQ9/F9VJBKUaV+XuMxhdAaXKQRRV+Fz/o6RdN4i8I4iDfsfMFm+HgF0TLOWp1uLzSLW82wodM6l7XynXYXvqF/e44JBKQijVZZU+OM2ONZI5iwwsEEru18SZKwqdLoWDhGJzT21Vci6agRSUcoClMvo2WcdGTJUel+0jY1gSHSYEQh6kkagTBoo1D0ROCJCPkGah9AXUeGyGuuoO2DNCv5ZQUhnPeV9fAfHKQZSXS/iwU9jEf/zC/4ZJ5nfT9oxWVG/Qu/T3C+/mkzLrMg0zEQ7GZ8npqgZqj3vNTIYd6H1lZfKG6e7BcVVaJZBoPFWGrbj3w+eV0OYI7jz4oC5nltnYgcRBuJfp5cIL+xPHf36zzm3Xiqn6KomempSVhuvNdpN2uVUtHKZDK2pVsZjR+p2Doo7pq6l939YLWnkPfqKq6g1t6nJnmmVcjyLZyoH235Y7JRv+C+JeuNXm+8Ub+lKYUVnStc8N7NeqPb661e6F346eITqZDqf8h9Xfzo4hNJQ+aVS97b4kc/+lEKooX6m+tfw7fhl6gkFenrQeQEEbw+AT8+VLYwH62wTogUQOBZxhFNJi4Et4XRV2RNnzfGqgubaxMBTfbx/tNXx++WukJoLnv0zqX3b5+eSIcEn8hy7U9/evXacYFy1ly9/jX0bVgzTml9eXe1Wp6shnSZca0zizrtgheasNa33VVkNfrkB+/QVZksjJ5119BEVV7/u7c/valJogZLw998kLoZt3CISlCT/V4E0YyAEIXXKIZmniBLPsmxmKYo+gR5p6lzEKs0tQlyJKi4lclZGZ5PVKg9rx1AN/gJt+ofz/sTis5YT9brnyj4TPiYeS86tvgp25A5+Z8tfsZy3l2dn73+DnSeejelUyN90w9x7CQr9STkJ9qinCiyoxbNxyo5LyV73d5Qbp5/tKJosYUMzSfMUjpRGl16e1gwfKEZZIXi9byzxhNIwRl0jOLJGhj0pdAJeEPUWfLrYbiHp9gxmo+AYtmM1W5lcKa+86/qddQHsRedv/Gf4eU4yOmnQn0V5KK24HKQ2tCdWBjI1gWJjleS4UytnVpKVJOxVMly9axffx4/Ar5V9vk2b7u+5ZGnm5Po+JHADqtoih5Ar8qqouOP+bVXl0OG7Nfwt7UwRbDlgev/B/x4HxWAaAGtBuZy0M2RTaE2cnYu5EALhCb567OQO2G+nc9aMjL0cKs5i3DrzIc/uHbq6eWDmwvNytidc7Vq8+Icem77++9++NiF71+9/+z85l1fOT538sHfd/V4GF7+Hb6HGqHK/YKAMA3+ghcao6uwsr7OELuec22TL1nWGAvxkoN4sToQJiFQE6zUm8UkYFIgBU+3muh7pV8Xy+e2u62MLIXTcyOSKik0/djRYiZjZtDv5E3RQJgfq+qSyGDl1esgxwToPwv6T1MH+7NNxPGIxDBPM/xViudonrtCIY7iEEXEYrcolgXTcBy1BQFNbJOt5uyqZdk+PgXiEaAtgF34gXzISTPHUu41ry7ImOd4SLtWs0s0wFOx2lpldOlgMi364tliqrTUfPuFpU58Zl3jE1Z2+kLv6L2lI0u97Xp9eTqVm1P4RPaLSnemloymDVM9lqnUwqMbs+3p4FzHMI3ZA7Wt9dGNaTtSHWeioZlWlNh8HXRdBl0nqEP9ObA1o0OaQM5yLMNyDBQ1GjyAr1IMRSOGvgS68lsUz4PCAMpeLGRzdrNTzBaJvkgHHQheOTHnJa6eQiQgQGnPV83uwADkRjfd8PL8gfFbH55aurVlGCFarmdKJ5YbE8VyKX/4rommOT0jslLQunL35u3oJ43bUmNLB7eKi1OLMSWscnwkGl8YtaeS6RN1qy4XU0rArJ0/4sZV5LqFMei4ig73zRLimFnEcvNdKE8KIFAAgopdiyMera6+4Ida1aY4hmU49irlY6G6gdMZBvRlWbeykyyAF56n7iDqr0NmhKBurb4QgGebr3kWCiPN4kvu33iDJ/X/j1UT/8RV+6Nv+BAPRuOpu4cedh45Bf/6AStWjtasYjYrQInNOY4u7OJ1fhDoBK8OoFnGw24S6XwzkqIjJP69SxAXraZzA8adSkAJFAVT0pn8tJwrz2sSLwUFhg23b7/5REJISLqx2p26PV8VeZyMq0JA1pUg58dB2TT9PimoBiMs/l0rJLPKp0O03+/TRZ/C0JJ95q3/fNsMyb7N3z98/LgIWOLzzWdr8ZBEJ0rCMiOyuhMjx5w8OE81qeX+oTqi+TSEuwy5QJPch7wADCKIhK+AeQAJIBU4jj0L/pGHU8Gyxi27aFtu6u/VEgCjFKCRG/YDLkIIYaZpkILnWEH+0t0rZ+NxLRph43bYv/ZoZfSWGQnAmpmn5YCEpFL5l/Vef+XYy3d8ZGUiXQgH40oo4afvW8lPdAJBPycjWZaxmfl27AzB8ftAp1WIe5vqUvf2/TGQP4WATQEnUyBqbHA3Q+MHILch1dlL4OoBzhMwcxVK9HPubczVN73vVN9fLAIQlCyeT+6qDljsudtTGbTniLIpzLfrmHzhDD0F+NfFyufOL5zh9GZu9PGFficRjYSCcmr9meTCLdUFSz3EadX0+B2awGmF5NI7fn7hE6e3jO5tF6sTK52MaScCMSnw3ltaVnssLERzsX7DjmjpYuztxLfbYIdnwQ4dwksKCDMpYOyAcUDbEQ0gzsEbhy6BG5ktnsVO2DtK2RDbdraUc4GNx7SnFfJ4QsFRx4UwiHZQI+IyJwLhRHH8rPjjRb8ZMIK1ZP2IpMbThqLUH8yLomrxh1lOEjN4ZjKRDmpSpB8T/HIWHxHFnZd3flVUNWH+kanbL2Mjrh3oq4LJyx/z+9hUKhwPx5J+DqjTUdDrJtArQmWpBjXarxkCZkjRpCmGpZlLQ4WbZQeOsm27XAapzb347NXRIEo5PoUKJEY5p4h3+aHPWHvuno3z996Un3zmjvVb75ypTcv90YN3zDVm7hyfnV65b763eP+frX3wyNyhbSPQKx58ZHV8+piqHPzrfG2llq8tv1yYvm28On6rwzHOgOzjIHuealP9/kwVcWwcvGC4GTeoOqAl4pyqw2y5cLSXaoVsPpvLd0m4Id2rJHV6N90cH4CCdexe4tuOIk4W4nF/u9a4Mh/Qq6moGQmF1ZC99MH04pHqfFb9woW5kwsnlt9Ji3ohvn4RvZTe/Nj41CoStGwsaUW0sCw9eqqVaY1F7nrm5JmHHljltVQkeB50IjzuOfR1SqTCDm+Cr8T82nBXqNu25fKmPXCghxjec5VkdKRqRtJrHtVD7zQr6bBZSe28tEf6sMNt3bVSVKFvh122RMMvNNgN4/furk5tVN9kTYhkz0J7S69fzspaZDIZjtKlkd6eAF9df2dYCIqxLm2qXKLm8l9qHJ/AVcogvUxofy9T3OOvhRxZK+f5hoXe4n8asiTv/DQYRY+qPikc2/nqz/Uziu7/D1IwLP2FT4PXf/ENydH1HPU9vIg+D8CrUIdXX4gCduksZC6mAbBBiLOEGGoEqxIMYeCQ19vwO8b0CXij8Vly5+FT/aDPR1E+xScFBIeVc0OsPDxg54vVnU/WWuiM3Nr5vVYVXUSfX1z8JCHqhM2P48xAV/GGvm3AtlnPrjmvj4qwYZyJ7jzmKImO/1wneqNIEDWH1AwRxWWiK3gXvYLfCnlRpnr9dhH5OLQmIB8FhQtvA+Dq6zwLAAxEmEEOEy4UCuVCWbezbU3LjvmdwuPQLCit0Pc6TJh8J6TSwSi4QMNLIVSg0SvVu8ohtoSfa6qaVr2rgoJslbruM1RVUyRBC2rvlNA1YMpRHl+8iCUpY0Z4GmuKirGqvfoLLH0TTaCdPyY8i4ZIpPACuCQKFadBtfqjYchqsBELXJnlthkEHjkLuSCv816HROTP5DO1ZsZqeiVzwOazLlHcxaQ6TTpzgkh17H7C2ntO/bxYti7rxdJP55dOjxfGQ5CldvTdze3lE00oFOZTE4/OnfnTlfcA0/+pmVlszdyq+Sd/woqxoPyDYz+TYiOhvzrqcsSLgEeXAY/GqJn+ZKOAEcuCa/HedAeYAw3FHyF2C7RhHShyQElhNnK5nG3nncqHPELb2QPOWaeDNZxGwOuUIrODrpbHR1gNYH+scuuXZycjvRWVcPups+1bzt/+yc2lJi/SqqooNPp6SEwiOTA6/uNHF86qB1rA6Gemy1fPnv/OI2M+jdGDflaA+ImDDw6AD8IQSdl+esjm7LDNi23NapEiQKBzYHKL1AGwuVucK4h2urgDx69t/EmpnLysh9TSDyt9S1nijXbh3OVz/fv76BNbf/ROYl0SG/kD8x29PJ3fidz1SWLTO8GmJ8Cmk9RjfSWhY462IA4EhHgaKEiYjIWAUQgcK1ylBB+ieIEirIreYhBp94Cyoi08GAtV3/RWuInc76CsgoGNyJM9C1LQyFlWyD9gqoR49bj9XnA7FNKHgc8IJfH6127Pi0BcU4N6jTcL7MTc6ulTH1ldKNEyraQUOscnszSrWLHO/WvtscbxuFUsP1z8X6qCXzTtxuXbz//r36qzISZIXPNMKhn2S2Y2sv2VY/3TJ5fMjBt3x8Ffm+CviOstivI4JZlyEeAiNYNkRybjesvxikHAajdLgEPizfKDl+8slnf+W8n5UEKpEl7K7ETMjBv6zlrQ8OEPw1rz1Gx/aiqt0QxFOlv4BdgtGJUStvxIEGQPYfBZDjnrz/c7Tc1qR2NWW8uIYExHjF1gceTgFEQYPRkp5mdQdv+vXipHUthoQVvQJVb9cDl0Gbht6UixHHwIjYQe8UV4IO20z48e9q6HLtfL5micRqKIQq2LwdKoq5SDQxn0o5mRP5dUhGLF00+Y6k7Ouwza8kH07mdHiie+kXL0zoLej4PeY4QjFRQyTVwDnkdR3JYPcZy8TrIEbXmDxbZB7F1oZ4SBpjLkAvCIAp11bH8jQkVCrd3UwY+XRx4jY1O/EvRhPI0e0krlu4ul9GV4L3ai9DR6hxHS4BJo8uqvFBkzkiCiX+wUBp7yJ3YU9F+ILk7tu9XjeCrk8xvNYgrlvFPfc07X3Q4OODcueIMGwlHdoEb/I33y7nPLy9HMifvOrqwsyxP1/sZMXO3WZw9P37tasx9B2cnNUXt6cudHbOWvGqVEY3P0x/VCqgmygET4CNgxBrLU+mWvT9zmEMO8TtRmbCduLW8q4GD2a43Hk5mAg+ZHrt3xW/VIsfxYqZy7HCmWXl5dXR4fv3v60soF9KNbnv7WwEDHlovjf3c7sU0SbJMDeXpUn3r0xRJCfuThSonyIVIwr1J+CkFEbQsA2dxZijibZzAhkTTy+puxN7l3Fz7dBnq311EPzExPZquOgqWsuNsJEyrVAxx5A2UNdzhCeh7ofImX6F31s0YnE4jENUnZvKULwfKwFzTfWjq+NJGXVDEis6psHRofX+4sHzq3JTcanJZLmLVpYeKHA9usTra2zHxd6k2FQy3Vh45mWz887OTA02CwJ8BWeerOvmgDBMcZTOqbO7YY4UixQ9QDpEjwZ0HXYd1psFLauwNffYNbTvXFXlYDewQzjscJovZuSJjhVok0vjy+lzezyuOXq6Xy88XS1OX3qoyqZGmdCQRk9L4Sjf7aNOcGKDanBkzWfzPkjEkHiE5fuP4P+EOgU4Uw4BGobmgNulsyYQbkIiXPnfG2AbcMO+M2ChWEnDpc6NCdQdISCcOGpvORbm8vkz9Ujuz8PWFCaQlBDdZK26VyBDGIn/6yqqrwjWTw/wawV1OH0KcyLvr4jZ1/eXoEae9CN3spDHL+++vP4w/glyidKvZzQCtohzeSDmebcubhJJfPEgZ1OGN1x0gqsx6FC80iT0Ayy/xR+cUS/QKr6S+Wyp/74kdKzYwJ1e47umBmXr3fXStx/Xn0Q1jLIGuFdrsC4C7blDOcpnZn0xC9LWctB9+GAxU8AxAuBySyzheulciyHWeygJ8GX7DCYK52Cn3z+ucABwp/yF1Y+A3z7z/kqAXGY9nom42d7zYa6MCWMwKHXH779VfwCHoR4rNF3d8XoyFgCwIUJhKhGWdYwXIMxzJk5KqRwYNT6jVgkgxD3YFcKpzoF4CncdCnX929/fXvhGjNZe1iCLphj3cSblBHhd0OCciBw89oL1mBOA8aYzLN7OIRXcqMRgsK05luzT8JmEmH4jpzkDEiKsvJcvaLsXhji4vpja1rwsFwN2IInaNLl75VFFQypNr5tepLrgZl/wP59sePKHb+t107PHb9FfQLj0N3+k0N8FRHDA1E1ENWiGqGobdcM3htfZC09blmznI5wmC8tOtNBXUH03mvl0e/ePr4+Jrv6ESpfFuJLrfbUzcdspPdS2mrexEZl75x/KZMGq2aJL6+lD+9UO18+Kg9/SHw6FPgJw38ZFPdfisymNGzNGbB5AzNMlcG4yGNCDoQz8rm7JztTR2IqQu7g7GhyZCxOxDUZmKNo0dKnc9udebNiBbVlPTcQ9tvawX8gchNhu1Tiq2Ni1/tFROWEYoFgk9u3lMXnH3RKyBfCewH3RO12J83Ec2EEI8hlFh6jeJ4licTT5pmzoJ08i5n1NZ9iBjTCw+IjULTguBwh5yvDY7eXqa8YYCUbgyQPMDczSX6wd8YIs86ht/pviZEMPV+z/5Zqko1+w1IEBozNJmUYIbDZFKyN3PYNb5tZXsF2xvMebrs2p/MZiH/94zvagFFyfVCfKRpND57rrvoK9uTb8vI3F2uG46MxKtnY6nvOO6gw0Zt857fm6qpVkeJ86G3gDv+PhQ9NEFQoHbdxFMg2wHqH/p+UkcK0BeSxCbT9gblVh7wD8exD4DswhYlCNDmktYdCBpxDmQxcwc4LMYMBu1v8Jj8Jo/p/5TVgB54dY88QrPc1d/4DBmTy7PTlgUhb9kRy+/wSC92Om1n6OnRA9qdHuaHp1aDvJ1FZLOIbP/iqZSuRZmRRJClpY1S+cQBWQ/MjY5NJw0lzgWkydzEZLE0z5ApLRuMVlOTkzgdS0U0n4RYPSJCs7Hzqc1OdrmYCWd0XRHo/4QOmZlQhA2IejhnqCUXexbATzrEVgVy58m+WrKxM5Tjg9DtI9oD4urucI5lXbVJE6yRTHJQKbg7o4sRQG4AKnCMY7bBTO9NnwBgtgshO5/LO8DMyvTeCM+1zyw+gG5EaQUNY9vnOXPsllZsZCyeNIIRrCXyUyMybbbbE2sfPj6Vpw3A6fOAdNvWSG97I9xojtD+JHQnUdXH4agdFu7PHV+5+LWGHCRIfSo39YHNUu9Dbs076eHLFLXQP5gDdCkiBEaiOEAXHnGQS8PoQqYFAzu524MEXAoA1bH80PagM4eDwJAZXsavi90D0th1cAaXtJGJTLYmTpTMRiGZVCWG00CpKzUHYMqNg2PT4wFZs0VoT6XsNX+tW2rk9OTv3JoY756ZGFM1JSRzMvqlgzNfLvQ63c+kJKNeCIhkhvA01KCf4ZNOHEz3J4A9sMjFd0TwneOcLUCVqDcoRHtIb2dzJais+3ZAoOVz435vtw8Uw0Ma7TsT87Nb50vjvqNsymipjKxZ5Gswmg6noq0AzYBC1RFNDychJ67ZD4wVQsafK1yi3JQCpv1AMx+sTW9OcomxsuAT0ONGIqYGU2Fv5mziJOhVojrUu14UIa0H/UJtaI8Ho7cNqeht8GpOjN4xiOr6jXtCb/6AE9TZXD6StdygHjKDZ4TQwEJ47ye+N2yVJ9SLq9tuQNcXhNNMLjGrM5wcsN6yUp1mZgcmaR68v09CmQG+c6yI7lE4a7Tq9/Fm5h2dsqz+ctcgiNryYnmJ+nQ/mAJ9Mghx0AMJIUT5GK816EDRhKgGqBR4JFyhBB8v+K7sq6ADhX2+3RhP9Lvuc8RE/y8PAnQuHaqFswVgM2Hbm9zgAXYW+NdwG57ueqM0L486YESady0b9gozLilmzypOsY+4e4xXXN6zZk0cWwLKrUUjTK2LIvE4s83qYi7ipg1fHa+0q5LBN3mys7ibMDv/Mdg/U7FvCQdjKqPRXRRNxGlzQzF4XT4min5i238DOfSXYNsMVe9XQu7ZEwaRPfSrQ0xuqEaXmjnbPc8wQITQfo5BSAXRFP2lmprM1teZe86UyldL9ANMwuArcT6RvSZUe+WxUVlFz7tyTsqcEqLPxEGeFvh6CrB9hTrVD8xMQErXE14DmAcvG6RzZ7d4DhOHkANXrheTjoPIj9wWwBunkZ2xoNP4BcmYTbRykWKhWAnupjvZguk5wUzQzA30G78fwM4JDbJZFtlDt0gYj8gaIxiqFKonjEImHg8IYkDP2mpi31dFKPrCrCChUn0m2JrNjpaiYjwjhpFPThvZzuOlYnp28mTNrgRN/qnGWXPvK/e+WvK5EVoWrenpsdGxh+ejQdIvgn02SS6AffpkN6oOtoggiidnl5APMb6rlI9HPv6KayUy/9XcgYAXtXbByuWKucLQpnh+YAZ+t8bfmOS9/frvxmq0X86UxYn05Ggu71d0iNdFWhINhuEU2QqJyeZEqDdX77Q1IRN1I1U+uFSzjczv1sqnVz5ZijuxGgkEYj1Dk/ymMGd0e73x0c4zY6LqBCimHoX4/BXoK1KR4bnSPt5ov86+0b4m4lfPnJw9/Nunpo4s2PnJe/P25L0o+JY/uG3x0tdP3JSf/cCR8uSHCO6K1y30a4dXjJMTNQXEcGRXgBEYVrgK5mV2Y0sQ3LX3BkkhvNHr2EClbKtp71EpILD7JiyupW+0Kz/Mx9Gvn9yMVDQ8WiuWP1Eq25dpQ9dZFkyqS8n2RHSq1zl4aJeQI/Pub+ka/T1n9PBygE+tBwN+098Pdzud4wf392zvu27hGOg3AhpO9ntxt3fFJHwGI2ptt9MI7g3iQ061BM2sMacsDLTpDdEb92gQOclED1v+b8p/XCovjXba42tPH5uu+H2yX9SYp8ZLBwdd3B+B4N/NH7/pnhc6EU1SA5z86n9F3xo0ck7M3w4xPw9yO3seNYhs2weQoCNoKMi+BwPt91VoMBCD9we+k/vZPAR8zt3zGOrhXhPtu2d8ZmmyNe50d/OZoBYNhpvTo8WiG+ALTFLSBY6VdIsLxmqJ9Ji/uzp1DG1mkuFgRIkevemzJKxZBQUVXzppxnTFpM1GaSQTm+wQXc5DPL/i5O+9ff8YYuBOvDveylIMC9Rlt7yz7IC3eDXawTp76C6WFPXXuw3Qs92slPM2tIice3LQO9i1R+DJ1LWOC26T5XnQiVnPRM4wNpJi0H8vpidOfiUDlVtNLPTLkZiWDYUm8yFby621Dq0kg7yq+sP10VQ4WG7pZiMV+Uj6oG5tWYm4rKtGOFBUJF1iGFGUzXKwXE02iqbJhpSgX1HFjKhrAs0Fw0Vin8+Aff4WerAS9am+n8yFOMTxgx7MHqKuuhOf+CwzaGsGaOA1XsP3ym947z/uT54iYxhIbsvKDvNFr/ANncp1e6U9uoj+9t7lxuQ89EK35XwpOcRkyMc+Y6enNeisxey19EPjBRQzMx+3IWrkJ6ED2lF8VjsnCr59eD9LfcytgHID4p5CLAA9GRUknAvc3oVT7m1kwOTDNKkILPaxV5xdQDIBJwMmlh0aRVVuvNNBOG/T8Ia7IapyxWzBhjpiDEoIz1kFbriOuOjmzfbdgjE4vL07hKBJ/eA1IXkhWu3VD3T9Yi5GM6pkxefK6VqgVV6pVvyJgMHMM1pIp2mf5M9eY0bqWrtSmZ7qfcIUgyf9fsFU5g5VC4b1gdGJLz+fVTVO2fmF4jM3RUFiqF37RcF+NbKnUoJGgMyBADLIOSHSFrDohr6gVMiCgt6WIx7Sa3/+OHrMQsPXQOQSjoarZyanN3o+Q6sqvGkdm803xfaiPTOiMUxYLqGLsUtPnZ8/0PpY2BcttWJm9sGxXCj5VPnQyQdPBDRRVQxH3nMg7zrIu0wd74t1g0xNEDjIa2p1jmwKaOtE6iEXRh2fuWG776dTfeXQ/OR4tVzIJaLk3HK0kiNDLW6wBUBUK3jbjCna2WEc9hfZKuO8mt/dPXINKIHV+vrCiD0ezBWiOq/KQROrMhuIaLIWl2d7dpOPBFSWwxqnShMNqyiADQr1e+4fHxdjbXt0NFIuhZKYjjFiEPm1bDRTX7Gt+Ws/SGkiCpn8vHGoHu/ffbUVD/oExViofWM4Fzaoz/aDFajOk8jHBKFfJ7PqQR/QhpaAZXwPUKzIsOIVSsSMCBiJaRq/TRiq4f79Juy6j5Hu8YbnGExfecMHT/WDG2tLh2am8lYW+mUokQF3Epe19qZwg2M+TnuZ39c9ebRqEGhOYXJ8EN7robeXx/PlqdHuCPRUYS4eqgsVOhE1ZxTSY1rbS5PZxnhlMqAHeC1qcDEzJosJJRFNzkhAugLZa4W3ViogXzqqxpRwOvt1QYqlG1VB8JnF+yqVTjWcDNDkiJ4RU8tvmZbiI2Mlv09w7G3iBNh7ifqxhz2HwOgGonnVOf6UcC749i6cGsy8WIZnWN6ZpWD0AEWM53OZ075ZyqBPdf/66PBj7mHe3/AcOPvGR3w+J5u5LeoNHyOnQ0uFXI50uhZBMdZjAgMSMziSNZT6Hqbh4eSn3aN05AJ6KfTuzdqUFJI48IEv3rpVHc2MLbUkzcgFCPW1gpnJjDUWLnXi1WRSEUM0q0kAb9L6+7sVIymCA6KKce9adLrfe3/GHx4riIJgivVuoVYMT7y1NmvVjvQaK4GASkDOwwkyX52jbu5vGNCudaEfds5D0ywHvRtDCzTjHEKgSTeLfJRvcA6cRzc2s3P9sh3M5ipQ3/x7p2WHzoKT/4NThLuhG3b7AO/U7OA0IQlZrXSima2MaPmIGM52c/mZE6GgNhIyiiATROTRqZG6pas8HwhY6aPTx5IpMx80Z1Unnp+LrB1KGZZmSiu5fHsj5PMHswnBJ5iZcykjFhBYUxw71V5JsQqsJzhx+sT15/G78EvUBDmJVHJ7WJpMnMnRQqiMGF2iWIpiT3n7ECx180TPSqfMWMQIZcjpKlbfA8Sed76i03bOADinGGSa4KDjen73KCj6k2q4sliRWIHxiSP1hJDPfDRYNr9bzo/NJ/10WZnPO7/5U/W4UGpmWLVqhSqRDBAkrIR8ZJdq5av3A21XYmrgq7OpVNH9tcJJQQ7kpiqgVwb0OkB2WJJQ3Z1TEDTrnG8HQs9SoB+oe8rrijC6+cD0aL1azlYtwvkI3yU0F3zGD87wd1ugIKjVc4LbQSRP2WYKe/hPlMMZTbw5N6JJnJ/GUiAw9b6yGnh/FOkJ7WBeZAXZn6zFxVLFKK7UAiaomJQyqK0EsaqY3Uhe5tqWPGtKOt3AG2/pm7G6WoxkxnOCFOJAcUatWYH62/I8sQOpe+ggWkbfw/dRYXJmLbD/zFq3hLloBbmq0N7OLOqR1EPfQ5zfIgRO9WfYDGeEWTWM+3419dYQnVDVFB/7eiKJIhr1fwGO7rkSeJyVUs1u2kAQ/pYAaqWq6a23aA45gCqv/EOl/NwSJWlQTCIIiKshBiyINzJOKA+RN4l676P0EfoW/bx2KzU91avZ+XZ2ZvabGQN4j29QKL/RH6zwRn2scA1NpSu8g0/qucJ17KofFW5gvxZUuInd2ld6qvpbnl5sVIEVPqhGhWt4p6TCOxipzxWuY099r3ADX9TPCjexVxvjFAYP2CJDgjkWyCHw4XIFcLhKfEjrhF6CE2juXUSYYsnYDdbUCW0RUtzZO43QevXsfelZeLR4Tm2mmC9FWGHGk7H7LW1j6iEGOEOfu+CC+pqWG57azIhT87DNkvkiF991A8fhfiiTrZxo6UbTpdmsl4lE6Z10dailZzY0JtIyqUziRbSaiZnJbTyW4eCsP5CL/vXwZtBm3isSDi05A4/l4ioMTWo8oqKGDPeWLXomu4+oz61vbnXGtsW2aZqRgiPK63wOLuldpEjYjNIn4I1jpWixjw7TmjQ/N9k8Fl+7ciS/WTiXebRKprQEnuOxar/zL+e/38Cr2OJHjMl1zdtyCCVfl+8Kjik514zxj9SG40lshcXQnphf44DicQwYxdk6YUvJ0e3IseT5LHrMzSJJc2k9efpAe+3/pvcLjOmKFXicbc3JSkIBAEDR48vaJD2btElLyIKI0CKiTYRkg9moZWlFG4kgjNCWfZlf1aatvg/owl0fAYPfv/7gR9l/VaJjAiPiRo0ZlzAhlDRpyrQZs1LS5sxbsGhJRtayFTmr8tas27CpoGjbjl179h04VHIUmcdOnDqLnHNVFy5duXbjVk3dnXsNDx41tTx59uI1FoRf35+9dve98/bR3up1i0MFtxm7AAEAAf//AA94nGNgZGBg4AFiMSBmYmAEQk8gZgHzGAAGwQB4eJxjYGBgZACC2wr734Hoh/frbWA0AFN7B6AAAA==')format("woff");}.ffb{font-family:ffb;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ffc;src:url('data:application/font-woff;base64,d09GRgABAAAAADQkABAAAAAAWLQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAA0CAAAABoAAAAcnt++Z0dERUYAADPsAAAAHAAAAB4AJwBhT1MvMgAAAeAAAABEAAAAVlWY/lRjbWFwAAACwAAAAOEAAAGSuKkDl2N2dCAAAAskAAAAKQAAADQKFQIlZnBnbQAAA6QAAAbwAAAOFZ42EcpnYXNwAAAz5AAAAAgAAAAIAAAAEGdseWYAAAwIAAAlUwAAQHSEwDqdaGVhZAAAAWwAAAA0AAAANiULQjVoaGVhAAABoAAAAB8AAAAkBNEBHmhtdHgAAAIkAAAAmgAAAMAMZAt2bG9jYQAAC1AAAAC4AAAAuLoqyiZtYXhwAAABwAAAACAAAAAgAX0BZW5hbWUAADFcAAAB1gAAAzM/ANH9cG9zdAAAMzQAAACwAAAA6CnN0rRwcmVwAAAKlAAAAI8AAACnaEbInHicY2BkYGBgYmSzXnZyRzy/zVcGeeYXQBGGh/frbWD0/1//ZZjkmLYBuRwMTCBRAIp1DgJ4nGNgZGBg2vZfBkjy/v/1/z2THANQBAWwAgCTcwXxAAABAAAAWwBQAAUAAAAAAAIAIABIAI0AAABvAMsAAAAAeJxjYGTcxjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqAgAxIISHNNAVIKCpJM2/7LAFVuY3jCAFUDAPggCzd4nB2NPQ4BURSFv1FNgTARxl+BzEQxxURMTBQaEiJRW4JVWJFOYQu2IDrb0PDxbs659533zrlBzP8Ehx9BpcaZiTXgwpENCVdK7izJOTEnYyjP7Jl8/78mYqWjxZQGbboqEXvWdFTr3kvVSF/PLRFV1Zynv0t7yJYxBanJoa6cJsXn7bwQKX12JoTEZg9NGKm/xM3djy96sxXeAAB4nGNgYGBmgGAZBkYGEOgB8hjBfBaGAiAtwSAAFOFgUGBQZlBjsGcIYIhgiGaIZYhnqFWQ/P8fqEKBQYlBlUGDwZEhiCEKLJOoIPH////H/x/9f/j/wf/7/+/9v/v/zv/b/289cIDaghUwsjHApRmZgAQTugKQU1lYGdjYGTg4ubh5ePn4BQSFhEVExcQlJKWkZWTl5BkUFJWUVVTV1DU0tbR1dPX0GQwMjYxNTM0YzC0YLBmsGKxtbO3sHRydnF1c3dw9PL28fXz9/AMCg4JDQsPCcbuNEhARSbxaAMOHLtkAAAB4nK1Xa1sbxxWe1Q2MAQOSsJt13VHGoi47kknrOMRWHLLLojhKUoFxu+s07S4S7v2S9Eav6f2i/Jmzon3qfMtPy3tmVgo44D59nvJB552Zd+Zc58xCQksSD6MwlrL3RCzu9qjy4FFEt1y6ESeP5ehhRIVm+tGsmBWDgTpwGw0SMYlAbY+FI4LEb5GjSSaPW1TQqqEaLSpqOTwu1urCD6gayCTxs0It8LNmMaBCsH8kaV4BBOmQSv2jcaFQwDHUOLza4NnxYt3xr0pA5Y+rThVrikQ/OozHq07BKCxpKnpUDyLWR6tBkBNcOZT0cZ9Ka4/GN5yFIByEVAmjBhWb8d47EcjuKJLU72NqC2zaZLQZxzKzbFh0A1P5SNIGr28w8+N+JBGNUSpprh8lmJG8NsfoNqPbiZvEcewiWjQfDEjsRSR6TG5g7PboGqNrvfTJkhgw40lZHMTxMI3J8eI49yCWQ/ij/LhFZS1hQamZwqeZoB/RjPJpVvnIALYkLaqYcCMScpjNHPiSF9ld15rPv+CFAyqvN7AYyJEcQVe2UW4iQrtR0nfTvThScSOWtPUgwprLcclNadGMpguBNxYFm+ZZDJWvUC7KT6lw8JicARTQzHqLLmjJ1i7CrZI4kHwCbSUxU5JtY+2cHl9YFEHorzemhXNRny6keXuK48GEAK4nMhyplJNqgi1cTghJF0ZOrERqVbptVSycs52uY5dwP3Xt5KZFbRw6XpgXxRBaXNWI11HEl3RWKIQ0TLdbtKRBlZIuBW/wAQDIEC3xaA+jJZOvZRy0ZIIiEYMBNNNykMhRImkZYWvRiu7tR1lpuB1fp4VDddSiqu7tRr0HdtJtYL5q5ms6EyvBwyhbWUEKU5+WPb5yKC0/u8Q/S/ghZxW5KDb7Ucbhg7/+CBmG2qX1hsK2CXbtOm/BTeaZGJ50YX8Xs6eTdU4KMyGqCvEKSNwbO45jslXXIhOFcD+iFeXLkBZRfgtQnKAUa5hJYMN/rlxxxLKoCt/3ORI1GIK1rDbr0Yee+zzitgpn616LLuvMYXkFgWf5OZ0VWT6nsxJLV2dllld1VmH5eZ3NsLyms1mWX9DZBZaeVpNEUCVByJVsk/MuX5sW6ROLq9PF9+xi68Ti2nTxfbsotaBL3nkOs6//tr6yoyf9a8A/Cbueh38sFfxjeR3+sWzCP5Zr8I/lF+Efyxvwj+WX4B/LdfjHsq1lx1TuTQ21VxIZsAmByS1uY5uLd0PTTY9u4mK+gDvRleekVaWbijv8Mxkue//lSa6zxUrIpUcvrGdlpx5G6I7s5VdOhOc8zi0tXzSWv4jTLCf8rE7c3zNt4Xmx+i/Bf9v31GZ2y6mzr7cRDzhwtv24Nelmi17S7cudFm3+NyoqfAD6y0iRWG3Ktuxyb0Bo749GXdVFM4nwAqL94mnadJx6DRG+gya2SpdBK6GvNg0tmxc+XQy8w1FbSdkZ4cy7p2mybc+jCm5DzpaUcHPZ2o2OS7Is3ePSWvm52OeWO4furcwOtZNQJXj63ibc9uzzVAqSoaIyXlcsl4LUBU645T29J4VpeAjUDnKsoGGHn665wGjBeWcoUba5VnCJkYwyCq78mVNxIhvRZCOK+M1b6qe6UAidSSwkZstreSxUB2F6ZbpEc2Z9R3VZKWfx3jSE7IyNNIn9qC07eNnZ+nxSsl15KqjSxOj+yY8Ym8Szqj3PluKSf/WEJcEkXQl/6Tzt8iTFW+gfbY7iDl0Oor6Lx1V24na24dRwb187tbrn9k+t+mfufdaOQNMd71kKtzXd9UawjWsMTp1LRULbtIEdoXGZ63PNRj7Fl5pvXecCVbg+bdw8e/6Ozubw6Ey2/I8l3f1/VTH7xH2so9CqTtRLI87t7KIB3/EmUXkdo7teQ+Vxyb2ZhuA+QlC31x6fJbjh1Tbdxi1/45z5Ho5zalV6CfhNTS9DvMVRDBFuuYMXeBKttzUXNL0F+FU9FmIHoA/gMNjVY8fM7AGYmQfM6QLsM4fBQ+Yw+BpzGHxdH6MXBkARkGNQrI8dO/cIyM69wzyH0TeYZ9C7zDPom8wz6FusMwRIWCeDlHUyOGCdDAbMeR1gyBwGh8xh8Jg5DL5t7NoG+o6xi9F3jV2MvmfsYvR9YxejHxi7GP3Q2MXoR8YuRj9GjDvTBP7EjGgL8D0LXwN8n4NuRj5GP8Vbm3N+ZiFzfm44Ts75BTa/Mj31l2ZkdhxZyDt+ZSHTf41zcsJvLGTCby1kwu/AvTc97/dmZOgfWMj0P1jI9D9iZ074k4VM+LOFTPgLuK9Oz/urGRn63yxk+t8tZPo/sDMn/NNCJowsZMKHenzRfOJSxR2XCsUQ/z2hDca+R7OHVLzeP5o81q1PALgKA/R4nGPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdidNokzMmiBGJt5OBi5ICwRNjCLw2kXswMDIwM3kM3ptIsBwt7JwMzA4LJRhbEjMGKDQ0cEiJ/islEDxN/BwQARYHCJlN6oDhLaxdHAwMji0JEcApMAgc18bIx8WjsY/7duYOndyMTgspk1hY3BxQUAq0Yq9QB4nGNgwAK8gNCRwZEpmYGBKZlxPQPDfyWm5P9fgezt/3//lwUAcQUKPgAAAAAAAAAAAAAAAAAARgDaAV4CJAJYApIC7gMiA1QDdAOUA8AEAgRQBN4FcAXSBjgGwgcYB4QH9ggsCHAIqAjoCR4JhAn2CkoKvgr4C64MMAzYDTQNaA2wDhAOaA7kD0APlA/YEIQRJBGIEcwSIhKOEvITdhOmE9YT+hSKFQIVYhXcFi4WnhdaF7AX8hhiGMIY9BmOGfgaKhqoGwIbdBvwHEAcqhzwHV4dxB42HrofGh82H5YfzCAAIDp4nK17CXQkR5lmRORVZ1ZlZVZlHTqqsi4pUyqpDql0q6RWqy9Jrb7crb7Usg3tNu2r8YUv5AYbM4AxPBYGxjx4AyzMcLiN6YbZxfMWHrPjfcyb8Rqz9oJ3sFkPZryAvcDgXTxdvX9EZh3qw7D71m1VZWZFVcZ/ff/3/xGJCLoXb8UfIjciL4qgiXNBgSCMF3ac6V8+UPMTjBBe4zDGMlpK1FQ4ggsr9AJagw8x2rVyLqNlDF6KW6okpo0BnBsulyK6JDYOX/DjZDfnJ0kl2PW4n0w5h2TqmUz2qe54NOq8I0RQGn79n8k1aBxNo3vOhb30FjCXKMwlH/ATgScwOwEd92CXS16UfUQUpVWvm0iSskgnFcAwyyy9QD8TJPH6S7/ljFupxaenJifGR0eGK6WBfss0jJSRzqiZVFDqtrKahSWZpI3cUDXdPDCGKuO48UZlC+By470Upl8pl/JpqYz/ubgN7q8EghH5WOMgXSz1KZOl4tYAbwSjnHzMec8US/3KVOnLx5Rjf5O9OhIJRYJ3OW/Z3Idy2dusaPxG9gKnH/oQQkhA6QtfBT2dQ26UAJ0V0STaXJv1YBFrmLjJAjWTKGHxBJJgtIROwFdcbsF1PXIT4l5BbjdZ4+nIXRPjkYimarmYFvKA2KomgqCV4VKkqsH3qUHhtIqpjCH6GXyEKwVsyDisdeHSFEb2GT0Z/s/FhSL8/zOx/po3IIjBiIBD3oSsl9j1+n/z+OAfe8HR5jEZrC4tjsJf3iWf3x0TcCQoBshj3eHz/+nmxcWbF/FdWjIgp8LstU56UrKcoi+gBw51XPgX/Cr47hCaRYvo8Zo2P9NvJcGFIyLBhCwMgP/s2HEmAP7Tg6hjk1NIkoQ1JAjyIvyCuIpEUVl0gUtwV/OY48LcUsL2/V46HhG8/oe/UMs3xwpIArc7cYWRKys1XyE3YRk5cDM36BtTnxGlSLk0XK2US12gVVB53lH7FK5SY4Du4bIU0Yfp6Tgu5SdwATxSDGv6MFfAeWoM+An8qtlVyWhWXtZwF+dRioXRydHZ6lxWKosdU4WBgYERtRIb7Tb3mm/wkuxRO4KzkjzqSWnRmIUfTr5/T2akI5oiSqB3x9zcyuRUv7siLe+a27lnpH/fWN9V/Y/yncky54lrwb5ctbpY/3r46nDS6k6OgLgYfRl88iz4ZBwpNRnO8QNw+fYeg0hRS6Bi5fK2UEwekBrmH9Ej+GwgpF2dXp7PXRcOBfwrA9buQ+qQV91VfufDD9w4fpXqDbrHVw5cffCJiQC7z364zxrcJ4GitbCKKVo17xaNZIikg1olGds6HK4OD1XYndmN4X5rG+7EB/3htfQyLtJ7aZ6Ax7mXPyj6fDAHxO45hw7ip4gbIs2q9QzkuiN+UUQc3JhHmMdvozDJrQlgZAUtZSPxbNgQpQ4AEQaIIC0gRtUJpmmct43ajeEdUEOq2hYOYJjcU1rAGz3MzXMnPe6Apl9/va4FJOV468IN2nNyOFDN7bSsnbmaGJYjvtERf1gOuyezy5a1nHWujXvovLNoGb9CVKSjXC2NeA7zKzBLiqocOo54Hq/R+e8y6H8pOmXqkGEtbUxiG+WGwCs7QXH4leKf5LIfKBY/kMv+SREXnUP6Su/z9Qu34UPo3UhD3bUOD4QZqAYuP4gIobegeJuJGpwUs3ViG8Y+oMLjQ9emZS0x6ed9HZlMR7oY334o7Iu4tVGS6Yhnx5gNRrAPP4v3A+aB3RHNQ/vhl9Eq/WxnqUjdDGvpFEy7nCrhZ4v1/1gs4jE611yWjvlbeJmHOXqRWgvSb67BzwbQUoZ5aGNebDrz2UQsR/+m7Tf2/THwu2fA7wL0/i6GJi3Hy2Xs+wNotkEmfsZV//f+mKy78OaALuvkEVfw/O7OsOIKkq91hqlvETQIGPYCy79hNGFjT7ihN8AcjmMTDbP8S1GGw+RE29WVc5qTf3GbCFIlR/EhUhrGL7x7/1Xr9G/73pv37r51Ny4+eO7sQ/B374mHHjpx8lOfhB89DgI+CXOIouWzbgy3cAhADDCWgMOcAF+RFwWa9o/ZWkvAZzzHP9AY0P7ZSs1tpEOGUbSDwMLMlRSRuhQNSMiVCrjUk+a/mubKQDWd3Wx6wskVM5lMpvCf9Sa7ibAaMc+ft2OvAi/Pw9yK6JGzCngWnVsc5paGGwuYCAC6PC/cDNri1kAvoDKeb87SFiPTNhQL/H2XH1szLh7GIaqLE22DAMHdmXgm11NqBDh1uGlMQQYQWYqE24wQ1mQgIkAKKlOEgTt+XonVH7cCvzx6sJaf8Ps7lWD3zftW18NmNOL7ROIlLAX9SoiYMSUV9D+1tG9qPpvya+F4ND57zQ0H0tOjsYj3Ht0P2BSQ/VQ3feA7L4JuxtDpWqAHi8II5viAD7yHcyzYj0SBF0R+HUKeus46QBbAAAeUQJDWILeBDoAeNV3MumS8hARREk40v9cavVLzZrJ5tZLPGC6pa0MIhSUxgGlaA70w+w/TbGZr6WIlSV0Yv3j30dV7EpqawJxActdM7VrYYpoxoycVqtTKW1KuhKolrjm45/plc9Nj229enonGEqrkd3GVbcX+hRQQRU70pSaThYQ3qCbikaHa3vEDo+peGl+doKjXyC0ohTLoyNk0KIl6UAZ00+GSiMhDCIvoOpbgKTUkqyBhgIAqOkBw4YG2Me0fr9SCgJkZI5OupoxSCrJ5J3P1sE0EbfC0oUCdwpC0I9Tn0wqHXzO3T5jmN0xz4n8lAu6XANU748p288xzTyWPp5Kp5HE1qvvxtQD78frn8L76l2kMgJ2fB148SHleH+YkZmOyQCGd44F3UD8l94GtOF4CG4misGpTlpa1DGPYyPRcwVRd2LYVWAc+KeAhBT5LMVHCDMmef8/RPTd3hsBAxIUDM8bUyqaR3aZPDSpEiWOvaf5iqLbvpr/ec/vBqXiU2saLuzp3jlZ2lwJKQMZ8RyiV/FbiTrBHCWT5EfhsJzLRJ2ueMEw9DtFGFmyeBrHK8RzwNB7UzwsU6hpQCDm34ae2c2ftsfz6Ww+mUOGMwwiyH3eiOb41CiLbk82oWS1nSMyWVA+kSb+YJVmIDzN0ZfSLaQ3/6N69vdtq2c+9Y74WN2PuoDF/i3f6S7dt3z42uqhP91V3fefArcnN9+778BO13kiiIxT0Bu9Yq96+b2RXrS+9dXJnM47fiZJoy44z3SBZHITgVxnqggkbYOWIE6WgiygqtwbZMnwzlc+EdUFK0GQgiUTSbMhNa7SEKeBJzGiQDgnyRSmwci+3fWJo5U0HdkhIiUt4ziSzXndgf/3NR0vFj3zormsduOn3y4Eg5dwNzInAbE20/5zmJnwzYXTCAF7g+BNtGUwQWpZItDKYM671KUCrpmnxeIs7UQ+tgjPSgoRS4C6cb+Y1vZXhXrzv8JF791ZLO2772m07SsP7Duy4ccfi9Yvyrvt27b1z72M7brppx8ieoLx5sLa2VhucCwR3v5wfG8v3jo7+ZnDbtsHS1q2ozS8TqAedrHlCmBP9mAZZw9cagEiZn8gAlF9rWKjd11pA6/iYM74dOD2ZrJbOaszVmnmbgSGrBZoXpEredrUI87RPnljcDD7mCvfOHffU9uy9bf1rd+2V0ntG9lFnw9WHvzFtUhdTPMG7joKLHbj1Y3t71JNLkyO7ZqiMjAPhx4Br6JSp0fxKjaRQmkHWbGTLZC6lE8pl2VHjD9/kHNfPNvkSYZxwB7tXF8rS3MqRB9tuyPPMqwPcUiYCd3R8tnkXtcUTmQNsuLFwqEPWIkXZ6MokktnW7T+67WjYp7ljFdyjx7NDNn8YQRX8LBkAf+2qJbRGvYDwisMBMdo1GmpQwFw+m6tUsxAkVWYNP47gZ6OyW6qfieh4kxTgOX80Wn8Fx/WDwQjmnpN7Ak8LAg4rqvKNJ4JU7iz6D/gV/DngqSqa2nHGBN8J0YDlAL/hbqtUfDuKadVAuRcHEb6fWmCVjtq5cq5UKhVtEzT4bLjFbF8ZqD86MIQPDA3VvzQ0gK8dwPdms7knc1Tr7fJqVF7vZeWNM7aKNElwlNyPmdojuoCf1etnfLw/6sPZ+s90KjpexvM9ged4kNH97SeCGpPb5q5T8HN/T65DfcDShmvlDkbPEK0vCFpHSMBIaCdbTsQE+CVVz2QLvXbFARSpE2tOwTZFqlPcpTShiyON9sPfT2/q41S1wy9Gpos+jyzOzy50MoJwZG38qp4I9/kus6vLxP9jIp3ZbgYDshzp1o3JyQ5J9PldiVTSxyhCaVusy1Tre+nYLioLRAN+HXhCGqQ5drYXu8QGT+h0Y+D72AWCiqK8KAkcbbCsAiuweWMnEl3iA81BF32+UlMgpPoyfemyUVEUrehhCZhxBPCzfFpidb/DGRyyoKvl0gDttOTTooRfN28wg2ok/KlwRA3CsRm6XQjHPLGwcHvI/MqgKGIsjgJ7DgbI0aMkEAQWQdx6MKiff+MzPyPdac9wHbF+iQYy/hT8MApsqBeVa4MRRoeQgEQsiMd5DJ64ymwlYbu2ohKkMimzBCzHYQ4NPm9XiG3IzNjPcMg5wD89svw7y4rHLeunS0eHhqZrq4PDd107Mx6uVt93z9iXatelkvilVPLYRO+OUOiqXyYnvjdX/8nu7S+Ah/YAFr8MWGyhm2oeL5SoPTC9BhL3IpETOBFoOi1gCXbKpOZhe74xWmNp8QsjECdibmPa8eS1bDadaeV92+d0miodz8wXuAYMT3G0gsEv37732ocfvmbLiD8YSELqTPGSYXX4N113fLMrlO+OE5LO/sXWk9988IFvFjpC5gcgfcascd31yMnrP0L80ZIRB58DwMD/BPYIoThK15Jt+hc26J9q3w6WS7QvUnXTcuqf7j72D5YVDlvWPxy7e/v+nYcOL+D+ex63lfxXP/72J+rdDB8i8PI71mP9/o4zHtDnEOKJRPhTyOvC2HsK8pXbJbqPA5l0eSUXVHbNSXnaC8AdZ3zw5eG2L7u8eP2P/Xatan9RWv+//CbwtNBItVwqDubTCqR/0IyPNWztUszRDABlhJmOkZ50uMx4T1cDaCClpMMpGn+sLPsdlGW3WVZnp2Xh22IKCRkh8qv7uGDIZkWhIHcf5tlVWpoxhSqxRbAo8KLhv9FV+r5KT1X9x/P2ZRuLY/DyKui6jO621VWAC4D5p8D2QHmF45QGiUCD3CChZxV5PPKiC9OmNlRmAQnUNGB/gVv/I78BdUmx0GdCSaJS/ahe1mV8Sz20VSxN3YVh2lTeX59u18LpsmV92rKSSdDTPTEF/8JRwdMbVPB0itbxLyVTSoz1oCCWX4dYHkVP1DyAN5wPY4nGcgT0YYHNMZLciFJxbo32SVkENw8lyY5r2tm3w3/gD30FBtPvMT4TpoVcD9S0nLgCHyPBzQEja/7ARUPBt+RRqJJy2UwmnVE9zK9AT2EnO7VBA2lCQ4HkC7jJ0ZzVgRJ+XQkEQGuaMrjp0Hvfe2i64nIFvBQofAEJ0sRU78SRI+MDI1KPad5pvRYIks+D9hRtkLZmrJDfxxBD8Llco3OPnHzHI/tnUknbp0Lw8nvmU1O1cWAZBLvJcZ/HxbG1EEwrev/GDFQuDhb6evPZTNqg4ZJSjKLsrHE4deolPgASsNqvPNR2RlHm9+Zdphl9Omqyd+etdUpbOC+8QMtYGiSp5Pe+l0ylkoA8GG2HeX8X5q2/FdLRCTpto4vCuTGB71r1f7SskyfBBQ32nmzejAIcRpvA334C90mhwVp/iHY7F2i1BNRqneqjURg7lWIYL5WyoJlm91PZ2JuggE+GGjrBP7E6j29eOBwPa3Gpc8gXy0Z3m+ZfWWQ2WX/b3NJkKZxIqEFPRAjkEvgTyRSdj876D9egEhqvjRQMt4vHkHI9LokTBHHVjSml8PKEGYyzDTY40N/Xmwsxa6VDRV/LWOW8dCVbKWrjWExLKsQ4fs1ctHoeOggZ4e12YqBv3++xDpqx1Me/oIaCVHX/85b1lrkuwHzhTfc8WX+BBGx/o7zo5zD/brTPzhddSISIFE9dbMMmtHfTAUTE61cYARlXU5hwjYybulSachOdfw7o/JBpZjKm+QXLqr66EYip2Tf7A/Cfg7kyvNRhvrM0PgZVDwczAQ8QMUxqnapbWnOxKPFsjJLa9NTkeEXRKmD2orelcgBMJR3AbD0TILVF1ugHFEFZGu7GEb08PI0ZfWN4QUfiurXbUkIq7pj2j/nnQgJWQ4p9iR6MxcOuGdozjo+7wvEx57JN5PAP1r6Tyz09Fq33U0bHLr1EjwL6304mUzu/oQfotXp3w04UbH8Dchep3/fIdM1zQRIIXYlyMSej1rAXcwFMS3mq/3xrGUpxEkKeAyEv42JdWFf1cjMQfmNG/QElGNSk+wcxhP9JGw22BAKtKzQqXKrGcUoIX/vButXwMzivP/pB/EOKaASNQLw+C/mhAxVYTXq51nc0MZ6zCyKZh0nylSkespgI1XEBG2wlSacLkNVh/Cwf0ivjpfJYRQ/x9HisnCsWElGvm2z3uit3ljw+n7t4T8nlw8WlI0uZmCjGMktHHj2yEw45n5Lt3bJUfE8hD/Vk//s+WMl2J3NDdq1DedOLjDsnUX/NpEurWELHRczzDqa09wdTaQa1rNuGKGu7XNhGGlT5xRP77gLy8V6bg7y0r3vLzNvfPoN/89GbzzSU9rODO15n8whd+BfigXkMQ/V15mweWACtUzS2xOkCE7tOIQ/CLg8+7sYUYeyahSfgEFdTfLHbZxFGpGE8VCzrf/gLteJbjG2GOUum6OpmQy04NTE+avQzTfQaXoemAZmGoAFPy11BKxR2dRpmXZBlhwCIiaMn4hkwqx0+kbi9XQM7WjnoiX037E7KkFZ5r1vBmeznNk9v3lxbzc0NRkrDMT3uTjzdUOPbN+2vRNOheCkaS8lmCoeWZp521hlYj/VGNIfuqcm9WOJVyB1QwXKtVrok8WsCZi0fUWwe0r4O3RcRtj0WN1SWQ5LISyswCvCQF09cYSDroqe7c9l0qzWbp7HoNOsg8CK600rPG7l8wV5A3FCe0Gs2BdHZP/z8iT3XTglKkBKOoMJhbtCcHar1WGSra3q4M3/is2POhx6fn6jvLM4W0q5rdvf0fHHLOyxdM++X5YDf5x3vjM2a3ROyQmS9e2Bk9hr62WngJSQg3z6WS5ZdJBoaLNn6i8PLr8Ev8+iAzXW7RdoHALJLsZ/x03ZXoevmSWcEWb/CENDNMEsVmkp10yKyGxEq3LjOmtZAXn/NcsS9QFfPWFb5XnamxPF72jhrvdt2iWH7fCGuULpKOyUQXz6QI43ytYwIiRkK51WpwTKbpCGtQm5WU/a0GG0A1rAhg9HeZPMK8Vmdt3zqFifItx7Yyo4oQn758D33HMb7GE96bOuePVvxLiAOwPMuvMF4nkXn0Y3pThjBmY3YILowkYquVcIZ1W4kgi9wrNNL8lwjNbFkpNLsVFUb1/DvFTVyP68qiuwLefj1iKpYJyxFDR/1E8h082F2TjZBgjn/vxWFYEmRCd/IQ/V7q/GB9+MOem7b3nfhDYJgriOoUiv2Z3wcpjlXhE+ABdB+CEI8ZCEaLpTMU/316EYp05NR7PxjTzvPNjPYKxB5rk2XMH26fFQCVGByNJSKcvNYUEPdHr7McRXO061oPJnHWXPZsnQLplEQPRMeqR9jzm9GLWuZ5qTz532yrEu/6kj8SorKfsiUTPePH8la/8UbCnmfM3uvx1OQnGzuQ7nbEOVupUzU84e521C5ONBvhkIlw6iEtHbuRps9G3s9+aaIab3aspeFJRWSwmvW9ZYS8B/aFwgGzXeYZmT91ogF1/rma7Jz5eRDEeC/SagevvUtEgxQhxZeoOXXgw/apy/U36T2GYSXl0COXvR+m8M5S52nWmunq5dZO/W1lllPtS2dXjr0siuslwyji6daZBjiorV4SoWu4osimOpIwq36/CVggJ8HSPLgTW80Ynk7Pa8/CSnJoYMU6QL4H1vxzC7UjW3NghyjH134Kn6ZnEMqMmrdzlIEragR67/SKoRDO4GMsu6rQO2UoythbfXPy+a5GCDFOdP8+MdNKKVi5GxMSabOv4v9fg/8fqn5+/bS+PFL9ipAOrR//9JWGi41fpvep5eSXPI+2m1wersXrsfPXjgLVV/ycfHauSvtg3hcRHPCZfZC3MK2QrA9B28SCX8TZcAzPmFnN1nFPJeie74gaLmFxIYLLm5hxR6WRzxHOJ7QfgRdYKJLbmx7lM7aEHZWYy4xcOWRjWU34AsuF0PUKN2Q58uEMjnD0Iy0u1F5N/ZCDVdZS1hzesRl2t2BnJgfcvY+VacwkYKh0P7o8IGtR7/43pmJRMeAmugaScevfruasb6yenqkr5hJ+FMQK0Z+eWx+B+kvcsPxcNzwcYdmfiAtLOCBTLep+IGBIteFN1nfhq4F3W0L7tHBr4EOiAR045xASdHQSxI1S51Gm9uRkyok6sTIZYawFoSjjyirjbKZTCmjtbqReTs2mqkERHe2eEDKBwLAloZevXtfrcRCoc80F2LKyNyed25fqAxsmyyO7H7+yPqgTKNAxm9QZ3qicPrgzMFa33z/gYPMr7aAvM+APwyikdoQwgKrmDgRSqd11jsR7qO9FWYpvdlghdlmc0UtN5y1pypzTet0cXbvHgB9ABtpQyZ265Sw1ukzrlhmpufw/fHysclwYrAzmtACnZB3gHJ4+jclAwdr0WxYEtyJ7A2inu4M3384s22+D7vk7rCWCOsSjyFsipGZQz7d54lQfzbAn3mwVycg3GnHXkGwDriuwOzlnEhNe6XADo21U1FkDSB9UcJUtKYH915uDJV+1fZd2ptq+K5Xy6RLRiZddDW6++3toqFmgCvUaZ3lY+AHhDcXOv1DW3bddvfe2aJtuj7zs7N9I7sXrptLJrWOofXDR9bNP6Vmq7tOz/fOHJydObgCMg+BzZ4GmyWQwawGaYjw3DpUkwjYJsCOQ1b0ZiEFBuvo6DA6wCAGOJmLgbC9t7WxXwWnU3RRm5rJ7mpJ+Gk1v33g2EP3HTryNlmW6y/Ixyo7omCbBWGyUlj23+BN93ScPnLwPXceDincTG00cmq0Nj1m41UOXs6S65CJbrLXtXuRTQlhXu415HbThQa68EULF2WxWUsFBFC/iRxy+IcHr9Rks8dgBVfWYDtZMeVjeUPmOp2tuYwxbmw0MKnx2Q4jTvxKZ0i+zTRve5tl1X9hWW9bM61jR2trxIxEoyp2BTrDBeAIP2CcsT+ZKs3M01zReaEDn8f/DlXRNNqJPl3TywKRBAkcDdwVyRi7cthNBCggciB8BbkQ3T5xgm0pFTGDQoQah5CLCJMTXMvjYfgQ40EPpQ1fQ863xDXwySt9CUqvpYUtc6pmFKIzkbxhd4HZ1lJnWS1Pa+ZIOUIre6Gxv4Hud3C2nOrUIUS6xg5uqlYKnIUdqB3G5yEtuRLR+NXzBUvweTVXeItXG8gWusMPffehLcTjVbuvnq/0949nc+dGFkZGFv48bkznsxPZwjVbt12N10NRg/h7CrOrUXdQ9wFLEzzhroHOmT17Zpb6SBCYtdFbmV3tTKe/sjw6ujxaPx9NBd2YK3WmymXmVy4Iehrv/WisVs1R5QDbFJ0CAsLUtQaJRV90b+zw9FtsISWdNoqeDf1PB0kvV4syrKUfQaR+3LKSiUz/MoTpn5tmnx2tY9ve02fSRtpP+nObZr/aqDOV2DdLj/x3ik207/l3ZBVKvU7WNwDmuMbK5kY6UKDkabVAVZV2Doo2pF7UGGPw0VwI/Tur/gMogW+xrI/ElBPWR9myJ+uG9jO0+DZB9uImzfed+FaYQ5LubTjrd3bR0R5Ajm5XIPhU27Qc0FNYZUuL+Rhie5wb+xreeiQkMDVcygylM1QEgeGLDS+6xurYaqsoioSHG8K8U8kvlD8IQdiNBV9Aq8Tjp0HLUK8xqXo7xydyi5G4HhMp+GeG8ceoiN+25cNIAR2/yXqstdrkgOEFni7RZc3GTN1Yklyr4BPKomcjXS8NFvpKtltc3PW7fKsVbFBtq0wkHSDkTfNOKJ60WxYHLetRyxqEt9mY8qcpODPN9B0f6Tbtnt7Htu1o+Uf9336Yntz8JMx/COb/HMw/jFK1rhZNaPcL5hV0l8TlvQI/Z9a/bpqnba2dNpOt+7gYFl/4PY0Z/A3wx9vPTY8T4m3s2Ul6RAKna34f8XqVRdkNBZtAb+ziiZMJe0SAGd+aH/t8OsUZ7xq6/NCVWnTrltna1MTIUHFwoFBR0yH6Vwy0tbAb4dYqhS5zqb25CkWfg0hdhI2BWNxi5pRgskjXw9sOD9JlcnqQ8vkDJDdQivWOdffIPFyiCvlZX3J+4oy9QN46Zq1V1mQlst8olVLDXcovaVfVwRnQWT9aOwswIzVUlqD6sPvIysUow7abNRCogUqXjIKM9f8AR11sN96V4UhTucvhUT/d9KA4eFQF3vBD4A1ue7d2o9+6gSZoGS1ES5Rs83kQqcVZ8A/v+su74P/tO4eHlpduXHr+8P33Hz5y+vRVM1ddNbPp2DHGnw38KuitG/WhBxw+lsA8MBLkYnwsgSXnxOFjhkTTOcuECq0K7Jm0WqoqYYxAkpy8h5zkf6XBUE1kM6wHaxjuZuPx8gF9BTbdptdo6BI+/RTVLPGmkoF4O5smKHfBIF0gexey0GhtWMUi5wbXIQvN5Uq9ueYYba2LqIjuvMpkDINRSKHpDS0W6bQDabhzTQ4J0yVd1l8C6ows7nvX/fs3D9srtoPWF2aHxg7sqo5s+2uY6dMj9x86sl5WFVoLn/+v+Ghvaf/B2dqh/SyfJuDlFZhzHt3OzHE2xfYNJei7gFs1Tlu3TlwDpikqF3X0eoDOEMHmbGx7MSPMzrMwF3X2HNQN2S00u+nT8PuLIY6l4S6CX4mHXEoI7zx2E/C0Nyxredmybo4pm6/p7A1J+FYtJoaVG5buSDWzYPeSHFGZjFvB778Pfl+je2jzWOIluhl0odnU1VtNXb3V1I22erW03skahXTWyNgkn7WsxGajttGldTq0U5yNWRftIKEtrAj+vpzZPbZU8iRoD1aVxcTR2fETu8ejFUHPbS/N5lw6/SBNMK/0JqcnTm4f6azeF8r3AycyD9HmbGg5nygH/XIgXfLGMglNVc0ZOOvwBjRPMpIP+AIhw1kXArm/Q0zI/CWoySGHP4DAclgSmRnJKs/YdFsJSgWEGrxto3DraRDWkGlAk92gZxv68XcO1Sb27DWtPawG/YxpfobzpeKdBYwz2ftHljZt/XkytcxqUP+uVPJlOdQVzKYMhrG0dsOPAcYePAsm4ZvPHtgbQGivU1mk6NBWmaXaP6NrDk5FZj/R4lRk6VI2DyVZqyIDu4itR1to3mQCTJH2SwxaF2j6KM09YlM8zp/qCCbz0UZ5loREIafvfJNl198EgppbCpmdz9iki+k8Cjr/LciUor3b2CW9W2XRniRgUymTSdm9WwvbrduNnc9EY2r4t1bnjWIYTB7UxBs7Let2y4ofPx6nB/jhZP1xRaG7NPASWxJ9Co809gsEYS7/CnMZo73ZYk6+Ym9WYb1ZOq1czqhovRnV7WwesbuzuXyO7kZrLBO29yvV8nDVCQG93OjO4n8NhkJjXEj2Aa3TOcxF/Gq3LIe4sVAoaL7LskolLOj+UCwe8sU4XChZ1rtM/OFAkNSfCIVItLgvkdk5oNPVw0W7m1n/SXJxIB7rWw3hFOvP0r39vwLZqrQ/W8ldpj+rXNyfrdIGbV9I+yP6s9VWfxaEvqhDS3nfr8w7zKCi7N6pKkE4NHvuuKXHpNeCwc2blKB97Ya7e0y7R3vrrYxupD79SIqdHzlii/XIp9n6CXB06jPjdF/eQBQAKKSwhxhFx0YSdqg28/EYXqrEspWOjB2oWJNEMBNuFvO6RE0yjXNgqXyuwR7oKLagRNeqG9fxbyNC/7/Rd5azhVhYgdRcTEgqYCF+/4AQ7j/lDyia2ONPugcgO+eLFr3Wjz8cE0l906Zd5aQWD0dVvugfDof9BK8SKZokgYDuIunl6Luj4Ts+TsSY44t0Q8SPQUbWhw5csQ+tXNSHVq7ch1b+uD608v+lD/1jCPA/AxCT8cgvGn1oCmoyxBtq60NrftwTt9vOg3H7Qv35XFsfunrhq/iH5BwqU0w27eflONrBoRvnERYIpo/sImHF6bUJaFch02P0pOmEBTufACpXCiRP6fMUB8cUhumE07TnoUl0+1sX0Uv4h8GA/6rijBCZGMhkB8YjwtjwAX8gmC+MRYSREXa5BM4Y7d7yWTkYkzFkTjmm+D8719VB3RP79KD/s5uSXXPwse7FbP4vwfz72PPH7c96plP2s54QNUoFUgTuy2VzWaNYJF8sFi+VO864BX2uSGDPIwE5FRDID+pYcbyc4F09GZDc2Z3jiGY/odIQu6UH9mhDS+4rCNumDlx8a1mT7Xqh8z+HT+GD5C8gS3bVEmApAnIDtqwge187wrty2SH6mCOdJeT6chdpbGJmTWt8UNtJ/JEYn4gZ/Uah1+MLk4dUz8B+HwR0SFKTk8P9OwtxjT1TifvwVWy/QawWsZ+mBM1Q1ijjpWw1Y9/Gad/RR6vy6cbzKvgq+7fbboZfZz/s33AzZpPn8VY8xPZfwH3CFz3XmIhFicgeqBUl+ohqGmjMUIFu9p3EU7hK7zVEJE5z+92SG9CKIzzRFVGJk03u4NxBX5+b4/iAV+e0ZU0q+FyKTmL/BzoAb3AAeJyVUk1P20AQfRuSVJUqOPVYNAcOiZAt28mBjxsIqCIcUEIirg7YiZXgRY5NlL/Q34I49qf0J/R39Hm9qtTc6tXuvJ19O/tmxgD28QGF+pv+xQqf1FeLG2irY4v3cKx+WNzEgfplcQtHDc/iNg4aJZmq+Zm7d3Orwgr7qmVxA1/UN4v3MFWBxU0cqp8Wt/Bd/ba4jcPGBJfQeMUWOVLMsUABQQCPoweHo8an9M7IElzA5TpAhCcseXeDNW1KX4QMz+bMRWhYQ3NeMytGh/vMRIr5UoQVEu60WR/oe6SdYIwrjLgKbmjv6LnnrsuIuNSv2zydLwoJPK/nOFxPZbaVC1cG0dNSb9bLVKLsWQZu6MpQb+hMpaMzmcWLaJWITuQhfpTJ+Go0lpvR3eR+3GXcWwoOjTjNVHEbhjrTBFUCOV6MVAx1/hLRXhtiYWzOmsWmYi6rJDjj/DeYwxxiskqGiMivOT34PPFtfQP0GVZnxbXO57EEridnYkU4o3herqKcnp7v+Ew56O8K3n0DO3ervzCmf80u1B2o9Xp8V3DOWXAkvFvSavYmNRlWHXujShcnnD57gGmcr1PWkxq9vpxLUSRRWehFmhXSefPdE9fv/re8Px1di5oAAHicbc7XLoMBAIDR01+IRqsoao/GHqXEDhF7jxZFrZtGJA2R1mN4HR6PxrWTfPefwJ+fT5v+k68UEqhSrUatsDoRUfViGjRqEtesRauENu06dOrSrUevPv2SBgwaMmzEqDHjJkxKmTItbcasOfMWLFqybMWqNes2bNm2Y9eefQcOHTl24tSZcxlZFy5dybl247Zyeefeg0dPvnyHgtj7x1u5UHp5fS4WUuVS+hd3LRpnAAEAAf//AA94nGNgZGBg4AFiMSBmYmAEwiggZgHzGAAHfACJeJxjYGBgZACC2wr734Hoh/frbWA0AFN7B6AAAA==')format("woff");}.ffc{font-family:ffc;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ffd;src:url('data:application/font-woff;base64,d09GRgABAAAAADKsABAAAAAAVVQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAykAAAABoAAAAcnt++Z0dERUYAADJ0AAAAHAAAAB4AJwBcT1MvMgAAAeAAAABBAAAAVlWYXw5jbWFwAAACtAAAANUAAAGKcTGICGN2dCAAAAsMAAAAKQAAADQKGAIpZnBnbQAAA4wAAAbwAAAOFZ42EcpnYXNwAAAybAAAAAgAAAAIAAAAEGdseWYAAAvoAAAkGAAAPURFjqqWaGVhZAAAAWwAAAA0AAAANiT+QjVoaGVhAAABoAAAAB0AAAAkBMMBNWhtdHgAAAIkAAAAjgAAALYN7ghbbG9jYQAACzgAAACuAAAArnLYYxhtYXhwAAABwAAAACAAAAAgAXkBXm5hbWUAADAAAAAB1gAAAzM8/M/9cG9zdAAAMdgAAACUAAAAzghTCG5wcmVwAAAKfAAAAI8AAACnaEbInHicY2BkYGBgYmSTPrBgWTy/zVcGeeYXQBGGh/frbWD0/9//ZZgEmLYBuRwMTCBRAH6QDbR4nGNgZGBg2vZfBkgK//8NJAUYgCIogBUAaZED/AAAAAABAAAAVgBMAAMAAAAAAAIAHgBFAI0AAAB0AMsAAAAAeJxjYGTiYZzAwMrAwNTFtIeBgaEHQjM+YDBkZAKKMrAyM8AAIwMSCEhzTQFSCgy1TNv+ywBVbmN4AlMDALBCClIAAAB4nB2LvQnCABSEv2gZi2CCGBIDWgQUi4CIiY2VoIVYO4FjuJClM2QAW0vHsNDPPLifx90FY7oLTn+CXsyTGzl3LuwpedDQUnFlzZJCXqlLue2yUuz8c0bMGZLqEs5qQURmmorEXUafmAETv4qX7UYNOTAzXdgP3VWm2+9HvxEFR/ehiPQZU2re1D9CPRRMAAB4nGNgYGBmgGAZBkYGEGgB8hjBfBaGDCAtxiAAFGFjUGJQY9BjcGPwZIhmiGWIZyhgqP3/HyivABTXYDBg8GDwBosnMhT9////8f8H/+//v/f/7v87/2//v/X/5v8bUPOxAEY2BrgkIxOQYEJXAHQiCyuQwcbAzsHJxc3Dy8DHLyAoJCwiKiYuISklLSMrJ6+gqKSswqCqxqCuoamlraOrp29gaGRsYmpmzmDBYMlgZW1ja2fv4Ojk7OLq5u7hyeDl7ePr5x8QGBQcEorLZfQDAPxFLBAAAAB4nK1Xa1sbxxWe1Q2MAQOSsJt13VHGoi47kknrOMRWHLLLojhKUoFxu+s07S4S7v2S9Eav6f2i/Jmzon3qfMtPy3tmVgo44D59nvJB552Zd+Zc58xCQksSD6MwlrL3RCzu9qjy4FFEt1y6ESeP5ehhRIVm+tGsmBWDgTpwGw0SMYlAbY+FI4LEb5GjSSaPW1TQqqEaLSpqOTwu1urCD6gayCTxs0It8LNmMaBCsH8kaV4BBOmQSv2jcaFQwDHUOLza4NnxYt3xr0pA5Y+rThVrikQ/OozHq07BKCxpKnpUDyLWR6tBkBNcOZT0cZ9Ka4/GN5yFIByEVAmjBhWb8d47EcjuKJLU72NqC2zaZLQZxzKzbFh0A1P5SNIGr28w8+N+JBGNUSpprh8lmJG8NsfoNqPbiZvEcewiWjQfDEjsRSR6TG5g7PboGqNrvfTJkhgw40lZHMTxMI3J8eI49yCWQ/ij/LhFZS1hQamZwqeZoB/RjPJpVvnIALYkLaqYcCMScpjNHPiSF9ld15rPv+CFAyqvN7AYyJEcQVe2UW4iQrtR0nfTvThScSOWtPUgwprLcclNadGMpguBNxYFm+ZZDJWvUC7KT6lw8JicARTQzHqLLmjJ1i7CrZI4kHwCbSUxU5JtY+2cHl9YFEHorzemhXNRny6keXuK48GEAK4nMhyplJNqgi1cTghJF0ZOrERqVbptVSycs52uY5dwP3Xt5KZFbRw6XpgXxRBaXNWI11HEl3RWKIQ0TLdbtKRBlZIuBW/wAQDIEC3xaA+jJZOvZRy0ZIIiEYMBNNNykMhRImkZYWvRiu7tR1lpuB1fp4VDddSiqu7tRr0HdtJtYL5q5ms6EyvBwyhbWUEKU5+WPb5yKC0/u8Q/S/ghZxW5KDb7Ucbhg7/+CBmG2qX1hsK2CXbtOm/BTeaZGJ50YX8Xs6eTdU4KMyGqCvEKSNwbO45jslXXIhOFcD+iFeXLkBZRfgtQnKAUa5hJYMN/rlxxxLKoCt/3ORI1GIK1rDbr0Yee+zzitgpn616LLuvMYXkFgWf5OZ0VWT6nsxJLV2dllld1VmH5eZ3NsLyms1mWX9DZBZaeVpNEUCVByJVsk/MuX5sW6ROLq9PF9+xi68Ti2nTxfbsotaBL3nkOs6//tr6yoyf9a8A/Cbueh38sFfxjeR3+sWzCP5Zr8I/lF+Efyxvwj+WX4B/LdfjHsq1lx1TuTQ21VxIZsAmByS1uY5uLd0PTTY9u4mK+gDvRleekVaWbijv8Mxkue//lSa6zxUrIpUcvrGdlpx5G6I7s5VdOhOc8zi0tXzSWv4jTLCf8rE7c3zNt4Xmx+i/Bf9v31GZ2y6mzr7cRDzhwtv24Nelmi17S7cudFm3+NyoqfAD6y0iRWG3Ktuxyb0Bo749GXdVFM4nwAqL94mnadJx6DRG+gya2SpdBK6GvNg0tmxc+XQy8w1FbSdkZ4cy7p2mybc+jCm5DzpaUcHPZ2o2OS7Is3ePSWvm52OeWO4furcwOtZNQJXj63ibc9uzzVAqSoaIyXlcsl4LUBU645T29J4VpeAjUDnKsoGGHn665wGjBeWcoUba5VnCJkYwyCq78mVNxIhvRZCOK+M1b6qe6UAidSSwkZstreSxUB2F6ZbpEc2Z9R3VZKWfx3jSE7IyNNIn9qC07eNnZ+nxSsl15KqjSxOj+yY8Ym8Szqj3PluKSf/WEJcEkXQl/6Tzt8iTFW+gfbY7iDl0Oor6Lx1V24na24dRwb187tbrn9k+t+mfufdaOQNMd71kKtzXd9UawjWsMTp1LRULbtIEdoXGZ63PNRj7Fl5pvXecCVbg+bdw8e/6Ozubw6Ey2/I8l3f1/VTH7xH2so9CqTtRLI87t7KIB3/EmUXkdo7teQ+Vxyb2ZhuA+QlC31x6fJbjh1Tbdxi1/45z5Ho5zalV6CfhNTS9DvMVRDBFuuYMXeBKttzUXNL0F+FU9FmIHoA/gMNjVY8fM7AGYmQfM6QLsM4fBQ+Yw+BpzGHxdH6MXBkARkGNQrI8dO/cIyM69wzyH0TeYZ9C7zDPom8wz6FusMwRIWCeDlHUyOGCdDAbMeR1gyBwGh8xh8Jg5DL5t7NoG+o6xi9F3jV2MvmfsYvR9YxejHxi7GP3Q2MXoR8YuRj9GjDvTBP7EjGgL8D0LXwN8n4NuRj5GP8Vbm3N+ZiFzfm44Ts75BTa/Mj31l2ZkdhxZyDt+ZSHTf41zcsJvLGTCby1kwu/AvTc97/dmZOgfWMj0P1jI9D9iZ074k4VM+LOFTPgLuK9Oz/urGRn63yxk+t8tZPo/sDMn/NNCJowsZMKHenzRfOJSxR2XCsUQ/z2hDca+R7OHVLzeP5o81q1PALgKA/R4nGPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdidNokzMmiBGJt5OBi5ICwRNjCLw2kXswMDIwM3kM3ptIsBwt7JwMzA4LJRhbEjMGKDQ0cEiJ/islEDxN/BwQARYHCJlN6oDhLaxdHAwMji0JEcApMAgc18bIx8WjsY/7duYOndyMTgspk1hY3BxQUAq0Yq9QB4nGNgwAJ8gNCJwYkpmYGBKZlxPQPDfyWm5P/fgOzt/3//lwUAcboKRQAAAAAAAAAAAAAAAAAASgCaAV4BlAHOAiYCWgKOAq4CzgMQA2YD8ASABOQFRAXKBhwGigcEBzoHfge0B/QILgiKCPAJZAm8CjAKcgskC6IL+gwuDJIM6A1kDcAOHg5iDxQPvBBgEMIRBhFcEcwSIhJ4EvwTLhNcE4AUGhSQFOQVZBW2Fh4W2hcwF3QX4Bg+GHAZAhlsGZ4aHBqaGyQbbhvSHBYchBzkHUwd0B4sHkgeogAAeJytewmQHFeZ5nt51p2VR91XZ51dnVnVXUdXdatb3aXS3epuSdbZsuRWy7YOy8aybNmAbVmWLcADxhhiMRAMsLMLwWyALcCS8bLB7gBBbOwAZplZAuPwmoUZEyweIIAxy8KU9n8vs47W4WEm1lZXZb58Wfnf//f/7yVi0PcQwi3mLuRHYTS97WJlx/5WAMHYCsLYt4BYlllBDCMxi7GWijBCLEYnBkaXLquBgsaJUQOzmg+ny3iczc/gWjWJGU1I5+uNKp51+3xJyevG0YDDGYjgVDmVKjOlzpcVhWUVBW+JDfFCqsOZQ0PmEEIMegRvxh9i7kZeFEetlisU9DkQD/TMb7s4AvR5GUwIZDFQiAhdcAQDS2QArcBFjHYuXc4H82lClyoKGSBrFNcbtWowJPqY/tmPJDblk1gsJRU1+SUJs1LcT85UJcmsfakgSd5vhSPR0Le9PjiU/jocjYBoWBS/8ib+FcisjCbRRvRXregERsJ0IRfjGOQWGMyw80WMVIyZbdsuSkBxEZiCs9NIFPkVxPMgWISEZScWBHnBAWSzRzjMsgF2MWapYITcgBh87k+4ozXcm8wjUeDFEzeaurQEOkTr19WrQLpZTGfUrO4S4wbSDCwKYrBWbTTr1YAGAivAX3683miSD5BUQBODIXo2hQv1Ms6khYAWarD5gggHcOcMxr8y4vVYysxJMjMzNjYxM7lhYuPwTLxVHhs77psMTaeMXS+xik9JSOsdI4W8FIpqwyp+rv2urWONRCCdGd7Wbi9N12Zmtu/csH3XxM479MMjf84m9ZoznjXy483NnRdm5ovRXGIyrBITRZ+78nn8InMZJZDc8sE5vgDD9xfTjBg2eMJFma3PsBb1AqEzyYSC+EXZ765vXGsYazfW3X7Zt6806s3MNeS6R0219z/+gcf2t1OqR3au2b3vWHbroYMZN3nWEjzrKH1WuBVwYmKNvSdGwzlGDIEYfSyV2gxuzuDxeiFfsKSXZPBR+2mi6DmwUC7tkywi8DvsxzncomPm4t7b9++edMmUEPj1jegA/jbjRCVktIaNdEJzCwI44DziEObw7cQN2BUedCujxWwgmtXSAmgzRzgfxSEtPd4ULTXOYpuSFCivGhCblkolDOL4dsjrjB5kt7DLYYc3FD12PBLyisrR/sDb1B8oqtS8zzDum/CpStDbbHoDiuqaHhiZ9BIZ5dEifoMJoBDKtzKIYzG3BNQRh2TRMcRxJKhweGea/KcTUjEYXkDLpNeCPRHLGq/XqgkIHviN6p8V8u+tVt9byP9ZFVfsQ/JJnvP8lTP4CHo3CqJUK+4BxwKRwPC7ICTRuCXhxWwhy4oRkIWPoRJoNpq2RQPn+Eh6tOTzBuITmssxlM2lcrXU8MZCMOANOtVJphiND0+RH5zEbvwy3o+cROck+OF98OtomVzbXq0QM8NaRgfSa3oVv1ztfKNaxdOE3kKezPkmfCwAnW6ktvzkzhWwFgl0RS2U6qlL0UIhERsmf+utrwKJg2MQZ34MccaJtH5stnmksZn+YADZsZlhMXNiYHTpclbTFBqbSSiGJ1WDYj2fthy2gX98/tnz8G9+9+ndN02t2YUr77p06d3w99Dxd7/n2J0f+Qj1sWPw8XWgIYb2XXJAZCNBmBAShTjIgHJPgF59CwLPAHuHLfZicJFjuQvdGasuLoGnIvi1aC6Q1iuiGDOyYARpUL7cDTkzLLHPgFzDXzc7prk0OqH5Fbc/kNH97oC+1G638TPDAY9PwZhXRvSQ0UGI0joOH68CrSX0gUsKWAWhNQq0ZoAOHjM8BEiO40+B9NgVkBOIkON6RFtsZQemYp47e/25rfTV01hEZHNiYBIEW6cayuaL1a5TEkOZxSQy5CF8isHAgAFAhPJhsQahAzJnAL+qRDrPmerfNGcPzBamvb6kIg/ds/fwo/dIjxdeY+WswhhRWff7L5b3V6c3ZROeYCgajrcP37Xv2DHvSbggQcKiMjHBhl4HmUyg8y0pjwW+gVnO5wYrYm1NlpDAc7zAnQM3JSZ0DsILuC57AtKOuAIJCHhnmL6pGdfMFxEviPyJ3n392UstdzaQy9QLWtohJvsmDwyLgoSJGYI0QP9E7/A/FQ2VTF8wgpjE+PUHjxx+OD4SwyzP5FfW7VjYPGLExqYThVZ185AjPpw4urT7pJmZGL84d2phXTiWUEWvkx2dGzXn9aCb5SKZsVQ56vFr8VioObtr2pgPx/YRH0uCkH4LmTmJdHTbpSEQELEaHeSScIoOVuAgegnoOE3BBGAwy104lACu+QuDkwavL7UCqRRCKT2lw28nmrpe0WmyJeYeqFVtox+3opM6g6cwMCvXMjKLf2tsnTaMy4Yx/fuY3/kTp6SlIsrWd//gf7ePtttHVQjQ+DZJBBP5d/imzrO27YOeX2VuRSba0Fo3jFnRCw7AzJMozHIADYh5MmdBVSwngooEgV+2YEVfWWm9kc7mr9WUBgqwFAW6oWBqXAbd6ISHAI1er15Y3nVPMp/weFvpmQMbmjtLXsUvM0oEew3jjfq6vae+uuvM/lYkGgtqnlhie7O2s+b1Sx7sjsrtF6IPgB5qQP9rYKcJyCIfbbkCQG8UPIsBZXgsv2Q5FvTEgdQ5noS5bhiEnNi1Tcugc9Zc7txbTyZhwZ6HEWQp9kRvfn8WeLFL09Sclk+LYsISS5npmSZVHvVmEJRgx9Yqfu3s3sKWduHTd67fEDOjLnlo3X3emf9w//zC27Zve9tf7b83uf6RvU99sWUG43FN8fhOHR0/89R9i7PGllsGfPZekMXmbRdTNNhizC3TSAv66gYkm40wibOIROL+JIv2F/SCqoV4iLGYAiARIEFdaWYsoL4W1wlQD0Hqet1zz/gMnr9j5Y80tjCKEhPxZoNpS+57zrzvyVrlvZi/wwoqhleS/PDEblwJgd8YaN/lgIPheskhARM4nuVODGQrnu9LPtbPVva8/lUIm5qmReOKHTatnFBmbVsk0aDQFXQj1DvCr5/96tmda9zJqn7/xfu31NfsvHnb27bBP2nP2/fsfufu57aeOrW1sdvP+lL1VGvlyGx5g+zf9ff5NWvyhcnJ31Y3b66ObdlCfKlviynIJHe13BpmBYlETGa+a2DdyEfgmEAjJbfSVc+ggfUjqm1Y9vzBCOnKDmdVCJDEvvCg29kBstmNhUlGrJeZTC9/v/axk3Nbwb44hg0UNhx3gYU9un9482xurzPUKEzsmZ8Y34mbTz4/UyZ2JkocK73z4PiZ3fvvTa0/K/pLMyML05OLMxbPFKvg5wCrhAiq6paA8mAJmM1m0zac6CUu+boopvuHT9rHna8M4BqC326iz0qhHMmlLPOugQdyHLVwiV3MBeGJlv32n6Lax5Avup7YfzC/nPBpwYo/rjvyiUy+//yPzh8OeFV3qI4TUXeiMEnxHarhl5kxUEOyFVO7mB4qSRurQR1ZVLpQDdB8Ll9v5uxs7cVB/HJIYj1S5yuhEN6kOaVQuPM6joYPyEGMXS/5h6WXPEE5ID3/JQl4zqP/jN/A/x6wnIpmtl0sgRkpxHFZiNnwpGXCuuXNVpF9DDyaYfcR6S+TWduXLler1Yol/i7mDPTR5xtjnY+NNfCBRqPzmcYYPjqGH87nC18tECQ6yGuI8Oq9Lq8j4xaiFXkfzohUxCVsCT3EE247LwheMKJQGEc7r4dDkteLt4ZwJeD7HmB7m9WAHHR+z2/Z1Cz87N8yx1EWslKjVQtRSIZIPcCgcwjxGPGDAMt2IolbVLVszihYFYIoJLran2EGEULPIHqNhr/dfEINJ71iZENjaNP6uaQzoWqJm28/feunacsBv7E21zzgj0uBoWh2ajrhD4XTSbcciEXDla1znXKv/2Be+QPEtuOgszHUbs2GsUiKLsHBOATwZRZByoci24EY3kHx71UhLowWNTWdzWRz2bRTTA0CfblbjxCZ2lU0+DLBu4WBUHbP7F1//ok7vjhUKQfW7tu3dijmHk1tf/CdOydNb7A4M94eh3+7ojPPP3b++c7LMwdM9d7de0/7Y+n3nTj25LD3v0wszK+BP6oD8GT8JuTNPMSyw5dGsEPo4xsMLGAHMCoIvgWRZ0kfZRmwjIVxE8CxcKE36arrSy25UCiUCiUtq9VlWau4KGqgUA7SSiEjEiDbO1dnGNITCqnwMYrzhYwg4jfNO0xFVbVPaKqqkGMt+HZOllX4Ne6BoKY8W/EwmJvSdV3yMzffzPglXfdLDONUZdI3+qffMdKzr6+Rm/+X9GSCwOdPwZegJoR8VGuNaRTKIR4JmBeOcRi8aZnamYitGo5woRf0EcBlVRvy2IVIhnwOJBsK2CDXlFnrCP/0lh2/M81w2DR/srg8PdrcujLaePCOiZkAJ4XMxPmHptd+tnW8jV9rL68tb/V79vw0Nf21dW+6wpmY+krL8sci5JifQY4ZQXe3XG4oiwtAZjfBFJHA8qwA5QUxLgbb5V7vcDCXpvtzScFNSi1WwOzqlOrKZXO5TLaPYWwTJAAA3Av8HQBBoW+QxNOgDP/Z23ff/tRTt22Y8vskHVCBX+YY18bShmNHN7mTo2mGyeb/csvJFy48/oKZkIwnABq4Pd5m+6mTx58WA41CDOxPAWZ/busl0xoa0AM/qIdsXc9WLYcnWgCIaSmCGA/RhUi0IBPZ//zhle96JL+hqgYgyO8eeWh+afHgwcUlXHroC8RE8GvEXF58ePnfdPQnLVlH4OOPQEMT/fW2iy6Q7zjiGJHhTiO3A2P3aUjLTofgPAbomPRhTvB9Il14oK61oGhj4GaHG5/7U+9uNa0bxXP/wjsBgyr12mi5ZIZUGZIb2KvHDit6114hBQSpIimwywTsSrI7NJ4J6OPd4vKPUDncaxixmGHgByIKowDk++VZG/llZfYs5ukYlJjEhpXIHCgWoF/tG0GVfB8kp2rw5bY1bMmYxJlfgozL6EFLTGUYgDx2GmwAYDx/jEA9AaCeEzhzLSOXy7fgwIIgLkOFKYkgnlHrBvbcn3jHUstvFofzUFepRC6qG2TylhLoFV1dgQWAYsLor8/3mT8/ZpofM4xkEoTzcETBv7B5/84q3l9qW5KxeNfgowO8G2h9qwUZnsFO5pjHBYUhEOvGpIL2eQHmDoRPuM9AI8UCJLOhVJLUhhVd1isS8JDtlYarKQY3oKXjeO9YruGOeb9pBr4bMOm3/dU7bbfbr7xCSW1/7Wvtdke36N1Oezq3AhIptvIDHmk1amyXhE8VKZQyq0uzytisp3/d7PydaR4/bpo4Tr7b1rO6zyF+94/wnHE01Zqo5FxODkNIdjlEluetBrVvwQ3olTyUteRSq46NGsOKDuGgklErlp1b/YFaQbQFcnV0IGJpUqEESCgTSZLB/2huMzXlPTerpnlbP17cZprqt3LGfkg8gWc+IysKyS7qL0490u7Hjnan0yaJ5j91XmX8hA/SI/gF8JFEe6z4kUQCSEo4fXU067l6ikxgBHzuBjMgIgdkIttqNyLrq9Us1wjcAcgfwL8Ad323aeq6af5b06z/HIv+uF/EtneCsNtulwQe4aJ9aiCYYYDW9WimNVXRXCxQAZhLwEDQOSJyccVBLdK1Op+va83OTNVlrR7MaRV3X+yQIWSBEWlLGdK2vCqry7YqqsEUDoZqs3iG6SqBTGQYc4epKDI+wHsjCWmzR8AgcWuMHKyJB8W2LGB9Ugj4fWvsYSvf4++Inb93hQuvZpOdMZr6yeBr5EgJ/be6fs8XFIUhYx0dlIRRDJj/HfBdIkgz74MCC8+LPIOQsOJ0MMTSiCqsVSMJE+suIWOYWPdwRifYhSyC0GIGEiFLOL3a+Qh6ASatM/w7cK+ILAfEd7lSGPztuOV+myR/f4i5td1xJXysouJ744c6ZeodcNZ5Mn4If69N8dkk4ICXaR1t/Ot6vMPFWJBUBUjzcekyV5/hqklWrFvJnCx6hGj3ptnAL3NKuD51dGo8pHD9wy1OV3V2atzp9jira9eNOV34kY8fXMxGBCGSXTzUP/yLh0pGIlocO/u+WjaVLlaBduLfr9u5vdQagTSGsIiOCZjj7O7SYEcMPJpEOdpeoln+mvBmZXmKsF4/uedByE/nrTT14z0n5ze3jx5tb8Z/ufXUs1SOd8+Z2345Z8vwDJVhHm1FH2r5tmCe3YQ5HhyOI01O4rE6gvjL8aetdQK7pKVNXXwEJB3A3eZRmkxkee7cW8xsDa2exCCWZ9gTA1NI83d8eCSWm7KLGB8GKBkKUtfJQylJ7MzSFXeVrqYwXTYi4ggl2RBVnOAYSoUCvC/tDXh9KcWbq12lRG7e4Rxbv67idDoc5rpQQJQzPskpcDDFlxBYXLmnvr7hLeVdESHgjE4U8FXKPbTwwOhYZsgcfeSBUbNQcqe5AOcSHE49ot1UpjLWrrzJ+EHXNTSFLl7KQUYmdYQGEhtGDvAsx2nkQtjhwsecmER3q6bgIBahIyS2W+25MAW3MB8qinP//A2tylvM7YVWaQEAATrSa9j5pyYnGukStbZi2t2twAokVoFz569neQTrB4l+klCnjAP2ZWxTZPyj5lhMdTAud7K8rZ9nv7jn7nI25Xdgzu3041z+MxtnN26cXRlenws3piPBqDNqYYSj6425QDgf3BQOD/mMIexfbH2n36+9C21G51q+ESxyCmYZqIjZflteFLkVHtOukiD0DknriKx3B6zggLuiyiNR4MQlmAW5hxNO3GDiUktaOzVeKwN0KuTS4IxRWzoCWYarW0v3YHi04VsgK+Vlhi4erioWCmXOKhVSmJg1fvXEnttm3HFSI8gyhKjchBFotIbk1OhwKWtoIyc/tUZQfeSyzjO8Gq3o1XZ5aMuWiWjls5tPFovGI16f3+v1ZkZVsWWYSb/H5XK5w9rI7IYjIxEZLktSTNKGI9pkTh9z+uVgrG5hjG7cz6H9Fu5MCaS/AMCT5FuKFQdNhayXD9kzmHM3mLLUcjc0kp411QpWXVA5mBMCvS5qw8KSv6NY8iHAj58zzbGH6JkawRcGQCTkarCJmnU2F5UpgASdg29JwMMQiaICACIoaJcdImN3RWguCNCcNYSSGVWvZDK6E3BDL2XlxweQA2kh2OeMZMROLy7ca0fSLfu3kCOSlj5/yzsfPIR3AXx4btNNN23CO9tAhwo2eYXi2EIrmwKDwfO8TQ1UlIQYSkc9pNUDAdXqV4I1sD42DUbCdsEAzf8kVTaaancMX1FU7TznVrxRr+LmzmtQ8R8zZFXdkgaLzWxWVdk4ZjJtgF3/9EefDDW6KPsYjpH8tObv/OiJ4dwHcJycW3r3gMwEoHUKVVrlqgQlAyn2GcTw6JxAogi7LFKabbuvDA/rlUCxaCmUxGOWtGLAwgsZOLHzfqErRUL+DCZFcCjJQBBWLfkyQkLg8EaG05Skm6+Bpdd5T1xReWYjmzO2G0ZwzAHAryS4k0NuJhTBrFQMGnCBaScA/Lo6YOM+zfXzZOIXTtXn9eFf+0EFH1yTH/2uSw0zhx/Vs2fwONFFgq5L3YoKqNVam4vJ4nWwswfAMzcAnkEwBZTPpvWkIlfSegU+vb2CAuBz13jVgm0tmVCzy7Co1vBvCYo5uKdkHjcM7dEzGkE1I5taJTKs3v1eDeD95ctgwRzUFI8/DrVF54+r6p8iarbqSYljieVANALL4ZcBfV2NBOCmIiqENEJjuge+2IFVMTbTh/MhYkmzXdQPFY/ytB2Gn1aAQkD13tisiMV2xAswn4Kuv/liu/1FXGoTfDjxRCLxvnGCGymtY3afqIiesJCBvZR7ur82vHydtWFPfxn59MDS8LVTr7uCfM00gg+0YANctb84TPhr4qviCkHbIu7X7j+FYuCTECudePP/6UaY7eS88yIUnXbVTjo1Xvw/+3EGBiRfJ72pV7Bj9MqVz+OfMZeRTGpAG1ge4zBx9n1kuxApA1lSKcIMvz5e4cWIwVH0Qhb/evXnz4wvRxQl8mXDeOYZGQpi5ktQlvzTg90e1+dxkz4jDRWRtRvg2NX7KEgRRPArf037DTftHzbIQ4bhh5kLvZp78sqD+OUr/xWq7aEvCLdtuNH+jC8IaAN/nT0ay3SLBt1j8QfGi19AI6iJnrH68r4w4EaASCLkCYGdj60acLDzS9a0AuJYhuUY0q8QoUQisJzu1QrRNoWVcalJjN54ZnepETCMw0EDfRjQY8uTVbL5fDqYzlgNZJpzu03wGm2B+3CAjFojpPkTrFUL4zBKG8ozDOOFWmp/aGLf3OGZ2w6NrptOuF0cTkLmTE1kY0eOK4WR5w5dmDSqOUVhiaOkCzsnjdmEd6QKuFkIh+OBWNrLHlj/38WFOVzKJwzVGfZTmbmv/AH/CnwoCuHmQUsYriDYOsAXgQF52SdQcnZlNYR6ZXC3zW/zToQUtv3mOlOgWOvJKGx3MrOVrNbvZBbs/k7XbBKYrAmIdI8FoBW6Uvars3vWVah3FA1jLqKsae8+Mz8/Xp6brjV2/+DQuVGvT/L7vPhNMK8vlB69uXWgZWws7V8CO9oCvH4f7KOIxgCSMSzPWq7N0l0f1rpyiLq2TWI6n8vns5Zb281+2vtmrCWLQp30fHxMr++Pv+9Pb6ssPxqpr8zGMpOpWFCNY07Kkuh1YHZzyBnP3+kcGkmevzmzdVOJ9aZjgXgk4MJsul4JrjvQDFlrLWmwYxF0kgBK32vrRAENODBkRaIT+0Ts6SQN5HfXiwWBljmhBZFE6wHTHbneJAeAcKtNRJB332oVhIbzGR1oiFfS2VzF2d3dU2bG+z3n8a5/y7WCtRWGKokRjTm/IjKNTbvuf3jPbN3SVPFM25zYtVCrb2y3BcnrrT968y2PFD8Meuq4Hls/0jpwfmk/5X/c1lMcpdEEbfCyDMeeE7GAAA1D2LFxVKhXU4OuEolEOpFOZ9JgVI5BjVmLfOBfOimemwT5FugyP/6+Wtg2dtt7zh285RiE0s7LnkOTC2FRkvKLvhPV7e473ZlC/LGbD55/4BZFYSY3NSXH6bdvsLHqCHx8hTmOMuhua2NSEVlQFehyriCnkyxOkAU/UlDJC706WuKpJmzQ+s9PXmr5MrpOd5yklbSL9kWp7aXJ5joauKvaYMeJMoy/klD8CebAA4bxwIppdn5tmisrhnn4cOs2ZjgYDQe3ltud/wHp32hX2ptIdkheiUPaeBFV0DTahv6iFS/xjMiLYGR57EA+jB1pSEr8vB9y/zbL6OrIAWw48Am6sVXANAYCTLAPIQkxlDmwLJeLBoEIB8xXV92G7LuEFbDJG90EdeDc1o3rMtl0SasEC2l3VwyF7tarAtkRimv0X3fHUZNu6LAMtR9HqIGqdP2HBliwVjaipJ0JNXLrlkqRZ4KafJq56fYnvvFEYSisDd26pWGWp7LDL04U8hMT+cLEyVi6Vcg287VbP3grPqtEMqx7uNReDns8vD9GtmK11u3atS63XkmOZIeGx9vLYJWPD09M7JiY7HwjpEOZiSupoVrNsiM3GDzx9RE025pOE7nMI7svTgtExwokk9CCy3lNz3kEFfOkLoYCgjb5er1mO1xeUxcnMAlecAHc88OGocfS5Z3gmZ8wjKLloI74rP54EZDha6Xs+nWfs/vilx1a8On/RfyS9Jq/zRxBCmSLcdAjoNcVWr53w71Miv7BtnM0EgzAdJnQScrT7CpTpXGjt+L7bbPzQ9M8c5dpvj+i3L4yRJZw29REIUB8lUH2ki7N8wn8ANCRgErxzks+e3cg6V/kyS4NBp8eIM2OeTKttkljIUJiYaG3neOtZ0KSUgOVbDaTJUmKpzHFsqhggAb9Xq4K1LuMPKAW5qtPJdWgzx2J1qPRh03zExGFLlsXUmunctvDUdmTYtPZBv4g8PZVmzGKvaHgIH3Pja32SIrkeJFUQl0KnVgUHctgD/ICXLu6XCghs1io0MZcRqPd9mx/CVe8TptEbvYKTTEFVoGNM6Rte89iyTQ/Ypol+GpFlI/EDeOjYC1vx08n2hSFP71lq20anc8+2W6fYl4E2tcAAz8A2hVSb/bTP7/aHrq2IFzfFvAPzM5/NM2HLYk93O4+xkV95cofQD5O/DzagO6/PDnOMG6idgpJXAJUie4Vr4dxu+UFn1PkWZ4818ExdvIbFiCyeFa82OMJkdDiXkHXn7rUCrfXTa+ZaNQrJdMYqatpmfzR5ZycVX2N16mDddvn1wys7qeH7PiTZOgMxmlsNgoQADQok/tH+6GA1sjBUF7Ij1ajudlU0cfBgK63X5/bNPUcKZf7R6SQxgY5iuuVit5Myj9npF48ARkV0bFLOoZDW0Rxwr+1XiBfE00sxGaHmm74uXYaRQXwy8O5f1HcCbxl2IlL14Ydo61F7KhD/L0JeOAVwANkvw3Zz2S31Felf83eHp27Zns0YMZXHvrcQw8+++D8jjt3bH/bdgCJ5w4dfOyxPa29e1sbbrnFxsFp/CuQWxIZ6IKNuaK08YwcFHNFsWifdDGXSNI0TXYyQfwWJf3iWGVophdFO7UhO6nfaDJUCrkslWy6v9WkcI3fAvi8ASgeECpZRboGGH+z3WacbSwqvkFYbK+J/QPwrqNPUNYuJeieohj55jHhlwCcFOr34oQVkb6SsqoZ1y0PBhpy153XGgaQwPAW/KG7kkOkTKCt4NVTl8ieY2prSnepgUIfy8pWhw+rVsD/EFP9CTx3+x2G0emY5vy8ad4VURYP1U18OhANRO/YecbOKcnFIvC+FWzrJbCtrWihNVfCIjcBtaGD9m57TdtQv2kb6jdtw/1eLNjfzHRzfKxsjmRz6ZzViCUvkKzuxFpbpMtMocyN05dZSFjodWFhOgUkIfpmy0tiuDA3Nl9zx0in1efn2fjyzGxoLJnM5WZSUXp1tugMkqtZBnP+4lB5Wpltl3JjavmsL15IBHTdWPL6/A6Xa2cuIUf8Ii+IaqgY80YzMUVRjBmvJA25PIpLDXrCQbdDVH0Za60XZPJNZgSwbRXqXciTFxCoEYsC1SmzzFGUOlDKZdJ6VtMzA7uNyVsgNCbYC/fUigMaXbwCePrNA+21e3Yb5i5ayH3KMD41lyxhnMufb+7YMPd37R1AN0DyHe0fL+aTGRrXSE2En0N5tHIJ3JDrxrWotdGC9DTlBYfIkOKtV/GkV12E0NetdOx9XrTSIXVwHuUqmQI4XoX0YmlEs1TXy010MaExMEDC2VyBL23+kAWeWK8eH95sVzrtdiL9jt+T1PUbyac5R+rfoyDGlu3vgY846Q8HV/VlRYEhdFp0AVFxFE3rUB/rDvu9Lpa+71Zge2k7ZpGDf2/ETglBf9wfFE7FDOM+wwgdPx6CA/xcu/O8QncB4/l2u/MtXG9buNMP8mSAjjWo3qpUcz4Wk7VlAa4I+BzZH4YQB+UIgUNkoxJQVMkP63WtmFWd9uaMDO26khWwjCDa2456jWPSd62R9z/Ii3rBUK3bdGUU2T/FKj5vUvEQtBzxqCnJ72en/LJi3m8Yo2OYj4iCV/ZFVU+Yw+VRw7jfxO8nq8OXFIUNF28JD+0dCXHA0RzpBLY7P47sCysBPmoupnCibcez3wBvY6TfWtZDrmv6rfL1+q1jaLRkjBRov7WuaP1+qw2hevl+CjcHu659jsVQDf/GvM+Q/dJN2yVg6F7TzL3jdN6EsdKG9T6/bNwHI3c/lLeQ1OnTlIOPP9VuHzhAD5/6OFkHAXxLbKRB/G8EM0iRARcy84KtFhHbKJUaccTq4seyGTtGigJoBvdq35DYIK+w5UE39mIkeYWu14q1x/DvA4L5UW1HIzcaDagx7KzHIcqy7ysJgfLdZVXMrymDFPO1EVGBc/z+kIPptKb21Iegmgyp3IRnL8s78GFGDOt6WGA/9A5Vvf/DrCOoAz866ONHwA/t00o37NPKV/VptRv3aeU/rU8r/3/p0/4IXPcZEpDwmje6fdrd5LzzTchzvT6tHPDhXNhqy47aA51XMgN92okrn8c/ZC4DUp9sNXLWu24s6W6QzfUI8ww+AWgCkuMSARUkuPJop4Xs9eH0sE727nAa5AoIr3T3OHnHDnQLZySqahkfC9lEJJvHIIfgH5r76i0+sKY0Umpmw+519b3mcHlNkG80YLAstyPJLZ/0+qM+PS25QoFPbk2G29gTlryf3JiMb/qkVwp7sBUrfgJ0jwHdzlXvZmZ0691MIEMGOgJ4jLwkqVerzKer1VX8lokdhyiWIO8V8fR9JESWd4BvEMOSbcoM3lnUy/qw/T4hbYwmqD0Dxp5hCZsW5wU4hwqM8EmzKv5heTwfck/UbykNcFgs7a23WFnONQxc0SmPG1Lxa3ikcvBJquhD/w/If/q4eJyVUstu2zAQHCq2iwJFcuqxwR56sBGIkGQf8rglSFIYtRPYcZCrnEi2YEcMZCmGf6HfUuSYT+kn9Ds6pogC9a0iyJ1dDpfDXQHYxxsU6u/+L1b4oD477KGljhzew5H64XADB+qXw0189QKHWzjwKjJV4yO9n/bUFivsq6bDHj6pLw7v4V5FDjdwqN4dbuKb+u1wC4feBBcweMEGBTLMMEcJQYSAowufo8YnjE7JEpxDc+0jxiMWPLvGijZjLEaOJ7unMbCsod2vmVtGm35uMyW8KcYSKT1j1zvGHmgnGOMSI66Ca9obRm7pdZgRF+ZlU2SzeSlREHR9n+uJTDdyrqUfPy7MerXIJM6fpK8HWoZmzWAmbZPLNJnHy1RMKnfJg0zGl6OxXI9uJrfjDvN+p+CBFWdwTHcwMLkh2D6gwLOViqEpnmPaK0ssrS1Ys8RWTLNKglPOf5P5fENCVsUUMfk1p4uQO6Grb4Qe05q8vDLFLJFIB3IqToQ/SmbVMi4Y6YZ+yCdHvV3Bu3dg5+z2L0wYX7ELdQdqvQHvFZxxlhwpz1a0hr3J7Au3HXulSs07NG2HiZJilbGe1Bj05EzKMo2r0syzvJT2a6iPddj5b3l/ABbdi5IAAHicbc5bL4IBAIDhR3RhUYyQRCmnMUTlFLOmk0OhIUr6X/1YfXPt2d77V8if35Fr/3kPmhAyaUrYtIgZs6Ji5sxbsChuybIVCauS1qSs25CWsSkrZ8u2Hbv27Dtw6MixvBOnCopKzpy7cOlKOXi4caviTlVNXUPTvQePnrS0PXvxquMt+PrQ9elLT9+3gR/DMWmoEsEAAQAB//8AD3icY2BkYGDgAWIxIGZiYATCUCBmAfMYAAdFAIR4nGNgYGBkAILbCvvfgeiH9+ttYDQAU3sHoAAA')format("woff");}.ffd{font-family:ffd;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ffe;src:url('data:application/font-woff;base64,d09GRgABAAAAADQUABAAAAAAWLwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAz+AAAABoAAAAcnt++Z0dERUYAADPcAAAAHAAAAB4AJwBhT1MvMgAAAeAAAABEAAAAVlWY/lRjbWFwAAACwAAAANsAAAGKDBXYImN2dCAAAAscAAAAKQAAADQKFQIlZnBnbQAAA5wAAAbwAAAOFZ42EcpnYXNwAAAz1AAAAAgAAAAIAAAAEGdseWYAAAwAAAAlXQAAQJQetgcmaGVhZAAAAWwAAAA0AAAANiULQjVoaGVhAAABoAAAAB8AAAAkBNEBHmhtdHgAAAIkAAAAnAAAAMAOsQkqbG9jYQAAC0gAAAC4AAAAuLcixxZtYXhwAAABwAAAACAAAAAgAX0BZW5hbWUAADFgAAAB1gAAAzM/ANH9cG9zdAAAMzgAAACbAAAA2AjvCXpwcmVwAAAKjAAAAI8AAACnaEbInHicY2BkYGBgYmRbIqoyJZ7f5iuDPPMLoAjDw/v1NjD6/6//MkxyTNuAXA4GJpAoAGFuDRF4nGNgZGBg2vZfBkjy/v/1/z2THANQBAWwAgCTcwXxAAABAAAAWwBQAAUAAAAAAAIAIABIAI0AAABvAMsAAAAAeJxjYGTcxjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqAgAxIISHNNAVIKCpJM2/7LAFVuY3jCAFUDAPggCzd4nB2NPQrCQBSEv1htoaJL0PiTQiXBIsUiBhcLGwVFsPYInsIT2aXIFXIFSZdr2OiYfcy83XlvZoOI9gS3P0Gnx5OVas6bF3dOJBR4KvY4HmzJiMUb9UxctdNEOMgTsmbAiIkUy5UjY6l9vb1UK99U/1i6Uh21tr264cySnFTJRi7HkPz70X0npMy4KMEQKTtWwkJ6I5QUP921Fd54nGNgYGBmgGAZBkYGEGgB8hjBfBaGDCAtxiAAFGFjUGBQZrBnCGCIYIhmiGWIZ6hVkPz/HyivwKDEoMrgyBDEEAUWT1SQ+P///+P/j/4//P/g//3/9/7f/X/n/+0HjlDzsQBGNga4JCMTkGBCVwByIgsrAxs7BycXNw8vH7+AoJCwiKiYuISklLSMrJy8AoOikrKKqpq6hqaWto6unr4Bg6GRsYmpmTmDhSWDFYM1g42tnb2Do5Ozi6ubu4enl7ePr59/QGBQcEhoWHgELpdRBiKjiFcLAN/xLPkAeJytV2tbG8cVntUNjAEDkrCbdd1RxqIuO5JJ6zjEVhyyy6I4SlKBcbvrNO0uEu79kvRGr+n9ovyZs6J96nzLT8t7ZlYKOOA+fZ7yQeedmXfmXOfMQkJLEg+jMJay90Qs7vao8uBRRLdcuhEnj+XoYUSFZvrRrJgVg4E6cBsNEjGJQG2PhSOCxG+Ro0kmj1tU0KqhGi0qajk8Ltbqwg+oGsgk8bNCLfCzZjGgQrB/JGleAQTpkEr9o3GhUMAx1Di82uDZ8WLd8a9KQOWPq04Va4pEPzqMx6tOwSgsaSp6VA8i1kerQZATXDmU9HGfSmuPxjechSAchFQJowYVm/HeOxHI7iiS1O9jagts2mS0Gccys2xYdANT+UjSBq9vMPPjfiQRjVEqaa4fJZiRvDbH6Daj24mbxHHsIlo0HwxI7EUkekxuYOz26Bqja730yZIYMONJWRzE8TCNyfHiOPcglkP4o/y4RWUtYUGpmcKnmaAf0YzyaVb5yAC2JC2qmHAjEnKYzRz4khfZXdeaz7/ghQMqrzewGMiRHEFXtlFuIkK7UdJ30704UnEjlrT1IMKay3HJTWnRjKYLgTcWBZvmWQyVr1Auyk+pcPCYnAEU0Mx6iy5oydYuwq2SOJB8Am0lMVOSbWPtnB5fWBRB6K83poVzUZ8upHl7iuPBhACuJzIcqZSTaoItXE4ISRdGTqxEalW6bVUsnLOdrmOXcD917eSmRW0cOl6YF8UQWlzViNdRxJd0ViiENEy3W7SkQZWSLgVv8AEAyBAt8WgPoyWTr2UctGSCIhGDATTTcpDIUSJpGWFr0Yru7UdZabgdX6eFQ3XUoqru7Ua9B3bSbWC+auZrOhMrwcMoW1lBClOflj2+cigtP7vEP0v4IWcVuSg2+1HG4YO//ggZhtql9YbCtgl27TpvwU3mmRiedGF/F7Onk3VOCjMhqgrxCkjcGzuOY7JV1yIThXA/ohXly5AWUX4LUJygFGuYSWDDf65cccSyqArf9zkSNRiCtaw269GHnvs84rYKZ+teiy7rzGF5BYFn+TmdFVk+p7MSS1dnZZZXdVZh+XmdzbC8prNZll/Q2QWWnlaTRFAlQciVbJPzLl+bFukTi6vTxffsYuvE4tp08X27KLWgS955DrOv/7a+sqMn/WvAPwm7nod/LBX8Y3kd/rFswj+Wa/CP5RfhH8sb8I/ll+Afy3X4x7KtZcdU7k0NtVcSGbAJgcktbmObi3dD002PbuJivoA70ZXnpFWlm4o7/DMZLnv/5Umus8VKyKVHL6xnZaceRuiO7OVXToTnPM4tLV80lr+I0ywn/KxO3N8zbeF5sfovwX/b99Rmdsups6+3EQ84cLb9uDXpZote0u3LnRZt/jcqKnwA+stIkVhtyrbscm9AaO+PRl3VRTOJ8AKi/eJp2nSceg0RvoMmtkqXQSuhrzYNLZsXPl0MvMNRW0nZGeHMu6dpsm3PowpuQ86WlHBz2dqNjkuyLN3j0lr5udjnljuH7q3MDrWTUCV4+t4m3Pbs81QKkqGiMl5XLJeC1AVOuOU9vSeFaXgI1A5yrKBhh5+uucBowXlnKFG2uVZwiZGMMgqu/JlTcSIb0WQjivjNW+qnulAInUksJGbLa3ksVAdhemW6RHNmfUd1WSln8d40hOyMjTSJ/agtO3jZ2fp8UrJdeSqo0sTo/smPGJvEs6o9z5bikn/1hCXBJF0Jf+k87fIkxVvoH22O4g5dDqK+i8dVduJ2tuHUcG9fO7W65/ZPrfpn7n3WjkDTHe9ZCrc13fVGsI1rDE6dS0VC27SBHaFxmetzzUY+xZeab13nAlW4Pm3cPHv+js7m8OhMtvyPJd39f1Ux+8R9rKPQqk7USyPO7eyiAd/xJlF5HaO7XkPlccm9mYbgPkJQt9cenyW44dU23cYtf+Oc+R6Oc2pVegn4TU0vQ7zFUQwRbrmDF3gSrbc1FzS9BfhVPRZiB6AP4DDY1WPHzOwBmJkHzOkC7DOHwUPmMPgacxh8XR+jFwZAEZBjUKyPHTv3CMjOvcM8h9E3mGfQu8wz6JvMM+hbrDMESFgng5R1MjhgnQwGzHkdYMgcBofMYfCYOQy+bezaBvqOsYvRd41djL5n7GL0fWMXox8Yuxj90NjF6EfGLkY/Row70wT+xIxoC/A9C18DfJ+DbkY+Rj/FW5tzfmYhc35uOE7O+QU2vzI99ZdmZHYcWcg7fmUh03+Nc3LCbyxkwm8tZMLvwL03Pe/3ZmToH1jI9D9YyPQ/YmdO+JOFTPizhUz4C7ivTs/7qxkZ+t8sZPrfLWT6P7AzJ/zTQiaMLGTCh3p80XziUsUdlwrFEP89oQ3Gvkezh1S83j+aPNatTwC4CgP0eJxj8N7BcCIoYiMjY1/kBsadHAwcDMkFGxnYnTaJMzJogRibeTgYuSAsETYwi8NpF7MDAyMDN5DN6bSLAcLeycDMwOCyUYWxIzBig0NHBIif4rJRA8TfwcEAEWBwiZTeqA4S2sXRwMDI4tCRHAKTAIHNfGyMfFo7GP+3bmDp3cjE4LKZNYWNwcUFAKtGKvUAeJxjYMACvIDQkcGRKZmBgSmZcT0Dw38lpuT/X4Hs7f9//5cFAHEFCj4AAAAAAAAAAAAAAAAAAEYA2gFeAiQCbgKiAtwDOANsA54DvgPeBAoETASaBSgFugYcBoIHDAdiB84IQAh2CLoI8gkyCWgJzgpACpQLCAtCC/gMeg0iDX4Nsg36DloOsg8uD4oP3hAiEM4RbhHSEhYSbBLYEzwTwBPwFCAURBTUFUwVrBYmFngW6BekF/oYPBisGQwZPhnYGkIadBryG0wbvhw6HIoc9B06HageDh6AHwQfZB+AH+AgFiBKeJytewl0JEeZZkTkVWdWZWVWZR06qrIuKVMqqQ6pdKukVqsvSa2+3K2+1LIN7Tbtq/GFL+QGGzOAMTwWBsY8eAMszHC4jemG2cXzFh6z433Mm/Eas/aCd7BZD2a8gL3A4F08Xb1/RGYd6sOw+9ZtVWVmRVXGf33/9/8RiQi6F2/FHyI3Ii+KoIlzQYEgjBd2nOlfPlDzE4wQXuMwxjJaStRUOIILK/QCWoMPMdq1ci6jZQxeiluqJKaNAZwbLpciuiQ2Dl/w42Q35ydJJdj1uJ9MOYdk6plM9qnueDTqvCNEUBp+/Z/JNWgcTaN7zoW99BYwlyjMJR/wE4EnMDsBHfdgl0telH1EFKVVr5tIkrJIJxXAMMssvUA/EyTx+ku/5YxbqcWnpyYnxkdHhiulgX7LNIyUkc6omVRQ6raymoUlmaSN3FA13TwwhirjuPFGZQvgcuO9FKZfKZfyaamM/7m4De6vBIIR+VjjIF0s9SmTpeLWAG8Eo5x8zHnPFEv9ylTpy8eUY3+TvToSCUWCdzlv2dyHctnbrGj8RvYCpx/6EEJIQOkLXwU9nUNulACdFdEk2lyb9WARa5i4yQI1kyhh8QSSYLSETsBXXG7BdT1yE+JeQW43WePpyF0T45GIpmq5mBbygNiqJoKgleFSpKrB96lB4bSKqYwh+hl8hCsFbMg4rHXh0hRG9hk9Gf7PxYUi/P8zsf6aNyCIwYiAQ96ErJfY9fp/8/jgH3vB0eYxGawuLY7CX94ln98dE3AkKAbIY93h8//p5sXFmxfxXVoyIKfC7LVOelKynKIvoAcOdVz4F/wq+O4QmkWL6PGaNj/TbyXBhSMiwYQsDID/7NhxJgD+04OoY5NTSJKENSQI8iL8griKRFFZdIFLcFfzmOPC3FLC9v1eOh4RvP6Hv1DLN8cKSAK3O3GFkSsrNV8hN2EZOXAzN+gbU58RpUi5NFytlEtdoFVQed5R+xSuUmOA7uGyFNGH6ek4LuUncAE8Ugxr+jBXwHlqDPgJ/KrZVcloVl7WcBfnUYqF0cnR2epcViqLHVOFgYGBEbUSG+0295pv8JLsUTuCs5I86klp0ZiFH06+f09mpCOaIkqgd8fc3MrkVL+7Ii3vmtu5Z6R/31jfVf2P8p3JMueJa8G+XLW6WP96+Opw0upOjoC4GD0PODIEtuhAw+fCqA1FvPTjNeRgSBAxCIFTtEq/tnPlbCIWJZIOygBVhLUATucL3BDIVclNYtAByA8/LHGa2++W3GBXjvBEV0QlTja5g3MHfX1ujuMDXp3TljWp4HMpOokhNqcvQ5ychTiJI6Umwzl+AC7f3mMQKWoJVNW5vK1opmO4Peg0okfw2UBIuzq9PJ+7LhwK+FcGrN2H1CGvuqv8zocfuHH8KtUbdI+vHLj64BMTAXaf/XCfNbhPAkVrYRVT2Zt3i0YyjnQytu06XB0eqrA7sxvD/dY23IkP+sNr6WVcpPfSPAGPcy9/UPT5YA62bHPoIH6KuCH6rVrPQK474hdFxMGNeYR5/DYK3dyaAI6noKVsJJ4NG6LUAcDGQBqkBRSrOgE+jfO2o3VjeAckk6q21wUwTO4pLeCNHubmuZMed0DTr79e1wKScrx14QbtOTkcqOZ2WtbOXE0MyxHf6Ig/LIfdk9lly1rOOtfGPXTeWbSMXyEq0lGulkY8h/kVmCVFeg4dRzxPXYXHuwz6X4pOmQZJWEsbk9hG3iGIlE5QHH6l+Ce57AeKxQ/ksn9SxEXnkL7S+3z9wm34EHo30lB3rcMDoQ+qgcsPIkKYN0IOyEQNTorZOrENYx9Q4fGha9Oylpj0876OTKYjXYxvPxT2RdzaKMl0xLNjzAYj2IefxfsBh8HuzLH3txy7VKRuhrV0CqZdTpXws8X6fywW8Riday5Lx/wtvMzDHL1IpYEBSRV+NoCWMsxDG/Ni05nPJmI5+jdtv7Hvj4HfPQN+F6D3d9lB13S8XMa+PwB5G4zjZ1z1f++PyboLbw7osk4ecQXP7+4MK64g+VpnmPoWQYOAqy8wThBGE3YUhxt6AxzkODbRMOMEFPk4TE60XV05pzmcALeJIFVyFLMipWH8wrv3X7VO/7bvvXnv7lt34+KD584+BH/3nnjooRMnP/VJ+NHjIOCTMIcoWj7rhqBvwEkMcJ+Aw5wAX5EXBUpFjtlaS8BnPMc/0BjQ/tlKzW2kQ4ZRtIPAwsyVFJG6FA1IyN8KuNST5r+a5spANZ3dbHrCyRUzmUym8J/1JruJsBoxz5+3Y68CL8/D3IrokbMKeBadWxzmloYbC5gIkAh4XrgZtMWtgV5AZTzfnKUtRqZtKBb4+y4/tmZcPIxDVBcn2gZBVnFn4plcT6kR4NThpjEFGcgSUiTcZoSwJgM5AqJSmSIs4eDnlVj9cSvwy6MHa/kJv79TCXbfvG91PWxGI75PJF7CUtCvhIgZU1JB/1NL+6bmsym/Fo5H47PX3HAgPT0ai3jv0f2ATQHZT3XTB77zIuhmDJ2uBXqwKIxgQGcfeA/nWLAfiQIviPw6hDx1nXWALIABDmiKIK1BvgUdAGVruph1yXgJCaIknGh+rzV6pebNZPNqJZ8xXFLXhhAKS2IA01QLemH2H6YZ1tbSxUqSujB+8e6jq/ckNDWBOYHkrpnatbDFNGNGTypUqZW3pFwJVUtcc3DP9cvmpse237w8E40lVMnv4irbiv0LKSCvnOhLTSYLCW9QTcQjQ7W94wdG1b00vjpBUa+RW1AKZdCRs2lQEvWgDOimwyURkYcQFtF1jHRQukpWQcIAAVV0gODCA21j2j9eqQUBMzNGJl1NGaUUMIxO5uphm5za4GlDgTqFgUhEqM+nFQ6/Zm6fMM1vmObE/0oE3C8BqnfGle3mmeeeSh5PJVPJ42pU9+NrAfbj9c/hffUv0xgAOz8PXH2Qcs8+zEnMxmSBQjrHAxeifkruA1txvAQ2EkVh1aZRLWsZxrCR6bmCqbqwbSuwDnxSwEMKfJZiooQZkj3/nqN7bu4MgYGICwdmjKmVTSO7TZ8aVIgSx17T/MVQbd9Nf73n9oNT8Si1jRd3de4crewuBZSAjPmOUCr5rcSdYI8SyPIj8NlOZKJP1jxhmHocoo0s2NwRYpXjOeCOPKifFyjUNaAQcm7DT23nztpj+fW3HkyhwhmHEWQ/7kRzfGsURLYnm1GzWs6QmC2pHkiTEjJLshAfZujKKCHTGv7RvXt7t9Wyn3vHfC1uxtxBY/4W7/SXbtu+fWx0UZ/uq+76zoFbk5vv3ffhJ2q9kURHKOgN3rFWvX3fyK5aX3rr5M5mHL8TJdGWHWe6QbI4CMGvMtQFEzbAyhEnSkEXUVRuDbJl+GYqnwnrgpSgyUASiaTZkJvWaFlVwJOY0SAdEuSLUmDlXm77xNDKmw7skJASl/CcSWa97sD++puPloof+dBd1zpw0++XA0FaBzQwJwKzNdH+c5qb8M2E0QkDeIHjT7RlMEFoWSLRymDOuNanAK2apsXjLe5EPbQKzkiLJErLuyhPdfKa3spwL953+Mi9e6ulHbd97bYdpeF9B3bcuGPx+kV513279t6597EdN920Y2RPUN48WFtbqw3OBYK7X86PjeV7R0d/M7ht22Bp61bU5pcJ1INO1jwhzIl+TIOs4WsNQKTMT2QAyq81LNTuay2gdXzMGd8OnJ5MVktnNeZqzbzNwJDVJ80LUiVvu1qEedonTyxuBh9zhXvnjntqe/betv61u/ZK6T0j+6iz4erD35g2qYspnuBdR8HFDtz6sb096smlyZFdM1RGxoHwY8A1dMrUGsWCQmkGWbORLZO5lE4ol2VHjT98k3NcP9vkS4Rxwh3sXl0oS3MrRx5suyHPM68OcEuZCNzR8dnmXdQWT2QOsOHGwqEOWYsUZaMrk0hmW7f/6LajYZ/mjlVwjx7PDtn8YQRV8LNkAPy1q5bQGvWCUxat0RG7RkMNCpjLZ3OVahaCpMqs4ccR/GxUdkv1MxEdb5ICPOePRuuv4Lh+MBjB3HNyT+BpQcBhRVW+8USQyp1F/wG/gj8HPFVFUzvOmOA7IRqwHOA33G2Vim9HMa0aKPfiIML3Uwus0lE7V86VSqWibYIGnw23mO0rA/VHB4bwgaGh+peGBvC1A/jebDb3ZI5qvV1ejcrrvay8ccZWkSYJjpL7MVN7RBfws3r9jI/3R304W/+ZTkXHy3i+J/AcDzK6v/1EUGNy29x1Cn7u78l1qA9Y2nCt3MHoGaL1BUHrCAkYCe1ky4mYAL+k6plsodeuOIAidWLNKdimSHWKu5QmdHGk0RL5++lNfZyqdvjFyHTR55HF+dmFTkYQjqyNX9UT4T7fZXZ1mfh/TKQz281gQJYj3boxOdkhiT6/K5FK+hhFKG2LdZlqfS8d20VlgWjArwNPSIM0x872YpfY4Amdbgx8H7tAUFGUFyWBo02fVWAFNm/sRKJLfKA56KLPV2oKhFRfpi9dNiqKohU9LAEzjgB+lk9LrBfhcAaHLOhquTRAuz/5tCjh180bzKAaCX8qHFGDcGyGbhfCMU8sLNweMr8yKIoYi6PAnoMBcvQoCQSBRRC3Hgzq59/4zM9Id9ozXEesh6OBjD8FP4wCG+pF5dpghNEhJCARC+JxHoMnrjJbSdiuragEqUzKLAHLcZhDg8/bFWIbMjP2MxxyDvBPjyz/zrLiccv66dLRoaHp2urg8F3XzoyHq9X33TP2pdp1qSR+KZU8NtG7IxS66pfJie/N1X+ye/sL4KE9gMUvAxZb6Kaaxwslag9Mr4HEvUjkBE4Emk4LWIKdMql52J5vjNZYWvzCCMSJmNuYdjx5LZtNZ1p53/Y5naZKxzPzBa4Bw1McrWDwy7fvvfbhh6/ZMuIPBpKQOlO8ZFgd/k3XHd/sCuW744Sks3+x9eQ3H3zgm4WOkPkBSJ8xa1x3PXLy+o8Qf7RkxMHnADDwP4E9QiiO0rVkm/6FDfqn2reD5RLti1TdtJz6p7uP/YNlhcOW9Q/H7t6+f+ehwwu4/57HbSX/1Y+//Yl6N8OHCLz8jvV9v7/jjAf0OYR4IhH+FPK6MPaegnzldonu40AmXV7JBZVdc1Ke9gJwxxkffHm47csuL17/Y79dq9pflNb/L78JPC00Ui2XioP5tALpHzTjY01kuxRzNANAGWGmY6QnHS4z3tPVABpIKelwisYfK8t+B2XZbZbV2WlZ+LaYQkJGiPzqPi4YsllRKMjdh3l2lZZmTKFKbBEsCrxo+G90lb6v0lNV//G8fdnG4hi8vAq6LqO7bXUV4AJg/imwPVBe4TilQSLQIDdI6FlFHo+86MK00Q6VWUACNQ3YX+DW/8hvQF1SLPSZUJKoVD+ql3U+31IPbRVLU3dhmDaV99en27VwumxZn7asZBL0dE9Mwb9wVPD0BhU8naJ1/EvJlBJjPSiI5dchlkfREzUP4A3nw1iisRwBfVhgc4wkN6JUnFujvVsWwc1DSbLjmq422OE/8Ie+AoPp9xifCdNCrgdqWk5cgY+R4OaAkTV/4KKh4FvyKFRJuWwmk86oHuZXoKewk53aoIE0oaFA8gXc5GjOikUJv64EAqA1TRncdOi97z00XXG5Al4KFL6ABGliqnfiyJHxgRGpxzTvtF4LBMnnQXuKNkhbM1bI72OIIfhcrtG5R06+45H9M6mk7VMhePk986mp2jiwDILd5LjP4+LY+gymFb1/YwYqFwcLfb35bCZt0HBJKUZRdtZdnDr1Eh8ACVjtVx5qO6Mo83vzLtOMPh012bvz1jqlLZwXXqBlLA2SVPJ730umUklAHoy2w7y/C/PW3wrp6ASdttFF4dyYwHet+j9a1smT4IIGe082b0YBDqNN4G8/gfuk0GCtP0S7nQu0WgJqtU710SiMnUoxjJdKWdBMs/upbOxNUMAnQw2d4J9Yncc3LxyOh7W41Dnki2Wju03zrywym6y/bW5pshROJNSgJyIEcgn8iWSKzkdn/YdrUAmN10YKhtvFY0i5HpfECYK46saUUnh5wgzG2QYbHOjv682FmLXSoaKvZaxyXrqSrRS1cSymJRViHL9mLlo9Dx2EjPB2OzHQt+/3WAfNWOrjX1BDQaq6/3nLestcF2C+8KZ7nqy/QAK2v1Fe9HOYfzfaZ+eLLiRCRIqnLrZhE9q76QAi4vUrjICMqylMuEbGTV0qTbmJzj8HdH7INDMZ0/yCZVVf3QjE1Oyb/QH4z8FcGV7qMN9ZGh+DqoeDmYAHiBgmtU7VLa25WJR4NkZJbXpqcryiaBUwe9HbUjkAppIOYLbGCpDaImv0A4qgLA1344heHp7GjL4xvKAjcd3abSkhFXdM+8f8cyEBqyHFvkQPxuJh1wztGcfHXeH4mHPZJnL4B2vfyeWeHovW+ymjY5deokcB/W8nk6md39AD9Fq9u2EnCra/AbmL1O97ZLoOuyAJhK6OuZiTUWvYC8wApqU81X++tTSmOAkhz4GQl3GxLqyrerkZCL8xo/6AEgxq0v2DGML/pI0GWwKB1hUaFS5V4zglhK/9YN1q+Bmc1x/9IP4hRTSCRiBen2VrWQVWk16u9R1NjOfsgkjmYZJ8ZYqHLCZCdVzABltJ0umiaHUYP8uH9Mp4qTxW0UM8PR4r54qFRNTrJtu97sqdJY/P5y7eU3L5cHHpyFImJoqxzNKRR4/shEPOp2R7tywV31PIQz3Z/74PVrLdydyQXetQ3vQi485J1F8z6XIvltBxEfO8gynt/cFUmkEt67YhytouF7aRBlV+8cS+u4B8vNfmIC/t694y8/a3z+DffPTmMw2l/ezgjtfZPEIX/oV4YB7DUH2dOZsHFkDrFI0tu7rAxK5TyIOwy4OPuzFFGLtm4Qk4xNUUX+z2WYQRaRgPFcv6H/5CrfgWY5thzpIpurrZUAtOTYyPGv1ME72G16FpQKYhaMDTclfQCoVdnYZZF2TZIQBi4uiJeAbMaodPJG5v18COVg56Yt8Nu5MypFXe61ZwJvu5zdObN9dWc3ODkdJwTI+7E0831Pj2Tfsr0XQoXorGUrKZwqGlmaeddQbWY70RzaF7anIvlngVcgdUsFyrlS5J/JqAWctHFJuHtK9D92qEbY/FDZXlkCTy0gqMAjzkxRNXGMi66OnuXDbdas3maSw6zToIvIjutNLzRi5fsBcQN5Qn9JpNQXT2Dz9/Ys+1U4ISpIQjqHCYGzRnh2o9Ftnqmh7uzJ/47JjzocfnJ+o7i7OFtOua3T09X9zyDkvXzPtlOeD3ecc7Y7Nm94SsEFnvHhiZvYZ+dhp4CQnIt4/lkmUXiYYGS7b+4vDya/DLPDpgc91ukfYBgOxS7Gf8tN1V6Fp+0hlB1q8wBHQzzFKFplLdtIjsRoQKN66zpjWQ11+zHHEv0NUzllW+l50pcfyeNs5a77ZdYtg+X4grlK7STgnElw/kSKN8LSNCYobCeVVqsMwmaUirkJvVlD0tRhuANWzIYLQ32bxCfFbnLZ+6xQnyrQe2siOKkF8+fM89h/E+xpMe27pnz1a8C4gD8LwLbzCeZ9F5dGO6O0dwZiM2iC5MpKJrlXBGtRuJ4Asc6/SSPNdITSwZqTQ7VdXGNfx7RY3cz6uKIvtCHn49oirWCUtRw0f9BDLdfJidk02QYM7/b0UhWFJkwjfyUP3eanzg/biDntu29114gyCY6wiq1Ir9GR+Hac4V4RNgAbQfghAPWYiGCyXzVH89ulHK9GQUO//Y086zDRb2CkSea9MlTJ8uH5UAFZgcDaWi3DwW1FC3hy9zXIXzdCsaT+Zx1ly2LN2CaRREz4RH6seY85tRy1qmOen8eZ8s69KvOhK/kqKyHzIl0/3jR7LWf/GGQt7nzN7r8RQkJ5v7UO42RLlbKRP1/GHuNlQuDvSboVDJMCohrZ270WbPxl5PviliWq+27GVhSYWk8Jp1vaUE/If2BYJB8x2mGVm/NWLBtb75muxcOflQBPhvEqqHb32LBAPUoYUXaPn14IP26Qv1N6l9BuHlJZCjF73f5nDOUuep1trp6mXWTn2tZdZTbUunlw697ArrJcPo4qkWGYa4aC2eUqGr+KIIpjqScKs+fwkY4OcBkjx40xuNWN5Oz+tPQkpy6CBFugD+x1Y8swt1Y1uzIMfoRxe+il8m55CKjFq3sxRBK2rE+q+0CuHQTiCjrPsqUDvl6EpYW/3zsnkuBkhxzjQ//nETSqkYORtTkqnz72K/3wO/X2r+vr00fvySvQqQDu3fv7SVhkuN36b36aUkl7yPdhuc3u6F6/GzF85C1Zd8XLx27kr7IB4X0Zxwmb0Qt7CtEGzPwZtEwt9EGfCMT9jZTVYxz6XoPjQIWm4hseGCi1tYsYflEc8Rjie0H0EXmOiSG9uypbM2hJ3VmEsMXHlkY9kN+ILLxRA1SjcJ+jKhTM4wNCPtblTejf1Zw1XWEtacHnGZdncgJ+aHnP1Y1SlMpGAotD86fGDr0S++d2Yi0TGgJrpG0vGr365mrK+snh7pK2YS/hTEipFfHpvfQfqL3HA8HDd83KGZH0gLC3gg020qfmCgyHXhTda3oWtBd9uCe3Twa6ADIgHdOCdQUjT0kkTNUqfR5nbkpAqJOjFymSGsBeHoI8pqo2wmU8porW5k3o6NZioB0Z0tHpDygQCwpaFX795XK7FQ6DPNhZgyMrfnndsXKgPbJosju58/sj4o0yiQ8RvUmZ4onD44c7DWN99/4CDzqy0g7zPgD4NopDaEsMAqJk6E0mmd9U6E+2hvhVlKbzZYYbbZXFHLDWftqcpc0zpdnN27B0AfwEbakIndOiWsdfqMK5aZ6Tl8f7x8bDKcGOyMJrRAJ+QdoBye/k3JwMFaNBuWBHcie4OopzvD9x/ObJvvwy65O6wlwrrEYwibYmTmkE/3eSLUnw3wZx7s1QkId9qxVxCsA64rMHs5J1LTXimwQ2PtVBRZA0hflDAVrenBvZcbQ6VftX2X9qYavuvVMumSkUkXXY3ufnu7aKgZ4Ap1Wmf5GPgB4c2FTv/Qll233b13tmibrs/87GzfyO6F6+aSSa1jaP3wkXXzT6nZ6q7T870zB2dnDq6AzENgs6fBZglkMKvxdK8etw7VJAK2CbDjkBW9WUiBwTo6OowOMIgBTuZiIGzvt23sV8HpFF3Upmayu1oSflrNbx849tB9h468TZbl+gvyscqOKNhmQZisFJb9N3jTPR2njxx8z52HQwo3UxuNnBqtTY/ZeJWDl7PkOmSim+x17V5kU0KYl3sNud10oYEufNHCRVls1lIBAdRvIocc/uHBKzXZ7DFYwZU12O5aTPlY3pC5Tme7MGOMGxsNTGp8tsOIE7/SGZJvM83b3mZZ9V9Y1tvWTOvY0doaMSPRqIpdgc5wATjCDxhn7E+mSjPzNFd0XujA5/G/Q1U0jXaiT9f0skAkQQJHA3dFMsauHHYTAQqIHAhfQS5Et0+cYNtcRcygEKHGIeQiwuQE1/J4GD7EeNBDacPXkPMtcQ188kpfgtJraWHLnKoZhehMJG/YXWC23dVZVsvTmjlSjtDKXmjsb6D7HZxtsDp1CJGusYObqpUCZ2EHaofxeUhLrkQ0fvV8wRJ8Xs0V3uLVBrKF7vBD331oC/F41e6r5yv9/ePZ3LmRhZGRhT+PG9P57ES2cM3WbVfj9VDUIP6ewuxq1B3UfcDSBE+4a6BzZs+emaU+EgRmbfRWZlc70+mvLI+OLo/Wz0dTQTfmSp2pcpn5lQuCnsZ7PxqrVXNUOcA2RaeAgDB1rUFi0RfdGzs8/RZbSEmnjaJnQ//TQdLL1aIMa+lHEKkft6xkItO/DGH656bZZ0fr2Lb39Jm0kfaT/tym2a826kwl9s3SI/+dYhPte/4dWYVSr5P1DYA5rrGyuZEOFCh5Wi1QVaWdg6INqRc1xhh8NBdC/86q/wBK4Fss6yMx5YT1Ubbsybqh/Qwtvk2QvbhJ830nvhXmkKR7G876nV10tAeQo9sVCD7VNi0H9BRW2dJiPobYvuvGvoa3HgkJTA2XMkPpDBVBYPhiw4uusTq22iqKIuHhhjDvVPIL5Q9CEHZjwRfQKvH4adAy1GtMqt7O8YncYiSux0QK/plh/DEq4rdt+TBSQMdvsh5rrTY5YHiBp0t0WbMxUzeWJNcq+ISy6NlI10uDhb6S7RYXd/0u32oFG1TbKhNJBwh507wTiiftlsVBy3rUsgbhbTam/GkKzkwzfcdHuk27p/exbTta/lH/tx+mJzc/CfMfgvk/B/MPo1Stq0UT2v2CeQXdJXF5r8DPmfWvm+ZpW2unzWTrPi6GxRd+T2MGfwP88fZz0+OEeBt7dpIekcDpmt9HvF5lUXZDwSbQG7t44mTCHhFgxrfmxz6fTnHGu4YuP3SlFt26ZbY2NTEyVBwcKFTUdIj+FQNtLexGuLVKoctcam+uQtHnIFIXYWMgFreYOSWYLNL18LbDg3SZnB6kfP4AyQ2UYr1j3T0yD5eoQn7Wl5yfOGMvkLeOWWuVNVmJ7DdKpdRwl/JL2lV1cAZ01o/WzgLMSA2VJag+7D6ycjHKsO1mDQRqoNIloyBj/T/AURfbjXdlONJU7nJ41E83PSgOHlWBN/wQeIPb3q3d6LduoAlaRgvREiXbfEZFanEW/MO7/vIu+H/7zuGh5aUbl54/fP/9h4+cPn3VzFVXzWw6dozxZwO/CnrrRn3oAYePJTAPjAS5GB9LYMk5cfiYIdF0zjKhQqsCeyatlqpKGCOQJCfvISf5X2kwVBPZDOvBGoa72Xi8fEBfgU236TUauoRPP0U1S7ypZCDezqYJyl0wSBfI3oUsNFobVrHIucF1yEJzuVJvrjlGW+siKqI7rzIZw2AUUmh6Q4tFOu1AGu5ck0PCdEmX9ZeAOiOL+951//7Nw/aK7aD1hdmhsQO7qiPb/hpm+vTI/YeOrJdVhdbC5/8rPtpb2n9wtnZoP8unCXh5BeacR7czc5xNsX1DCfou4FaN09atE9eAaYrKRR29HqAzRLA5G9tezAiz83zORZ09B3VDdgvNbvo0/P5iiGNpuIvgV+IhlxLCO4/dBDztDctaXrasm2PK5ms6e0MSvlWLiWHlhqU7Us0s2L0kR1Qm41bw+++D39foHto8lniJbgZdaDZ19VZTV281daOtXi2td7JGIZ01MjbJZy0rsdmobXRpnQ7tFGdj1kU7SGgLK4K/L2d2jy2VPAnag1VlMXF0dvzE7vFoRdBz20uzOZdOP0gTzCu9yemJk9tHOqv3hfL9wInMQ7Q5G1rOJ8pBvxxIl7yxTEJTVXMGzjq8Ac2TjOQDvkDIcNaFQO7vEBMyfwlqcsjhDyCwHJZEZkayyjM23VaCUgGhBm/bKNx6GoQ1ZBrQZDfo2YZ+/J1DtYk9e01rD6tBP2Oan+F8qXhnAeNM9v6RpU1bf55MLbMa1L8rlXxZDnUFsymDYSyt3fBjgLEHz4JJ+OazB/YGENrrVBYpOrRVZqn2z+iag1OR2U+0OBVZupTNQ0nWqsjALmLr0RaaN5kAU6T9EoPWBZo+SnOP2BSP86c6gsl8tFGeJSFRyOk732TZ9TeBoOaWQmbnMzbpYjqPgs5/CzKlaO82dknvVlm0JwnYVMpkUnbv1sJ263Zj5zPRmBr+rdV5oxgGkwc18cZOy7rdsuLHj8fpAX44WX9cUeguDbzElkSfwiON/QJBmMu/wlzGaG+2mJOv2JtVWG+WTiuXMypab0Z1O5tH7O5sLp+ju9Eay4Tt/Uq1PFx1QkAvN7qz+F+DodAYF5J9QOt0DnMRv9otyyFuLBQKmu+yrFIJC7o/FIuHfDEOF0qW9S4TfzgQJPUnQiESLe5LZHYO6HT1cNHuZtZ/klwciMf6VkM4xfqzdG//r0C2Ku3PVnKX6c8qF/dnq7RB2xfS/oj+bLXVnwWhL+rQUt73K/MOM6gou3eqShAOzZ47bukx6bVgcPMmJWhfu+HuHtPu0d56K6MbqU8/kmLnR47YYj3yabZ+Ahyd+sw43Zc3EAUACinswUrRsZGEHarNfDyGlyqxbKUjYwcqfaAPzISbxbwuUZNM4xxYKp9rsAc6ii0o0bXqxnX824jQ/2/0neVsIRZWIDUXE5IKWIjfPyCE+0/5A4om9viT7gHIzvmiRa/14w/HRFLftGlXOanFw1GVL/qHw2E/watEiiZJIKC7SHo5+u5o+I6PEzHm+CLdEPFjkJH1oQNX7EMrF/WhlSv3oZU/rg+t/H/pQ/8YAvzPAMRkPPKLRh+agpoM8Yba+tCaH/fE7bbzYNy+UH8+19aHrl74Kv4hOYfKFJNN+3k5jnZw6MZ5hAWC6WPESFhxem0C2lXI9Bg9aTphwc4ngMqVAslT+jzFwTGFYTrhNO15aBLd/tZF9BL+YTDgv6o4I0QmBjLZgfGIMDZ8wB8I5gtjEWFkhF0ugTNGu7d8Vg7GZAyZU44p/s/OdXVQ98Q+Pej/7KZk1xx8rHsxm/9LMP8+9kx0+7Oe6ZT9rCdEjVKBFIH7ctlc1igWyReLxUvljjNuQZ8rEtjzSEBOBQTygzpWHC8neFdPBiR3duc4otlPqDTEbumBPdrQkvsKwrapAxffWtZku17o/M/hU/gg+QvIkl21BFiKgNyALSvI3teO8K5cdog+5khnCbm+3EUam5hZ0xof1HYSfyTGJ2JGv1Ho9fjC5CHVM7DfBwEdktTk5HD/zkJcY89U4j58FdtvEKtF7KcpQTOUNcp4KVvN2Ldx2nf00ap8uvG8Cr7K/u22m+HX2Q/7N9wMof8DkHt0UQAAAHiclVJNT9tAEH0bklSVKjj1WDQHDomQLdvJgY8bCKgiHFBCIq4O2ImV4EWOTZS/0N+COPan9Cf0d/R5varU3OrV7rydfTv7ZsYA9vEBhfqb/sUKn9RXixtoq2OL93CsfljcxIH6ZXELRw3P4jYOGiWZqvmZu3dzq8IK+6plcQNf1DeL9zBVgcVNHKqfFrfwXf22uI3DxgSX0HjFFjlSzLFAAUEAj6MHh6PGp/TOyBJcwOU6QIQnLHl3gzVtSl+EDM/mzEVoWENzXjMrRof7zESK+VKEFRLutFkf6HuknWCMK4y4Cm5o7+i5567LiLjUr9s8nS8KCTyv5zhcT2W2lQtXBtHTUm/Wy1Si7FkGbujKUG/oTKWjM5nFi2iViE7kIX6UyfhqNJab0d3kftxl3FsKDo04zVRxG4Y60wRVAjlejFQMdf4S0V4bYmFszprFpmIuqyQ44/w3mMMcYrJKhojIrzk9+DzxbX0D9BlWZ8W1zuexBK4nZ2JFOKN4Xq6inJ6e7/hMOejvCt59Azt3q78wpn/NLtQdqPV6fFdwzllwJLxb0mr2JjUZVh17o0oXJ5w+e4BpnK9T1pMavb6cS1EkUVnoRZoV0nnz3RPX7/63vD8dXYuaAAB4nG3O6y6CAQCA4UfGhBySHEpkhRDKEMZMkUNOKXLuhtyOLk/f/PZs7/9XyJ/fb2X/eQvqEdKrT78BYYOGDIsYMWrMuKgJMZPipkybMSshaU7KvAVpizKylixbkbNqzbq8DZu2FBRt27FrT8m+A4eOHDtxquLMuaoLl65cq7lx6869B3WPGpqePGt58Rp8vvvw6Uvbj04X38IUaQAAAQAB//8AD3icY2BkYGDgAWIxIGZiYATCKCBmAfMYAAd8AIl4nGNgYGBkAILbCvvfgeiH9+ttYDQAU3sHoAAA')format("woff");}.ffe{font-family:ffe;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:fff;src:url('data:application/font-woff;base64,d09GRgABAAAAACCYABAAAAAANQwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAgfAAAABoAAAAcnt++Z0dERUYAACBgAAAAHAAAAB4AJwA+T1MvMgAAAeAAAABEAAAAVlXm/r9jbWFwAAAC2AAAAMUAAAGSsZ5q7mN2dCAAAAsgAAAAKQAAADQLkgJjZnBnbQAAA6AAAAbwAAAOFZ42EcpnYXNwAAAgWAAAAAgAAAAIAAAAEGdseWYAAAvAAAASVwAAHUS6hT5NaGVhZAAAAWwAAAA0AAAANiXPQldoaGVhAAABoAAAACAAAAAkBc0Cl2htdHgAAAIkAAAAsQAAAOBqaQuWbG9jYQAAC0wAAAByAAAAcsA4uNRtYXhwAAABwAAAACAAAAAgAT4BHm5hbWUAAB4YAAAB1wAAAzNTIK3NcG9zdAAAH/AAAABoAAAAkgWnBa9wcmVwAAAKkAAAAI8AAACnaEbInHicY2BkYGBgYmTTbzo5JZ7f5iuDPPMLoAjDw/v1NjD6/8H/bMzSTO+AXA4GJpAoAHkpDZV4nGNgZGBgevefjYGBuen/wf/XmKUZgCIowAIAnCYGaAABAAAAOABGAAMAAAAAAAIAFAA2AI0AAABhAKAAAAAAeJxjYGT8xjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqAgAxIISHNNAVIKCkpM7/6zAVW+Y/jFAFUDABM2C/B4nGOUYAADRl8QAUQTGAKB2JJZnsGSUY4hiTGcgRtIJzMxMVgCsSYQRwGxNhTLArE6El8brHYdQxLTRAYnJl+GeKa1DE7MTQxpTNYMekz7GFSZDgPF1jPwMb5jMGMSZghmPMmgAqRVgLQyoxWDDNhMYYZAhq8M3oxC/w8yfmMIBbKDmA0YAkHiQHk5sL54IO5ikGUsZhAGiTPeYuADms8HpBlAbMb9DLJAP/wHABTsIVUAAAB4nGNgYGBmgGAZBkYGEOgB8hjBfBaGAiAtwSAAFOFgUGDQZDBnsGJwZnBn8GUIA8pVKSj9/w9UocCgwaDNYMngxOAGlAlmSGQoAsn8f/z/zv/b/2/9v/z/4v8z/4//3/t/zwNRqC1YASMbA1yakQlIMKErgDgVBFhYGdjYOTi5uHl4+fgFBIUYhEWgMqJiDAziEmCmJJiUkpaRRZghJ6+gqKSsoqqmrqGppa2jy6Cnb2BoZGxiaobbYejAnHilpAIAG+4kjgAAAHicrVdrWxvHFZ7VDYwBA5Kwm3XdUcaiLjuSSes4xFYcssuiOEpSgXG76zTtLhLu/ZL0Rq/p/aL8mbOifep8y0/Le2ZWCjjgPn2e8kHnnZl35lznzEJCSxIPozCWsvdELO72qPLgUUS3XLoRJ4/l6GFEhWb60ayYFYOBOnAbDRIxiUBtj4UjgsRvkaNJJo9bVNCqoRotKmo5PC7W6sIPqBrIJPGzQi3ws2YxoEKwfyRpXgEE6ZBK/aNxoVDAMdQ4vNrg2fFi3fGvSkDlj6tOFWuKRD86jMerTsEoLGkqelQPItZHq0GQE1w5lPRxn0prj8Y3nIUgHIRUCaMGFZvx3jsRyO4oktTvY2oLbNpktBnHMrNsWHQDU/lI0gavbzDz434kEY1RKmmuHyWYkbw2x+g2o9uJm8Rx7CJaNB8MSOxFJHpMbmDs9ugao2u99MmSGDDjSVkcxPEwjcnx4jj3IJZD+KP8uEVlLWFBqZnCp5mgH9GM8mlW+cgAtiQtqphwIxJymM0c+JIX2V3Xms+/4IUDKq83sBjIkRxBV7ZRbiJCu1HSd9O9OFJxI5a09SDCmstxyU1p0YymC4E3FgWb5lkMla9QLspPqXDwmJwBFNDMeosuaMnWLsKtkjiQfAJtJTFTkm1j7ZweX1gUQeivN6aFc1GfLqR5e4rjwYQAricyHKmUk2qCLVxOCEkXRk6sRGpVum1VLJyzna5jl3A/de3kpkVtHDpemBfFEFpc1YjXUcSXdFYohDRMt1u0pEGVki4Fb/ABAMgQLfFoD6Mlk69lHLRkgiIRgwE003KQyFEiaRlha9GK7u1HWWm4HV+nhUN11KKq7u1GvQd20m1gvmrmazoTK8HDKFtZQQpTn5Y9vnIoLT+7xD9L+CFnFbkoNvtRxuGDv/4IGYbapfWGwrYJdu06b8FN5pkYnnRhfxezp5N1TgozIaoK8QpI3Bs7jmOyVdciE4VwP6IV5cuQFlF+C1CcoBRrmElgw3+uXHHEsqgK3/c5EjUYgrWsNuvRh577POK2CmfrXosu68xheQWBZ/k5nRVZPqezEktXZ2WWV3VWYfl5nc2wvKazWZZf0NkFlp5Wk0RQJUHIlWyT8y5fmxbpE4ur08X37GLrxOLadPF9uyi1oEveeQ6zr/+2vrKjJ/1rwD8Ju56HfywV/GN5Hf6xbMI/lmvwj+UX4R/LG/CP5ZfgH8t1+MeyrWXHVO5NDbVXEhmwCYHJLW5jm4t3Q9NNj27iYr6AO9GV56RVpZuKO/wzGS57/+VJrrPFSsilRy+sZ2WnHkbojuzlV06E5zzOLS1fNJa/iNMsJ/ysTtzfM23hebH6L8F/2/fUZnbLqbOvtxEPOHC2/bg16WaLXtLty50Wbf43Kip8APrLSJFYbcq27HJvQGjvj0Zd1UUzifACov3iadp0nHoNEb6DJrZKl0Eroa82DS2bFz5dDLzDUVtJ2RnhzLunabJtz6MKbkPOlpRwc9najY5Lsizd49Ja+bnY55Y7h+6tzA61k1AlePreJtz27PNUCpKhojJeVyyXgtQFTrjlPb0nhWl4CNQOcqygYYefrrnAaMF5ZyhRtrlWcImRjDIKrvyZU3EiG9FkI4r4zVvqp7pQCJ1JLCRmy2t5LFQHYXplukRzZn1HdVkpZ/HeNITsjI00if2oLTt42dn6fFKyXXkqqNLE6P7JjxibxLOqPc+W4pJ/9YQlwSRdCX/pPO3yJMVb6B9tjuIOXQ6ivovHVXbidrbh1HBvXzu1uuf2T636Z+591o5A0x3vWQq3Nd31RrCNawxOnUtFQtu0gR2hcZnrc81GPsWXmm9d5wJVuD5t3Dx7/o7O5vDoTLb8jyXd/X9VMfvEfayj0KpO1Esjzu3sogHf8SZReR2ju15D5XHJvZmG4D5CULfXHp8luOHVNt3GLX/jnPkejnNqVXoJ+E1NL0O8xVEMEW65gxd4Eq23NRc0vQX4VT0WYgegD+Aw2NVjx8zsAZiZB8zpAuwzh8FD5jD4GnMYfF0foxcGQBGQY1Csjx079wjIzr3DPIfRN5hn0LvMM+ibzDPoW6wzBEhYJ4OUdTI4YJ0MBsx5HWDIHAaHzGHwmDkMvm3s2gb6jrGL0XeNXYy+Z+xi9H1jF6MfGLsY/dDYxehHxi5GP0aMO9ME/sSMaAvwPQtfA3yfg25GPkY/xVubc35mIXN+bjhOzvkFNr8yPfWXZmR2HFnIO35lIdN/jXNywm8sZMJvLWTC78C9Nz3v92Zk6B9YyPQ/WMj0P2JnTviThUz4s4VM+Au4r07P+6sZGfrfLGT63y1k+j+wMyf800ImjCxkwod6fNF84lLFHZcKxRD/PaENxr5Hs4dUvN4/mjzWrU8AuAoD9HicY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2J02iTMyaIEYm3k4GLkgLBE2MIvDaRezAwMjAzeQzem0iwHC3snAzMDgslGFsSMwYoNDRwSIn+KyUQPE38HBABFgcImU3qgOEtrF0cDAyOLQkRwCkwCBzXxsjHxaOxj/t25g6d3IxOCymTWFjcHFBQCrRir1AHicY2DAAoKB0InBieng/1dM2xj3MDD8t2M6A2QfZDz7/+t/YwC0eQ33AAAAAAAAAAAAAAAAAAAoAFAAiAC2ANAA5gEWAXABsAIAAnQCqAMMA5YD0AREBHQEwAUIBTIFggXSBiYGSgZ2BqQHJAeeB+gIVgiyCQIJpAnoChYKYAqYCq4LCAtKC44L+gwwDJwM5A02DW4NwA30DkQOiA6iAAB4nJ1ZC2wbR3qemV3uSqJEcUkuRYkiTXL5kEiJevAliTJFvW09KVGiLMuWRNmWrbyduBdf2sSOYyU5Aw5ycC5N7+pckARxez5cjDZWEJxR126L5JDEaAs0j7ZwikuCoAfUaJsGQQ811X9mSYpyjCtQ21ovd0az///9j++bIcJoalPEGXILGZCU1CGM8DpC6HtmPREtAY0SxJGwIRbS8SY7hzO9e+85sq+3dkeXYqt3dzn+e+z2xQtoc7zOvT/78lvnV/Z54fc7Yb3Ed9azGul6HpMgKgk+HOR8ITvGidLFLLD4by+ULmYZu83We518SaZQDfImFcRzmJ/XYI7Awhw6jHgeZxHm8ZSL/nEKYj28RHFKJsUVkZyuSDjklMKhdllytpMvldznsjn3a0XBdtmMbcpvZfWDWcZ2Rcn9GgzFaGXzSfQOyiABxS8jjAkeG71UkdqTlGAQo6OIELwEdwY8YU3q6S88XfJo/rIkSZxYG4iJSkyJhN5pCljrMvjkiQxbW4uuYhu6jThkScrwGeE5uugSHZuUGOQeZ8SJbblb2HA1wX7nAFypPRwywvvU2QDuhDo9RF+SydDlGVYCfg+wN9L1KxCB6WPFEDR46S9gk4h1RHF5I+EYxCnUbsbvaXKvcZxWLKvS4P3qDfmEVP9PpqxMrKwg1dzP6A2C5Ro3f4M/Ia8jPWpA3aOXrACLTL2HEGD9OOI4lIU3VSOAxgjvJRwmayVP5zf8fq/Ci3XUCkFx+agRUTChxiyGg7ziEgXZZNeE2qOxKP4kEPveQ13N7R0PtGdqo2kiSPWtjjl7NdaUm6xNVme3vgYPnk/fuzr1+s9msq2NCz91No62huruCz9sUwaDnS5LU2svGLEXgLkMNlei1GUeg0ljquG1gCiBRFqDHNKPazAgu6wia4UxnuPXCxNKx+aT5RBhg6SnmdaIIyFJUCLtsZAUwpdzF0/GJp/ql08mcK4m0Xv7xywmAbjcgPfXo91Jra6KYoIRR8YK8EGKZQFDFb6lggVGGjzI8rWSp/MbGXeDnsIHL44lSCTsVVyC6KMIyiahGgNwcYxv5A6909oSSPWGhg3B9hcPHB9dev0BwSJcGXjT3zYV6JkbmO565Ym9fYvjP8LUPojpR2BfM8om9S4n4fgAoFQmELjmjbTlkaDlpskijQaMBUiKsbYiDQCm4deK87ZGATBvg+T2utTShKh7fdGYndoK9gdwJBpLcMwTHRZ9Caz6IkJ3+OjxfYkHvGW8/d54R3+ib9Rh9sZqtXG/pbXX5HMc2TnxQHe4Z/zy1GPRYJPJ3znZHZ3tJYTf0eSRmloq2xo62zrnk+EFq7wf0dy1QRy+IM+hCrCqKdkoQNMYRRzPrQsawtN2wqMjahFrtdpqbTUEWdKLojXgUWQl4oxgiLEiAcr4i4Mzuf+AqB38M3x654ULF3rxG7m9+Hj4Xw7SePsAzxvwHhu6P6mtxUQoEykmeSg9EHqahCcRjzQCrzkMoReySBCk7ZAq35knQDkJkK2l0Fa4IBkBW1G0qdgGsa+ILZSTIjllp0zzA99YXwzta6hyW/c0RSYTvgnXLrw393VLIvXI+4tPBbxSvKV5fGZ21yQ+NvBewynAq5AXVtSCfpDUV0Pa6sEPQAMiXciMHSXVz/NcFrK1ZhwSpOjI6KVmlkCFZnDXSZBAxWaBeA0HibQ1Og8Z5PcpitedzyDaOYKQ/OBWjcwqoNBCfPSTLMi0hUAH+cju6Z71DfU1vPpQRyQanThYtmvV02Hzz5ldya5hjPkKQ62/tsdd91lXqqHfsevsyh+/a+qRTx2eVpr794807FzYqdVXWYJut9wZUGt58xvA5DlUhXYWuYH6p6PVCql/uOCQnCcGmDOXpweCJ4Edpo2UHbBAZEVvBGuhAJz4o+zJvV//PpToX+OLZPe9ufffwim0CemJtsWhGS0ldVqs4QVYVkMJsFifGniVZgve79RnEdb8vO316fe5FVafmOaQL2amHViH1QYdpR3aTgDdIKd26Bo6jj/68dpE3Nkc7z6grdvbNdTSYvMk5r2Dvd4FjMvMIXe3x1mnxDt34Ynz77Z0eO9/zBHaPbTSMdk4AEjLkiC3DjSFm2dT/ugC85PxHL4CpoqUW5pZcwQYKbNKtDmSJUDSQPLcgjgM9L/1dH4DSoE1RyNQopSnxQxezeQGgB05tAIvOUY2kA6UhAO1JJsqMYiJsTw0hwskrmeZme+4TrfT7yx2LqdUbE4cbV0ywGCkN/A8So6duz9369t7Xtg/ln7k6KOpk7+XPVr3+NS5n6QfuTJ6lGwcGYrOGCtXcHmo7z/Hc191TeW+HmM51bf5DVkg18Amf9JHq8yhJxwhY4XK0hV51YImvD4P40+PUOBPWgXmGtFLc78QnFg0RhZ2egLJM9ns9TOxQCCiD/oaItmhwcGhbLLR09nsLteu3XPuhb8vE017HNrK2ZnvH5+drayk+g1cJ07y56BVlKQjX5c0r/klRpRgjIGbAKylVg00R6z4FGgxTglaDXGm/82FY7lfLePr5H7yTW/uXVin4ONh5mM82VEFPuogC+sxx8MYx4/l6ePwXV2WDOC0Kux+l8sRiDg5fOQoczneGoxVtzQ1daku9/etf+ptYw5rtdY9Xn216rDp5V5VN61CglghN2rR4NsmLXjMVEINpKCBx/lyMowDSajkLFPtCfl3Uh3MP59/2yKZZT1FxalIiiByio/z+uBWCtUYzTWhaMwY4qzT2DR4Zsz5wEAVnj5uWE9UYe3U08fJkeGLuVdmcN0vordfIhvNuYvnI8G/xXldF9z8DbDBB6C6gskA4EZsQM+c2gJoDVABYSqteU9QcbE82SpoYIQWHCR5AO0YAKTd0mTege0QkacOPv6g/tCjyeku78wOT4/sO7UaGPE59ePZ3qlu/6HkkauZE4Nz02PhQG+lXKb11ke6Jo/r9dJc71BzY7zCUv0Q2OmB3HmJXELlyJq0UFi4pUI3Al6VnJKDiT/FB5iIQKrkpe4Plz/cSR4h95DbL5D7yJDq7xL4ewDiIdF1OMyqkpCCc0bFuOWcNyKFJBNzUAqRAy+u3fOT5ZWBwdX0v9537tz9+INc++Kh1UX8IVtXB/a9AutqkTNpFzGVx1BqbHkWQrhqkVaSeBDK5VjBIaOBhY28kvtqOffVocfWynF19nGycXuEbORu5L5tGbiFOxDrX1HghjfgPWZA4YdJnQTZrQcGBxQELp9MdpimEYiGijo+C+UENCgIKIvziaV2PdddZsE4ncqqw0J3Hg7QBRzhubXi5DumAG1WeE2KYnLpqTpwKhEGFrRzVRqoqlGMuHREpvCBnsRvpPqOxON/dLqtcWZImEiPrKSr2zJd0YagQ5KIty3d1N3P+dt2hoebVkZ+FOYrXRabYqyok5j/afD/FmBbjerQK6q/1VposWaZUMZCGm7Muu0Jhifz6kSrKoC3iwOKiqWIyo47p9CKLMgEOo2pVJXl2Mw7xqmMUNwuyVgqRGUoTYkCITJMZEZstx6cbN0tpVMj+4f3p2ciAw2uZMfCZwee8RlbIOgfd51ZnJ3u+MfENOSTG3y+yGIO2r4CqsisZb27QF/5flZT2s/usjWi5m24PYpTbe1gWZhJGjGI1RKF8OCLqT3LJx5fDSeaq3zdwZHhiZ65EU/rmb943lg7VGc63L9rMcTiQG26CnGogjg8Q/UCT2DPRBWuppCHVrUoeZ41jhK4DSVw3zGFpZdGs5WBNngXD9J5TZ15xziF260YFBfbKOWzj3VuKcRFvEW3ovhqemB29+qR0UxfKu2Ndy5Mx7p82nDPs9efjWHv7Y//Jjw9l54J65hvSh5vA3TqlWQF5BASAfUC4HYBa6DMNexcYCtPmAsWKhzqCymyNXFreD6pMxqNtcZaD6ghVfk7qZaO1eQrh9KOGhIRX8xdJ5lEekQYn1t88vtzi+0N3VW7fMHBqn8aXI4Mtp05kD0zmgj2hwbaad+ph8tB4D8z2pusMENHoK26YDUMIrYF0I3D/hRUCN1vSnmitSbr4CPbtzIWzk9UB6HEFcrEJictccz2UDYckinlAB2qJuODjX6T4n34wdTo6MpubxN5UCrzOY8lcqfwE4k9oytawMS22Y6/xu+CwuxEg+h00hzAiHdjEVVhLDpwGenF5WWavL2NINAwETGACKogq8GsQxFStoTKyiAJyssZ9LXUeB+MwjSRR2uF37rrTMB+oD8ECdNUM+BzVog7mDeU2mXGYJAtcdxu5+ETO7nI/1D/oiFWvGo+gR4LYBds0kxmqOSvbc0Jvi47EA6Ud+2TbDF/wHL6L59K1tpc2YFY00jmTyJed4z+LDy76PIRsu8PFvBpyGlNU3P/sk1nChPRaAs5OydTsZ5GR6DZ2xLtyzocr4VDbTH4yX3Q59TrXX51bzAFl2tQdyY0dFnPqEWFy1xgwHwvL6oIE6Lyh8dqARVFBLQob0FEhKnkFmw436ZkfC2NtcbG+nB7OtU1fxa7qgxOk35P139BY/rVrpdZjdBdw0VyjunoLtUEY8m+XBrfOmIo2a0XjxgKKhr2uiF6gvVqKlW+vIyvPLqMyOa1zRC6CmvrYO4Mqz+2DylksiVPSlTIqftZEN1QqmwLQlUVYftZdcrW6PzbEj2voz7XFPVKAgOfU1F3dSzas7PG1aird6WWl+N9KVfvDo3LTtCjywz3Wbavp5zemyzXlsHiiCtgLxUOVqTxQnvbeoaW8s/mNwySkTntVHwi44RYSMRfZH46tXvsw6Wf30w9B/h23Pg5e980XF+F9xXO4wraoXAeJ1HIYDyfE+Qm1JUbjW846slWUshU1GiyIjC3RhrnQduoxtWIWIAhJGC2BV4qjMwntS6aGJAaZaJ9e2qUJImsFkS7TG4WE6Xw/3jXvkO2nn0lSVNyd314bHr65a08BptNqG9bHhvglstSxSvdPYfR0v+Vw/IdOQwmnd1uxMuqlrJDn/8c+rwW9mrd/y8ydbtLJWK4yPH5NoE/X1/c9/T6/qXT6dl4Zya9Mz7zz9mn11cOnn1ufmp2Znpq34KqaRL4FmChg1WfTVZXAJfKJhAvmm1kSkkSLKApX9AbNPmNuFS7SHc5IClOK9EuW0P5DalRJVMjaBfDlnZh0kUulS5UuTw0PtmdTo0uD+1NT3X2N3iO7/ns4NOd/06eaI2fWRpain2SyLIYp+GSAr8qUOJyGaTbVr2A1wVf8mfcBphL0DyHS065iwWDKeEwS2I4NbyaGuk7ik/g/WP/gK8vLBL2LhvE8mGIZTNKJat3QA9wlEHXEfPHF2po81uYmuIWxlI4A4XXcmslT6mKc9rrFTfPvk6gJ9lquyDhIPbBPwh2goMqEBl/wDbHTmrM+GFnLFI/n67aNaeVvRbFbulsq2twNHTV6SaGq4ZHMo76Oo/Lp2970h+v1zbtbucqbEFHOa+VahraPNFaHXEM+eLm+jKNWC7p/MwvI/iVIXFkRLOXjVgo1gloDMKtUw4nS7yKJGj8lYJTdWyYp40TC/TEaGswf54nGRidUx0YYTQekoHSZRMVgZmRiczsnpHnnw+3++s8P8AoceJE4tYc3adPgT3X8BWwZ+UtABiPFjewzAaojpXtEs+cH2HKjePwSkHZsQGVEUoH5uffhp2Xkq/rCD0f2rb5wtdSztXWaChtaw/tSrfa7J09eDK34baHY9iJCvsv/D7YWIm6LoslvaWK7cK2qIl9Vr+2UJsf3FSiSnVjhjmFC9Ww/TRk3fuX9l+anurgiaazqg9fyQ3gK393zul9wfWn+f3em/A+K+rdsEgEFQ/sqjU85BwpoQX1CSLrBVJIVsFLrchqlmolgaY6bOe98FcBdVEwwJj/j7x5dmFMo6uEDtncnT6b6m7isWZ1ZNArYHGNGvWtFEsI/pcgPn/1w+Zh3HXziYY43s0woZdPwUYt6qT8BYp6y8wqtRSLRrLPpbxlMBR5S4n5QjWUtz7d84fn5t69Nnf2mbkrv/zllx+/9trHDPvNEMO+Fg1t6MvJ1uGlgQck7uRr9hCT9VKaTlaym1pZ8WjoISang87eghlZ92AuZAYwEhhCctOgOI3V7RbB56+oslR63pvZrY9yXM8QvnL7lj9i1JQNSnxd3Ty+cqHhVGvLxQusT8DlPNgnoV3JCi2m7Ub9mqS58DXJEipk8ne+Jjm87WuSaWm68DUJzp+xyvkvR87nTuLKccEinMUP5r6ZgZsXAziNexpzv1BDgTbRMeLEL/7u7+joYVfuJnYdwy70vzuU3VQAeJyVUs1u2kAQ/pYAVaUqOfXYaA45gCJbtuGQn1uiJBUKJMIB5bokBiyIN7JNEK/QZ4ly7KP0Efoc/VivKpVbvdqZb2dnZr+ZMYB9fECh+sZ/scIn9dXhGprq2OE9HKsfDtdxoH453MBRLXC4iYPaip6q/pmndxu1xQr7quFwDV/UN4f3MFaRw3Ucqp8ON/Bd/Xa4icPaCJcweMUGOVLMMEcJQYSAqwOPq8KntE7oJbiAT9mDxhMWjF2joE5p08jwbO989K3XwN5XnluPFs+ZzZTwJY0lpjwZKx9oe6QeIcYVhpSCG+o7Wu55ajMjLs3rJk9n81KiIOh4HuWpTDZy4UtPPy3MulikorNn6fl9XwZmTWMqLZPJJJnr5VTMVB6SRxnFV8NYboZ3o/u4zby3JBzbAgqWitt+rLOCYFtAjhdLFQOTv2jqa1tFaXXOniW2Yz67JDjj/jeZxxoSeq2YQtO/8ukg5E3o+huhy7QmK69NPksk8gM5E0fCGyaz1VLntHRCL2TJUXeX8O4b2Ind/oUJ7QWnUE2g4hvwXcE5d8k1ZeyK2nA2qa1wO7E3svRxwh1yBhgneZGyn+QYdOVcynKqV6WZp1kprbfQP/HD9n/T+wMCtYt6AHicbcy5DgEBAADRZ5XEfYeShErl6K37Fjffo/XHbNQmmXJG4MfnreUfg8iYQFxCUkpaRlZOXkFRSVlFVU1dQzN6tHV09fSjcmgkNDYxNTO3sLSytrG1s3dwdHJ2cXVz9/D0+gKmCg1WAAEAAf//AA94nGNgZGBg4AFiMSBmYmAEQnMgZgHzGAAF+wBmeJxjYGBgZACC2wr734Hoh/frbWA0AFN7B6AAAA==')format("woff");}.fff{font-family:fff;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff10;src:url('data:application/font-woff;base64,d09GRgABAAAAAAawAA0AAAAACfgAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAGlAAAABoAAAAcnt++Z0dERUYAAAZ4AAAAHAAAAB4AJwAQT1MvMgAAAaQAAABGAAAAVlVmgkZjbWFwAAACEAAAAF8AAAFqThBJxWdhc3AAAAZwAAAACAAAAAj//wADZ2x5ZgAAAogAAAHdAAACqEVxvUNoZWFkAAABMAAAADIAAAA2JsVCFGhoZWEAAAFkAAAAIAAAACQGRgPMaG10eAAAAewAAAAjAAAAJhdzAY1sb2NhAAACcAAAABYAAAAWAnQBzG1heHAAAAGEAAAAHQAAACAATgAvbmFtZQAABGgAAAG/AAADUdeKq8Fwb3N0AAAGKAAAAEgAAABZj98KLnicY2BkYGBgYjjiXHE2IZ7f5isDN/MLoAjDw/v1NnDa/H8583qmGiCXA6gWCACA5g0iAAB4nGNgZGBgqvlfzsDA/IIBCJjXM6QwSDIgA04AZzsEGXicY2BkYGDgYtBhYGIAARDJyAAScwDzGQAHwQB+AAAAeJxjYGTuYJzAwMrAwNTFtIdBkaEHRP/vYXzAYMjIBBRlYGVmgAEQKwHGCUhzTQFSCkrZTDX/y4Eqaxg6gXxGkBwAT4IMeQAAeJxjlGAAA0ZfBgbmF0DMxTAZSJsDaQsgDgayLRgsAE2wBRUAeJxjYGBgZoBgGQZGBhBIAfIYwXwWBg8gzcfAwcDEwMagwHBdcZKSjVKKUvb//0BxBD/r////j//r3iu+e+ru4rvzoOYgAUY2BrggIxOQYEJXAHHC4ALsVDUNAJYnFF0AAAAAAAAAAAAAAAAwAFwAjgDEAQ4BVAAAeJxtkbFv01AQxu/O5D3bz8+xbCehJW1jhyZBroqaOHYFQ8VSIUSpKpKNv6FsYakqdWDuwB8SiaEja8rYgYEJJhbUpVIkQLLDixUhpOQNp7vf8H3f3QOED2DQCH9CHeChz8LHyFnY6scH2G7FSXcL06Rb9ctYo5Fw5fW1dCw5mUjLkZ8X/baqilu6IScFmg+OqqAeQjqbamOcwQM1+dxW8hGG/SQNwrgXtNrxU+zWNrGmjfWTU5sMV6yNMlGp0HS0JlyD7NMTJIc2LgaGvBx2hpfSGFxsKN19eE83+BYaysRnzbC9i83QJj7v+3HSm6v2ukmqOrp58+Jw+OwwqkZRnTi3F2NvoGnCxldHZy+f7DjhwaOS2yj64+frKi3B69k7uqIzuD932S5cUN0mRSVarfhc4qZWx2axCl1ZOhPZF8+jHVHSLTe7I8nucQqyb0FIW0e6xZDp0jKRMUu3+e9fGjH2sdOBwmt/9kkbUwIViABK/sIq+edlYHU1pXNfN7M7lwsqWyUuvVzg1MO9VXTXZ9gwpM4ZBkwYwsxv81tTrKT/ZfKgXezP1c/FqVFEUAeeJ1pmdM5F9mPdw2kuPMlLFpVd3Ftmf5Rf/tUXJnromcqW5d+LEEsQ4C+9BH9ZAAAAeJytUstq20AUPaPYhkJJd+2mlLspJAsNspQukmVMEjCWE6y4BLoaJ7It/JggKRh/Q3+ldNGP6nf0aDTtwot2Uw2ae+a+z50BcIzvUGi/z3+wwhv10eMAPTXw+AiJ+uFxB++Ctx53cRyMPO5R/5WeqvOKp28uqsEKH1TX4wCv1SePjzBXQ4870Oqnx128D7THPejgCwaweMYeJQossEQNQYyIK0HI1eJzamf0ElxCcx/C4BErxu5QURbUGWzx5GwaqfMaO3vr2Xic8Lx1mXJWMlhjzpN1+z11D5RTZLjChLvghvKWmjueTpkRA/u8L4vFspY4ipIw5H4us71cahmax5XdVatCzPZJhjrVMrY7Kgs5sVuZ5Uuznoudy33+INPsapLJzeR2epedMu+IDadsqGZbGWlu2KJlexX6JI9Rmpp6me03M7uu+lQ0xEp6NRQwtuXGUF47drWTJWeZu0lqJhBc8P97kZBcc0a9UGMY38YktIXub+4hxhnL2G19bctFLrGO5EIOmgsn+eJlbUpakn7Y54jis38RPKx9SPh3zuY157RXvM32Jlt+zVsRGvOyKjhr9hUl8t+K/gLmbpVUAHicY2BiYPj/8dvu/00MGgzYABcQMzIwMTAzfGBkYmRmmMLIwsjKlVhUlF9elJmeUcJenJmbmZNYxF6al2lkZOYIpZ0A31YSmwAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJOIGYB8xgABAEAOHicY2BgYGQAgtsK+9+B6If3621gNABTewegAAA=')format("woff");}.ff10{font-family:ff10;line-height:0.773000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff11;src:url('data:application/font-woff;base64,d09GRgABAAAAAATEAA0AAAAABzQAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEqAAAABoAAAAcnt++Z0dERUYAAASMAAAAGwAAAB4AJwALT1MvMgAAAaQAAABGAAAAVlQDXshjbWFwAAACAAAAAEYAAAFKAaMGKGdhc3AAAASEAAAACAAAAAj//wADZ2x5ZgAAAlQAAABSAAAAYKELuVhoZWFkAAABMAAAADMAAAA2JhhCFWhoZWEAAAFkAAAAIAAAACQEswOcaG10eAAAAewAAAAUAAAAFAWgAJxsb2NhAAACSAAAAAwAAAAMAAAAMG1heHAAAAGEAAAAHQAAACAASAAhbmFtZQAAAqgAAAG3AAADRagG+Ipwb3N0AAAEYAAAACEAAAAs/5n30XicY2BkYGBgYjhyZaLL/Xh+m68M3MwvgCIMD+/X28DpOf9/Ms1l/A3kcgDVAgEAr+YPFAB4nGNgZGBg/P3/JwMDsxUDEDDNZUhhkGRABqwAcsoEVHicY2BkYGBgZZBjANEMDExAzAhmO4D5DAAFxQBqAAAAeJxjYGScyziBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAMIFhAEpLmmACkFhuuMv///ZGBg/M3ADuQzguQAXfcNcgAAARgAAAAAAAABTQAAAAEAAAM6AJx4nGNgYGBmgGAZBkYGEHAB8hjBfBYGDSDNBqQZGZgYFBiu//8P5IPp/4//60LVAwEjGwOcw8gEJJgYUAEjxIrhDACz5gnLAAAAAAAAAAAAAAAAADB4nGNgZJjz/yfTXMbfDLIMDCoibEr6jOxsSmom9ozqaqYmZkbyjOZmxkZiIvyM4kxzeUV4L18CEryXL/OC2Jd5OblAHCmE0BWoEESeAQAUVRetAAB4nK1Sy2rbQBQ9o9iGQvCyqywulEICkZClLJqsSkxiMJETpLhkO45lW9jWBEnBeNcPavJN/ZQcSUOgpWRVDbr33PdjBkAfr1Bovx/vWKGvvljsoKe+W3yAQL1Y3MFnp29xF31naHGP+p/0VJ1PlH41UTVWOFJdix0cqsDiA8zVyOIOTtVvi7s4cr5a3MOpE2MIgyfsUSDDEitUEATweUK4PC0+p3ZGL8ElPNIxNB6xZuwOJXlGnUaOeWPzEDVek8beetYex5TzJlPKShobLCiZht5T90A+RYIrxKSCEfktNXeUTpgRQ/O0L7LlqpLA90PXJT2X2V4uPRnrx7XZletMdD6XsRd5MjE7KjM5NrnM0pXeLMQs5D59kGlyFScyim+nd8kJ896w4YgNVWwr4ZhbtmjYXolvNEaRrlbJfjszm5JyPVVBl7p/TEyx1eTXzWhVwwsuMm3W6HF1ggv+H1VwOWbKmGfKmtFtRIgBLQN7BQHOWMTk1bUplqkEni8X8mdnbpwunze6oCEcuAMuJzj7eLS/C+PfCetHnNJc8hLbC2wnq5+I0JgWZcYVsyc/lP9T8Q0qTJO8AHicY2BiYPj/8dvu/3MZVBiwAVYgZmRgYmBm+AAAy9QGXwAAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEIWMAbxGAADygAzAHicY2BgYGQAgtsK+9+B6If3621gNABTewegAAA=')format("woff");}.ff11{font-family:ff11;line-height:0.514000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff12;src:url('data:application/font-woff;base64,d09GRgABAAAAAAysABAAAAAAFiQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAMkAAAABoAAAAcnt++Z0dERUYAAAx0AAAAGwAAAB4AJwALT1MvMgAAAeAAAAA/AAAAVlStXttjbWFwAAACNAAAAEwAAAFKAJ0Kq2N2dCAAAAoAAAAAEgAAACAC3wLfZnBnbQAAAoAAAAbwAAAOFZ42EcpnYXNwAAAMbAAAAAgAAAAIAAAAEGdseWYAAAogAAAAVAAAAFTPW511aGVhZAAAAWwAAAAzAAAANibcQxJoaGVhAAABoAAAACAAAAAkBgcC1GhtdHgAAAIgAAAAFAAAABQFPACpbG9jYQAAChQAAAAMAAAADAAAACptYXhwAAABwAAAACAAAAAgAMgAUW5hbWUAAAp0AAAB1wAAAzNgKpTBcG9zdAAADEwAAAAfAAAALP+cAF1wcmVwAAAJcAAAAI0AAACnYjyrnHicY2BkYGBgYmQ79On4h3h+m68M8swvgCIMD+/X28DplQwMzI5M64FcDgYmkCgAkcgMvQB4nGNgZGBgWs8ABEzXGBj+T2V2ZEhhEGVABqwAWegD4QABAAAABQAQAAEAAAAAAAIACAAkAI0AAAAsABsAAAAAeJxjYGTMZpzAwMrAwNTFtIdBlqEHRP+fy/iAwZCRCSjKwMrMAAOMDEggIM01BUgpMIQwrQfxISREDQAf0QozAAEYAAAAAAAAAU0AAAABAAAC1gCpeJxjYGBgZoBgGQZGBhBwAfIYwXwWBg0gzQakGRmYGBQYQv7/B/LB9P/H/zdA1QMBIxsDnMPIBCSYGFABI8QKUgELGXoGCgAAIa0JTHicrVdrWxvHFZ7VDYwBA5Kwm3XdUcaiLjuSSes4xFYcssuiOEpSgXG76zTtLhLu/ZL0Rq/p/aL8mbOifep8y0/Le2ZWCjjgPn2e8kHnnZl35lznzEJCSxIPozCWsvdELO72qPLgUUS3XLoRJ4/l6GFEhWb60ayYFYOBOnAbDRIxiUBtj4UjgsRvkaNJJo9bVNCqoRotKmo5PC7W6sIPqBrIJPGzQi3ws2YxoEKwfyRpXgEE6ZBK/aNxoVDAMdQ4vNrg2fFi3fGvSkDlj6tOFWuKRD86jMerTsEoLGkqelQPItZHq0GQE1w5lPRxn0prj8Y3nIUgHIRUCaMGFZvx3jsRyO4oktTvY2oLbNpktBnHMrNsWHQDU/lI0gavbzDz434kEY1RKmmuHyWYkbw2x+g2o9uJm8Rx7CJaNB8MSOxFJHpMbmDs9ugao2u99MmSGDDjSVkcxPEwjcnx4jj3IJZD+KP8uEVlLWFBqZnCp5mgH9GM8mlW+cgAtiQtqphwIxJymM0c+JIX2V3Xms+/4IUDKq83sBjIkRxBV7ZRbiJCu1HSd9O9OFJxI5a09SDCmstxyU1p0YymC4E3FgWb5lkMla9QLspPqXDwmJwBFNDMeosuaMnWLsKtkjiQfAJtJTFTkm1j7ZweX1gUQeivN6aFc1GfLqR5e4rjwYQAricyHKmUk2qCLVxOCEkXRk6sRGpVum1VLJyzna5jl3A/de3kpkVtHDpemBfFEFpc1YjXUcSXdFYohDRMt1u0pEGVki4Fb/ABAMgQLfFoD6Mlk69lHLRkgiIRgwE003KQyFEiaRlha9GK7u1HWWm4HV+nhUN11KKq7u1GvQd20m1gvmrmazoTK8HDKFtZQQpTn5Y9vnIoLT+7xD9L+CFnFbkoNvtRxuGDv/4IGYbapfWGwrYJdu06b8FN5pkYnnRhfxezp5N1TgozIaoK8QpI3Bs7jmOyVdciE4VwP6IV5cuQFlF+C1CcoBRrmElgw3+uXHHEsqgK3/c5EjUYgrWsNuvRh577POK2CmfrXosu68xheQWBZ/k5nRVZPqezEktXZ2WWV3VWYfl5nc2wvKazWZZf0NkFlp5Wk0RQJUHIlWyT8y5fmxbpE4ur08X37GLrxOLadPF9uyi1oEveeQ6zr/+2vrKjJ/1rwD8Ju56HfywV/GN5Hf6xbMI/lmvwj+UX4R/LG/CP5ZfgH8t1+MeyrWXHVO5NDbVXEhmwCYHJLW5jm4t3Q9NNj27iYr6AO9GV56RVpZuKO/wzGS57/+VJrrPFSsilRy+sZ2WnHkbojuzlV06E5zzOLS1fNJa/iNMsJ/ysTtzfM23hebH6L8F/2/fUZnbLqbOvtxEPOHC2/bg16WaLXtLty50Wbf43Kip8APrLSJFYbcq27HJvQGjvj0Zd1UUzifACov3iadp0nHoNEb6DJrZKl0Eroa82DS2bFz5dDLzDUVtJ2RnhzLunabJtz6MKbkPOlpRwc9najY5Lsizd49Ja+bnY55Y7h+6tzA61k1AlePreJtz27PNUCpKhojJeVyyXgtQFTrjlPb0nhWl4CNQOcqygYYefrrnAaMF5ZyhRtrlWcImRjDIKrvyZU3EiG9FkI4r4zVvqp7pQCJ1JLCRmy2t5LFQHYXplukRzZn1HdVkpZ/HeNITsjI00if2oLTt42dn6fFKyXXkqqNLE6P7JjxibxLOqPc+W4pJ/9YQlwSRdCX/pPO3yJMVb6B9tjuIOXQ6ivovHVXbidrbh1HBvXzu1uuf2T636Z+591o5A0x3vWQq3Nd31RrCNawxOnUtFQtu0gR2hcZnrc81GPsWXmm9d5wJVuD5t3Dx7/o7O5vDoTLb8jyXd/X9VMfvEfayj0KpO1Esjzu3sogHf8SZReR2ju15D5XHJvZmG4D5CULfXHp8luOHVNt3GLX/jnPkejnNqVXoJ+E1NL0O8xVEMEW65gxd4Eq23NRc0vQX4VT0WYgegD+Aw2NVjx8zsAZiZB8zpAuwzh8FD5jD4GnMYfF0foxcGQBGQY1Csjx079wjIzr3DPIfRN5hn0LvMM+ibzDPoW6wzBEhYJ4OUdTI4YJ0MBsx5HWDIHAaHzGHwmDkMvm3s2gb6jrGL0XeNXYy+Z+xi9H1jF6MfGLsY/dDYxehHxi5GP0aMO9ME/sSMaAvwPQtfA3yfg25GPkY/xVubc35mIXN+bjhOzvkFNr8yPfWXZmR2HFnIO35lIdN/jXNywm8sZMJvLWTC78C9Nz3v92Zk6B9YyPQ/WMj0P2JnTviThUz4s4VM+Au4r07P+6sZGfrfLGT63y1k+j+wMyf800ImjCxkwod6fNF84lLFHZcKxRD/PaENxr5Hs4dUvN4/mjzWrU8AuAoD9HicNcm9DcIwFATge0kA86MwAC0SKFNYljsqEIVTJwNkBBokNzCLH24cT8BWEGNx1Xd3OAW8L4aJnq2jUUCgGxgL9QKhSfCbglZZW/wkVCzldK8nL1VE9ogS0LwnezZOWpN6r/mYehDIA3S740OaoriBKmm76/9I8TVR3QT63F314ALaz/o5tP4CleMqyAAAAHicY2DAAiQgkGk903oABegBwwAAAAAAAAAAAAAAAAAqAAEAqQAAA0ECrwAPABtAGAABAAGGAgEAAANfAAMDDgBOEVERUAQHGisBIyImKwEDIxMjIgYrATchAzKQBhgGXoNlg14GGAaQDwKJAmkB/ZYCagFGeJyVUs1u2kAQ/pYAVaUqOfXYaA49gCKvbMMhP7dE+REqEOEQ5WoSAxbEm9gmiFfos1Q59lH6CH2Ofl5WlcqtXu3MN7Mzs9/MGsA+3qGw/e7/YoUP6rPDNTTVkcN7OFLfHa7jQP1yuIGvNd/hJg5qK0aq+kdaP2xWhRX2VcPhGj6pLw7v4V6FDtdxqH463MCN+u1wE4e1MS5g8IINcqSYYY4SghA+Vwce1xaf0DthlOAcmrKHGI9YMHeNgjqlL0aGJ3um0bdRA3u+jawiWrQzWynhTTGWmNIyVt7R90A9RoRLjCgF19RDem5ptVkRF+Zlk6ezeSmh73c8j/JEJhs519KLHxdmXSxSibMn6em+loFZ05lKy2QySebxcipmKnfJg4yjy1Ek16Ph+DZqs+43Eo5sAwWOafajOCsIqgZyPFuqGJj8Oaa+sl2UVuecWWInpjklwSn3v8U8djBheopXrGxsFdNBwJPAzTdEl2VNVl6ZfJZIqH05FUfCG06W6esqoacTeAFbDru7hHfvwE5u9Rcm5FowYvsCW74+7xWccZdcU9ZbURu+TWo7rF7sjSw179DUbRZK8iLlPMnR78qZlOU0XpVmnmaltN4CfayD9n/T+wP4IItsAHicY2BiYPj/BYjnMqgwYAOsQMzIwMTAzGAOAIwFA/gAAAEAAf//AA94nGNgZGBg4AFiMSBmYmAEQhYwBvEYAAPKADMAeJxjYGBgZACC2wr734Hoh/frbWA0AFN7B6AAAA==')format("woff");}.ff12{font-family:ff12;line-height:0.687000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff13;src:url('data:application/font-woff;base64,d09GRgABAAAAAAS8AA0AAAAAByAAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAEoAAAABoAAAAcnt++Z0dERUYAAASEAAAAGwAAAB4AJwALT1MvMgAAAaQAAABDAAAAVlRDXhVjbWFwAAAB/AAAAEsAAAFKAG0Kw2dhc3AAAAR8AAAACAAAAAj//wADZ2x5ZgAAAlQAAABMAAAATE204D9oZWFkAAABMAAAADMAAAA2JehCFWhoZWEAAAFkAAAAIAAAACQE7QNLaG10eAAAAegAAAAUAAAAFAVwAFNsb2NhAAACSAAAAAwAAAAMAAAAJm1heHAAAAGEAAAAHQAAACAASAAYbmFtZQAAAqAAAAG2AAADRdMyI7Zwb3N0AAAEWAAAACEAAAAs/373BHicY2BkYGBgYjiiHjYnNJ7f5isDN/MLoAjDw/v1NnA6+P8Npm1MMkAuB1AtEAAAb1cMywB4nGNgZGBgkvl/g4GBmYsBCJi2MaQwSDIgA1YAUVcDPnicY2BkYGBgZRBlANEMDExAzAhmO4D5DAAE5ABhAAAAeJxjYGRsZZzAwMrAwNTFtIdBkaEHRP/vYXzAYMjIBBRlYGVmgAFGBiQQkOaaAqQUGGyYZP7fAKqUYdCAqQEAMVALAQABGAAAAAAAAAFNAAAAAQAAAwoAU3icY2BgYGaAYBkGRgYQcAHyGMF8FgYNIM0GpBkZmBgUGGz+/wfywfT/x/9PQNUDASMbA5zDyAQkmBhQASPEClyABY/cUAEABsUJNAAAAAAAAAAAAAAAACYAAQBT/9gCtgIcABQAAAUUBiMiJwEmNDcBNjMyFhUUBw0BFgK2DAgFDf3WExMCKg0FCAwT/fMCDRMUCAwHAQUJGgkBBQcMCAwK+PgKeJytUstq20AUPaPYhkLxMqssLpRCApGQpWySVYhJTEzkBDkO2Y5t2RZ2NEFWMN71g9p+Uz+lR6Oh0FKyigbde+77MQOgi59QaL6nP1ihq7447KGjLh0+QKR+ONzCodd1uI2u13e4Q/03eqrWJ0rfbVSNFY5U22EPn1Xk8AHmauBwC6fql8NtHHlfHe7g1EvRh8Er9iiRY4kVKggihDwxfJ4Gn1M7pZfgCgHpEBozrBm7w5Y8p06jwNzaAiTWa2TtjWftcUy5sJkyVtLYYEHJWPpI3TP5BGNcIyUVDMjvqXmgdMKM6JvXfZkvV5VEYRj7Pum5TPdyFchQz9Zmt13noou5DIMkkJHZUZnLsSlkmq30ZiFmIY/Zs0zG1+lYBun95GF8wrx3bDhhQxXbuiWtW8vZdo+j4y5JdLW6rfQmn/Uo11OVeLFOGJnyRZPf2NEqy0suMrNrDBgvuOD/XgWfY2aMeaNOM7qJiGnz7V9fQYQzFjFFdWPKZSZREMqF/N2Zn2bLt40uaYh7fo/Lic7eH+3fwvh/wvoRZzRvGdhcYDNZ/USExqzc5lwxewpj+ZiKvwGev5BsAAB4nGNgYmD4//Hb7v9NDBoM2AArEDMyMDEwM8gDAMfWBXcAAAAAAAAB//8AAnicY2BkYGDgAWIxIGZiYARCFjAG8RgAA8oAMwB4nGNgYGBkAILbCvvfgeiH9+ttYDQAU3sHoAAA')format("woff");}.ff13{font-family:ff13;line-height:0.580000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff14;src:url('data:application/font-woff;base64,d09GRgABAAAAADBwABAAAAAATxAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAwVAAAABoAAAAcnt++aUdERUYAADA4AAAAHAAAAB4AJwBQT1MvMgAAAeAAAABDAAAAVlWZXmVjbWFwAAACtAAAAOAAAAGyp09IAmN2dCAAAAsUAAAAIgAAADQKBAITZnBnbQAAA5QAAAbwAAAOFZ42EcpnYXNwAAAwMAAAAAgAAAAIAAAAEGdseWYAAAvQAAAh9wAANxyfGvK9aGVhZAAAAWwAAAAzAAAANiWXQjdoaGVhAAABoAAAACAAAAAkBWsBBmhtdHgAAAIkAAAAjQAAAJ4S8A44bG9jYQAACzgAAACWAAAAlrtZrhhtYXhwAAABwAAAACAAAAAgAW0B625hbWUAAC3IAAAB2AAAAzbjZv42cG9zdAAAL6AAAACPAAAAtgbZ/e9wcmVwAAAKhAAAAI8AAACnaEbInHicY2BkYGBgYmQTtT8bGs9v85VBnvkFUITh4f16WzjN/V+GaSbTNiCXg4EJJAoARjULpQB4nGNgZGBg2vZfBkjyMjD8L2GayZDCIMmADFgBbCkEdAABAAAASgBPAAMAAAAAAAIAIgBLAI0AAABwAU8AAAAAeJxjYGTcxjiBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAOMDEggIM01BUgpMNQybfsvA1S5jeEJTA0AUnYMpwB4nCXMMYvBcQDG8c/fKjPRKYxiucmobNIpkSKR5CYDynYyKGcxK5u34gXcdrPN4j344Rm+9TxPzxOlvBQ1niCWcHXTjqru6haOtv6Vza1UNCS1zUy19EL+bIe+5GV9S5voSCnoy/lwcPYnEzZLG79+7JXUdEPTM3LxqWktbmdg7BRcM/y9uVV8AE7UHC4AAAB4nGNgYGBmgGAZBkYGEFgD5DGC+SwME4C0AhCyAGllBk0GOwYXBncGT4YAhiCGEIYwhmiGWIZ4hmqG2v//wSrVGbQZHMEqfFFUJIJU/H/8/8H/+//v/r/9/9b/6/+v/b/6/8r/C//P/z/3/+z/M1Db8QJGNga4MkYmIMGErgDoFRZWoCoGdg5OBi5uHl4+fgFBIWERUTFxCUkpaRlZBgY5eQVFBgYloH8YGFRU1dQZNIAe0wLp1mbQYdBl0NM3MDQyNjE1M7ewtLK2sbWzd3B0cnZxdXP3APprwAEAShA1GHicrVdrWxvHFZ7VDYwBA5Kwm3XdUcaiLjuSSes4xFYcssuiOEpSgXG76zTtLhLu/ZL0Rq/p/aL8mbOifep8y0/Le2ZWCjjgPn2e8kHnnZl35lznzEJCSxIPozCWsvdELO72qPLgUUS3XLoRJ4/l6GFEhWb60ayYFYOBOnAbDRIxiUBtj4UjgsRvkaNJJo9bVNCqoRotKmo5PC7W6sIPqBrIJPGzQi3ws2YxoEKwfyRpXgEE6ZBK/aNxoVDAMdQ4vNrg2fFi3fGvSkDlj6tOFWuKRD86jMerTsEoLGkqelQPItZHq0GQE1w5lPRxn0prj8Y3nIUgHIRUCaMGFZvx3jsRyO4oktTvY2oLbNpktBnHMrNsWHQDU/lI0gavbzDz434kEY1RKmmuHyWYkbw2x+g2o9uJm8Rx7CJaNB8MSOxFJHpMbmDs9ugao2u99MmSGDDjSVkcxPEwjcnx4jj3IJZD+KP8uEVlLWFBqZnCp5mgH9GM8mlW+cgAtiQtqphwIxJymM0c+JIX2V3Xms+/4IUDKq83sBjIkRxBV7ZRbiJCu1HSd9O9OFJxI5a09SDCmstxyU1p0YymC4E3FgWb5lkMla9QLspPqXDwmJwBFNDMeosuaMnWLsKtkjiQfAJtJTFTkm1j7ZweX1gUQeivN6aFc1GfLqR5e4rjwYQAricyHKmUk2qCLVxOCEkXRk6sRGpVum1VLJyzna5jl3A/de3kpkVtHDpemBfFEFpc1YjXUcSXdFYohDRMt1u0pEGVki4Fb/ABAMgQLfFoD6Mlk69lHLRkgiIRgwE003KQyFEiaRlha9GK7u1HWWm4HV+nhUN11KKq7u1GvQd20m1gvmrmazoTK8HDKFtZQQpTn5Y9vnIoLT+7xD9L+CFnFbkoNvtRxuGDv/4IGYbapfWGwrYJdu06b8FN5pkYnnRhfxezp5N1TgozIaoK8QpI3Bs7jmOyVdciE4VwP6IV5cuQFlF+C1CcoBRrmElgw3+uXHHEsqgK3/c5EjUYgrWsNuvRh577POK2CmfrXosu68xheQWBZ/k5nRVZPqezEktXZ2WWV3VWYfl5nc2wvKazWZZf0NkFlp5Wk0RQJUHIlWyT8y5fmxbpE4ur08X37GLrxOLadPF9uyi1oEveeQ6zr/+2vrKjJ/1rwD8Ju56HfywV/GN5Hf6xbMI/lmvwj+UX4R/LG/CP5ZfgH8t1+MeyrWXHVO5NDbVXEhmwCYHJLW5jm4t3Q9NNj27iYr6AO9GV56RVpZuKO/wzGS57/+VJrrPFSsilRy+sZ2WnHkbojuzlV06E5zzOLS1fNJa/iNMsJ/ysTtzfM23hebH6L8F/2/fUZnbLqbOvtxEPOHC2/bg16WaLXtLty50Wbf43Kip8APrLSJFYbcq27HJvQGjvj0Zd1UUzifACov3iadp0nHoNEb6DJrZKl0Eroa82DS2bFz5dDLzDUVtJ2RnhzLunabJtz6MKbkPOlpRwc9najY5Lsizd49Ja+bnY55Y7h+6tzA61k1AlePreJtz27PNUCpKhojJeVyyXgtQFTrjlPb0nhWl4CNQOcqygYYefrrnAaMF5ZyhRtrlWcImRjDIKrvyZU3EiG9FkI4r4zVvqp7pQCJ1JLCRmy2t5LFQHYXplukRzZn1HdVkpZ/HeNITsjI00if2oLTt42dn6fFKyXXkqqNLE6P7JjxibxLOqPc+W4pJ/9YQlwSRdCX/pPO3yJMVb6B9tjuIOXQ6ivovHVXbidrbh1HBvXzu1uuf2T636Z+591o5A0x3vWQq3Nd31RrCNawxOnUtFQtu0gR2hcZnrc81GPsWXmm9d5wJVuD5t3Dx7/o7O5vDoTLb8jyXd/X9VMfvEfayj0KpO1Esjzu3sogHf8SZReR2ju15D5XHJvZmG4D5CULfXHp8luOHVNt3GLX/jnPkejnNqVXoJ+E1NL0O8xVEMEW65gxd4Eq23NRc0vQX4VT0WYgegD+Aw2NVjx8zsAZiZB8zpAuwzh8FD5jD4GnMYfF0foxcGQBGQY1Csjx079wjIzr3DPIfRN5hn0LvMM+ibzDPoW6wzBEhYJ4OUdTI4YJ0MBsx5HWDIHAaHzGHwmDkMvm3s2gb6jrGL0XeNXYy+Z+xi9H1jF6MfGLsY/dDYxehHxi5GP0aMO9ME/sSMaAvwPQtfA3yfg25GPkY/xVubc35mIXN+bjhOzvkFNr8yPfWXZmR2HFnIO35lIdN/jXNywm8sZMJvLWTC78C9Nz3v92Zk6B9YyPQ/WMj0P2JnTviThUz4s4VM+Au4r07P+6sZGfrfLGT63y1k+j+wMyf800ImjCxkwod6fNF84lLFHZcKxRD/PaENxr5Hs4dUvN4/mjzWrU8AuAoD9HicY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2J02iTMyaIEYm3k4GLkgLBE2MIvDaRezAwMjAzeQzem0iwHC3snAzMDgslGFsSMwYoNDRwSIn+KyUQPE38HBABFgcImU3qgOEtrF0cDAyOLQkRwCkwCBzXxsjHxaOxj/t25g6d3IxOCymTWFjcHFBQCrRir1AHicY2DAAlyA0JbBlin5/1emWMat/3/9V2LKg7NlALebDhgAAAAAAAAAAAAAAAAARgCQASQBWAGSAcQCDAI+AmACgAKoAuQDKAOeBBAFIgWMBhAGfAbaB0QHege+B/AINAhmCMQJIgmGCcwKXgqUCxALbgu0C/wMkgz8DVANhg28DeIOZg62DwYPdg/QEKQRNhGoEhQSnBNKE5IUIhSaFNAVQBWcFgIWkhcaF7oYEhigGVgaJhqsGxgbjgAAeJylewmQJFeZXr6XV2VV5VWVWWdWdVVW1pF1dtfZ99R09/ShPqY1o7klzbRmpJ6RkEAjkMSwjEYIyYhLA1ohBCwsgg2OXYEWIwUmvIEx9sbCendthwNjRxAbrNcOQXg3wF4viwj1+H+ZWd01o4P1WhNRR1Zmv//8/u//3xOFqZ9QFPo+vo8KUWnK7hdUHlMIrcFFGlH0FfisrVM0jbcojEN4wyoULYZPVBAt4ZzZ6fbCs7jVjOgarXE5s9Bpd+Eb+rdnmGBQLNFolTVUTo8/ltNDSTMSSuLazpdEERsKjY5E4nRSZV97NZqJ6dFMlKIw9QpaxilHljyV6acsQxUYIg1GFKKeoBEIgzaKJU8EnohQaKD2PtR1ZIi+7gra3k+zol+SEcIFX1mL/MF+mhED7vdAUYvg0T/zCz6J51nfD1oJiVH+wu8TnK9/2kxILMh0BAS7GZ+lJqgZ6n0vN/KY96G11RdLm8f7JVkRaZbBYDGW2vYjn09al4KY4/jTAQHzvLpORA6hjWS/QC6Q31ieu/sNHvNuPNFPU9TM9NQkLDfe67SbtYpdMrPZrGVqZlblRyqWBoq7pu7ldj+Y7SnkvbqKy6i196lJnmkVc3wLJ+uHW/64pNfPuW+peqPXG2/Ub2mKEVnjiue8d6Pe6PZ6q+d65366+Hg6rPgfdF8XP774eEqXePmC97b48Y9/nIJoQfvRMvoe+C5CxfuRIPKCiHqCcpzWtTEfqyCOl8BtNEQOuGgW9YiE6HuI85scaKX4s2yW0yOsEsF9v5J+e5hOKkqaj389mUJRlSLrUH9z7Wv4NvwylaKifS3krgOvj8OPD5ZNsgrrhGIRDDPLOCYga2IIjwj6iqRq8/pYdWFzbSKoSj7ef/LK+N1iVwjP5Q7fufTB7ZMTmbDgC7Bc+9OfXr16VHDXXL32NfRtWDNBqX1pd7VawdFJkxjXC7Oo0y56KQBrfdtdRVJiT3z4Dk2RyMLoOXcNNaBI63/3zqc2VTGgwtLwNx+gbsYtHKaS1GS/F0U0IyBE4TWKoZnHyZJPcCymKYo+Rt5p6gzkBE1tghxJKmFm82aW55MVai869qEb4gG36p8o+JOyxphP1OvPFn0GfMy+Hx1Z/JSlS5z0zxY/Yzrvrs7PXXsXOku9l9Kokb7hh3wZ+BNjtEU50WrFTJqPV/Je6ve6vSEMOPtIRVbjC1maTxp2JmmPLr0zIui+8Awyw4l6wVnjcSTjLDpC8WQNDPpS6Bi8Ieo0+fUg3MNT7BjNR0GxXNZst7I4W9/5V/U66oPYi87f+M/wchTk9FPhvgJyUVtwOURtaE4sDGTrgkRHK6lIttZOLyWrqXjaNl0969dewA+Db+XrfFuwXN/yyNPNART8cHCHlVVZC6LXJEXW8NN+9bXlsC75VfxtNUIRDLt47f+AH++jghAtoNXAXA6KOrLJ1EbeyocdCIPQJH99FnI0wrcLOVNCuhZpNWcRbp366IfXTjy1vH9zoVkZu3OuVm2en0PPb3//vQ8dOff9K/efnt+86ytH544/8PuuHg/By7/D91AjVLlfFBCmwV/wQmN0BVbW1hli1zOubQq2aY6xEC95iBfIxSkU5khOdnuzmARMGqTg6VYTfc/+dal8ZrvbykpiJDM3IiqiTNOPHi5ls0YW/U7BCOgI82NVTQwwWH7tGsgxAfrPgv7T1P7+bBMyHpEY5mmGv0LxHM1zlynEURyiiFjsFsWyYBqOo7YgoIltctW8VTVNy8enQTwC6EWwCz+QDzlp5ljKvebVHwnzHA9p12p2iQZ4Kl5bq4wu7U9lAr5ErpS2l5rvPLfUScysq3zSzE2f6x2+1z601Nuu15en0/k5mU/mvih3Z2qpWEY3lCPZSi0yujHbng7NdXRDn91X21of3Zi2otVxJhaeacWIzddB12XQdYI60J8DWzMapAnkLMcyLMdA8aTBA/gKxVA0YugLoCu/RfE8KAzg78VCLm81O6VcieiLNNCB4JUTc17iamlEAgKU9nzV7A4MQG500w0vz+8bv/WhqaVbW7oepqV61j623Jgole3Cwbsmmsb0TIAVQ+bluzdvRz9p3JYeW9q/VVqcWozLEYXjo7HEwqg1lcocq5t1qZSWg0bt7CE3rqLXTIxBx1V0sG/YiGNmEcvNd6EMyoBAQQgqdi2BeLS6+qIfamKb4hiW4dgrlI+FKgpOZxjQl2VdBkGyAF54nrqDqL8OmRGG+rj6YhCebb7uWSjANIsvuH/jTZ7U/j9WTf4TV+2PvulDPBiNp+4eeth55AT81w+a8XKsZpZyOQFKed5xdHEXrwuDQCd4BeWR8bCbRDrfjKbpKIl/7xLERavp3IBxpxKUgyXBEDWmMC3ly/OqyIshgWEj7dtvPpYUkqKmr3anbi9UAzxOJRQhKGlyiPPjkGQYfp8YUkJRFv+uGZZY+dNh2u/3aQGfzNCidert/3zbCEu+zd8/ePRoALDE55vP1RJhkU7awjITYDUnRo44eXCWalLL/QN1RPMZCHcJcoEmuQ95ARhEEAlfBvMAEkAqcBx7GvwjDaeCaY6bVsky3dTfqyUARmlAIzfsB5yHEM9sUycFz7GC9KW7V04nEmosyiasiH/tkcroLTMigDUzT0tBEYl2+Zf1Xn/lyCt3fGxlIlOMhBJyOOmn71spTHSCIT8nIUmSsJH9dvwUwfH7QKdViHuL6lL39v1xkD+NgLUB95MhaixwN0Pji5DbkOrsBXD1AOcJmLkKJft59zbmylved6LvL5UACGyT51O7qgMWe+72VAbtOaJsGvPtOiZfOF1LA/51sfy5swunOK2ZH31sod9JxqLhkJRefya1cEt1wVQOcGo1M36HKnBqMbX0rp+fe/bklt697Xx1YqWTNaxkMC4G339Ly2yPRYRYPt5vWFE1U4q/k/h2G+zwHNihQ3hJEWEmDZ0BYBy0B4gGEOfgjUMXwI3MFs9iJ+wdpSyIbStn511g4zHtaYU8nlB01HEhDKId1Ii6zIlAOFEcPxf48aLfCOqhWqp+SFQSGV2W6w8UAgHF5A+ynBjI4pnJZCakitF+XPBLOXwoENh5ZedXJUUV5h+euv0S1hPqvr4iGLz0tN/HptORRCSe8nNAnQ6DXjeBXlEqRzWo0X5NFzBDiiZNMSzNXBgq3Cw7cJRlWeUySG3sxWevjgZRyvFpVCQxyjlFvMsPfcbq8/dsnL33psLkM3es33rnTG1a6o/uv2OuMXPn+Oz0yn3zvcX7/2ztw4fmDmzrwV5p/8Or49NHFHn/XxdqK7VCbfmV4vRt49XxWx2OcQpkHwfZC1Sb6vdnqohjE+AF3c24QdUBLRHnVB1my4WjvVQr5gq5fKFLwg1pXiWp07vp5vgAFKxj9xLfdhRxshCP+9u1xuX5oFZNx4xoOKKEraUPZxYPVedzyhfOzR1fOLb8bjqgFRPr59HLmc2nx6dWkaDm4ikzqkYk8ZETrWxrLHrXM8dPPXhxlVfT0dBZ0InwuOfR16kAdBCEN8FXYn51uPvULMt0edMeONBDDO/5Sio2UjWimTWP6qF3G5VMxKikd17eI33Y4bbuWmmq2LciLlui4Rca7Ibx+3dXpzaqb7EmRLJnob2l1y/lJDU6mYrEaHuktyfAV9ffHRFCgXiXNhQuWXP5LzWOj+EqpZNeJnx9L1Pa46/FPFkr7/mGhd7if+qSKO38NBRDjyg+MRLf+erPtVOy5v8PYigi/oVPhdd/8Q3R0fUM9T28iD4PwCtTB1dfjAF2aSxkLqYBsEGI04QYqgSrkgxh4JDX2/A7xvQxeKPxaXLnwRP9kM9HUT7ZJwYFh5VzQ6w8MmDni9WdT9Za6JTU2vm9VhWdR59fXPwkIeqEzY/j7EDXwA1924Bts55d814fFWUjOBvbedRREh39uUb0RtEQag6pGSaKS0RX8C56Fb8d8qJM9frtEvJxaE1APgoKF94GwNXWeRYAGIgwgxwmXCwWy8WyZuXaqpob8zuFx6FZUFqhv3aYMPlOSKWDUXCBhpdiuEijV6t3lcOsjZ9vKqpavauCQmyVuubTFUWVRUENqe8W0VVgyjEenz+PRTFrRHkaq7KCsaK+9gssfhNNoJ0/JjyLhkik8AK4JAYVp0G1+qMRyGqwEQtcmeW2GQQeOQ25IK3zXodE5M8WsrVm1mx6JXPA5nMuUdzFpDpNJgAEkerY/YTV9534ealsXtJK9k/nl06OF8fDkKVW7L3N7eVjTSgUxpMTj8yd+tOV9wHT/6mRXWzN3Kr6J3/CBuIh6QdHfibGR8J/ddjliOcBjy4BHo1RM/3JRhEjlgXX4r0pEjAHGoo/QuwWaMM6UOSAksxs5PN5yyo4lQ95hLazB5yzTgerO42A1ylFZwddLY8PsSrA/ljl1i/PTkZ7Kwrh9lOn27ecvf2Tm0tNPkAriizT6OvhQApJwdHxHz+ycFrZ1wJGPzNdvnL67HceHvOpjBbyswLETwJ8sA98EIFIyvUzQzZnh21eaqtmixQBAp0Dk5ukDoDN3eJcQbTTxe07enXjT+xy6pIWVuwfVvqmvMTr7eKZS2f69/fRs1t/9G5iXRIbhX3zHa08XdiJ3vVJYtM7wabHwKaT1KN9OalhjjYhDgSEeBooSISMn4BRCBwrXKEEH6J4gSKsit5iEGn3gLKiLTwYP1Xf8la4idzvoKyMgY1Ikz0TUlDPm2bYP2CqhHj1uOu94HYopA8DnxFK4vWv3Z4XgbimhLQabxTZibnVkyc+trpg0xItp2U6z6dyNCub8c79a+2xxtGEWSo/VPpfioxfMqzGpdvP/uvfqrNhJkRc80w6FfGLRi66/ZUj/ZPHl4ysG3dHwV+b4K+o6y2K8jglmaYR4CI1g2RHNut6y/GKTsBqN0uAQ+LN8gOX7iyVd/6b7XywUdrGS9mdqJF1Q99ZCxo+/FFYa56a7U9NZVSaoUhnC78AuwWjUsKWHwmC5CEMPs0hZ/35fqepmu1Y3Gyr2QAY0xFjF1gcOTgZEUZPRpeFGZS7/lcvlaNprLegLegSq360HL4E3NY+VCqHHkQj4Yd9UR5IO+3zo4e86+FL9bIxmqBRIIDCrfMhe9RVysGhLPrRzMifiwpC8dLJxw1lJ+9dBm35EHrvcyOlY99IO3rnQO/HQO8xwpGKMplargHPoyhuy4c4TlonWYK2vAFmWyf2LrazwkBTCXIBeESRzjm2vxGhouHWburgx8ojj5LxrF8O+TCeRg+qdvnukp25BO+lToyeRu/SwypcAk1e+5UsYUYUAugXO8WBp/zJHRn9F6KLU/tu9TieAvn8ZrOYYrng1Pe803W3QwPOjYveoIFwVDeo0f/IHL/7zPJyLHvsvtMrK8vSRL2/MZNQuvXZg9P3rtash1FucnPUmp7c+RFb+auGnWxsjv64Xkw3QRaQCB8CO8ZBllq/7PWJ2xximDeI2qzlxK3pTQUczH698XgyE3DQ/NDVO36rHi2VH7XL+UvRkv3K6ury+Pjd0xdWzqEf3fLUtwYGOrJcGv+724ltUmCbPMjTo/rUIy/ZCPmRhys25UOkYF6h/BSCiNoWALK50xRxNs9gQiJp5PU3Y29x7y58ug30bq+j7JuZnsxVHQXtXGC3EyZUqgc48ibK6u5whPQ80PkSL9G76uf0TjYYTaiivHlLF4LlIS9ovrV0dGmiICqBqMQqknlgfHy5s3zgzJbUaHBqPmnUpoWJHw5sszrZ2jIKdbE3FQm3FB86nGv98KCTA0+BwR4HWxWoO/sBCyA4wWBS39yxxQhHih2iLpIiwZ8GXYd1p8FKGe8OfOVNbjnRD/RyKtgjlHU8ThC1d0PCDLdKpPHl8b28kZMfu1S1yy+U7KlL71cYRc7RGhMMSugDNo3+2jDmBig2pwQN1n8z5IxBB4lOX7j2D/gjoFOFMOARqG5oDbpbMmEG5CIlz53xtgG3dCvrNgoVhJw6XOzQnUHSEgkjuqrx0W5vL5M/Uo7u/D1hQhkRQQ1W7W27HEUM4qe/rCgKfCMZ/L8B7JX0AfSprIs+fn3nX54cQep70M1eCoOc//7aC/hD+GVKo0r9PNAK2uGNpMPZppx5OMnl04RBHcya3TGSyqxH4cKzyBOQzDJ/VH7Jpl9kVe0lu/y5L37MbmYNqHbf0QQj+9r97lrJay+gH8JaOlkrvNsVAHfZppzhNLU7m4bobTlrOfg2HKjgGYBwKSiSdb5w1SbLdpzJAn4KfMEKg7naCfTNa58DHCj+IXdu4TfMv/+QoxYYj2WjbzZ2vttooH1bzggccvmd117FI+gliM8WdX8/EAsDWxCgMJEIzTrDCpZjOJYhI1eVDB6cUq8Ck2QY6g7kUuFkvwg8jYM+/cru7W98J0RrPmeVwtANe7yTcIM6Ku52SEAOHH5Ge8kKxHnQGJNpZhePaGJ2NFaUmc50a/4JwEw6nNCY/YweVVhOknJfjCcaW1xca2xdFfZHulFd6BxeuvCtkqCQIdXOrxVfajUk+S8W2p84JFuF33bt8Oi1V9EvPA7d6TdVwFMNMTQQUQ9ZIaoZht5yzeC19SHS1uebedPlCIPx0q43ZdQdTOe9Xh794qmj42u+wxN2+TabLrfbUzcdsFLdCxmzex7pF75x9KZsBq0aJL6+VDi5UO189LA1/RHw6JPgJxX8ZFHdfis6mNGzNGbB5AzNMpcH4yGVCDoQz8zlrbzlTR2IqYu7g7GhyZC+OxBUZ+KNw4fszme3OvNGVI2pcmbuwe13tIL+YPQm3fLJpdbG+a/2SklTD8eDoSc276kLzv7rZZDPBvtB90Qt9ucNRDNhxGMIJZZeozie5cnEk6aZ0yCdtMsZ1XUfIsb0wgNio9g0ITjcIefrg6O3lylvGiD2jQFSAJi72aYf+I0h8pxj+J3u60IEUx/07J+jqlSz34AEoTFDk0kJZjhMJiV7M4dd41tmrle0vMGcp8uu/clsFvJ/z/iuFlCUXC8kRpp647Nnuou+sjX5jqzE3eW64dBIono6nv6O4w46otc27/m9qZpiduQEH34buOPvw7EDEwQFatcMPAWy7aP+oe8ndaQIfSFJbDJtb1Bu5QH/cBx7EWQXtihBgDaXtO5A0IhzIIuZO8BhcWYwaH+Tx6S3eEz7p6wG9MCre+QRmuWu/MZnyJhcmp02TQh504qafodHerHTaTtDT48e0O70sDA8tRrk7Swim0Vk+xdPpTU1xowkQywtbtjlY/skLTg3Ojad0uUEFxQn8xOTJXueIVNaNhSrpicncSaejqo+EbFaNADNxs6nNju55VI2ktU0WaD/EzpgZMNRNhjQInldsV3sWQA/aRBbFcidJ/qKbWFnKMeHoNtHtAfE1d3hHMu6apMmWCWZ5KBSaHdGFyeA3ABU4BjHbIOZ3ls+AcBsFcNWIV9wgJklO+2DEZ5rn1m8D92I0jIaxrbPc8bYLa34yFgipYeiWE0WpkYk2mi3J9Y+enSqQOuA02cB6bbNkd72RqTRHKH9KehOYoqPwzErItyfP7py/msNKUSQ+kR+6kObdu8jbs077uHLFLXQ358HdCkhBEaiOEAXHpEjAMPoQqYFAzu524MEXIoA1fHC0PagM4eDwJAYXsJviN0D0th1cAbb6shENlcLTNhGo5hKKSLDqaDU5ZoDMOXG/rHp8aCkWgFoT8XcVX+tazfyWup3bk2Od09NjCmqHJY4Cf3SwZkvF3ud7mfSol4vBgNkhvAU1KCf4eNOHEz3J4A9sMjFd0TwneOcLUCFqDcoRHtIb+XyNlTW63ZAoOVz435vtw8Uw0MaXXf25me3ztvjvsNsWm8pjKSa5GsolomkY60gzYBC1RFVi6QgJ65aF8eKYf3PZS5ZbopBw7rYLIRq05uTXHKsLPgE9JiejCuhdMSbORs4BXrZVId6z0sBSOtBv1Ab2uPB6B1DKnobvKoTo3cMorp+457QWz/gBHUuX4jmTDeoh8zgGSE8sBDe+4nvDVvlceX86rYb0PUF4SSTT85qDCcFzbetVKeZ2YFJmvvv75NQZoDvHCmhe2TOHK36fbyRfVenLCm/3DUIora8WF6iPt0PpUGfLEIc9EBCGFE+xmsNOlA0IaoBKgUeCZcpwccLvsvXVdCBwj7fbown+133OWKi/5cHATqXDtQiuSKwmYjlTW7wADuL/Ou4DU93vVGal0cdMCLNu5aNeIUZ27LRM0tT7MPuHuNll/esmRNHloByq7EoU+uiaCLBbLNaIB9104avjlfaVVHnmzzZWdxNmJ3/GOqfqli3REJxhVHpLoolE7SxIeu8Jh0JBPzEtv8GcugvwbZZqt6vhN2zJwwie+hXhpjcUI22m3nLPc8wQITw9RyDkAqiKfpLJT2Zq68z95yyy1ds+iKT1PlKgk/mrgrVXnlsVFLQC66ckxInh+lTCZCnBb6eAmxfoU70gzMTkNL1pNcAFsDLOunc2S2ew8Qh5GCX68WU4yDyI7cF8MapZGcs5DR+ITJmC5j5aKlYqoR2051swfScYCZo5gb6jd/3YeeEBtksi+6hWzSCRySVEXRFDNeTejGbSASFQFDLWUryuq+yUPJFWEFEdn0m1JrNjdqxQCIbiCCflNFzncfsUmZ28njNqoQM/snGaWPvK/eBWur5EVoKmNPTY6NjD83HQqRfBPtsklwA+/TJblQdbBFFFE/OLiEfYnxXKB+PfPxl10pk/qu6AwEvaq2imc+X8sWhTfHCwAz8bo2/Mcl71+u/G6uxfjlbDkxkJkfzBb+sQbwu0mJAZxhOlsxwINWcCPfm6p22KmRjbqRK+5dqlp793Vr55Mon7YQTq9FgMN7TVdFvCHN6t9cbH+08MxZQnADF1CMQn78CfQNUdHiudB1vtN5g3+i6JuJXzxyfPfjbJ6YOLViFyXsL1uS9KPS2P7ht8cLXj91UmP3QofLkRwjuBq6Z6NcOrxgnJ2qKiOHIrgAjMKxwBczL7MaWILhr7w2Swnij17GASllm09qjUkBgr5uwuJa+0a78MB9Hv35iM1pR8WitVH7WLluXaF3TWBZMqomp9kRsqtfZf2CXkCPj7m9pKv09Z/TwSpBPr4eCfsPfj3Q7naP7r+/ZPnDNxHHQbwQ0nOz3Em7vikn4DEbU6m6nEdobxIedagmamWNOWRho0xuiN+7RIHKSiR62/N+U/9guL4122uNrTx2Zrvh9kj+gMk+O2/sHXdwfgeDfLRy96Z4XO1FVVIKc9Np/Rd8aNHJOzN8OMT8Pcjt7HjWIbMsHkKAhaCjIvgcD7fcVaDAQg68PfCf3cwUI+Ly75zHUw70u2nfP+MzSZGvc6e7msyE1Foo0p0dLJTfAF5iUqAkcK2omF4rXkpkxf3d16gjazKYioagcO3zTZ0lYszIKyb5MyohrskEbDXskG5/sEF3OQjy/6uTvvX3/GGLgTrw73spRDAvUZbe8s+yAt3g12sE6a+gulhT1N7oN0LPdrJQLFrSInHty0DvYtUfgydS1jotuk+V50IlZz0TOMDaaZtB/L2Umjn8lC5VbSS70y9G4mguHJwthS82vtQ6spEK8ovgj9dF0JFRuaUYjHf1YZr9mbpnJhKQpeiRYkkVNZJhAQDLKoXI11SgZBhuWQ35ZCWQDmirQXChSIvb5DNjnb6EHs6lP9f1kLsQhjh/0YNYQddWc+MSnmUFbM0ADr/Eavld603v/cX/yBBnDQHKbZm6YL3qFb+j0r9sr7dFF9Lf3Ljcm56EXui3vS0thJks+9hkrM61CZx3IXc08OF5EcSP7CQuiRnoCOqAd2We28wHBdx3ez1JPuxVQakDcU4gFoCejgqRzgdu7cMK9jQyYfJgmFYHFPvayswtIJuBkwMSyQ6Ooyo13OgjnbRrecDdEVb6UK1pQR/RBCeE5s8gN1xEX3bzZvlswBofEd4cQNKkfvCqkzsWqvfq+rj+Qj9OMIpqJuXKmFmyVV6oVfzKoM/OMGtZo2if6c1eZkbrarlSmp3rPGoHQcb9fMOS5A9Wibn5odOLLL+QUlZN3fiH7jM2AIDLUrv1iYL8a2VOxoREgcyCADHJOiLQFLLqhL7CLOVDQ23LEQ3pdnz+OHrPQ8DUQuYRjkeqpyemNnk9XqzJvmEdmC81Ae9GaGVEZJiLZ6Hz8wpNn5/e1no74YnYrbuQeGMuHU0+WDxx/4FhQDSiy7sh7BuRdB3mXqaP9QF0nUxMEDvKaWo0jmwLqOpF6yIUxx2du2F7304m+fGB+crxaLuaTMXJuOVbJk6EWN9gCIKoVvW3GNO3sMA77i2yVcV7N7+4euQaUwEp9fWHEGg/lizGNV6SQgRWJDUZVSU1Isz2ryUeDCsthlVPEiYZZEsAGxfo994+PB+Jta3Q0WrbDKUzHmUAI+dVcLFtfscz5qz9IqwEUNvh5/UA90b/7SisR8gmyvlD7xnAubFCf7YcqUJ0nkY8JQb9OZtWDPqANLQHL+C5SbIBhA5epAGYCgJGYpvE7hKEa7r/ehF33MdI93vAcg+nLb/rgiX5oY23pwMxUwcxBvwwlMuhO4nLm3hRucMzHaS8L13VPHq0aBJpTmBwfRPZ66O3l8UJ5arQ7Aj1VhEuE60KFTsaMGZn0mOb20mSuMV6ZDGpBXo3pXNyIS4GknIylZkQgXcHc1eLbKxWQLxNT4nIkk/u6IMYzjaog+IzSfZVKpxpJBWlyRE+PK+W3TYuJkTHb7xMcexs4CfZeon7sYc8BMLqOaF5xjj8lnQu+vQsnBjMvluEZlndmKRhdpIjxfC5zum6WMuhT3b8+OvyYe5j3NzwHzr7xEZ/PyWZui3rTx8jpULuYz5NO1yQoxnpMYEBiBkeyhlLfwzQ8nPy0e5SOXEAvh9+7WZsSwyIHPvAlWrcqo9mxpZao6vkgob5mKDuZNccididRTaXkQJhmVRHgTVz/YLeipwLggJis37sWm+73Ppj1R8aKAUEwAvVusVaKTLy9NmvWDvUaK8GgQkDOwwkyX52jbu5v6NCudaEfds5D0ywHvRtDCzTjHEKgSTeLfJRvcA6cRzc2s3P9shXK5StQ3/x7p2WHzoKTf4NThLuhG3H7AO/U7OA0IQlZ1T7WzFVG1EI0EMl184WZY+GQOhLWSyATROThqZG6qSk8HwyamcPTR1JpoxAyZhUnnp+Prh1I66ZqiCv5Qnsj7POHcknBJxjZM2k9HhRYIzB2or2SZmVYT3Di9PFrL+D34JepCXISyXZ7WJpMnMnRQqiMGF2gWIpiT3j7ECx180TPzKSNeFQPZ8npKlbbA8Sed76i03bOADinGCSa4KDjen73KCj6k2qkslgRWYHxBUbqSaGQ/XiobHy3XBibT/npsjxfcH7zp+sJwW5mWaVqhivRLBAkLId9ZJdq5av3A22X40rwq7PpdMn9tcKJIQ7kpiqgVxb02kd2WFJQ3Z1TEDTrnG8HQs9SoB+oe8LrijC6ed/0aL1azlVNwvkI33X/NyDMD87wd1ugIKjVc4LbQSRP2WYae/hPlMNZNXBzfkQVOT+NxWBw6gNlJfjBGNKS6v5CgBUkf6qWCNgVvbRSCxqgYkrMorYcwopsdKMFiWub0qwhanQDb7ytb8TrSimaHc8LYpgDxRmlZgbr7yjwxA4U9X8BScq5BgB4nJVSzW7aQBD+lgBqparprbdoDjmAKq/8Q6X83BIlaVBMIgiIqyEGLIg3Mk4oD5E3iXrvo/QR+hb9vHYrNT3Vq9n5dnZm9psZA3iPb1Aov9EfrPBGfaxwDU2lK7yDT+q5wnXsqh8VbmC/FlS4id3aV3qq+lueXmxUgRU+qEaFa3inpMI7GKnPFa5jT32vcANf1M8KN7FXG+MUBg/YIkOCORbIIfDhcgVwuEp8SOuEXoITaO5dRJhiydgN1tQJbRFS3Nk7jdB69ex96Vl4tHhObaaYL0VYYcaTsfstbWPqIQY4Q5+74IL6mpYbntrMiFPzsM2S+SIX33UDx+F+KJOtnGjpRtOl2ayXiUTpnXR1qKVnNjQm0jKpTOJFtJqJmcltPJbh4Kw/kIv+9fBm0GbeKxIOLTkDj+XiKgxNajyiooYM95Yteia7j6jPrW9udca2xbZpmpGCI8rrfA4u6V2kSNiM0ifgjWOlaLGPDtOaND832TwWX7tyJL9ZOJd5tEqmtASe47Fqv/Mv57/fwKvY4keMyXXN23IIJV+X7wqOKTnXjPGP1IbjSWyFxdCemF/jgOJxDBjF2TphS8nR7cix5PkseszNIklzaT15+kB77f+m9wuM6YoVeJxtzd1OgQEAgOGnr3Qgi0KIUltlMwdo1joxs1Ik0p8I60a6sq7KSadf3wX0bu/xIyBc//6E32791yB6Q2DTlphtcTsSdiWl7NmXlpF1ICev4FBRyZFjZSdOnTl3oaKqpq6h6VLLlWttHV03kdpz514/kh4MPRoZezLx7MWrN++mPszMfVpYWvn6A4AOE70AAAEAAf//AA94nGNgZGBg4AFiMSBmYmAEQk8gZgHzGAAGwQB4eJxjYGBgZACC2wr734Hoh/frbWE0AFOFB6IAAA==')format("woff");}.ff14{font-family:ff14;line-height:0.922000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff15;src:url('data:application/font-woff;base64,d09GRgABAAAAAB5QABAAAAAAM+gAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAeNAAAABoAAAAcnt++aUdERUYAAB4YAAAAHAAAAB4AJwAoT1MvMgAAAeQAAABBAAAAVlZ5YYFjbWFwAAACdAAAALIAAAGaYFO532N2dCAAAAqoAAAAJgAAADQJ1AH6ZnBnbQAAAygAAAbwAAAOFZ42EcpnYXNwAAAeEAAAAAgAAAAIAAAAEGdseWYAAAsYAAAQugAAHLw0zy1PaGVhZAAAAWwAAAA0AAAANiUzQfVoaGVhAAABoAAAACEAAAAkBMMBUGhtdHgAAAIoAAAASwAAAE4HeAMtbG9jYQAACtAAAABGAAAARnIUa35tYXhwAAABxAAAACAAAAAgAToB/m5hbWUAABvUAAAB4QAAA3Xq36OBcG9zdAAAHbgAAABYAAAAZgN5jZRwcmVwAAAKGAAAAI8AAACnaEbInHicY2BkYGBgYmSTMnfVi+e3+cogz/wCKMLw8H69LYz+//K/IlM4Uz6Qy8HABBIFAEJWDEx4nGNgZGBgyv+vCCR5/7/8v5MpnCGFQZABGbACAJFDBhUAAAAAAQAAACIAUgADAAAAAAACAB4ARQCNAAAAaQFlAAAAAHicY2Bk/MO0h4GVgYGpC0iLM/SA6P+bGB8wGDIyAUUZOJgZYICRAQkEpLmmACkFhkqm/P+KQJX5DPdhagB2pAynAAAAeJxjlGAAA0ZfEMHAwMTLMIchlSGPwZTBjEGGQRoIDRjSGWwZkoB8TwYtBhYGfgY/BjEGKwZmIMvr/0sGRQYXhjAGX6BqXgAVRgipAHicvY5JDkFhEIS/Z54988yzZyFOYGEv4QLERmxEJLiHQ4jhAGItcQGJvYO0n2dOWKqkqlPdlXQBVkxm0bhgppx29TYmaqbR1caDQZkqNeo0aNGhx4ARUxGVMShRud2atOnSZ8hYRE5ylIPsZSdb2chaVrKUhcxvv75Ac/AIaBYlls+AWfkOm12Jw+l6y7gVPU/rBZ//9R4IoofCkWiMeCKZSmfI5vJQMIq/mv0PZ4hdJDAAAHicrVdrWxvHFZ7VDYwBA5Kwm3XdUcaiLjuSSes4xFYcssuiOEpSgXG76zTtLhLu/ZL0Rq/p/aL8mbOifep8y0/Le2ZWCjjgPn2e8kHnnZl35lznzEJCSxIPozCWsvdELO72qPLgUUS3XLoRJ4/l6GFEhWb60ayYFYOBOnAbDRIxiUBtj4UjgsRvkaNJJo9bVNCqoRotKmo5PC7W6sIPqBrIJPGzQi3ws2YxoEKwfyRpXgEE6ZBK/aNxoVDAMdQ4vNrg2fFi3fGvSkDlj6tOFWuKRD86jMerTsEoLGkqelQPItZHq0GQE1w5lPRxn0prj8Y3nIUgHIRUCaMGFZvx3jsRyO4oktTvY2oLbNpktBnHMrNsWHQDU/lI0gavbzDz434kEY1RKmmuHyWYkbw2x+g2o9uJm8Rx7CJaNB8MSOxFJHpMbmDs9ugao2u99MmSGDDjSVkcxPEwjcnx4jj3IJZD+KP8uEVlLWFBqZnCp5mgH9GM8mlW+cgAtiQtqphwIxJymM0c+JIX2V3Xms+/4IUDKq83sBjIkRxBV7ZRbiJCu1HSd9O9OFJxI5a09SDCmstxyU1p0YymC4E3FgWb5lkMla9QLspPqXDwmJwBFNDMeosuaMnWLsKtkjiQfAJtJTFTkm1j7ZweX1gUQeivN6aFc1GfLqR5e4rjwYQAricyHKmUk2qCLVxOCEkXRk6sRGpVum1VLJyzna5jl3A/de3kpkVtHDpemBfFEFpc1YjXUcSXdFYohDRMt1u0pEGVki4Fb/ABAMgQLfFoD6Mlk69lHLRkgiIRgwE003KQyFEiaRlha9GK7u1HWWm4HV+nhUN11KKq7u1GvQd20m1gvmrmazoTK8HDKFtZQQpTn5Y9vnIoLT+7xD9L+CFnFbkoNvtRxuGDv/4IGYbapfWGwrYJdu06b8FN5pkYnnRhfxezp5N1TgozIaoK8QpI3Bs7jmOyVdciE4VwP6IV5cuQFlF+C1CcoBRrmElgw3+uXHHEsqgK3/c5EjUYgrWsNuvRh577POK2CmfrXosu68xheQWBZ/k5nRVZPqezEktXZ2WWV3VWYfl5nc2wvKazWZZf0NkFlp5Wk0RQJUHIlWyT8y5fmxbpE4ur08X37GLrxOLadPF9uyi1oEveeQ6zr/+2vrKjJ/1rwD8Ju56HfywV/GN5Hf6xbMI/lmvwj+UX4R/LG/CP5ZfgH8t1+MeyrWXHVO5NDbVXEhmwCYHJLW5jm4t3Q9NNj27iYr6AO9GV56RVpZuKO/wzGS57/+VJrrPFSsilRy+sZ2WnHkbojuzlV06E5zzOLS1fNJa/iNMsJ/ysTtzfM23hebH6L8F/2/fUZnbLqbOvtxEPOHC2/bg16WaLXtLty50Wbf43Kip8APrLSJFYbcq27HJvQGjvj0Zd1UUzifACov3iadp0nHoNEb6DJrZKl0Eroa82DS2bFz5dDLzDUVtJ2RnhzLunabJtz6MKbkPOlpRwc9najY5Lsizd49Ja+bnY55Y7h+6tzA61k1AlePreJtz27PNUCpKhojJeVyyXgtQFTrjlPb0nhWl4CNQOcqygYYefrrnAaMF5ZyhRtrlWcImRjDIKrvyZU3EiG9FkI4r4zVvqp7pQCJ1JLCRmy2t5LFQHYXplukRzZn1HdVkpZ/HeNITsjI00if2oLTt42dn6fFKyXXkqqNLE6P7JjxibxLOqPc+W4pJ/9YQlwSRdCX/pPO3yJMVb6B9tjuIOXQ6ivovHVXbidrbh1HBvXzu1uuf2T636Z+591o5A0x3vWQq3Nd31RrCNawxOnUtFQtu0gR2hcZnrc81GPsWXmm9d5wJVuD5t3Dx7/o7O5vDoTLb8jyXd/X9VMfvEfayj0KpO1Esjzu3sogHf8SZReR2ju15D5XHJvZmG4D5CULfXHp8luOHVNt3GLX/jnPkejnNqVXoJ+E1NL0O8xVEMEW65gxd4Eq23NRc0vQX4VT0WYgegD+Aw2NVjx8zsAZiZB8zpAuwzh8FD5jD4GnMYfF0foxcGQBGQY1Csjx079wjIzr3DPIfRN5hn0LvMM+ibzDPoW6wzBEhYJ4OUdTI4YJ0MBsx5HWDIHAaHzGHwmDkMvm3s2gb6jrGL0XeNXYy+Z+xi9H1jF6MfGLsY/dDYxehHxi5GP0aMO9ME/sSMaAvwPQtfA3yfg25GPkY/xVubc35mIXN+bjhOzvkFNr8yPfWXZmR2HFnIO35lIdN/jXNywm8sZMJvLWTC78C9Nz3v92Zk6B9YyPQ/WMj0P2JnTviThUz4s4VM+Au4r07P+6sZGfrfLGT63y1k+j+wMyf800ImjCxkwod6fNF84lLFHZcKxRD/PaENxr5Hs4dUvN4/mjzWrU8AuAoD9HicY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2J02iTMyaIEYm3k4GLkgLBE2MIvDaRezAwMjAzeQzem0iwHC3snAzMDgslGFsSMwYoNDRwSIn+KyUQPE38HBABFgcImU3qgOEtrF0cDAyOLQkRwCkwCBzXxsjHxaOxj/t25g6d3IxOCymTWFjcHFBQCrRir1AHicY2DAAbwZvJmSGRiYkhm3MDD812BK/v8VyN7z/9d/JQBicwnSAAAAAAAAAAAAAAAAADQAXAC0AUQB3AJSA2IDuAROBL4FaAXmBm4GxgdICA4IfgjSCU4JjAo2CrgK7gt8DAYMkA0KDXIN7A5eAAB4nKVZa2wc13W+j5m5+5id2ZmdfXAfs9yZ2QeX5L65pEiRWknUm9SLeph60Sv5Efkp062N1rEryQ/ELZrUTuwaaX7kR4o2RdGqQGSgaOD8KNC3gQJFC9QuEiQI0hboj/aHDccNqJ47M0uuJDpOUEkkZ+6cHd5zzne+850rhNE37vwafhK9jgyU72VDGBO8hBBGryFCcB9hrOKjTsqibGS8qGDbKk134a/ELxZwu5XAD0eec9QYEex2gorZgihMjBaro4cvjijpQLyKS/lsZZa/8GEcIBF8AUVQqheHe4TPwtvRGn92rNMkLDWOJbtg1fB0t11omZiEWHfj72TdoKyLu/ATt6rUiMEX4p95Cr79FXkKZdHx22FMKF46cmvi+AO9EUQRwZRcRYKgLIsYfseD8AEVHc3AM4EKrw4Mhp+t9oKWrVtOU2LZ8aI0jt19zOEYeOp63G23GG3DtvBfSrWPIlGVSo0Tval6mYkTvVY0XQysnIioSrFINa2EX7aKDmGnso2NCNWRu98phEgD9juJfud2DKLM95uF/dqwGRET8ToSBUG8BjGhfUSpsgz739y555ozZIpF4aXtbXvWvWYU8fhcHTJa5f4mnVK15foLifUCvwuDpyXbkliCedl2k8wkuGNt7xr/SIxnN27zEFDjoxeV4NK8s6CFqFCM6TlRvnF27ZoaeyH1VfPvqZHOhKVGLkZ1TVfeXV2Z3e3k1Fgym84uPvrk6mNr+uPJVCKvufHp3vmI5CE+s+hGT6lgSZzBVFAgUNRP7CSSREGUhOsIkkcxuY4ERLFAryJRZH3EGISBENSHt8V5GMbvs2dIlJh4dfNzW9arvbBTLBY7JccKMHOA9IHvJvzkcfFQwVenvTDdFyVALYr89oNrz4RFK54YEYRw5JAzdzbAFnqTPGCCVW9VJpjYrS1aAhGcmJERgs+eO30+qK5Uq392eP3U3nTWjBvhdGJxcmI/xC0VzZpNcywVkZO5bLq7eGbu7MzISUQA9whvkKdRGVXRg7fHcEDiiKpCoHJBHAAIBMgXkCQpy0yklBeagH185JAUkF7dNLrn+WpPq1Qq1Uo1FktMaVq8GeIBkQa+T5dt8JIpxC8RKIzYAm4lkrFWMlEOY/xTqXVF5a6mTfHNQi4uUENTr0T0KBWSwfzfyunZBCmYAePr4StusSQVfOYMVpKaRqkeTYUp/mlOUXMbASH4J1jY+BnHRgZqZx+5gnr44SO3ZHBxBxIII8I6YpLErqFAMBwMrCP47eFrSELBgBT8AlQAoWtudYSGSeDIrQS8YM57Abt+7xuCYfzS578iCa+YH3oFYdJL3jvC13/hl6TgJTu328cv/I7/5x5W4U9Pn5/rTnXaZUszSp2C05JZfogQgAHtASUnVKwQQDuwhO2TgeQvTcPC9ALlK4wgMZHd+I1INEqlZnwp7nElfiKrijIVE0ZMI5j9wLzG9DS/VGEtlpala9ZHQSKEYipf5JzBefR9qICikT0QVTU1Lk+8W0iohnxe1aIj+X+YkyNRBqtQCxwfXcBHHlXQZK8KhY4wQ49KGBh1DehBWQaEY7IGFa+SowWnw/+5lY4VPA7MBrzOhkjf9i+gpnnVw/MuGYu8eHo943vz4j3efXDq3BqbmV8rrs0fw98+8vS3+L63PLh2eGz/9/d5faABPFcBntuFnu0pRcyEGNCTiCE5Ps+VEMQQ0nkdEcoIfQmYTeiLmHczMEJ9yJ9HcM49hmADMBDY1WEzYDa7ZFVLRXuL2cr82y68QHi+4lIy4dJbHfvkloReB3mlkNepDu8FUiKPTZxM4I/lL56+NB02osVAgqdN1zAbKy20DzDloSfmusHwF08uN/QcPPUyGX2iflAS7dyRheZI5Y8OPllJ6I0bUTUqx0IdM71QPmlktHNTiw9VKo0bYcimEvuVKcecDOpqItuBWD0KeT0LeR1HD3h1n5cw9DKM1nnvZmsu6QsDcKsUgjLqW5Drn2ECAekaGuTfiHkAIB6i6X0gYP4jiAmAn5H9VEqUOHifWRqPRBUq1b/tZX98aZ35z2QhmcMv5lQR/xeglGN2o+1iAb7w+xPe2oFczAD6Jmj+zqdEx99FFqqj947cqoCHoRyGHoWRRJYymzcBsrTq8UUJFAyhQHzErXiearEPCE8uB7AkeVn32IW/rOxZc4T8fPNe/bMtETfkhLGMAgFXEqYwFxCyYzi2ZRmWFfQpwyr7upA3R78zApaANxI8uOVpEBESXE4vQB0KOfNEvHdy6VhQ/uPXhG6nKRb1+IigfO3hlZClOBFV/UO5/7wk1sZajhYTSiORnL0ys/8YHR+j2ZFs6tiDC+9LVFs5LFQLmWKUGRFeXwRdhpiagJksGkMv+DFNgQzajKl3gyU3pvzxKNpkR3BY6INO8r3m4Ul5pbadCYjjzeikeKmFio7TcSyLsdxQQLrTQ4SiYh4R5oosFfNodImifvXUXCUI+ongE47sYuoAYCgz1zuxdjk80x5fZjIba7QvfHDpZsVSEjL+D04uRvabpZsXdz4wXzkwduo0+N7leALfC6iGbvq+R8FTqAnR9d2/YZu+F8AnYc2VyuAJ6YOfyWWGRXEIG2Pb2UAYuHbnqGBsExUgo0p2x3LsZmCgGkpbw0JyeohYqQcJT216cQiA21mFgNf9aPTNU3Nj8aFguIH5Spi1qu0L4dBMq7FUKmmJyZsX127YN71obKSo9uV95fnTvfmzpzgWDkE8glBfJiqimd4UNEtKBHqdYQkRQSKPghPu1pMes3ppzOfzxXyxFAMJ7wRcdUy3JB50uwKXg+4t7N/bPv4JSddP1PvPRNW3z11aidJYNLrx78JyZ38hqGtM1XbT7lhtxViXnar5ysWLr7xwPm7Q7q5uNET0l+da8w2vN1Rh0ymYXJro6SO38pCeMeTRHewx2EfBIKg5TClZCwChacub/U0VIU1V5BPf5xuv9pTahOP2QUuzQlC+2EWrpeIBC/p0eK8MmPNahEmIAerVkY5D445EI1SqXauf99hw4xOvOZ73F5rnWPixPXKqbJByMltdLHEu3PjRJiuaPHnjvcM0bCIYVYQ7BbIXvwfzUg+dQG/3jCZAVghA9VZV4N4SSFYBOmUNotOGRo8Jg8lGkrwWCYlEaPOSkEAfOAsgGgy6g9II7xDNuz6F/A8NyG67z0C4jh+bNhxronSwshWuUnkwJpV5FzUJB3aSi2N/Tva+Bi3VL3rAeqsb69YE99q9I7uopYdTdESLsvCz+2uWSJigBlJ437nWaEoMvXP5yq+HlSUFfl0yEH72QKs8NVMp/Is05thzTBo7ONelITPXMbPdvF5h4tkvPYpvJkeimsjK1cV+XBZiYcAozsX2FHpnz+w+OpkrlzOl6T39zGjppjMFU093auNv9Gw0KGAhlKjkazUPjyrgMQR8MoNme9N1TAJ4CYLmN9VBqJLLwbsniG4HgFVybNtp8lgNTdPTPu1ttVpyj95y6dEzAGlTe0vWOJRMm+lWdSWUsV1E1X8vIEcBFQ17yZFVvuCy5c69r6UcsOBDuB4t/XPV6S38PocYkaIRV4lFgSS+Vf3aB95MTtBRcPKfyCXoFSVXN4qi1HdnpgHdayAdvEMK7pgRt6cKTtNl97srgwyTGlWwyxetBP5HKIcfeuXwVP2RIN+12PxN2GznEngyLZYaGUEoNbL+sYFJJC0Cenfjr6mO/ztVKKSShQLkIQGbnYQ87EK7ejtnx2BGYpCJzd0GMWOBNUiFthwCiuMbpl4q5ud2THdcuWvHm+GhZPBBbjgP9+leusXVng1LukkRpMaz7iSbSh8/Hq54Ouhtr/IrS/59D7R+93c16OGU1d6WNf4wf+OJDJi5nkKaX+ktbukiT+Vv/MULPAr85rHvQIow4gdHPwC/M6jQM7da8HBObHCuKbLMvRm5q83gf5PqG9+T3Tw8t/S811S+zpvK8x5cPKU+aCI6xz6FmBv4z9ER9Ny7u+cJCWOfdUZDEoHbfkQm4bC2rARhgBb5hgIC8TtmRQLKlfsRLMtAKaFQuI+2N13tpQ4fWtzTW9i5gw9h7Zgdb8cco6kO180u3K1ht274GcMgf7Baum+xHePEw2mo65GOiV0LEpUah2RVoazsiDgUynVDGRjNpclDvH6EpOFITDWnYNGAxdO86oSsWTcTgtjMF2lloqnXZ0aL4FbJTLjxcsiH2VF5744/UJN+Rj+smntm3Vs9mlSxCVfJ7MSEtcPUfqwO8QnEdAb1b9c5B/shzfB4sX4AcKzdyyYZfkI2YJoB+9xnBRTd7dhd7ZelnUHh/lKsU3f8qwNZlXwO65juD83wWYegw6BJQqBJgt6J6+CY9S4JYti2JbD0OHI7iddANnsHCY2+cer0I6NvnD5DQzvbrdVQeO6RVTzz3Zs33nv5w4WTK/O9Cxdcfrvzn3cqxIR4F1ELveqFOlTAguiNFBl+w8TN+YI/thiXCX0JFKDG9b63o63xOUZcpcGYSz1JfvDoiorPMoYxoejwGu0Mjwk/d+DeXh6XTTuiuVlwy7hhn3K8ej6QjpLZPdvo5D/dnME/5t+jenlIK2PQyIhMQGyq6M3bJRgHOBa55MqjrQlT6oNUlLS7R0yfBdDQmLmt3ZYgcydRfkKZdM+jpTV0r/EqV85TnKZ13T+WgEJW8LYUTYYnCVIWCpURuvRIOPaQr7+8HwfqB0KyKhKx8TgQHT12ftbGv5rIpHRydf/6lvjyO46ydxxisnjnU/wpYHM/Wu4dBsoXZmD+ZO7ZxOYphFuEQxLLn5K2ziYAvztnu53aRLVilyyQ0GlPQvNZCIZpfkjknzjUSLkmuMdGQ0cOg4kgj00B/5imamd2HJqIZYqBqHumEI+QyPm5XSLRq9mkNT6T10UaG39g52w5knJY2LUZkSm2mnMLVGxfVrOtQvxmvDqZLRQal9wjo9gJKwMMJQli0BipZjR7PKNp9UV+ABGPxdMZIyvrhBmZhstZZyAm/0PGUQNdPnIrBJkvIgqJu4Yg5ZAZN7lkTXA19tAwyGdGmKhf/RwzyHsJBg2oEd0/nrFKu/CW1qbeIRtX3G4TltotaN3eyQ3+1/DjLx2US0d5n5Uay7J/6IKx/I6beqn+TjGyTzELcBnXYzp+effBvft/wqvhIPdWNeSDbv5/uDdgjgBsFMPj6eU7PwMN/h3UQc1erVIIUV4e/JwYxDWME4Lg+oD7BLtjX8exi+1Y0daDvjSmvMrrAyFM/Z5kYn5qnHSPBPJ4WF+Q3UIm83QgnrNCSsUYGc2rWMzEBbF1TdUikqGpJTKnFzJRSVopwQqFB4qm4K+klI3vpYz4GxdaKSOFdyspALWl0U9upNOdIx97IOf+8MOWMfBnAe3odXdU0+EQwBcvBZlEOX8FXLYLUcIbCvEays7ZmW5bN2CWbafuU07srpqcLt8llVhyehvhhD+RGuvu/5mkEjOnEzow2brXZuzfOmN7V7CgEGmstt/QBJE/5mm1r6/ZA90UV8mVK1hNuJ3mrdf5d/hyyNGjOBp3C/r1twb/3xS5Y5FZ12dQtg1MEF6S/AwyL4N+5xnBR6esYqfuFAsu9fDh766RlzIo1gUyTbfcdMGYwZtkBPPgjFRPfT8Qa+6xS2MSHU0mkhSLgoDVWowl4+QExxdl9XUfmZGZG1Gfn9wl/OXixiHFnC9P2YlsNiEG4KNWJjQ5SXGfA9bF6cb/YtG9gG/o/wD0/bLqAAB4nK1Sy27aQBQ940DUdtFNq2y6uYuoAim2bEOlPHZESSqEQwQhyqYLEwxYWJ7EDEFs+xv9harql/SLuujxYKUbuqtHc++Z+34YwFv8gML2u3vBCm/Uhwo7qCm/wnsI1bcK13Cgfle4jkPnS4X3ceD8pKWqvebru/UqscJ7Va+wg1fqY4X3MFGfKlzDkfpV4To+O+8qvI8j5yvOofGIDQqkmGEOA0EIn6cFl2eLTygd00rQgUfaRYwHLOi7xpI8pSxGjonVeYis1bXVby1LiwbfuY2UMFOMDFO+tKW3lN2TjzDEBQakgivyPiU3fDUZEef6cVOks7mR0Pdbrkt6IuONdDzpxg8LvV4uUonziXS9yJNrvaYwlYbOZZzM42wqeiq3yb2MhheDoVwN+qObYZNxeyw4ssVpYoOALaMXRTrXPRMQd6jI2B06OiO9tLbG8oJjS+zQPHoJTnl3xXNfgvQ5gIwDecLKepYeLdq49pYDD9FmEp2bS13MEgk9X07lbz1uWUV/nKVPq4SKVuAGHEXY3t3IvxJjd8Dyl03Y1ZKG23VtO/NZk+CM1/BMub4VueYiUzuLcr3PTOjhmDfgwnCXFMuUw2f9flvOxJhpvDJ6nuZGGs+Bd+wFzf9T8x+cQ5p1AAAAeJxtzLsNglAAQNHjcwAt1AEIBT0JLoABhfiBqIk4jwm1u9LiG8CbnPYKzNP4nT86/0qihWBpZW1jayeVyRX2SgeV2tFJo3V2cXWLr97dw9PL4P0DkzUMlQABAAH//wAPeJxjYGRgYOABYjEgZmJgBEJFIGYB8xgABQkAUHicY2BgYGQAgtsK+9+B6If3621hNABThQeiAAA=')format("woff");}.ff15{font-family:ff15;line-height:0.846000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff16;src:url('data:application/font-woff;base64,d09GRgABAAAAAA38ABAAAAAAGAwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAN4AAAABoAAAAcnt++aUdERUYAAA3EAAAAHAAAAB4AJwANT1MvMgAAAdwAAAA8AAAAVlPeXoxjbWFwAAACMAAAAFoAAAFaBzkMJ2N2dCAAAAoMAAAAFAAAACQD4AAwZnBnbQAAAowAAAbwAAAOFZ42EcpnYXNwAAANvAAAAAgAAAAIAAAAEGdseWYAAAowAAABhAAAAeB6mJivaGVhZAAAAWwAAAAzAAAANiT9QkZoaGVhAAABoAAAABwAAAAkA8cCE2htdHgAAAIYAAAAGAAAABgEmgBWbG9jYQAACiAAAAAQAAAAEACSAURtYXhwAAABvAAAACAAAAAgAPMAoW5hbWUAAAu0AAAB4gAAA29fguVUcG9zdAAADZgAAAAhAAAAMP/RANxwcmVwAAAJfAAAAI0AAACnZD6tnHicY2BkYGBgYmRLPqa8IJ7f5iuDPPMLoAjDw/v1tnBajYGB8SnjQyCXg4EJJAoAUScLkAB4nGNgZGBgfMgABEy8IJLxKQMjAypgBQAuSAHfAAEAAAAHADIAAgAAAAAAAgAUADYAjQAAAEgANwAAAAB4nGNgZOxinMDAysDA1MW0h4GBoQdCMz5gMGRkAooysDIzwAAjAxIISHNNAVIKDHmMD8GSDxFqAMKpCRUBGAAAAAAAAAFNAAAAAQAAAg0AJgAnADB4nGNgYGBmgGAZBkYGEAgB8hjBfBYGCyDNxcDBwASECgyJDCkMef//A8Xg7P+P/y/+v/D/DKheKGBkY4ALMDIBCSYGVMAIsZIiwMLAwArnsFFqGtUBACCMDmgAAHicrVdrWxvHFZ7VDYwBA5Kwm3XdUcaiLjuSSes4xFYcssuiOEpSgXG76zTtLhLu/ZL0Rq/p/aL8mbOifep8y0/Le2ZWCjjgPn2e8kHnnZl35lznzEJCSxIPozCWsvdELO72qPLgUUS3XLoRJ4/l6GFEhWb60ayYFYOBOnAbDRIxiUBtj4UjgsRvkaNJJo9bVNCqoRotKmo5PC7W6sIPqBrIJPGzQi3ws2YxoEKwfyRpXgEE6ZBK/aNxoVDAMdQ4vNrg2fFi3fGvSkDlj6tOFWuKRD86jMerTsEoLGkqelQPItZHq0GQE1w5lPRxn0prj8Y3nIUgHIRUCaMGFZvx3jsRyO4oktTvY2oLbNpktBnHMrNsWHQDU/lI0gavbzDz434kEY1RKmmuHyWYkbw2x+g2o9uJm8Rx7CJaNB8MSOxFJHpMbmDs9ugao2u99MmSGDDjSVkcxPEwjcnx4jj3IJZD+KP8uEVlLWFBqZnCp5mgH9GM8mlW+cgAtiQtqphwIxJymM0c+JIX2V3Xms+/4IUDKq83sBjIkRxBV7ZRbiJCu1HSd9O9OFJxI5a09SDCmstxyU1p0YymC4E3FgWb5lkMla9QLspPqXDwmJwBFNDMeosuaMnWLsKtkjiQfAJtJTFTkm1j7ZweX1gUQeivN6aFc1GfLqR5e4rjwYQAricyHKmUk2qCLVxOCEkXRk6sRGpVum1VLJyzna5jl3A/de3kpkVtHDpemBfFEFpc1YjXUcSXdFYohDRMt1u0pEGVki4Fb/ABAMgQLfFoD6Mlk69lHLRkgiIRgwE003KQyFEiaRlha9GK7u1HWWm4HV+nhUN11KKq7u1GvQd20m1gvmrmazoTK8HDKFtZQQpTn5Y9vnIoLT+7xD9L+CFnFbkoNvtRxuGDv/4IGYbapfWGwrYJdu06b8FN5pkYnnRhfxezp5N1TgozIaoK8QpI3Bs7jmOyVdciE4VwP6IV5cuQFlF+C1CcoBRrmElgw3+uXHHEsqgK3/c5EjUYgrWsNuvRh577POK2CmfrXosu68xheQWBZ/k5nRVZPqezEktXZ2WWV3VWYfl5nc2wvKazWZZf0NkFlp5Wk0RQJUHIlWyT8y5fmxbpE4ur08X37GLrxOLadPF9uyi1oEveeQ6zr/+2vrKjJ/1rwD8Ju56HfywV/GN5Hf6xbMI/lmvwj+UX4R/LG/CP5ZfgH8t1+MeyrWXHVO5NDbVXEhmwCYHJLW5jm4t3Q9NNj27iYr6AO9GV56RVpZuKO/wzGS57/+VJrrPFSsilRy+sZ2WnHkbojuzlV06E5zzOLS1fNJa/iNMsJ/ysTtzfM23hebH6L8F/2/fUZnbLqbOvtxEPOHC2/bg16WaLXtLty50Wbf43Kip8APrLSJFYbcq27HJvQGjvj0Zd1UUzifACov3iadp0nHoNEb6DJrZKl0Eroa82DS2bFz5dDLzDUVtJ2RnhzLunabJtz6MKbkPOlpRwc9najY5Lsizd49Ja+bnY55Y7h+6tzA61k1AlePreJtz27PNUCpKhojJeVyyXgtQFTrjlPb0nhWl4CNQOcqygYYefrrnAaMF5ZyhRtrlWcImRjDIKrvyZU3EiG9FkI4r4zVvqp7pQCJ1JLCRmy2t5LFQHYXplukRzZn1HdVkpZ/HeNITsjI00if2oLTt42dn6fFKyXXkqqNLE6P7JjxibxLOqPc+W4pJ/9YQlwSRdCX/pPO3yJMVb6B9tjuIOXQ6ivovHVXbidrbh1HBvXzu1uuf2T636Z+591o5A0x3vWQq3Nd31RrCNawxOnUtFQtu0gR2hcZnrc81GPsWXmm9d5wJVuD5t3Dx7/o7O5vDoTLb8jyXd/X9VMfvEfayj0KpO1Esjzu3sogHf8SZReR2ju15D5XHJvZmG4D5CULfXHp8luOHVNt3GLX/jnPkejnNqVXoJ+E1NL0O8xVEMEW65gxd4Eq23NRc0vQX4VT0WYgegD+Aw2NVjx8zsAZiZB8zpAuwzh8FD5jD4GnMYfF0foxcGQBGQY1Csjx079wjIzr3DPIfRN5hn0LvMM+ibzDPoW6wzBEhYJ4OUdTI4YJ0MBsx5HWDIHAaHzGHwmDkMvm3s2gb6jrGL0XeNXYy+Z+xi9H1jF6MfGLsY/dDYxehHxi5GP0aMO9ME/sSMaAvwPQtfA3yfg25GPkY/xVubc35mIXN+bjhOzvkFNr8yPfWXZmR2HFnIO35lIdN/jXNywm8sZMJvLWTC78C9Nz3v92Zk6B9YyPQ/WMj0P2JnTviThUz4s4VM+Au4r07P+6sZGfrfLGT63y1k+j+wMyf800ImjCxkwod6fNF84lLFHZcKxRD/PaENxr5Hs4dUvN4/mjzWrU8AuAoD9HicNck9DsIgHAXw96eo+JHG3dVE01MQwuakcaBze4AewcWERc8CslBO4K20SHzT772HU8T7YjzRs3U0Cgh0g8dCvUBoMsKG06poy34SKlVyuteTlyqheEQFaL8nezZOWpN7r/0x9yhQBuh25w95SuIG4tJ21/+RE2pGdRPpc3f84Rl0mPVzaP0FmGsqzgAAAHicY2DAAiQgkPEGAwMIAwANIAITAAAAAAAAAAAAAABUAJIA8HicRdA/T9tAGAbw9zknvoDo+a53TSi0TslhIjmUENvAUAllKahqYGvVIfybUIcuHVqWqmJkAdauHarundJPgoQyMGTIl7B6DqK56bl3eX56iNEKEUa4owZFtNXNllHx0ZtBhRgq7JR8X+zxsucBdFQCUUD71trIRjo1iVK6M8vDVmRaaGxkm2nT8uTJ/Wcbqd7GKyTVmk5CtMExit/Ej7X4IyIXlBRn3CzwReOfCal+7OyGYX1Or7XDeigChu9GKZOfs+DbeEzEqOmcQ9yQoedkuy9KYMw7Is8Te2UUOJrYlpYzZRKfP3Mm/8GhGmvYyAoKz1ZaUGmyieHX/qAwuOp4cPDl9fu3/X7v3fj4YlJ+yAIRXh/vfMp/fiTQuuu+dd0dWu++bD5ijNDjZUbkn1RQLFRocOJGQoD9zDhDVrV6htdbMAJWGd86Q9Ozyk0xHeg/rKanGbdSSv1UyHn+Cy7Gu7GcvDhdlQ8X/HXM/GoxYEric/678E7lNr/EhyL8A50dSCN4nKVSTWvbQBB9q9iGQumlOfTWOeRgQyUk24fEOTUmH5jICXYccil0nci2sKM1khzja/9KrqG/pr+n9GklSinNqVpm583sfI8AvMN3KJTf7W+s8FZ9rLCDhupVeA++eq5wDfvqZ4XrOHC+VLiBfeeFlqr2htKL9SqwwgdVr7DD+J8qvIev6nOFa2iqHxWu48J5X+EGms439GGwxg4pYsyxQA5BGz5PBy5PiY+ondJKcAKP9wAa91jSd4uMPKZOI8GDffMQWquhfS8tC4sm5cRGiphJY4UZJWPvG+ruyCcY4xQj3oJz8itqrim1GBF9s96l8XyRS9v3O67L+0imOznxZKDvl2abLWPRyYMMvNCTodlSGUvTJDKNFno1EzOTm+hOJuPT0VjOR1eT63GLcS9ZcGiLMxyI5kAyBGwbl2FoEtPX6yygVPST4tFWjqFJHzX5mfXLLU85wsgO0KO3oEd6LbbL5iLabxhM07O07vDNtVQMvo0uE5gkPzPpPJK250tP/qzJHUXzzUqnVHcCN+BA2t3X2/k7Jf4VqvhlIz5mXFm5rrIbn7UIjkk5z4wBNuSGi4xt/8V6n5jGwyEp4MJwG6VZzOGzbr8rx5LnM73JzSJOcmk+Bd6hF7T+t9pfxLqZowAAeJxjYGIAg/+1DK4M2AA7EDMyMDEwM7gwuDMEAgBIfwKtAAAAAAEAAf//AA94nGNgZGBg4AFiMSBmYmAEQjYgZgHzGAAD4AA1eJxjYGBgZACC2wr734Hoh/frbWE0AFOFB6IAAA==')format("woff");}.ff16{font-family:ff16;line-height:0.481000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff17;src:url('data:application/font-woff;base64,d09GRgABAAAAAAU8AA0AAAAAB8QAAgADAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAFIAAAABoAAAAcnt++aUdERUYAAAUEAAAAHAAAAB4AJwAMT1MvMgAAAaQAAABEAAAAVlRrgkdjbWFwAAACAAAAAEcAAAFSIaspMGdhc3AAAAT8AAAACAAAAAj//wADZ2x5ZgAAAlgAAACzAAAAyHlFGHBoZWFkAAABMAAAADEAAAA2JuFCF2hoZWEAAAFkAAAAIAAAACQF5ARiaG10eAAAAegAAAAYAAAAGA2MAHJsb2NhAAACSAAAAA4AAAAOAGQALG1heHAAAAGEAAAAHQAAACAASQApbmFtZQAAAwwAAAG3AAADRaoI+oxwb3N0AAAExAAAADYAAABBON2473icY2BkYGBgYjgSIZN3Jp7f5isDN/MLoAjDw/v1tnDa8v8X5pNMIC4HA5gCAHnxDQcAAAB4nGNgZGBgYvj/hYGBhYUBCJhPMqQwSDIgAzYAUiEDTnicY2BkYGBgY1BjANEMDExAzAhmO4D5DAAGqABzAAAAeJxjYGTezjiBgZWBgamLaQ+DIkMPiP7fw/iAwZCRCSjKwMrMAAOMQJwA4wSkuaYAKQUlGyaG/19AKhl4oGoYAFBOC38BGAAAAAAAAAFNAAAEBAAABAQAOQMfADl4nGNgYGBmgGAZBkYGEPAB8hjBfBYGAyDNAYRMQFpBcZKSzf//CNb/x/eK7p6E6gIDRjYGOJcRpIeJARUwQqwazgAAbDoMHgAAAAAAAAAAAAAAACwAZAAAeJxjYGSw/P+F+SQTA4M0AwODCDsfIzubNqOSqZm5opKJsaKauok1o5G4HKM480nOoEIBJi4hHqmyP79FRZlZy6R4hLiYBAqDGJkEWKQaQ7n4+kK1Qvv4uEIbpRiA5jI0MD1lLGFQZWBgFGFTVlJT12NUVuJjZgeyTU3MjI3EgMYaG9kxmwPZTE/j/PT9TIw8NfgU1BXEmZh4+TEEGAP8mgwMdLXZRZWs1SSUkTkMAKdOIiwAeJytUk1L41AUPS+2BWHoclYuLgwDCiakiRtdDRYtFFMlsYPbV5u2oW2eJJHS3fyg0d/kT5mT5DEwIq4mj9x77vfHewD6eIVC+/38ixX66pvFDnrqh8UHCNSLxR18dfoWd9F3hhb3qP9FT9U5pPS7iaqxwpHqWuzgiwosPsBcjSzu4FS9WdzFkfPd4h5OnRhDGDxhjwIZllihgiCAzxPC5WnxObUzegku4ZGOofGINWN3KMkz6jRyzBubh6jxmjT21rP2OKacN5lSVtLYYEHJNPSeugfyKRJcISYVjMhvqbmjdMKMGJqnfZEtV5UEvh+6Lum5zPZy6clYP67NrlxnovO5jL3Ik4nZUZnJsclllq70ZiFmIffpg0yTqziRUXw7vUtOmPeGDUdsqGJbCcfcskXD9koOjpso0tUq2W9nZlNSrqcq6FL3j4kptpr8uhmtanjBRabNGj2uTnDB/7MKLsdMGfNMWTO6jQgxoGVgryDAGYuYvLo2xTKVwPPlQv7tzI3T5fNGFzSEA3fA5QRnn4/2vjA+Tlg/4pTmkpfYXmA7Wf1EhMa0KDOumD35ofyfin8AMFiTxAB4nGNgYmD4//Hb7v8TGNQYsAE2IGZkYGJgZmRiZOZKLCrKLy/KTM8oYS/OzM3MSSwCAIHyDLcAAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJWIGYB8xgAA9UANHicY2BgYGQAgtsK+9+B6If3621hNABThQeiAAA=')format("woff");}.ff17{font-family:ff17;line-height:0.524000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff18;src:url('data:application/font-woff;base64,d09GRgABAAAAAA/4ABAAAAAAGggAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAP3AAAABoAAAAcnt++aUdERUYAAA/AAAAAHAAAAB4AJwART1MvMgAAAeQAAABDAAAAVlWDXo5jbWFwAAACVAAAAG0AAAFyGFkIdGN2dCAAAApEAAAAGwAAACgBNwFBZnBnbQAAAsQAAAbwAAAOFZ42EcpnYXNwAAAPuAAAAAgAAAAIAAAAEGdseWYAAAp4AAADPAAAA9jPehcEaGVhZAAAAWwAAAAzAAAANiWpQk1oaGVhAAABoAAAACEAAAAkBYIB6WhtdHgAAAIoAAAALAAAACwQoQGYbG9jYQAACmAAAAAYAAAAGANGBD5tYXhwAAABxAAAACAAAAAgAQ4AzW5hbWUAAA20AAAB2AAAAzNiLpbBcG9zdAAAD4wAAAArAAAAOABaATpwcmVwAAAJtAAAAI4AAACnZUC/nHicY2BkYGBgYmTLe9z3K57f5iuDPPMLoAjDw/v1tnCa6b8R0xambUAuBwMTSBQAhfoNMAB4nGNgZGBg2vbfCEiuZ2D4P5NpC0MKgygDMuAGAINNBW4AAAAAAQAAAAsASAADAAAAAAACABQANgCNAAAAXgBNAAAAAHicY2BkPM44gYGVgYGpi2kPgyxDD4j+P5fxAYMhIxNQlIGVmQEGGBmQQECaawqQUmAoYtr23wiochvDOZgaAFq/DLoAARgAAAAAAAABTQAAAAEAAAKvAB0CTQBfAckAPgICAAICEwBRAgIAOAFfAFN4nGNgYGBmgGAZBkYGEMgB8hjBfBaGACAtAIQgeQUGRwY3hlSGdIZ8hqL//1FE8kAi/x//P/x///+F/xf8n/V/BtQ0FMDIxgAXZmQCEkzoCiBOwQtYQAQrfjVsDOwQBgcnAwMXIRPpCgBrIhXeAAAAeJytV2tbG8cVntUNjAEDkrCbdd1RxqIuO5JJ6zjEVhyyy6I4SlKBcbvrNO0uEu79kvRGr+n9ovyZs6J96nzLT8t7ZlYKOOA+fZ7yQeedmXfmXOfMQkJLEg+jMJay90Qs7vao8uBRRLdcuhEnj+XoYUSFZvrRrJgVg4E6cBsNEjGJQG2PhSOCxG+Ro0kmj1tU0KqhGi0qajk8Ltbqwg+oGsgk8bNCLfCzZjGgQrB/JGleAQTpkEr9o3GhUMAx1Di82uDZ8WLd8a9KQOWPq04Va4pEPzqMx6tOwSgsaSp6VA8i1kerQZATXDmU9HGfSmuPxjechSAchFQJowYVm/HeOxHI7iiS1O9jagts2mS0Gccys2xYdANT+UjSBq9vMPPjfiQRjVEqaa4fJZiRvDbH6Daj24mbxHHsIlo0HwxI7EUkekxuYOz26Bqja730yZIYMONJWRzE8TCNyfHiOPcglkP4o/y4RWUtYUGpmcKnmaAf0YzyaVb5yAC2JC2qmHAjEnKYzRz4khfZXdeaz7/ghQMqrzewGMiRHEFXtlFuIkK7UdJ30704UnEjlrT1IMKay3HJTWnRjKYLgTcWBZvmWQyVr1Auyk+pcPCYnAEU0Mx6iy5oydYuwq2SOJB8Am0lMVOSbWPtnB5fWBRB6K83poVzUZ8upHl7iuPBhACuJzIcqZSTaoItXE4ISRdGTqxEalW6bVUsnLOdrmOXcD917eSmRW0cOl6YF8UQWlzViNdRxJd0ViiENEy3W7SkQZWSLgVv8AEAyBAt8WgPoyWTr2UctGSCIhGDATTTcpDIUSJpGWFr0Yru7UdZabgdX6eFQ3XUoqru7Ua9B3bSbWC+auZrOhMrwcMoW1lBClOflj2+cigtP7vEP0v4IWcVuSg2+1HG4YO//ggZhtql9YbCtgl27TpvwU3mmRiedGF/F7Onk3VOCjMhqgrxCkjcGzuOY7JV1yIThXA/ohXly5AWUX4LUJygFGuYSWDDf65cccSyqArf9zkSNRiCtaw269GHnvs84rYKZ+teiy7rzGF5BYFn+TmdFVk+p7MSS1dnZZZXdVZh+XmdzbC8prNZll/Q2QWWnlaTRFAlQciVbJPzLl+bFukTi6vTxffsYuvE4tp08X27KLWgS955DrOv/7a+sqMn/WvAPwm7nod/LBX8Y3kd/rFswj+Wa/CP5RfhH8sb8I/ll+Afy3X4x7KtZcdU7k0NtVcSGbAJgcktbmObi3dD002PbuJivoA70ZXnpFWlm4o7/DMZLnv/5Umus8VKyKVHL6xnZaceRuiO7OVXToTnPM4tLV80lr+I0ywn/KxO3N8zbeF5sfovwX/b99Rmdsups6+3EQ84cLb9uDXpZote0u3LnRZt/jcqKnwA+stIkVhtyrbscm9AaO+PRl3VRTOJ8AKi/eJp2nSceg0RvoMmtkqXQSuhrzYNLZsXPl0MvMNRW0nZGeHMu6dpsm3PowpuQ86WlHBz2dqNjkuyLN3j0lr5udjnljuH7q3MDrWTUCV4+t4m3Pbs81QKkqGiMl5XLJeC1AVOuOU9vSeFaXgI1A5yrKBhh5+uucBowXlnKFG2uVZwiZGMMgqu/JlTcSIb0WQjivjNW+qnulAInUksJGbLa3ksVAdhemW6RHNmfUd1WSln8d40hOyMjTSJ/agtO3jZ2fp8UrJdeSqo0sTo/smPGJvEs6o9z5bikn/1hCXBJF0Jf+k87fIkxVvoH22O4g5dDqK+i8dVduJ2tuHUcG9fO7W65/ZPrfpn7n3WjkDTHe9ZCrc13fVGsI1rDE6dS0VC27SBHaFxmetzzUY+xZeab13nAlW4Pm3cPHv+js7m8OhMtvyPJd39f1Ux+8R9rKPQqk7USyPO7eyiAd/xJlF5HaO7XkPlccm9mYbgPkJQt9cenyW44dU23cYtf+Oc+R6Oc2pVegn4TU0vQ7zFUQwRbrmDF3gSrbc1FzS9BfhVPRZiB6AP4DDY1WPHzOwBmJkHzOkC7DOHwUPmMPgacxh8XR+jFwZAEZBjUKyPHTv3CMjOvcM8h9E3mGfQu8wz6JvMM+hbrDMESFgng5R1MjhgnQwGzHkdYMgcBofMYfCYOQy+bezaBvqOsYvRd41djL5n7GL0fWMXox8Yuxj90NjF6EfGLkY/Row70wT+xIxoC/A9C18DfJ+DbkY+Rj/FW5tzfmYhc35uOE7O+QU2vzI99ZdmZHYcWcg7fmUh03+Nc3LCbyxkwm8tZMLvwL03Pe/3ZmToH1jI9D9YyPQ/YmdO+JOFTPizhUz4C7ivTs/7qxkZ+t8sZPrfLWT6P7AzJ/zTQiaMLGTCh3p80XziUsUdlwrFEP89oQ3Gvkezh1S83j+aPNatTwC4CgP0eJw1yb0NwjAUBOB7OAHzo0ipaZFAmcKy3FGBKJI6GSAj0CC5gVn8cON4ArYCjMVV393hGPA6t0z06BxNEhL9yFjoZ01oEvympFVWLX6SOgoFwvrrpY7IniAAwzuyp9Yp26Y+GD6kHiTyANNteZ+mKK+gQtn+8j9SfCWoagK9b6648wzGl8McxnwAo1Qq4wAAeJxjYMABnBicGM8yMPw3Yjz7/+t/IwAmowZ3AAAAAAAAAAAAAAAAMABaAKQBNgF+AbYB7HicTVNLbxtVFD7n3PHcsR3bMx7bSeM0ycz4UeIkpGNn3DRgnCYmfThugiFp1Dw8NGraSmy6qISEBAvKAlSkCgE7RFV1T9U2bCGbqAKWCAn4CxUbsnU442TBSHc095yr757vMUBwGoAe0h5IiECpfiaMisAmCEXcD6ECCAreIgRIQEvTtIgWMQxDV+VgyXKKlnSwHCV6eMPp/nHvKn6/cWrq5cEB7XWbeKf7DfCDsM34z+kZRMGqD4PCJQV2uU4CaReESIgWQxpTIZktoVN0pCUt4ZgWPWm/sitYjXVfzne+wn36gA7nugeMRFA7OsR/8DdIQham666KCNhUMcTgIQZXFOEzcnwJEMkHoiS1TNPMmtlizrF1yTflLTVTdqtSdexCtYZltz8jvUlybFXin9392FytvRpeW9vaSae+Xdt0Bhto2iP6ZHvgr0ZnunH28xudL668MZVz+8MLbsBTAB25dBEPYBzOwSIs1S+PsXYOkIQYohxBjZQmi4wk8bbKgio+66vwjETaNmhaYgnC4d7cumi93fByTnI8s1C0InKkhAXHlikeMY6OXVSlOovusOAdD+9Vj1ePhFeWXiEgEbDzTGZUQltNoJpxPWoMTdRQ6OH4vQW3GBPR8xvp3IXXBrS+r3+62xe/mAxH8gNRbnqFldVfomOF3Fxf7z0YGpoe1rfsyZAq2x/t4KdKiELjE/Od04ZRIT07U5y5ulytnxktTeZf9+Y7o6OPK+WzVV7dX/uHI8LSdXusFGRhhbNgs0YpWHyhs2fYvPLDxPK1epI/ha9g4NlJ2LL1UxzCIIyfcFPxIdDqpLf+o22YBT1IjOWYNez5lkDHZPZlV+LP7ZogoeeHKo2+SruzlLi0+cBGO5a0Uvq18//i/mLzO/aM4NzRIRU5R1Hoh5H6EFuBPt/GpggBPh9JQiuXy9kK5z0faH8sc+b/IlMy/Whr4046/Xhz++ZNY3525pZhvPXm7O7f/mf339958OX6ynvvvrOycZ35t1mEp8w/ArMvtF5oj/kbwTQ+/xDUy2wCmX6Ct3yc4PZxZX0vaZh6MAnG8YRsFR8tfmhMLHcup1bv4se42fwd969vEfwHCz2g7XiclVLNbtpAEP6WAFWlKjn12GgOOYAiW7bhkJ9boiQVChDhgHI1iQEL4k1sE8Qr9FmiHPsofYQ+Rz+vV5XKrV7tzLezM7PfzBjAPj6gUH2Tv1jhk/pqcQ1NdWzxHo7VD4vrOFC/LG7gqOZZ3MRBbU1PVf/M07uJKrHCvmpYXMMX9c3iPUxUYHEdh+qnxQ18V78tbuKwNsYlNF6wRYYEcyxQQBDA4+rA4arwKa1Tegku4FL2EOERS8ZukFMntEVI8WTuXPSN18DcV56lR4vn1GSK+VKEFWY8aSPvaXugHiPEFUaUghvqIS13PLWZEZf6ZZsl80Uhged1HIfyVKZbuXClFz0u9SZfJhKlT9Jz+64M9IbGRFo6lWm8iFYz0TO5jx9kHF6NQrkZDcd3YZt5b0k4NAXkLBW3/TBKc4KygAzPhioGOnuOqK9NFYXRGXsWm4657JLgjPvfZA4rmDI8wSvWxrf06cDnjW/7G6DLtDotrnU2jyVwPTkTS8IZTlfJ6zqmpeM7PksOuruEd9/ATmz5F8bkmtOjmkDF1+O7gnPugmvGfGtqzdkkpsJyYm9k6eKE2+cMMImzPGE/ydHryrkUxSxaF3qRpIW03nz3xPXb/03vD/6gi3R4nGNgYmD4/wWIJzCoMWAD3EDMyMDEwMygwqDJ4MHgxRDIEMQQCgDCYAWTAAABAAH//wAPeJxjYGRgYOABYjEgZmJgBEIuIGYB8xgABAwAOXicY2BgYGQAgtsK+9+B6If3621hNABThQeiAAA=')format("woff");}.ff18{font-family:ff18;line-height:0.900000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff19;src:url('data:application/font-woff;base64,d09GRgABAAAAAAUYAA0AAAAAB0AAAwACAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAE/AAAABoAAAAcnt++aUdERUYAAATgAAAAHAAAAB4AJwAMT1MvMgAAAaQAAABDAAAAVlSnX5ljbWFwAAACAAAAAE4AAAFSBVULMmdhc3AAAATYAAAACAAAAAj//wADZ2x5ZgAAAmAAAACEAAAAmFneDwhoZWFkAAABMAAAADMAAAA2JelB1mhoZWEAAAFkAAAAIAAAACQE7QNLaG10eAAAAegAAAAWAAAAFgafAFNsb2NhAAACUAAAAA4AAAAOAEwAJm1heHAAAAGEAAAAHQAAACAASQAYbmFtZQAAAuQAAAHQAAADBrpBi6Vwb3N0AAAEtAAAACMAAAAu/9P2FXicY2BkYGBgZmg2WpnjFM9v85WBm/kFUITh4f16Wzgd/P8G0zYmGSCXg4EJJAoAaOcMqAB4nGNgZGBgkvl/g4GBmYsBCJi2MaQwSDIgA1YAUVcDPnicY2BkYGBgYxBlANEMDExAzAhmO4D5DAAE/wBiAAAAeJxjYGRiZ/zCwMrAwNTFtIdBkaEHRP/vYXzAYMjIBBRlYGNmgAFGBiQQkOaaAqQUGOyYZP7fAKqUYdCAqQEAKMgK6wAB9AAAAAAAAAFNAAAAAQAAAwoAUwBTAAB4nGNgYGBmgGAZBkYGEPAB8hjBfBYGAyDNAYRMQFqBwYbB7v9/BOv/4/8n/h+H6gIDRjYGOJcRpIeJARUwQqzCBVgYWPHIDg0AAMF3C5AAAAAAAAAAAAAAAAAAJgBMAAB4nGNgZAj+f4NpG5MMgwgDAyMvo5ioCJuykjqjmok5o5mxEZDLtPjvZyZeYR4OVt6/14SFmbR4WTl4GD/9+MHFw8HDzsjKKcXJyMoOZDOgmKXKCDRHzdTEXJcRSAKNEmcUA5l1DaRdmIn372ewkUxawk/+/QZp54Ka+O83pxQDAMK8IDd4nG2RwWrbQBRFrxTHEAhtvqA8urLBlkdyINiEQFAxZKFAE+heyIMliCQjjSO86Bd01w/p93RR+iPd9M54ugjUgzVn3ry5774ZAO/wAwFOvwa/PQd4H9SeQ4yDb57P8DH46XmEcXjh+RxXYeJ5zPhnZgajC65+uVOWA3wIMs8hLoOvns/wKfjuecT4H8/nkPDK8xiXYYoULfY4okOFHUoYCCYoMOUcY8Vxgxk5geJYke5RQ7v8Ajn7E2ScDc9q7lg67bxw55nqBdea0aNTvnU1DGuuseAY3IiYX6Pn3FJ5hzvWt1UHnrXKgidq9K7uK79bRjbMbZzfR3dak1J6yfBA54paSNv9sat2pZFJMZV4tbqZSaLUSu5r3VVF3kiWm1LXueHiRZ7botLmKJPb0pj9erEYhiHK6z5qu93ddCZDZUp50r3uXvVWNm1j5DGvtaRZ9hArW4+WarZ2oC1r1V5NS7OWG2un3h+M7iRrt7pjIHOtVMyvudDb6sD5X18bfxfa3X7EjoR39rbHU2RJnru/faUE1xShuQ1ta0kiJWtvkbCM5/E8Uck13gjhlAB8cWZ7mmrd29pXX7rqVlmYoLu+ahtRahkplcj/df4CyVyBwXicY2BiYPj/8euh/1sZjBiwATYgZmRgYmBmkGdQBADcmAXcAAAAAAH//wACeJxjYGRgYOABYjEgZmJgBEJWIGYB8xgAA9UANHicY2BgYGQAgtsK+9+B6If3621hNABThQeiAAA=')format("woff");}.ff19{font-family:ff19;line-height:0.580000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff1a;src:url('data:application/font-woff;base64,d09GRgABAAAAAA+AABAAAAAAGbQAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAPZAAAABoAAAAcnt++a0dERUYAAA9IAAAAHAAAAB4AJwAQT1MvMgAAAeQAAABCAAAAVlcTYX9jbWFwAAACUAAAAG8AAAFqB3MUo2N2dCAAAApAAAAAFAAAACQDxAAwZnBnbQAAAsAAAAbwAAAOFZ42EcpnYXNwAAAPQAAAAAgAAAAIAAAAEGdseWYAAApsAAACyAAAA2iaxnOFaGVhZAAAAWwAAAA0AAAANiXSQltoaGVhAAABoAAAACEAAAAkBeUB0mhtdHgAAAIoAAAAJwAAACgN9QD4bG9jYQAAClQAAAAWAAAAFgNqAoxtYXhwAAABxAAAACAAAAAgAOUAjG5hbWUAAA00AAAB3QAAA12xRclpcG9zdAAADxQAAAApAAAANgBaAMlwcmVwAAAJsAAAAI0AAACnZD69nHicY2BkYGBgYmSL/JMoEs9v85VBnvkFUITh4f16Oxj9//l/NqYfTO+AXA4GJpAoAHzUDld4nGNgZGBgevefDUje/f/8fyPTD4YUBlEGZMAFALlTB7kAAAAAAQAAAAoAMwADAAAAAAACAAwAKgCNAAAAPgAtAAAAAHicY2BkXMa0h4GVgYGpC0jLMvSA6P9zGR8wGDIyAUUZOJgZYICRAQkEpLmmACkFhgqmd//ZgCrfMfyCqQEAZHANPwAAeJxjlGAAA0ZfEAFERgzOTHcZdIE4gTGcQY0x/P9zxi8M0gBSGgb2AHicY2BgYGaAYBkGRgYQSAHyGMF8FgYPIM3HwMHAxMDGoMCgw+DEEM0Qy1Dx/z9QHMR3hPH/P/5/4/+R/2v+r/4/EWoOEmBkY4ALMjIBCSZ0BRAnwAALugEgwMqGTRQE2IEuxAk4cUvRFQAA79oTIwB4nK1Xa1sbxxWe1Q2MAQOSsJt13VHGoi47kknrOMRWHLLLojhKUoFxu+s07S4S7v2S9Eav6f2i/Jmzon3qfMtPy3tmVgo44D59nvJB552Zd+Zc58xCQksSD6MwlrL3RCzu9qjy4FFEt1y6ESeP5ehhRIVm+tGsmBWDgTpwGw0SMYlAbY+FI4LEb5GjSSaPW1TQqqEaLSpqOTwu1urCD6gayCTxs0It8LNmMaBCsH8kaV4BBOmQSv2jcaFQwDHUOLza4NnxYt3xr0pA5Y+rThVrikQ/OozHq07BKCxpKnpUDyLWR6tBkBNcOZT0cZ9Ka4/GN5yFIByEVAmjBhWb8d47EcjuKJLU72NqC2zaZLQZxzKzbFh0A1P5SNIGr28w8+N+JBGNUSpprh8lmJG8NsfoNqPbiZvEcewiWjQfDEjsRSR6TG5g7PboGqNrvfTJkhgw40lZHMTxMI3J8eI49yCWQ/ij/LhFZS1hQamZwqeZoB/RjPJpVvnIALYkLaqYcCMScpjNHPiSF9ld15rPv+CFAyqvN7AYyJEcQVe2UW4iQrtR0nfTvThScSOWtPUgwprLcclNadGMpguBNxYFm+ZZDJWvUC7KT6lw8JicARTQzHqLLmjJ1i7CrZI4kHwCbSUxU5JtY+2cHl9YFEHorzemhXNRny6keXuK48GEAK4nMhyplJNqgi1cTghJF0ZOrERqVbptVSycs52uY5dwP3Xt5KZFbRw6XpgXxRBaXNWI11HEl3RWKIQ0TLdbtKRBlZIuBW/wAQDIEC3xaA+jJZOvZRy0ZIIiEYMBNNNykMhRImkZYWvRiu7tR1lpuB1fp4VDddSiqu7tRr0HdtJtYL5q5ms6EyvBwyhbWUEKU5+WPb5yKC0/u8Q/S/ghZxW5KDb7Ucbhg7/+CBmG2qX1hsK2CXbtOm/BTeaZGJ50YX8Xs6eTdU4KMyGqCvEKSNwbO45jslXXIhOFcD+iFeXLkBZRfgtQnKAUa5hJYMN/rlxxxLKoCt/3ORI1GIK1rDbr0Yee+zzitgpn616LLuvMYXkFgWf5OZ0VWT6nsxJLV2dllld1VmH5eZ3NsLyms1mWX9DZBZaeVpNEUCVByJVsk/MuX5sW6ROLq9PF9+xi68Ti2nTxfbsotaBL3nkOs6//tr6yoyf9a8A/Cbueh38sFfxjeR3+sWzCP5Zr8I/lF+Efyxvwj+WX4B/LdfjHsq1lx1TuTQ21VxIZsAmByS1uY5uLd0PTTY9u4mK+gDvRleekVaWbijv8Mxkue//lSa6zxUrIpUcvrGdlpx5G6I7s5VdOhOc8zi0tXzSWv4jTLCf8rE7c3zNt4Xmx+i/Bf9v31GZ2y6mzr7cRDzhwtv24Nelmi17S7cudFm3+NyoqfAD6y0iRWG3Ktuxyb0Bo749GXdVFM4nwAqL94mnadJx6DRG+gya2SpdBK6GvNg0tmxc+XQy8w1FbSdkZ4cy7p2mybc+jCm5DzpaUcHPZ2o2OS7Is3ePSWvm52OeWO4furcwOtZNQJXj63ibc9uzzVAqSoaIyXlcsl4LUBU645T29J4VpeAjUDnKsoGGHn665wGjBeWcoUba5VnCJkYwyCq78mVNxIhvRZCOK+M1b6qe6UAidSSwkZstreSxUB2F6ZbpEc2Z9R3VZKWfx3jSE7IyNNIn9qC07eNnZ+nxSsl15KqjSxOj+yY8Ym8Szqj3PluKSf/WEJcEkXQl/6Tzt8iTFW+gfbY7iDl0Oor6Lx1V24na24dRwb187tbrn9k+t+mfufdaOQNMd71kKtzXd9UawjWsMTp1LRULbtIEdoXGZ63PNRj7Fl5pvXecCVbg+bdw8e/6Ozubw6Ey2/I8l3f1/VTH7xH2so9CqTtRLI87t7KIB3/EmUXkdo7teQ+Vxyb2ZhuA+QlC31x6fJbjh1Tbdxi1/45z5Ho5zalV6CfhNTS9DvMVRDBFuuYMXeBKttzUXNL0F+FU9FmIHoA/gMNjVY8fM7AGYmQfM6QLsM4fBQ+Yw+BpzGHxdH6MXBkARkGNQrI8dO/cIyM69wzyH0TeYZ9C7zDPom8wz6FusMwRIWCeDlHUyOGCdDAbMeR1gyBwGh8xh8Jg5DL5t7NoG+o6xi9F3jV2MvmfsYvR9YxejHxi7GP3Q2MXoR8YuRj9GjDvTBP7EjGgL8D0LXwN8n4NuRj5GP8Vbm3N+ZiFzfm44Ts75BTa/Mj31l2ZkdhxZyDt+ZSHTf41zcsJvLGTCby1kwu/AvTc97/dmZOgfWMj0P1jI9D9iZ074k4VM+LOFTPgLuK9Oz/urGRn63yxk+t8tZPo/sDMn/NNCJowsZMKHenzRfOJSxR2XCsUQ/z2hDca+R7OHVLzeP5o81q1PALgKA/R4nDXJPQ7CIBwF8PenqPiRpruriaanIITNSeNA5/YAPYKLCYueBWShnMBbqUh80++9h2PE62w80aNzNAkI9KPHQj0bQpsRNpxWRQ37SahUSRDWXy9VQvGECtB+R/ZknLQm90H7Q+5RoAzQ3dbv85TEFcSl7S//IyfUjOo20vvm+N0z6DAb5tD6A6E7Kt4AAAB4nGNgwAIkIJDxFAMDCAMADJQB9wAAAAAAAAAAAAAAPACQAPIBJgFeAbQAAHicPZI7aBRRFIbPuXfuzOzOK7uzO/uYzWz2nWTy2Ed2BxLMLkiUaB5IUBIUTCEERYiCKWx8IDGW2liIpYVYiWjUTmKhBDuDnWgjFkJsRCw08c5ukuZy7mWY7zvn/IBwePc+/IJbkIR0K6UiIE4BQbIKgHCb3wycqVsTVEq4nmigji724xB6jSZmi00cxzGsWtJXphwJBg1VFmWCoYCdkFkXC5jTESbYEW1OZZQxxyjL/EWSIgBAYJAfr8k6dEMB3FZvBgXKyVSgqwwFzhZwiSCAATOO4xScgleNVEQp6RZEF7NDOIwZqVN5DQ8b3MLBmGmVaNHLcU/ySiw1YnGR6Ds/xmOVvKJqlEg4l6jM66EomSMvchQxPLBi24YZXVzuJZoqq+SMSyORf4/0D5iIJfumt4DCIvf8wz3jUIIqDLb6Yx1TBEKRLPEvBEaFJWAMzkLbN9NXOTQxIkopt6DTXCZb9Mz2mBwq6ShZpcYQdVGqVccp3S/Je+34ucnizrbdxa6LSft3vPdELa2op489uSmGneHu0MrgFT3h9ZV65GjGS4Wv1e493GiezClRm5yyo8TMTdZGp7tST+2iqZCPqEWHd77l6wmN/OSmxV0RP5NtMCHbSu+Zn+fmQBeAUt+bwmwmW68IfMDMH+u+sz9jWqtiSC6vdRviGzGeWitLcrm+Xi9/yltJeseO5vN/H/POAXe/c84Dzom1OZTniHIO3yIu8CT5HITZkUy+6nNifpba+xtDM7dX8CxtsURqTTHCguRTOoXP3uRthrvydN4/raT/L5vvpoSbMAA9re5+JyILHDnFmyP6NHbC0xj12l0dxEY6wDaxVOww09jwOhGSeHZiFn5huQFN1djRy5YZd4OqQlB7d0kmQm7ANAPNCyzkuIqiEKK9vCpbFgaCd28kFFSCAeXtc0W2JOPismD4d/XZhg7wH2VQff94nKVSO27bQBB9S0tG0gQpDKSdIgUVgAxJqfCnk2E7UCzLEC3DZSiblAgRXJmkLOgYaXOGIIfIeXKIPC4ZF/lU4WJn3s7OzsybIYBX+AaF5rt9xgov1JsWW+iody3eg6c+t7iDA/WjxV28tT62eB8H1hd6qs5Lnr6aVzVWeK26LbYYX1q8h0/qfYs7sNX3FnfxwVIt3odtrXEKjTV2KJBigSUqCAJ4XH04XA0+onVOL8EQLuUIEe6x4tstSuqUtgg5Hsydi7HxujL3jWftYfOcm0gxM0XIkPCkjbyh7Y56hhBnmFIKLqgntFzz1GNEnOr1rkgXy0oCz+s7DuWRzHcydGUU3a/0tlylEuUPMnLHrlzpLY2p2DqXebyMskR0IjfxnczCs2koF9PJ7DrsMe4lCw4NgRI+6eJyHEZ56RMNWV9GXhjqjPLcUKiMLtiw2LTL5RvBMffvkZznABPSztiGR2zMq9q7Tx/H7LrNAQZMoPPqXBeLWALXk2P5VYlT55/Ms/RxE9Pc9x2f9IPBn8X/KyX+Fqr+QWMyKenWDKdh47EWwQl3xZUw/IZac2yp4V8P84npXBxy+xwPbuOiTNlq1u0N5ESqKok2lV6meSX2k+8eun7vf6v9CbaQk7UAAAB4nGNgYmD4/wWIZzIEM2ADXEDMyMDEwMzAz6DCoMpgx+DAEA0Avi8FIgAAAAABAAH//wAPeJxjYGRgYOABYjEgZmJgBEJOIGYB8xgABAEAOHicY2BgYGQAgtsK+9+B6If36+1gNABTjwekAAA=')format("woff");}.ff1a{font-family:ff1a;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff1b;src:url('data:application/font-woff;base64,d09GRgABAAAAAC8gABAAAAAAVUAAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAvBAAAABoAAAAcnt++a0dERUYAAC7oAAAAHAAAAB4AJwBRT1MvMgAAAeAAAABCAAAAVlcTnDtjbWFwAAAC/AAAANQAAAGS07sGaGN2dCAAAAtQAAAAKAAAADQLoQLaZnBnbQAAA9AAAAbwAAAOFZ42EcpnYXNwAAAu4AAAAAgAAAAIAAAAEGdseWYAAAwQAAAgWwAAPNwPZ+jCaGVhZAAAAWwAAAA0AAAANiaiQltoaGVhAAABoAAAACAAAAAkBqADMGhtdHgAAAIkAAAA1gAAASicCg7ObG9jYQAAC3gAAACYAAAAmOlJ+CJtYXhwAAABwAAAACAAAAAgAXMCH25hbWUAACxsAAABywAAAx6dYsUycG9zdAAALjgAAACmAAAA19qdscpwcmVwAAAKwAAAAI8AAACnaEbInHicY2BkYGBgYmRzb9A/EM9v85VBnvkFUITh4f16Oxj9f+d/NuZvTO+AXA4GJpAoAHT+DhR4nGNgZGBgevefjYGBhe//zv+XmL8xAEVQgCcAoDIG1QABAAAASwBqAAQAAAAAAAIAJgBRAI0AAABwAWIAAAAAeJxjYGScyLSHgZWBgakLSDMw9EBoxgcMhoxMQFEGDmYGGGB0YECAgDTXFCCl8JuZ6d1/NqDKdwy/QGpAcgAEIAw3AAB4nCWOvRLBQBSFz90oURhFMJJJEYMiM2lobEeTYUYlRVTSq4xGpVBpPYBG5Qk03kFP7wF0iji7dvbb+3vuXXFhj8zMw7vGVq5YEK06GDsptMRImS8by5yWI4ZyQEAbMPZJSCKD7XmhTzJ1h3aatHuSIzO+JFiqL+Mx48c/RzR7M0uOmNqu7XmhVarCVWfWK+ipmLvf3BUjlAK+zOFxZ4PxCAUG4hU3VcOEvnZWGJm8/R91VrOh/kLdCXVTkw+a6g2X1tCWJ3v3nJn8cXZ2/hQRoh8rIDFTAAB4nGNgYGBmgGAZBkYGEOgB8hjBfBaGAiAtwSAAFOFgUGTQZzBnsGJwY/BkCGAIZ4hiqPrN/P8/UIUCgwaDIVDGkcGDwZshCCiT+Jvh////j//f/X/n/63/V/5f/n/p/8X/5/+fZHWB2oIVMLIxwKUZmYAEE7oCoFNZIExWNnYOTi5uHgZePn4BQSFhBgYRiISomLiEpBSDtAyDrJy8gqISg7KKqpq6BgODJkReS1tHV0/fwNDI2MTUzNzC0sraxtbO3sHRyRm3w6gGXN0IqQAASx4o33icrVdrWxvHFZ7VDYwBA5Kwm3XdUcaiLjuSSes4xFYcssuiOEpSgXG76zTtLhLu/ZL0Rq/p/aL8mbOifep8y0/Le2ZWCjjgPn2e8kHnnZl35lznzEJCSxIPozCWsvdELO72qPLgUUS3XLoRJ4/l6GFEhWb60ayYFYOBOnAbDRIxiUBtj4UjgsRvkaNJJo9bVNCqoRotKmo5PC7W6sIPqBrIJPGzQi3ws2YxoEKwfyRpXgEE6ZBK/aNxoVDAMdQ4vNrg2fFi3fGvSkDlj6tOFWuKRD86jMerTsEoLGkqelQPItZHq0GQE1w5lPRxn0prj8Y3nIUgHIRUCaMGFZvx3jsRyO4oktTvY2oLbNpktBnHMrNsWHQDU/lI0gavbzDz434kEY1RKmmuHyWYkbw2x+g2o9uJm8Rx7CJaNB8MSOxFJHpMbmDs9ugao2u99MmSGDDjSVkcxPEwjcnx4jj3IJZD+KP8uEVlLWFBqZnCp5mgH9GM8mlW+cgAtiQtqphwIxJymM0c+JIX2V3Xms+/4IUDKq83sBjIkRxBV7ZRbiJCu1HSd9O9OFJxI5a09SDCmstxyU1p0YymC4E3FgWb5lkMla9QLspPqXDwmJwBFNDMeosuaMnWLsKtkjiQfAJtJTFTkm1j7ZweX1gUQeivN6aFc1GfLqR5e4rjwYQAricyHKmUk2qCLVxOCEkXRk6sRGpVum1VLJyzna5jl3A/de3kpkVtHDpemBfFEFpc1YjXUcSXdFYohDRMt1u0pEGVki4Fb/ABAMgQLfFoD6Mlk69lHLRkgiIRgwE003KQyFEiaRlha9GK7u1HWWm4HV+nhUN11KKq7u1GvQd20m1gvmrmazoTK8HDKFtZQQpTn5Y9vnIoLT+7xD9L+CFnFbkoNvtRxuGDv/4IGYbapfWGwrYJdu06b8FN5pkYnnRhfxezp5N1TgozIaoK8QpI3Bs7jmOyVdciE4VwP6IV5cuQFlF+C1CcoBRrmElgw3+uXHHEsqgK3/c5EjUYgrWsNuvRh577POK2CmfrXosu68xheQWBZ/k5nRVZPqezEktXZ2WWV3VWYfl5nc2wvKazWZZf0NkFlp5Wk0RQJUHIlWyT8y5fmxbpE4ur08X37GLrxOLadPF9uyi1oEveeQ6zr/+2vrKjJ/1rwD8Ju56HfywV/GN5Hf6xbMI/lmvwj+UX4R/LG/CP5ZfgH8t1+MeyrWXHVO5NDbVXEhmwCYHJLW5jm4t3Q9NNj27iYr6AO9GV56RVpZuKO/wzGS57/+VJrrPFSsilRy+sZ2WnHkbojuzlV06E5zzOLS1fNJa/iNMsJ/ysTtzfM23hebH6L8F/2/fUZnbLqbOvtxEPOHC2/bg16WaLXtLty50Wbf43Kip8APrLSJFYbcq27HJvQGjvj0Zd1UUzifACov3iadp0nHoNEb6DJrZKl0Eroa82DS2bFz5dDLzDUVtJ2RnhzLunabJtz6MKbkPOlpRwc9najY5Lsizd49Ja+bnY55Y7h+6tzA61k1AlePreJtz27PNUCpKhojJeVyyXgtQFTrjlPb0nhWl4CNQOcqygYYefrrnAaMF5ZyhRtrlWcImRjDIKrvyZU3EiG9FkI4r4zVvqp7pQCJ1JLCRmy2t5LFQHYXplukRzZn1HdVkpZ/HeNITsjI00if2oLTt42dn6fFKyXXkqqNLE6P7JjxibxLOqPc+W4pJ/9YQlwSRdCX/pPO3yJMVb6B9tjuIOXQ6ivovHVXbidrbh1HBvXzu1uuf2T636Z+591o5A0x3vWQq3Nd31RrCNawxOnUtFQtu0gR2hcZnrc81GPsWXmm9d5wJVuD5t3Dx7/o7O5vDoTLb8jyXd/X9VMfvEfayj0KpO1Esjzu3sogHf8SZReR2ju15D5XHJvZmG4D5CULfXHp8luOHVNt3GLX/jnPkejnNqVXoJ+E1NL0O8xVEMEW65gxd4Eq23NRc0vQX4VT0WYgegD+Aw2NVjx8zsAZiZB8zpAuwzh8FD5jD4GnMYfF0foxcGQBGQY1Csjx079wjIzr3DPIfRN5hn0LvMM+ibzDPoW6wzBEhYJ4OUdTI4YJ0MBsx5HWDIHAaHzGHwmDkMvm3s2gb6jrGL0XeNXYy+Z+xi9H1jF6MfGLsY/dDYxehHxi5GP0aMO9ME/sSMaAvwPQtfA3yfg25GPkY/xVubc35mIXN+bjhOzvkFNr8yPfWXZmR2HFnIO35lIdN/jXNywm8sZMJvLWTC78C9Nz3v92Zk6B9YyPQ/WMj0P2JnTviThUz4s4VM+Au4r07P+6sZGfrfLGT63y1k+j+wMyf800ImjCxkwod6fNF84lLFHZcKxRD/PaENxr5Hs4dUvN4/mjzWrU8AuAoD9HicY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2J02iTMyaIEYm3k4GLkgLBE2MIvDaRezAwMjAzeQzem0iwHC3snAzMDgslGFsSMwYoNDRwSIn+KyUQPE38HBABFgcImU3qgOEtrF0cDAyOLQkRwCkwCBzXxsjHxaOxj/t25g6d3IxOCymTWFjcHFBQCrRir1AHicY2DAAjqB0JvBm2kzAwPTNsbbDAz/jZm2/X8FYv//+t8YAJkeDH8AAAAAAAAAAAAAAFoAlADOAUABeAHKAeoCGAJEAqYDFAOWA/YE0gWCBcAGGgZ+Bv4HcgfCCCIIcgjGCPQJRgmECgYKVArICxoLlAxKDJAM6A04DbwOEg6yD0wPphA2EJIRJhH8ElgSwBM2E6ATzhRSFLoU+BWKFfQWSha0FxgXjBfcGFYYuhkkGXwaThtIHBgdUh2WHhQebnicpXsJmGRVlea9b4/tRbw19u3FmpFbZKxZmVRm1JZkUZVFFbUmFBZJsVQWO4MI2mKCgNhqu/R0j4ijiGA33SMWSlUNX3+2iugnarczbXf7SWsL0+OMo1jCsAlawZx734stKwto5/uqIuLde26+c+7Z/nPue4hBNyOEXmNOoBAqopltxzI7D7QMGMKHEMaBBcSyzBJiGD+zI7rWuMrsWDxRr003ODEyrOmCIcp4GFtjuDCG6/Cv1pjGFVPRBRjMr8f2pfGaIGJRn/BIIsY8Fl3qgurSY5mYDh9xjflc8d7UM7qEOZ7961D8q1W/IJxeiRpGNBM1zAjCaN8bAr6WOYWSSGnJcI3vAs5uXldhxNAwb9+rkFdqjeYMhvslsKGLMmvoZtDE13r9qt/n//ryQZ9HVt0uSYjmxyNbp72/dnG8/Aiufvr1HV4OCwIrpWau/8KREz+a9xGx0Xq45156T7Xl794zFq4zYnA4pwsdweu15gxbrwEDjvBw071n3A24CHj9X3+9czdOTM9c/9CR4z/a6uMpI/Sem3EWPwv3XIemW5PDOYblmmOZiCIIiJUlBiN2O+JYzC3ymIUrzKJlxHF4CWEO7yrkS4W8JYixYawLGWscJ+l3vt6YxSL9UZvFlMlqJYnHMfk2DcGPm/SH7sfA+LNpPaBcFuOSppFkcexyVdbT6bvuTp1lGD8WzAQOvl9TIxFVYd5/MJAJpjylkju99rCzrx9iI8wy0tBIa8gWR+AZR54re/IAsYZUNW2paVGMDiM9k1Z0q66krVo1rdQqhpJmI/X2C3vaz9frOLAH+3G2+ztQr7efR/R++9/4c/Q0ej+KooVtxzxg7QqMYnQDGDO5EyzbEbXdIEDI7+4fXzWk4h2Li8froTorhoebsGMdEyCG1+yz96ddNUnye90u0S2wHjbsEvUFTYpq8m4vD8pP+KWUBEO6KOqURy/6Bp7ALiSiZCvGAHcI74cvjA6R2fOBRkT8BAuGh3S4Y20a44nyt8rlb2HX/DyRESiIjH5UtEXxIHsxjIAU3SsV7Vh8rE7dprnKRZ+WNMoP5VNyLjp+8AuwST8KtQwJMfC3tnfdIZ8lfwvrIrYtrImJMeFfCO0veZJqSMC7yBfzpOT//XussCL52bussK2XJhjoXub7KIxuPu7CDIu3bztmAushnsqPLgNT0Bdg69klCD4yQ7SUJPNgM9xdXaK++VaSTiEWMeAfyzYJ+Ap8X0KIdy4utlxZy1KtCdtNYAMglGFFgK9qg/gBhA6lWsF7M3+XyUxam5NzJXfA72cqGVwzDBM3JPhISR6X1P4U+YtpkOEykGEE7TsexKAxR4YIcMBhhltBHIJ/h2HPKJc6salUd5JFRO5lSrQfxCU64tD5iyenclapwoPV466WZnEDgkzGEqlvNxynlTGEIT+uNitB08CX+fVXNb/4wXOLhZkgKwpCVi7kZxYujkaiQp675J0Ted6Pzwn4vArnFd4920iWN3ql/IgZ2TkVHgsbfJTdhlnesPWTBnM/CrI10LUtdx0YdWHMMI6AFuJhq3l2pbPZiKrjchBCWEKCoHMgaLFLJCCOF7jlAeJFYpRLZNWuxZZ7yMqZtSHw9DjInCE+1axVQahqhYjd24Nm/y6Awc2w1QpEexMf/WJpIedysWJ9fiQSG03JPB8qKEEjdU5OgJvrvCecrsT+fMdhfO8HwhF+SBRKpXyxyHs8Pgg+SjAXDo0IYojnGJ+meK/ckDHA1JMIMQLkyhTKofOPW5ijVkoczISYxZGYxaGjoFhIkE7EWGuCxI2WnE6nc+lcZjJTtUhAyxHVGh39ZqiATY0mMJMYoVlQMgLLCMFwSY/F4tqzcU36V0lXt8b0UtT4b1i+/zsxbZkkyGUzEjb8+F6/ZETbN+g63lduP011mHvjl/gU8D+FzeMNzIqEexdwP0LiLsvhFWqAzG0QXlhOZJdBc/whxPMB4ndEOchAxO90WDO2ek2PlmXFJSSKyqpVmT/gTqP/rjUhEt2GzkbOgPbAJDurBAjeEAE8VqGZGbKKliQmiBLA2CB9E38i1jbD1sZYsC8ZNDLG1AFTVNMUUMgMaIsGt1Pve3dxfizjz7kFURh9R6JkeDAWvRGtlXUrpk8OiGYEm2aQZSRDeTKTv+bwT299dzCZCbHcep/3gBYqJ2dS5ZA2rYiMpAdwJaYGFMXnU8RP+/6I+B6DxkBvr4LvWaiJnjyexALfiSwFBKCApcGDpTkJQiTPc0vgeLD9ABQGtz/XJQfwAL63fDbi0bdHTDfcOoNOQPDv8i45T3a65c4XchmjmCU+TfAS2Wm+HiDbGSc+XsjTfRZhU5naGJexBENPMEQF+FUzO3V1eXs5E4Cgk8rVXF7enchfmvII3NCub34Yc24lpldGBTUfMxKqh3tu077ihuTI/Lo9Q2l8i+5Wc1ExsDdWOW+xfaqVLAcj7gu35JrNuCtsjhO/GHvjZdjfk+Df4ZYJm8gcAosCs6ICzk3S/A5JjWFJiqBRppkRgWE7W/IgAX5V+nuuPBbX2FDp4OzDcw3RiA7N4pims8ydEXf7dPtrBTMSq73vpv88hzlXxpf2Y1UhuqW5Gn8X8mkSHdh2LN6PvxWKsw85+NtWoUaiJYsBGvVNnTlKgDkg83q94iDzgey+GpD3ZfveL3xpd6h9dR8GYFAJPr4McSSGsmhXy52CQChDiGOcYGjwEO0w4vARGvEg+tm4Y41xgkBavng8no1nmxUNEnEEjIPwNo7TokAzMkRBhsL4oGYW2HwhAyCV+XKhkQ56rPavCvJEtsD/UAyr8gFZDYs/5J85JApYis1Ho6HkJdcVo6KPOajrkG310w/6vofDejx7wT/CFrPoIpDjsyBHFOXRKLrteMSJ6AQWxmEekhV3JUF7RBky8awuiLIlPYMoMED0ZvNEcsAf6dzEyJY6wR85XWYzaTAvhSolwUMyEM1CDeIMcQLN/sF8dmhyRyPePhXTjegr/vC64UY2vG3u2F/c986b5HAtG489ctvH73uiur0Q5I0osy+mQyyK5qZzUwuB+KNLP8Q+Y7z989t/42Dvl5m7mSdAn8stt4ZZXIKai2hxCGTLglvzLMOvkLTNc7f1RRiAJgPeP0DWCQI9IhDTyGXNfM4WU6S+T0oPiloAqdDrMUzyeIBE3SbFMwZztzA9XDz35EUHD158fPLCuqQxHp7N7axc22g2m9dszBYqAuOdkjjL67nwoke/fNGFAZ1zX+VmrURrQ/v3G2a9vgLjAXslev4J6NmPEr0at6cRlu1pbI1xoqkT6aLtSaSIcpQEmSBoipAfhrFCNMT85NNfbP+W6AVLX9q75WN8ePTAzMrt6/ePhXm87zP/1VbH8v77h6d2TmRPv5Ie3z5lYyvC327mK4Aqdp3FruS3sCt5wK5arolsGlzf3u9+hs04EaCQMdIELsKMMUsLZGa3Hmsfobx/MK5FUr+awGLUCIbbr33iPkMLlEn1zeyO6WZESvvZx/VoTPs7gNpmsMt/DfhPoC02/yEYJMn3SpjmDoEpyGQ3/SywvvaUyu5YPFmvZtMdmEt4pJC2h4o6IhhMLZL8H8O/IPz9Qo9VKde3xjXmPcDatwhrv+ux2+Xvb0H/GbSho307EF0JlTOr90WoM8ft/axq9arW2U+bmbTSY4sE0ThOOxW/wfwtsBXX2t90uIPfeD0dKhOAht3tVyiH+wiHp07Rrgbh8yB8/obaaV/dpi/012306sy6rcOE8ZveLcu9ezh78FX42xaaarmtsAQVJKBvJ2L7QCGMvoA7+9B3Ta2/Xm9Q67eFL7Ciseq2CibfgLx55qsB7Rwr8Mx1eswijFgg+0Yjt97ytl+L6y4Djyz/ZY+x9nO4rBtuz6tdPZnAo4mqnRKcSgzw7pLOJgwOEe6OZ+oVkqH7LN3mqVlJMAZjgmU/5GzJawFDYvr25fTPOCng8zj3Zm+GezfQ4ZPDIQkgZAdjqRzuIPqupXTMCLMk667YFH1mdMY4Dfcnp+rTUWrhXSvKCCIrs4AtaWYbNCnId0GoQztFAHuzHovCbnqnV0S/GUgFTL940xYPhlEi3u6KsrJBwK51d3pSoT2OqTH8yJ+0vx1QRYYR1QCOPzx2+ncd8YfaTz4YKv4x3hzzr/KTNGqcCInM27ePxqB94NWC4KrS5xoXV4z2rztswwXWMJUMOC4yxukXOwwWT/+K8dnOwUCu+iXE8O8Dms+iW23FGJ1GjE5j9SDU1Zw4szw4NbrWFE1kod4omMKiM8dCOQpAKhGy0jT8B9IpBf4DQuUtGVJ0gq/McMxP2sfaj+Kd+Pw/xaIvVpjZsb4Q84l44GJf+z/iq/HN7dsm0xuHm6lgMN0c3mBFY9m5selsOJydHp9DTq66HXSgAR7sRlMOkQKyC+565eXaU6TAPJnO1qtWt2mwymFFUkTbWev2O279pBM0Xr/lzg81F9/z7kIzoXD4X48e+UlHFUevbW1s/84fzKU6PH6ExpJh9C6IJhjzyMF/BDqFEbnkMenesYdIN2aV35xB0Oc7Z5nrwKXhLVW96sAlp9PMrrI2gpzEJhEQMkiD+YjX65v2ef3igxCSykTM5wORqdFmLvwZbXLXHXfsqSdkmWHcXpxsv9aRF0u+RHFD8UP5Y5OTz04T35gA+8uB/c2gv7GtLwsZGPN2ncmTOpPn7abOGmWvtZqWpWhp+cxi960oqakWzkoEill0SBlquS1vs16ZGCpoCUtwYqQ1jscE0v2lNW6lXiuQdj1DANkM1FtBUt76sWBXZIZuJnECM7mVm87bKgiyoemyi/FzbsF74FTSnytXhqdDkxMXzA9dtksTyQSnzFz8rsnYJTuWv3PDNUGGESSX2+XieGm/6j1/KZ+UfR6vNxme3rFxsSAX3VCOw0xg/f5cSTDVW2gcKgL3jzHHAJc37P1TiAk4ptQx/VVjxOZPNDLVjI3SoGAvdM1CBDMhtY6NHh4LqOp3qMU/paoB0PcIYIdbgibLnv451X+UBWAjdfIm6P1+ausLDi8s7mSgQdWtmqCakp2uA53CtCTLNXN2qAS47/QUnJqMdre6gfL+wtQFc4XGxQcbNHW1du/boMeKce3nM++op9xGdXkbvp+m0IMX7LxgF/68czYShft9g8bw6omw3Z61+fYyuB9M9C5pDp1uNpwqlyWtDepXedINteuuoFOEMd/gfyZGFP9BUmo9wxcafiUiPiDqtQ+IEdVfKDD3sf7Tn9cNcAONOeRno1B1tTcYU5/C/wEGiW5DoLRXgL9NaH3LPVlM+PtxiMyxzECi6R8gfJ5cP9NY37CjWj+nBZpHO5eFHt/Vxiy2WTe76ZSFK/YV7kE+qPjnZSXIX2H4sVdfFuB6ox+uH+SGLBgX9g1JsEfhA3QiHJWuDkJ+DR7lZM3nNoaYe3n59IMaqSw1fOvCudPntm81TCr5QS1OBP/6vRXPnsN4HkRXou2r9qRHd+M/DoCbkNoL9HSE2lW3Iuk1HgYrkjPGac7NNbo5l8Ae0i7EGZ5YlGPouohzFAEdAQRUj+lufDTT/p0G91cT+EQq4G5/Es8G/JpIAZFk+vDvSY9KjQRDkZCvLXCkYUX7T0NvvIyfxv8CfjmJ/rLlTmOWl7AodLq/eQRaYjlmBUgFkRFIXuWXIB4qC0gU0RIeCP6lN6EGOrKEJvUQcfI3J1b7iUkvr6kVrEwxW3F6eXaPwz6KmOGr3VYxPfaiJaZYlzlDp40+/LQey8W1xhWzuxIjrcZsTE4WLmoJvIcR3YGF/d+9xx9rFJKFBC+nwwYFV/r5ByYTEwnTI+DM+OgmwTOpSJKY+uwD+zHjM4ZiiRHsVvMUu7zMeGj9UUMP2HvmD2OOHR1heM4N2Y7dHh0YwTCyaBNGEbF/kgxJclFonUd3NNTd0eRqEoJUKV0nDK1BofZTkNSaGc7XKwWSWrO6zMMmrapuSG5IcKLdD1XoljEeLPlTw3Mjm8bweJGkVthAKbY5V6CQ5wPYoxfj1XxyPDVqepjfWuFmsZIKVgod+P1/XEbETFWK9VIyXY+ZmfbrhWC8kXZ61S/jp8DmSlCvNIcwR1ABx2w/S1NC6W9KWKVs0Mo6xRrRd71m9xn0bqOBHAcnWNJpACMw8VOSsWXvr//vxDmFkJeF1JaojcVLJoRIj15K7J6FEQFsypN54WVZ9biNss8TNvTYRD4RTdYToUm3r0D9hPD8ItVzA32wJUcxx+QgT4tUwx11UoTAcfT4vE+d/j51riKhXsHzPa9Yg0LtpyDqHMrVxjIDFavdcCWOUAl2KlW2niebYe/FDMYvQoqJmI3zhjYUEz4IfpKcKG0snVejrnFPaowqkqo1FdNd4AV6dCoIGmyEAkq4QbX7b8Q1Tr/6QjIYa6RniF5VWbH72EnYn5+BTtOogGZa0zrUWHg7yVGQAVZELJDjFYCyvTazc04WYndYllWwCtls0cplJHpaBxk+neBsFVLlCs6xNrkWaTcJ/yyg+NvPYz4QKaf2bPIIIsdybm373lvuvPXmqy+/ji02rxQxB0E7ZI3F9Sm3K5jySi5X/j233nTbje/YtOUeuz+TgI/3Mt9AQ+grdoc2CwMAPyAsAcYnZx36AukYMEsCpvrgOD/Xw34OrUDAGsQydrm3qks5+jYoVY4eF3ZuLQJnIl7uI6Yk9qGGrlXTOUsjgZBsFcVyMhPH1YoOwL8DjOjzClXiHgT14fdiweuKDwfjbrZaLpdB6TE9oBmT38zGw27mGnJ+HfOGAvI18+1HSM7AFzCKkt35FwLvUkmpFH6jwpj4n1AVsvsO9KOWfxQiWcHLMFIWu1jiAmTzakgCL5bIuR/mYcdIMAcXQZ3foHDXIeRygdG73dQStO4WVbprWeRys64rz/Y3+la21iEkSiKSVt5kMezxGmthKwM7ts9vyRetkcJcRlM8YnLYOawAiyNB0tCDplN00NhSrzXz8I/uqW2ZEDKZ7mlGg/RxLRkgdhX2yidIQ7XkUzvHGUOulAuFLflyWH39+ulSdlM0OvHUYn1qvU9gxR+zcjJcDtufR95zU0DV//QT+M98nCe/8aGIlw0ZXix4zHQl/SdRbTaxPpo5kBve+VAmI2qZI+Fo3DtSoZ/tr1VY05yjNn0OfLwEsaqA5o8ncQ8mmnZswdjxwW5httYEhWSFej032NQgeVaI49U9oipJIaaBX6I4NmQNb4IfTtbA7uTWsYUtdn9MK1qb1v+0r0t0Ss8VNy3QGNKAz6eYz9Hzkpu2HYs6fQD71H/BTgWdaBqnxX73lLl/KrNqiuYOKucZo7T07J2lrO64rX5y4gnqNlQoUYtXE2qn8Qf+cpRI82Q4GAxrTl/jjcffqKJnQJ4o1NI3HucdTUTpUwMsS/daXrCjPPBzKX0MpiMbqf5ZhiNnm6vmCWxgyVNBK12S3uzi4sl6vVlKE50FdftBjRnsHHj2CpL6KsGe+bPxwx6RFxgpljGibobmhJ6EqS+mZS6mSZwKIcKH/4EI2C8q2NwW+HgBbK6IDrbc2XTULfKIttni9DkcilEIPBnMh92JXqJcPUZVBBpaN8H1HSDJ+Mw+ZdPuU/oxDXgvZMum6rtDSkp6TCVKM+Lax4K5Kcv/qUc43jRdgb8S4+KRPkt8+G7DkOSP/k/Bw9q5AXA8euL/r2fbZzGDPVvwUTYP8XQKXXOiPtZXyxmknuSXAIKTgMVBxens1+jakyrtrJBxYQnyrODgjs6cfQwObgyO3Aedz3TktfwacgrF0jTaGWye+nQoU9o8+MPuBGuF0fXvCzSupp4ODqENpTfO/HT1z+uJ/JWhePrwYfB6J1bBPhTRoYFYpVKAQJqsSl+HaXSNGdWOYN3gRS2n15ctvr0QBqKSB0zWCmFEOFHPr8+dGcMcceRYPujEMMBBjAA4SIQYlmzFOm1MZaG/IRm0O4453cavkEU4ixQrCZYgb+GlF1968R4syGahlg/6AAR4jOGZkunBzz733OunIrGxSMzri4XHo5GU1YiZZqxhIbuPOgOw/Z9QHNDMIy05AhjVwp0qpINRCbJkcRefEo5IeNFwJ/IkkYNz+quSQbJRSrYWhSMuISPCEzxz+RqENOy2XHkrU68VnJYfqUtW+3SDbA6gPfqAJ2RVUpQkR7aMbBntpJeIuX7/8XuurGZFJZi44X8rTh3yOHW2kZgOIPb5B9LP+31excHxM/hF2KMYZMfDLVmHPYrDHkm0LrMlW7VHNvJe6ETf9NlmnUF6pmSB5rIUofN9pSp5+mQAoNfsNly1QsF5XKture8YCgn/ffsIDcB3Rcz09VfUPkGM7onpbOXcevyFTTTktv/+24lw8MEvdOMUvgxkSqFtx4N9PkT7QH2JcXRgTLWPXDrppZsOjxfr6+x+EXnw9ex+cpkgN/c74S0FLhIYGUnIPh5/SAPcvWXDiZ5/bMhXTdGtUF5JnfBh8I9J1GhVBVIdbD9Ls1Xpb7dlIiOZYNq2lL4inxhFvdbtccJAJcE6tSDd2gQkAyZo4g8/OtXc5sNQAEpTizuSUTOXHlEmvtIYwZpf9ZDC0D25dT6WtmLRYa38kU8qIVU4l/NLWxp6VORESfePTH/UKwiSi4cS0T0+oYZcAi8ayjDIpINM72QWUB4d6tQQLMPeBQhewKKwQh5LZCBg0Z0WBJqqnfP1fjKOiI9FBi/3EZHonUlnqmkrY0dvIhp5hqw23XkC2wH+tNXhFEz4ndtq9WW9XA4a0WRcWyyXF3WtMAQJXuCkcd0MfOz0PD1C3T3/3Hg2IboDMYobQY6X8HdRFt1xXCIIo3dKRnmHCHZpL38TQU1nhpaxUK9f6pSxDt4kszb6Gpjtm1D7JxYJesnVs/3h2unxDHZSu7iFBGtwlPFLd59vRMGBjKFqk3oSDdSRvecs4BjN7f8yFJmr/9rpowJiwT8GOcNo/oTW6aPG13CYjhPZj8B2e6v2pe0szXqt01y1z0+7ndUopod7+Mf8u+SJrRPyu/hiyIyJ/OHDYjhhFPEjvNz+aKmEb5D5mF+W2/+Ax4L2M8IhCCY/AP6qaHfLNZIOeTm7jRrvtlFX4yg6ipi7BpurzoCdBwvF5nSVdldZ+3QFPKYgdp9tL7CdTuoMYz8eSwUgP5gfXCWFkpvVoCzw6wTMTbtC6ZiiBoWjOODz6YmQtFMuxTg5b0Qkbu8udySnKX78SHslqgmqrPygicf/OW2yoK0Vn4/RIu2fj923JAb9Abn9j9jKqYzPlhmTZ6WKaGfLnY+pfonvCe2zw+2gzHSwDzf2XduYsTHZ7GHGMTyObVk7D8cTaZPkMdMOajTx05kRcpp0xT4lEBrOuj/zn9yZEU337jtfkhPDGffHH/CYJna5P7YScZuS95uPeSRT9F99leQ3Xd4vPyET3cXfqFLbGkULJ7Nh5Jw1x+nJGLgU8LhiQxcS3LqQHhwCKO8i6fKuvonFk1PrMkah2xNnnTLUwfO42Wg69gZOH6wSzdkW93leL507vNnDiD5WTFvhrCyJ4lf5QiQbCe6BIDtSZP15s4i/JPraeX+ukZXZOcnPGbFoMKzg+71cJFr9m2ri4zdyQRKzQbDHQaZo7yk2p2+tDPSzO6UXQyTFVw60us8YtXVUq9UcHWXS9HmwjGg3LtLkiQO22iQP4D1ebn+77H0p93FNM8q4CD/H7tV1PZcrqQFcZxhVycOv9vcY1s7xCfj4Eu3pbEf/bHNckrDTW3Fh0nfxYdJ48fAM6ey4BepSXtzf2yl2V5BpQkn6MP2re/Sjb5ue9nnyXVKYAArS6ulf5BASiGTOz22cPWdqXbNSDnUaPzJtVLzNxg9/dsJOa+g2pzWUcLO1cnmi2xp6krSG8MQZs3HtybfRNBpbNQu4+ZdON4n0k4iOfKAjUuvP4ea2YyHYwypyuZHbhVaQ242XpM4pVucnxB5Akl6PyBIHAjN2np0kCp7oWyotIUlyVqI3W5ihbSdnIRDB9i+utd5eySz1Vo7+AStV8jRnucunBF+Se7mz+GxL6JPMZiqVmktt2bSxNUOsIEsaFj5qBoN1PLsKP+fPahhx2mUFy7DALBgfTZr0A1MN04/vlNd1jeFz0bBKykuRVzaewxwi+izSbvDDVLVHyWd5wAwueEjkXGqVCGmtv7Hjl17QeQE1sdR5yJkXWIG+OCBwSy5MXgShh79LbpEhyiKa93drk+EuuculL9A16E2WEP0OdZaQ2c6rVIOrewtG3/4CFdPT+g4/HBJ4TlhevcahpEqE5F6vjJZA/LxVpM7sEeP0NZ+3UFGG6EhbpVq8eS3tCFoifc5veyrE311DJ8Q1PdH1N7avoM8R7bObOBzRDzvr+GQLLeNLba+ccmNRQpKIVqD8kvCSIjBdx3R++30M8bCAV3VxRAUyz/Q7Z3PgLwhLCrDa7yVvspyocLK7nBASb1n7zzjrmaW+9aN/8Hrqro3uUiCGVaIgLXf+yJsspPq2UqnLDy9dcvCiA3sv2Hn+wnnzc5tTrdSsVczaDqz9ex14LbModC+EN08E7OyaPv5UeZJa0QORoOb4dyo9/b/gFy+Gckl1uuwQEDN7NBUxpbdy/ucegnJarZHwn1x/4+fhW0xaiesG7HDXF+xMgCFDAxan74ZNtuoSfTls4NUugWfoK0Tku+8luTAKZdNWekIUosNZgh3oy11QFlU78NVQAIiV2/9WLu8YHy+PjM6bAdnUDXZufn6e4XzzGDKTrAbk0/8F2e8J2O9hbEBbW3Oz5CWT7SLk6G3ErXmBvABhgzfyeh5sEnmTi8Uce8ZzOUNWIdiwcpYkdF45wfXuGydM7wUngG6E0zNfcaL1K3nr4KY/mr6q6hVEzn3e4fSQKhRmR3RRZJKaEfMk4yN7qpIgSjHRnxk9Nx8emR1JXb3p3O8t3zJccm3xuOeMUjGxaZOoqyaBoJzsy8+Uils93qJLYM1UDHBBZtPYVdPKIpEdNuAUfbdtojVmv9z2Vi+uTeXVUoUXon2PKLyd19ZO6bH2wzHd/bVLJxv7UrxLdFXUZmPf0dtz2Zxrkr3zgc010bCfWdDc31++sLbzOs3b2jQ88oFDpYViTioz7yWvWPw/aJGVAwB4nJVSTW/TQBB96yYVHIq4IfU0lTgkSF5sJ4d+3FI1RVHTVnFT9eq0TmIl8la22yhn/g7wP/gF/B2e10sRcMKrnXkzO/N2ZtYA3uAbFJrv9gUrvFLvHPbQUh8c3kFXfXa4hT313eE23nsHDu9iz5sxUrVe0/pis2qs8Fa1HfbILw7vYKI+OtzCvvrqcBuf1A+Hd7HvDXEKg0dsUSDDAktUEEQIuHrwuRp8RO+MUYIBNOUICe6xYu4GJXVGX4IcD/ZMY2yjLu15E1lHdGjnlinlTQnWmNMyVt7Qd0c9RYwzTCgF59RX9FzT6pIRp+ZxW2SLZSVREPR8n/JIZlsZaBkl9yuzKVeZJPmDjPRYy6XZ0JlJx+QyS5fJei5mLjfpnUzjs0ks55Or6XXcJe8FC45tAyVCtouLcZzkZUg0YH1r9oWBWVMObQuV1QUHltpxaeYIjrn/ZvJfCJrzHr2+3fVgI/RJafJqaIpFKpEO5Fh+3e3XN9LuhX7ITqP+v3X+ZscfWfVvl7K+kmNvRt7UGPA+wQl3xTUn0xO14WNktqv6iZ7JrHHIHXLouE2LMuMAWVvQlxOpqnnyVJllllfSeQ71oQ67/1HYT8iCgpMAeJxtzssuQ2EAReHvP6d04C6lKjFTJRpUtaWJmbqU1l1dpweJQacexdvUk3EiHVrJzhquLfLHz5dr/3GaLojEMsaMmzBpyrQZsyEKccjIW1CwaMmyohUlq9asK9uwaUvFtqqauoZde5r2HWg5dOTYiXbaONPRde7Cpav0yY1bd3ruPXj05NlLGDHwHUblzJvLvn589t8q1aF3hq5FSRInyfsvRzca3QAAAAEAAf//AA94nGNgZGBg4AFiMSBmYmAEQi8gZgHzGAAGzAB5eJxjYGBgZACC2wr734Hoh/fr7WA0AFOPB6QAAA==')format("woff");}.ff1b{font-family:ff1b;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
@font-face{font-family:ff1c;src:url('data:application/font-woff;base64,d09GRgABAAAAACCUABAAAAAANQwAAgAEAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAgeAAAABoAAAAcnt++bUdERUYAACBcAAAAHAAAAB4AJwA+T1MvMgAAAeAAAABEAAAAVlXm/r5jbWFwAAAC1AAAAMUAAAGSsZ5q7mN2dCAAAAscAAAAKQAAADQLkgJjZnBnbQAAA5wAAAbwAAAOFZ42EcpnYXNwAAAgVAAAAAgAAAAIAAAAEGdseWYAAAu8AAASVwAAHUS6hT5NaGVhZAAAAWwAAAA0AAAANiXPQl1oaGVhAAABoAAAACAAAAAkBc0Cl2htdHgAAAIkAAAArwAAAOBqRAuWbG9jYQAAC0gAAAByAAAAcsA4uNRtYXhwAAABwAAAACAAAAAgAT4BHm5hbWUAAB4UAAAB1wAAAzNTIK3NcG9zdAAAH+wAAABoAAAAkgWnBa9wcmVwAAAKjAAAAI8AAACnaEbInHicY2BkYGBgYmTTP3OyLp7f5iuDPPMLoAjDw/v19jD6/8H/bMzSTO+AXA4GJpAoAIMDDc94nGNgZGBgevefjYGBuen/wf/XmKUZgCIowAIAnCYGaAABAAAAOABGAAMAAAAAAAIAFAA2AI0AAABhAKAAAAAAeJxjYGT8yjiBgZWBgamLaQ8DA0MPhGZ8wGDIyAQUZWBlZgCDBqAgAxIISHNNAVIKCkpM7/6zAVW+Y/jFAFUDABLjC+94nGOUYAADRl8QAUT9DIFAbMksz2DJKMuQxBjGwA2kk5kYGSyBWBOIo4BYG4plgVgdia8NVruWIYlpAoMTkw9DPJDtxNzEkMZkzaDHtI9BlekQUGwdAx/jWwYzJiGGYMYTDCpAWgVIKzNaMciAzRRiCGT4yuDNKPj/IOM3hlAgO4jZgCEQJA6UlwPriwfiLgZZxmIGYZA4400GPqD5fECaAcRm3McgC/TDfwAEDSEwAHicY2BgYGaAYBkGRgYQ6AHyGMF8FoYCIC3BIAAU4WBQYNBkMGewYnBmcGfwZQgDylUpKP3/D1ShwKDBoM1gyeDE4AaUCWZIZCgCyfx//P/O/9v/b/2//P/i/zP/j//f+3/PA1GoLVgBIxsDXJqRCUgwoSuAOBUEWFgZ2Ng5OLm4eXj5+AUEhRiERaAyomIMDOISYKYkmJSSlpFFmCEnr6CopKyiqqauoamlraPLoKdvYGhkbGJqhtth6MCceKWkAgAb7iSOAAAAeJytV2tbG8cVntUNjAEDkrCbdd1RxqIuO5JJ6zjEVhyyy6I4SlKBcbvrNO0uEu79kvRGr+n9ovyZs6J96nzLT8t7ZlYKOOA+fZ7yQeedmXfmXOfMQkJLEg+jMJay90Qs7vao8uBRRLdcuhEnj+XoYUSFZvrRrJgVg4E6cBsNEjGJQG2PhSOCxG+Ro0kmj1tU0KqhGi0qajk8Ltbqwg+oGsgk8bNCLfCzZjGgQrB/JGleAQTpkEr9o3GhUMAx1Di82uDZ8WLd8a9KQOWPq04Va4pEPzqMx6tOwSgsaSp6VA8i1kerQZATXDmU9HGfSmuPxjechSAchFQJowYVm/HeOxHI7iiS1O9jagts2mS0Gccys2xYdANT+UjSBq9vMPPjfiQRjVEqaa4fJZiRvDbH6Daj24mbxHHsIlo0HwxI7EUkekxuYOz26Bqja730yZIYMONJWRzE8TCNyfHiOPcglkP4o/y4RWUtYUGpmcKnmaAf0YzyaVb5yAC2JC2qmHAjEnKYzRz4khfZXdeaz7/ghQMqrzewGMiRHEFXtlFuIkK7UdJ30704UnEjlrT1IMKay3HJTWnRjKYLgTcWBZvmWQyVr1Auyk+pcPCYnAEU0Mx6iy5oydYuwq2SOJB8Am0lMVOSbWPtnB5fWBRB6K83poVzUZ8upHl7iuPBhACuJzIcqZSTaoItXE4ISRdGTqxEalW6bVUsnLOdrmOXcD917eSmRW0cOl6YF8UQWlzViNdRxJd0ViiENEy3W7SkQZWSLgVv8AEAyBAt8WgPoyWTr2UctGSCIhGDATTTcpDIUSJpGWFr0Yru7UdZabgdX6eFQ3XUoqru7Ua9B3bSbWC+auZrOhMrwcMoW1lBClOflj2+cigtP7vEP0v4IWcVuSg2+1HG4YO//ggZhtql9YbCtgl27TpvwU3mmRiedGF/F7Onk3VOCjMhqgrxCkjcGzuOY7JV1yIThXA/ohXly5AWUX4LUJygFGuYSWDDf65cccSyqArf9zkSNRiCtaw269GHnvs84rYKZ+teiy7rzGF5BYFn+TmdFVk+p7MSS1dnZZZXdVZh+XmdzbC8prNZll/Q2QWWnlaTRFAlQciVbJPzLl+bFukTi6vTxffsYuvE4tp08X27KLWgS955DrOv/7a+sqMn/WvAPwm7nod/LBX8Y3kd/rFswj+Wa/CP5RfhH8sb8I/ll+Afy3X4x7KtZcdU7k0NtVcSGbAJgcktbmObi3dD002PbuJivoA70ZXnpFWlm4o7/DMZLnv/5Umus8VKyKVHL6xnZaceRuiO7OVXToTnPM4tLV80lr+I0ywn/KxO3N8zbeF5sfovwX/b99Rmdsups6+3EQ84cLb9uDXpZote0u3LnRZt/jcqKnwA+stIkVhtyrbscm9AaO+PRl3VRTOJ8AKi/eJp2nSceg0RvoMmtkqXQSuhrzYNLZsXPl0MvMNRW0nZGeHMu6dpsm3PowpuQ86WlHBz2dqNjkuyLN3j0lr5udjnljuH7q3MDrWTUCV4+t4m3Pbs81QKkqGiMl5XLJeC1AVOuOU9vSeFaXgI1A5yrKBhh5+uucBowXlnKFG2uVZwiZGMMgqu/JlTcSIb0WQjivjNW+qnulAInUksJGbLa3ksVAdhemW6RHNmfUd1WSln8d40hOyMjTSJ/agtO3jZ2fp8UrJdeSqo0sTo/smPGJvEs6o9z5bikn/1hCXBJF0Jf+k87fIkxVvoH22O4g5dDqK+i8dVduJ2tuHUcG9fO7W65/ZPrfpn7n3WjkDTHe9ZCrc13fVGsI1rDE6dS0VC27SBHaFxmetzzUY+xZeab13nAlW4Pm3cPHv+js7m8OhMtvyPJd39f1Ux+8R9rKPQqk7USyPO7eyiAd/xJlF5HaO7XkPlccm9mYbgPkJQt9cenyW44dU23cYtf+Oc+R6Oc2pVegn4TU0vQ7zFUQwRbrmDF3gSrbc1FzS9BfhVPRZiB6AP4DDY1WPHzOwBmJkHzOkC7DOHwUPmMPgacxh8XR+jFwZAEZBjUKyPHTv3CMjOvcM8h9E3mGfQu8wz6JvMM+hbrDMESFgng5R1MjhgnQwGzHkdYMgcBofMYfCYOQy+bezaBvqOsYvRd41djL5n7GL0fWMXox8Yuxj90NjF6EfGLkY/Row70wT+xIxoC/A9C18DfJ+DbkY+Rj/FW5tzfmYhc35uOE7O+QU2vzI99ZdmZHYcWcg7fmUh03+Nc3LCbyxkwm8tZMLvwL03Pe/3ZmToH1jI9D9YyPQ/YmdO+JOFTPizhUz4C7ivTs/7qxkZ+t8sZPrfLWT6P7AzJ/zTQiaMLGTCh3p80XziUsUdlwrFEP89oQ3Gvkezh1S83j+aPNatTwC4CgP0eJxj8N7BcCIoYiMjY1/kBsadHAwcDMkFGxnYnTaJMzJogRibeTgYuSAsETYwi8NpF7MDAyMDN5DN6bSLAcLeycDMwOCyUYWxIzBig0NHBIif4rJRA8TfwcEAEWBwiZTeqA4S2sXRwMDI4tCRHAKTAIHNfGyMfFo7GP+3bmDp3cjE4LKZNYWNwcUFAKtGKvUAeJxjYMACgoHQicGJ6eD/V0zbGPcwMPy3YzoDZB9kPPv/639jALR5DfcAAAAAAAAAAAAAAAAAACgAUACIALYA0ADmARYBcAGwAgACdAKoAwwDlgPQBEQEdATABQgFMgWCBdIGJgZKBnYGpAckB54H6AhWCLIJAgmkCegKFgpgCpgKrgsIC0oLjgv6DDAMnAzkDTYNbg3ADfQORA6IDqIAAHicnVkLbBtHep6ZXe5KokRxSS5FiSJNcvmQSIl68CWJMkW9bT0pUaIsy5ZE2ZatvJ24F1/axI5jJTkDDnJwLk3v6lyQBHF7PlyMNlYQnFHXbovkkMRoCzSPtnCKS4KgB9RomwZBDzXVf2ZJinKMK1DbWi93RrP///2P75shwmhqU8QZcgsZkJTUIYzwOkLoe2Y9ES0BjRLEkbAhFtLxJjuHM7177zmyr7d2R5diq3d3Of577PbFC2hzvM69P/vyW+dX9nnh9zthvcR31rMa6XoekyAqCT4c5HwhO8aJ0sUssPhvL5QuZhm7zdZ7nXxJplAN8iYVxHOYn9dgjsDCHDqMeB5nEebxlIv+cQpiPbxEcUomxRWRnK5IOOSUwqF2WXK2ky+V3OeyOfdrRcF22Yxtym9l9YNZxnZFyf0aDMVoZfNJ9A7KIAHFLyOMCR4bvVSR2pOUYBCjo4gQvAR3BjxhTerpLzxd8mj+siRJnFgbiIlKTImE3mkKWOsy+OSJDFtbi65iG7qNOGRJyvAZ4Tm66BIdm5QY5B5nxIltuVvYcDXBfucAXKk9HDLC+9TZAO6EOj1EX5LJ0OUZVgJ+D7A30vUrEIHpY8UQNHjpL2CTiHVEcXkj4RjEKdRuxu9pcq9xnFYsq9Lg/eoN+YRU/0+mrEysrCDV3M/oDYLlGjd/gz8hryM9akDdo5esAItMvYcQYP044jiUhTdVI4DGCO8lHCZrJU/nN/x+r8KLddQKQXH5qBFRMKHGLIaDvOISBdlk14Tao7Eo/iQQ+95DXc3tHQ+0Z2qjaSJI9a2OOXs11pSbrE1WZ7e+Bg+eT9+7OvX6z2ayrY0LP3U2jraG6u4LP2xTBoOdLktTay8YsReAuQw2V6LUZR6DSWOq4bWAKIFEWoMc0o9rMCC7rCJrhTGe49cLE0rH5pPlEGGDpKeZ1ogjIUlQIu2xkBTCl3MXT8Ymn+qXTyZwribRe/vHLCYBuNyA99ej3UmtropighFHxgrwQYplAUMVvqWCBUYaPMjytZKn8xsZd4OewgcvjiVIJOxVXILoowjKJqEaA3BxjG/kDr3T2hJI9YaGDcH2Fw8cH116/QHBIlwZeNPfNhXomRuY7nrlib19i+M/wtQ+iOlHYF8zyib1Lifh+ACgVCYQuOaNtOWRoOWmySKNBowFSIqxtiINAKbh14rztkYBMG+D5Pa61NKEqHt90Zid2gr2B3AkGktwzBMdFn0JrPoiQnf46PF9iQe8Zbz93nhHf6Jv1GH2xmq1cb+ltdfkcxzZOfFAd7hn/PLUY9Fgk8nfOdkdne0lhN/R5JGaWirbGjrbOueT4QWrvB/R3LVBHL4gz6EKsKop2ShA0xhFHM+tCxrC03bCoyNqEWu12mptNQRZ0ouiNeBRZCXijGCIsSIByviLgzO5/4CoHfwzfHrnhQsXevEbub34ePhfDtJ4+wDPG/AeG7o/qa3FRCgTKSZ5KD0QepqEJxGPNAKvOQyhF7JIEKTtkCrfmSdAOQmQraXQVrggGQFbUbSp2Aaxr4gtlJMiOWWnTPMD31hfDO1rqHJb9zRFJhO+CdcuvDf3dUsi9cj7i08FvFK8pXl8ZnbXJD428F7DKcCrkBdW1IJ+kNRXQ9rqwQ9AAyJdyIwdJdXP81wWsrVmHBKk6MjopWaWQIVmcNdJkEDFZoF4DQeJtDU6Dxnk9ymK153PINo5gpD84FaNzCqg0EJ89JMsyLSFQAf5yO7pnvUN9TW8+lBHJBqdOFi2a9XTYfPPmV3JrmGM+QpDrb+2x133WVeqod+x6+zKH79r6pFPHZ5Wmvv3jzTsXNip1VdZgm633BlQa3nzG8DkOVSFdha5gfqno9UKqX+44JCcJwaYM5enB4IngR2mjZQdsEBkRW8Ea6EAnPij7Mm9X/8+lOhf44tk972599/CKbQJ6Ym2xaEZLSV1WqzhBVhWQwmwWJ8aeJVmC97v1GcR1vy87fXp97kVVp+Y5pAvZqYdWIfVBh2lHdpOAN0gp3boGjqOP/rx2kTc2RzvPqCt29s11NJi8yTmvYO93gWMy8whd7fHWafEO3fhifPvtnR473/MEdo9tNIx2TgASMuSILcONIWbZ1P+6ALzk/EcvgKmipRbmllzBBgps0q0OZIlQNJA8tyCOAz0v/V0fgNKgTVHI1CilKfFDF7N5AaAHTm0Ai85RjaQDpSEA7UkmyoxiImxPDSHCySuZ5mZ77hOt9PvLHYup1RsThxtXTLAYKQ38DxKjp27P3fr23te2D+WfuToo6mTv5c9Wvf41LmfpB+5MnqUbBwZis4YK1dweajvP8dzX3VN5b4eYznVt/kNWSDXwCZ/0kerzKEnHCFjhcrSFXnVgia8Pg/jT49Q4E9aBeYa0UtzvxCcWDRGFnZ6Askz2ez1M7FAIKIP+hoi2aHBwaFsstHT2ewu167dc+6Fvy8TTXsc2srZme8fn52trKT6DVwnTvLnoFWUpCNflzSv+SVGlGCMgZsArKVWDTRHrPgUaDFOCVoNcab/zYVjuV8t4+vkfvJNb+5dWKfg42HmYzzZUQU+6iAL6zHHwxjHj+Xp4/BdXZYM4LQq7H6XyxGIODl85ChzOd4ajFW3NDV1qS73961/6m1jDmu11j1efbXqsOnlXlU3rUKCWCE3atHg2yYteMxUQg2koIHH+XIyjANJqOQsU+0J+XdSHcw/n3/bIpllPUXFqUiKIHKKj/P64FYK1RjNNaFozBjirNPYNHhmzPnAQBWePm5YT1Rh7dTTx8mR4Yu5V2Zw3S+it18iG825i+cjwb/FeV0X3PwNsMEHoLqCyQDgRmxAz5zaAmgNUAFhKq15T1BxsTzZKmhghBYcJHkA7RgApN3SZN6B7RCRpw4+/qD+0KPJ6S7vzA5Pj+w7tRoY8Tn149neqW7/oeSRq5kTg3PTY+FAb6VcpvXWR7omj+v10lzvUHNjvMJS/RDY6YHceYlcQuXImrRQWLilQjcCXpWckoOJP8UHmIhAquSl7g+XP9xJHiH3kNsvkPvIkOrvEvh7AOIh0XU4zKqSkIJzRsW45Zw3IoUkE3NQCpEDL67d85PllYHB1fS/3nfu3P34g1z74qHVRfwhW1cH9r0C62qRM2kXMZXHUGpseRZCuGqRVpJ4EMrlWMEho4GFjbyS+2o599Whx9bKcXX2cbJxe4Rs5G7kvm0ZuIU7EOtfUeCGN+A9ZkDhh0mdBNmtBwYHFAQun0x2mKYRiIaKOj4L5QQ0KAgoi/OJpXY9111mwTidyqrDQnceDtAFHOG5teLkO6YAbVZ4TYpicumpOnAqEQYWtHNVGqiqUYy4dESm8IGexG+k+o7E4390uq1xZkiYSI+spKvbMl3RhqBDkoi3Ld3U3c/523aGh5tWRn4U5itdFptirKiTmP9p8P8WYFuN6tArqr/VWmixZplQxkIabsy67QmGJ/PqRKsqgLeLA4qKpYjKjjun0IosyAQ6jalUleXYzDvGqYxQ3C7JWCpEZShNiQIhMkxkRmy3Hpxs3S2lUyP7h/enZyIDDa5kx8JnB57xGVsg6B93nVmcne74x8Q05JMbfL7IYg7avgKqyKxlvbtAX/l+VlPaz+6yNaLmbbg9ilNt7WBZmEkaMYjVEoXw4IupPcsnHl8NJ5qrfN3BkeGJnrkRT+uZv3jeWDtUZzrcv2sxxOJAbboKcaiCODxD9QJPYM9EFa6mkIdWtSh5njWOErgNJXDfMYWll0azlYE2eBcP0nlNnXnHOIXbrRgUF9so5bOPdW4pxEW8Rbei+Gp6YHb36pHRTF8q7Y13LkzHunzacM+z15+NYe/tj/8mPD2XngnrmG9KHm8DdOqVZAXkEBIB9QLgdgFroMw17FxgK0+YCxYqHOoLKbI1cWt4PqkzGo21xloPqCFV+Tuplo7V5CuH0o4aEhFfzF0nmUR6RBifW3zy+3OL7Q3dVbt8wcGqfxpcjgy2nTmQPTOaCPaHBtpp36mHy0HgPzPam6wwQ0egrbpgNQwitgXQjcP+FFQI3W9KeaK1JuvgI9u3MhbOT1QHocQVysQmJy1xzPZQNhySKeUAHaom44ONfpPiffjB1Ojoym5vE3lQKvM5jyVyp/ATiT2jK1rAxLbZjr/G74LC7ESD6HTSHMCId2MRVWEsOnAZ6cXlZZq8vY0g0DARMYAIqiCrwaxDEVK2hMrKIAnKyxn0tdR4H4zCNJFHa4XfuutMwH6gPwQJ01Qz4HNWiDuYN5TaZcZgkC1x3G7n4RM7ucj/UP+iIVa8aj6BHgtgF2zSTGao5K9tzQm+LjsQDpR37ZNsMX/Acvovn0rW2lzZgVjTSOZPIl53jP4sPLvo8hGy7w8W8GnIaU1Tc/+yTWcKE9FoCzk7J1OxnkZHoNnbEu3LOhyvhUNtMfjJfdDn1OtdfnVvMAWXa1B3JjR0Wc+oRYXLXGDAfC8vqggTovKHx2oBFUUEtChvQUSEqeQWbDjfpmR8LY21xsb6cHs61TV/FruqDE6Tfk/Xf0Fj+tWul1mN0F3DRXKO6egu1QRjyb5cGt86YijZrRePGAoqGva6IXqC9WoqVb68jK88uozI5rXNELoKa+tg7gyrP7YPKWSyJU9KVMip+1kQ3VCqbAtCVRVh+1l1ytbo/NsSPa+jPtcU9UoCA59TUXd1LNqzs8bVqKt3pZaX430pV+8OjctO0KPLDPdZtq+nnN6bLNeWweKIK2AvFQ5WpPFCe9t6hpbyz+Y3DJKROe1UfCLjhFhIxF9kfjq1e+zDpZ/fTD0H+Hbc+Dl73zRcX4X3Fc7jCtqhcB4nUchgPJ8T5CbUlRuNbzjqyVZSyFTUaLIiMLdGGudB26jG1YhYgCEkYLYFXiqMzCe1LpoYkBplon17apQkiawWRLtMbhYTpfD/eNe+Q7aefSVJU3J3fXhsevrlrTwGm02ob1seG+CWy1LFK909h9HS/5XD8h05DCad3W7Ey6qWskOf/xz6vBb2at3/LzJ1u0slYrjI8fk2gT9fX9z39Pr+pdPp2XhnJr0zPvPP2afXVw6efW5+anZmemrfgqppEvgWYKGDVZ9NVlcAl8omEC+abWRKSRIsoClf0Bs0+Y24VLtIdzkgKU4r0S5bQ/kNqVElUyNoF8OWdmHSRS6VLlS5PDQ+2Z1OjS4P7U1PdfY3eI7v+ezg053/Tp5ojZ9ZGlqKfZLIshin4ZICvypQ4nIZpNtWvYDXBV/yZ9wGmEvQPIdLTrmLBYMp4TBLYjg1vJoa6TuKT+D9Y/+Ary8sEvYuG8TyYYhlM0olq3dAD3CUQdcR88cXamjzW5ia4hbGUjgDhddyayVPqYpz2usVN8++TqAn2Wq7IOEg9sE/CHaCgyoQGX/ANsdOasz4YWcsUj+frto1p5W9FsVu6Wyra3A0dNXpJoarhkcyjvo6j8unb3vSH6/XNu1u5ypsQUc5r5VqGto80VodcQz54ub6Mo1YLun8zC8j+JUhcWREs5eNWCjWCWgMwq1TDidLvIokaPyVglN1bJinjRML9MRoazB/nicZGJ1THRhhNB6SgdJlExWBmZGJzOyekeefD7f76zw/wChx4kTi1hzdp0+BPdfwFbBn5S0AGI8WN7DMBqiOle0Sz5wfYcqN4/BKQdmxAZURSgfm59+GnZeSr+sIPR/atvnC11LO1dZoKG1rD+1Kt9rsnT14Mrfhtodj2IkK+y/8PthYibouiyW9pYrtwraoiX1Wv7ZQmx/cVKJKdWOGOYUL1bD9NGTd+5f2X5qe6uCJprOqD1/JDeArf3fO6X3B9af5/d6b8D4r6t2wSAQVD+yqNTzkHCmhBfUJIusFUkhWwUutyGqWaiWBpjps573wVwF1UTDAmP+PvHl2YUyjq4QO2dydPpvqbuKxZnVk0CtgcY0a9a0USwj+lyA+f/XD5mHcdfOJhjjezTChl0/BRi3qpPwFinrLzCq1FItGss+lvGUwFHlLiflCNZS3Pt3zh+fm3r02d/aZuSu//OWXH7/22scM+80Qw74WDW3oy8nW4aWBByTu5Gv2EJP1UppOVrKbWlnxaOghJqeDzt6CGVn3YC5kBjASGEJy06A4jdXtFsHnr6iyVHrem9mtj3JczxC+cvuWP2LUlA1KfF3dPL5yoeFUa8vFC6xPwOU82CehXckKLabtRv2apLnwNckSKmTyd74mObzta5JpabrwNQnOn7HK+S9HzudO4spxwSKcxQ/mvpmBmxcDOI17GnO/UEOBNtEx4sQv/u7v6OhhV+4mdh3DLvS/O5TdVAB4nJVSzW7aQBD+lgBVpSo59dhoDjmAIlu24ZCfW6IkFQokwgHluiQGLIg3sk0Qr9BniXLso/QR+hz9WK8qlVu92plvZ2dmv5kxgH18QKH6xn+xwif11eEamurY4T0cqx8O13GgfjncwFEtcLiJg9qKnqr+mad3G7XFCvuq4XANX9Q3h/cwVpHDdRyqnw438F39driJw9oIlzB4xQY5UswwRwlBhICrA4+rwqe0TugluIBP2YPGExaMXaOgTmnTyPBs73z0rdfA3leeW48Wz5nNlPAljSWmPBkrH2h7pB4hxhWGlIIb6jta7nlqMyMuzesmT2fzUqIg6Hge5alMNnLhS08/Lcy6WKSis2fp+X1fBmZNYyotk8kkmevlVMxUHpJHGcVXw1huhnej+7jNvLckHNsCCpaK236ss4JgW0COF0sVA5O/aOprW0Vpdc6eJbZjPrskOOP+N5nHGhJ6rZhC07/y6SDkTej6G6HLtCYrr00+SyTyAzkTR8IbJrPVUue0dEIvZMlRd5fw7hvYid3+hQntBadQTaDiG/BdwTl3yTVl7IracDaprXA7sTey9HHCHXIGGCd5kbKf5Bh05VzKcqpXpZmnWSmtt9A/8cP2f9P7AwK1i3oAeJxtzLkOAQEAANFnlcR9h5KESuXorfsWN9+j9cds1CaZckbgx+et5R+DyJhAXEJSSlpGVk5eQVFJWUVVTV1DM3q0dXT19KNyaCQ0NjE1M7ewtLK2sbWzd3B0cnZxdXP38PT6AqYKDVYAAQAB//8AD3icY2BkYGDgAWIxIGZiYARCcyBmAfMYAAX7AGZ4nGNgYGBkAILbCvvfgeiH9+vtYTQAU5kHpgAA')format("woff");}.ff1c{font-family:ff1c;line-height:1.000000;font-style:normal;font-weight:normal;visibility:visible;}
.m0{transform:matrix(0.375000,0.000000,0.000000,0.375000,0,0);-ms-transform:matrix(0.375000,0.000000,0.000000,0.375000,0,0);-webkit-transform:matrix(0.375000,0.000000,0.000000,0.375000,0,0);}
.m1{transform:matrix(1.500000,0.000000,0.000000,1.500000,0,0);-ms-transform:matrix(1.500000,0.000000,0.000000,1.500000,0,0);-webkit-transform:matrix(1.500000,0.000000,0.000000,1.500000,0,0);}
.v0{vertical-align:0.000000px;}
.ls0{letter-spacing:0.000000px;}
.sc_{text-shadow:none;}
.sc0{text-shadow:-0.015em 0 transparent,0 0.015em transparent,0.015em 0 transparent,0 -0.015em transparent;}
@media screen and (-webkit-min-device-pixel-ratio:0){
.sc_{-webkit-text-stroke:0px transparent;}
.sc0{-webkit-text-stroke:0.015em transparent;text-shadow:none;}
}
.ws0{word-spacing:0.000000px;}
._5{margin-left:-5.537550px;}
._7{margin-left:-3.844782px;}
._3{margin-left:-1.900950px;}
._b{width:1.090311px;}
._0{width:3.073600px;}
._37{width:4.141170px;}
._2e{width:9.568288px;}
._25{width:11.078411px;}
._d{width:12.510544px;}
._c{width:14.055322px;}
._f{width:15.079127px;}
._8{width:16.199369px;}
._17{width:17.275051px;}
._9{width:18.346366px;}
._e{width:20.024517px;}
._6{width:21.691454px;}
._15{width:22.968378px;}
._11{width:25.070054px;}
._10{width:26.625917px;}
._5c{width:29.060990px;}
._3a{width:30.126860px;}
._4{width:31.241700px;}
._a{width:32.418280px;}
._14{width:33.771608px;}
._1{width:36.288314px;}
._20{width:38.391299px;}
._2{width:40.911750px;}
._48{width:43.601705px;}
._4a{width:44.944670px;}
._23{width:47.282809px;}
._44{width:48.312469px;}
._1c{width:50.807160px;}
._33{width:52.552676px;}
._3b{width:54.383799px;}
._13{width:56.026302px;}
._39{width:59.919476px;}
._4b{width:62.764380px;}
._49{width:64.517948px;}
._53{width:66.763608px;}
._46{width:75.572225px;}
._45{width:85.971349px;}
._28{width:87.707343px;}
._3c{width:94.398145px;}
._1a{width:106.722797px;}
._27{width:108.628803px;}
._36{width:113.481410px;}
._2a{width:115.090436px;}
._19{width:123.460007px;}
._31{width:126.993991px;}
._32{width:130.469385px;}
._3d{width:132.057025px;}
._26{width:135.015636px;}
._35{width:142.036482px;}
._30{width:148.438966px;}
._2c{width:149.903101px;}
._5b{width:153.791693px;}
._1b{width:156.934427px;}
._43{width:160.785485px;}
._18{width:173.671637px;}
._42{width:179.635475px;}
._2b{width:191.321183px;}
._34{width:196.080230px;}
._41{width:198.444365px;}
._29{width:212.242643px;}
._56{width:244.779680px;}
._5a{width:247.953920px;}
._3f{width:257.802006px;}
._58{width:266.533120px;}
._59{width:295.205120px;}
._22{width:301.983850px;}
._2f{width:309.534890px;}
._1d{width:321.769152px;}
._57{width:357.755680px;}
._12{width:414.243520px;}
._40{width:527.805332px;}
._24{width:654.100320px;}
._38{width:797.776002px;}
._52{width:840.599674px;}
._51{width:861.879930px;}
._16{width:922.236338px;}
._1e{width:958.292279px;}
._21{width:993.874473px;}
._54{width:1007.435495px;}
._47{width:1017.268394px;}
._2d{width:1092.954091px;}
._4c{width:1122.497024px;}
._50{width:1234.565970px;}
._1f{width:1236.945128px;}
._55{width:1266.223339px;}
._4e{width:1309.570433px;}
._4d{width:1351.296542px;}
._3e{width:1394.272812px;}
._4f{width:1420.803789px;}
.fcd{color:rgb(16,136,110);}
.fcc{color:rgb(57,75,79);}
.fcb{color:rgb(171,92,31);}
.fca{color:rgb(186,33,33);}
.fc9{color:rgb(0,128,0);}
.fc6{color:rgb(176,0,64);}
.fc1{color:rgb(250,250,250);}
.fc8{color:rgb(102,102,102);}
.fc7{color:rgb(0,0,255);}
.fc2{color:rgb(255,255,255);}
.fc0{color:rgb(35,55,59);}
.fc3{color:rgb(173,34,49);}
.fc4{color:rgb(156,102,0);}
.fc5{color:rgb(61,122,122);}
.fs8{font-size:23.910400px;}
.fs5{font-size:31.880400px;}
.fs7{font-size:35.865600px;}
.fs4{font-size:39.850400px;}
.fs6{font-size:43.636400px;}
.fs3{font-size:47.820800px;}
.fs2{font-size:57.384800px;}
.fs1{font-size:82.650000px;}
.fs0{font-size:99.148400px;}
.y0{bottom:-0.750000px;}
.y276{bottom:7.179000px;}
.y17c{bottom:7.770000px;}
.y1bc{bottom:8.172000px;}
.y1fb{bottom:8.253000px;}
.y10b{bottom:8.367000px;}
.y2bc{bottom:8.428500px;}
.y199{bottom:8.476500px;}
.y1af{bottom:8.664000px;}
.y257{bottom:8.872500px;}
.y1df{bottom:9.279000px;}
.y287{bottom:9.514500px;}
.y24d{bottom:9.583500px;}
.y186{bottom:9.588000px;}
.y260{bottom:9.700500px;}
.y1d1{bottom:9.792000px;}
.y312{bottom:9.973500px;}
.yd6{bottom:10.323000px;}
.y66{bottom:10.477500px;}
.y76{bottom:10.594500px;}
.y42{bottom:11.140500px;}
.yeb{bottom:11.302500px;}
.y4a{bottom:11.454000px;}
.y203{bottom:11.542500px;}
.y293{bottom:12.358500px;}
.y171{bottom:12.541500px;}
.y143{bottom:12.570000px;}
.y166{bottom:13.525500px;}
.y96{bottom:13.912500px;}
.y2df{bottom:14.017500px;}
.y233{bottom:14.236500px;}
.y154{bottom:14.289000px;}
.y20e{bottom:14.412000px;}
.y304{bottom:15.318000px;}
.y88{bottom:15.454500px;}
.y21c{bottom:16.026000px;}
.y152{bottom:16.500000px;}
.y1a7{bottom:19.041000px;}
.y13a{bottom:19.138500px;}
.y12{bottom:19.527000px;}
.y2f3{bottom:22.320000px;}
.ya0{bottom:22.777500px;}
.y30d{bottom:24.070500px;}
.y228{bottom:24.447000px;}
.ybd{bottom:24.763500px;}
.yd5{bottom:26.649000px;}
.y17b{bottom:26.674500px;}
.y65{bottom:26.803500px;}
.y26f{bottom:26.805000px;}
.y75{bottom:26.920500px;}
.y185{bottom:28.492500px;}
.y1d0{bottom:28.696500px;}
.y41{bottom:30.043500px;}
.y202{bottom:30.447000px;}
.y286{bottom:31.407000px;}
.y87{bottom:31.780500px;}
.y165{bottom:32.430000px;}
.y191{bottom:34.597500px;}
.y151{bottom:35.404500px;}
.y2de{bottom:35.910000px;}
.y20d{bottom:37.783500px;}
.y1a6{bottom:37.945500px;}
.y2f2{bottom:38.646000px;}
.y2b4{bottom:38.727000px;}
.y21b{bottom:39.399000px;}
.y10a{bottom:39.657000px;}
.y2d8{bottom:40.306500px;}
.y227{bottom:40.773000px;}
.yd4{bottom:42.975000px;}
.y64{bottom:43.129500px;}
.y74{bottom:43.246500px;}
.y115{bottom:43.489500px;}
.ybc{bottom:43.666500px;}
.y2a8{bottom:43.765500px;}
.y1c5{bottom:44.185500px;}
.y14b{bottom:44.670000px;}
.y275{bottom:45.940500px;}
.y9f{bottom:46.149000px;}
.y246{bottom:46.425000px;}
.y86{bottom:48.106500px;}
.y29e{bottom:48.420000px;}
.y40{bottom:48.948000px;}
.ya8{bottom:49.330500px;}
.y201{bottom:49.350000px;}
.y11{bottom:50.679000px;}
.y232{bottom:51.066000px;}
.y256{bottom:51.207000px;}
.y164{bottom:51.333000px;}
.y2cb{bottom:51.691500px;}
.y15f{bottom:51.916500px;}
.y1bb{bottom:52.455000px;}
.y95{bottom:52.881000px;}
.y1de{bottom:53.763000px;}
.y1b8{bottom:54.249000px;}
.y2f1{bottom:54.973500px;}
.y26e{bottom:56.154000px;}
.y1a5{bottom:56.848500px;}
.y226{bottom:57.100500px;}
.y2b3{bottom:57.631500px;}
.y190{bottom:57.970500px;}
.yea{bottom:58.426500px;}
.y28{bottom:59.170500px;}
.yd3{bottom:59.301000px;}
.y63{bottom:59.455500px;}
.y73{bottom:59.572500px;}
.ycd{bottom:60.202500px;}
.y11e{bottom:60.429000px;}
.y1fa{bottom:61.048500px;}
.y20c{bottom:61.156500px;}
.y170{bottom:61.818000px;}
.ybb{bottom:62.571000px;}
.y109{bottom:63.028500px;}
.y33{bottom:63.061500px;}
.y21a{bottom:63.427500px;}
.y2d7{bottom:63.678000px;}
.y25f{bottom:63.798000px;}
.y6{bottom:64.425000px;}
.y85{bottom:64.432500px;}
.y303{bottom:64.554000px;}
.y1c4{bottom:64.807500px;}
.y142{bottom:65.172000px;}
.y30c{bottom:65.376000px;}
.yce{bottom:66.141000px;}
.y114{bottom:66.861000px;}
.y2a7{bottom:67.138500px;}
.y1ae{bottom:67.893000px;}
.y14a{bottom:68.041500px;}
.y274{bottom:69.312000px;}
.y245{bottom:69.798000px;}
.y1dd{bottom:70.089000px;}
.y15e{bottom:70.821000px;}
.y198{bottom:71.259000px;}
.y2f0{bottom:71.299500px;}
.y231{bottom:71.688000px;}
.y49{bottom:71.721000px;}
.y94{bottom:71.785500px;}
.y29d{bottom:71.793000px;}
.y225{bottom:73.426500px;}
.y255{bottom:74.580000px;}
.y2ca{bottom:75.063000px;}
.yd2{bottom:75.627000px;}
.y1a4{bottom:75.753000px;}
.y62{bottom:75.783000px;}
.y1ba{bottom:75.828000px;}
.y72{bottom:75.898500px;}
.y2b2{bottom:76.536000px;}
.y10{bottom:76.792500px;}
.y319{bottom:77.260500px;}
.y1b7{bottom:77.620500px;}
.y52{bottom:77.952000px;}
.y27e{bottom:78.748500px;}
.y23d{bottom:79.224000px;}
.y26d{bottom:79.527000px;}
.y84{bottom:80.758500px;}
.y18f{bottom:81.342000px;}
.yba{bottom:81.475500px;}
.y132{bottom:81.835500px;}
.y219{bottom:82.330500px;}
.y302{bottom:83.458500px;}
.y285{bottom:84.046500px;}
.y11d{bottom:84.588000px;}
.y9e{bottom:85.174500px;}
.y1c3{bottom:85.429500px;}
.y184{bottom:85.578000px;}
.y1a{bottom:85.618500px;}
.y128{bottom:86.344500px;}
.y108{bottom:86.401500px;}
.y1dc{bottom:86.415000px;}
.y32{bottom:86.433000px;}
.y3f{bottom:86.755500px;}
.y25e{bottom:87.169500px;}
.ye9{bottom:87.231000px;}
.y1e6{bottom:88.270500px;}
.y141{bottom:88.545000px;}
.y30b{bottom:88.747500px;}
.y5{bottom:89.437500px;}
.y24c{bottom:89.565000px;}
.y15d{bottom:89.724000px;}
.y224{bottom:89.752500px;}
.y2a6{bottom:90.510000px;}
.y93{bottom:90.688500px;}
.y1ad{bottom:91.264500px;}
.yd1{bottom:91.953000px;}
.y61{bottom:92.109000px;}
.y230{bottom:92.311500px;}
.yb0{bottom:92.320500px;}
.y16f{bottom:93.955500px;}
.y1a3{bottom:94.657500px;}
.y48{bottom:95.094000px;}
.y29c{bottom:95.164500px;}
.ya7{bottom:95.325000px;}
.y17a{bottom:95.529000px;}
.y83{bottom:97.084500px;}
.y254{bottom:97.951500px;}
.y23c{bottom:98.127000px;}
.yc3{bottom:98.139000px;}
.y28d{bottom:98.982000px;}
.y113{bottom:99.199500px;}
.yb9{bottom:100.378500px;}
.y318{bottom:100.632000px;}
.y131{bottom:100.738500px;}
.y218{bottom:101.235000px;}
.y244{bottom:101.352000px;}
.y273{bottom:101.650500px;}
.y27d{bottom:102.121500px;}
.y1db{bottom:102.741000px;}
.yf{bottom:102.907500px;}
.y284{bottom:102.951000px;}
.y311{bottom:103.488000px;}
.y20b{bottom:103.831500px;}
.y2b1{bottom:103.893000px;}
.y2ef{bottom:103.951500px;}
.y18e{bottom:104.715000px;}
.y127{bottom:105.249000px;}
.y1f9{bottom:105.342000px;}
.y3e{bottom:105.660000px;}
.y2e3{bottom:105.751500px;}
.y51{bottom:105.807000px;}
.y1ce{bottom:105.957000px;}
.y1c2{bottom:106.053000px;}
.y223{bottom:106.078500px;}
.y183{bottom:106.201500px;}
.y27{bottom:106.287000px;}
.y197{bottom:106.825500px;}
.ye8{bottom:107.853000px;}
.yd0{bottom:108.279000px;}
.y60{bottom:108.435000px;}
.y9d{bottom:108.547500px;}
.y71{bottom:108.550500px;}
.y26c{bottom:108.876000px;}
.y1ec{bottom:108.924000px;}
.y1b6{bottom:109.174500px;}
.y2dd{bottom:109.465500px;}
.y92{bottom:109.593000px;}
.y25d{bottom:110.542500px;}
.y107{bottom:111.229500px;}
.y1e5{bottom:111.643500px;}
.y19{bottom:111.733500px;}
.y140{bottom:111.916500px;}
.y2fa{bottom:112.110000px;}
.y11c{bottom:112.683000px;}
.y16e{bottom:112.858500px;}
.y24b{bottom:112.936500px;}
.ydc{bottom:112.993500px;}
.y82{bottom:113.410500px;}
.y2c4{bottom:114.064500px;}
.y179{bottom:114.433500px;}
.y1ac{bottom:114.637500px;}
.y20{bottom:114.763500px;}
.y292{bottom:114.924000px;}
.y163{bottom:116.938500px;}
.y23b{bottom:117.031500px;}
.y149{bottom:118.312500px;}
.y2a5{bottom:118.329000px;}
.y1da{bottom:119.067000px;}
.yb8{bottom:119.283000px;}
.y150{bottom:119.389500px;}
.y130{bottom:119.643000px;}
.y1a2{bottom:119.913000px;}
.y2d6{bottom:119.926500px;}
.y20a{bottom:120.159000px;}
.y2ee{bottom:120.277500px;}
.y217{bottom:120.513000px;}
.y301{bottom:121.266000px;}
.y253{bottom:121.324500px;}
.yc2{bottom:121.510500px;}
.y200{bottom:121.959000px;}
.y16b{bottom:122.311500px;}
.y28c{bottom:122.355000px;}
.y222{bottom:122.404500px;}
.y112{bottom:122.572500px;}
.y139{bottom:123.490500px;}
.y317{bottom:124.005000px;}
.y126{bottom:124.152000px;}
.ya6{bottom:124.195500px;}
.y3d{bottom:124.564500px;}
.ycf{bottom:124.605000px;}
.y243{bottom:124.723500px;}
.y5f{bottom:124.761000px;}
.y1cd{bottom:124.860000px;}
.y70{bottom:124.878000px;}
.y272{bottom:125.023500px;}
.y1cf{bottom:126.028500px;}
.yf0{bottom:127.107000px;}
.y196{bottom:127.449000px;}
.y15c{bottom:127.533000px;}
.y1f2{bottom:127.758000px;}
.y2d1{bottom:128.013000px;}
.ye7{bottom:128.475000px;}
.y91{bottom:128.497500px;}
.y1f8{bottom:128.713500px;}
.ye{bottom:129.022500px;}
.y2e2{bottom:129.123000px;}
.y22f{bottom:129.334500px;}
.y81{bottom:129.738000px;}
.y30a{bottom:130.053000px;}
.y31{bottom:130.726500px;}
.y16d{bottom:131.763000px;}
.y2c9{bottom:131.908500px;}
.y9c{bottom:131.919000px;}
.y26b{bottom:132.249000px;}
.y1eb{bottom:132.295500px;}
.y1b5{bottom:132.547500px;}
.y283{bottom:132.688500px;}
.y2c3{bottom:132.969000px;}
.y178{bottom:133.338000px;}
.y50{bottom:133.662000px;}
.y25c{bottom:133.914000px;}
.y182{bottom:134.295000px;}
.y27c{bottom:134.460000px;}
.y1d9{bottom:135.393000px;}
.y2f9{bottom:135.481500px;}
.y23a{bottom:135.936000px;}
.y24a{bottom:136.309500px;}
.y209{bottom:136.485000px;}
.y2ed{bottom:136.603500px;}
.y18d{bottom:137.016000px;}
.y18{bottom:137.848500px;}
.y12f{bottom:138.547500px;}
.y148{bottom:138.936000px;}
.y300{bottom:140.170500px;}
.y162{bottom:140.310000px;}
.y221{bottom:140.938500px;}
.y2b0{bottom:141.021000px;}
.y5e{bottom:141.087000px;}
.y310{bottom:141.805500px;}
.y14f{bottom:142.761000px;}
.y125{bottom:143.056500px;}
.y2d5{bottom:143.299500px;}
.y3c{bottom:143.467500px;}
.y1f{bottom:143.568000px;}
.y1cc{bottom:143.764500px;}
.y252{bottom:144.696000px;}
.y1ff{bottom:145.332000px;}
.y29b{bottom:145.437000px;}
.yaf{bottom:145.579500px;}
.yda{bottom:145.714500px;}
.y28b{bottom:145.726500px;}
.y111{bottom:145.944000px;}
.y80{bottom:146.064000px;}
.y15b{bottom:146.436000px;}
.y138{bottom:146.863500px;}
.y2d0{bottom:146.916000px;}
.y1ab{bottom:146.938500px;}
.y1c1{bottom:147.298500px;}
.y90{bottom:147.400500px;}
.y216{bottom:147.418500px;}
.y106{bottom:147.625500px;}
.y264{bottom:147.663000px;}
.yfb{bottom:147.682500px;}
.y11b{bottom:148.009500px;}
.y242{bottom:148.096500px;}
.yb7{bottom:149.022000px;}
.y1a1{bottom:150.397500px;}
.y16c{bottom:150.667500px;}
.y2c8{bottom:150.811500px;}
.y1f1{bottom:151.129500px;}
.ydb{bottom:151.653000px;}
.y1d8{bottom:151.719000px;}
.y2c2{bottom:151.872000px;}
.y26{bottom:152.125500px;}
.y208{bottom:152.202000px;}
.y47{bottom:152.299500px;}
.y177{bottom:152.616000px;}
.y22e{bottom:152.706000px;}
.y2ec{bottom:152.929500px;}
.y1e4{bottom:152.947500px;}
.ya5{bottom:153.067500px;}
.y309{bottom:153.424500px;}
.y30{bottom:154.099500px;}
.y181{bottom:154.918500px;}
.yef{bottom:154.962000px;}
.yd{bottom:155.137500px;}
.y291{bottom:155.329500px;}
.y26a{bottom:155.620500px;}
.y2a4{bottom:155.658000px;}
.y2f5{bottom:155.815500px;}
.yc1{bottom:156.838500px;}
.y25b{bottom:157.287000px;}
.y271{bottom:157.324500px;}
.y5d{bottom:157.413000px;}
.y12e{bottom:157.450500px;}
.y6f{bottom:157.530000px;}
.y2ff{bottom:159.073500px;}
.y2dc{bottom:159.738000px;}
.y2af{bottom:159.924000px;}
.y2b{bottom:161.437500px;}
.y4f{bottom:161.518500px;}
.y3b{bottom:162.372000px;}
.y7f{bottom:162.390000px;}
.ycc{bottom:162.891000px;}
.y195{bottom:163.015500px;}
.y105{bottom:163.951500px;}
.y17{bottom:163.962000px;}
.yfa{bottom:164.008500px;}
.y9b{bottom:164.221500px;}
.y13f{bottom:165.177000px;}
.y15a{bottom:165.340500px;}
.y2cf{bottom:165.820500px;}
.ye6{bottom:166.158000px;}
.y1c0{bottom:167.920500px;}
.y1d7{bottom:168.046500px;}
.y147{bottom:168.525000px;}
.y1fe{bottom:168.703500px;}
.y29a{bottom:168.808500px;}
.yae{bottom:168.952500px;}
.y2eb{bottom:169.257000px;}
.y1a0{bottom:169.302000px;}
.y18c{bottom:169.317000px;}
.y220{bottom:169.429500px;}
.y2c7{bottom:169.716000px;}
.y137{bottom:170.235000px;}
.y2c1{bottom:170.776500px;}
.y263{bottom:171.034500px;}
.y46{bottom:171.202500px;}
.y27b{bottom:171.913500px;}
.y11a{bottom:172.170000px;}
.y1e{bottom:172.372500px;}
.y1cb{bottom:172.434000px;}
.y1f7{bottom:173.008500px;}
.yb6{bottom:173.172000px;}
.y1ea{bottom:173.601000px;}
.y5c{bottom:173.739000px;}
.y6e{bottom:173.856000px;}
.y1f0{bottom:174.502500px;}
.y2a3{bottom:174.562500px;}
.y282{bottom:175.465500px;}
.y4{bottom:175.536000px;}
.y22d{bottom:176.079000px;}
.y215{bottom:176.305500px;}
.y1e3{bottom:176.320500px;}
.y12d{bottom:176.355000px;}
.y308{bottom:176.797500px;}
.y1ed{bottom:176.904000px;}
.y251{bottom:176.998500px;}
.y211{bottom:177.510000px;}
.y2fe{bottom:177.978000px;}
.y207{bottom:178.209000px;}
.y110{bottom:178.246500px;}
.yee{bottom:178.335000px;}
.yd9{bottom:178.435500px;}
.y180{bottom:178.492500px;}
.y7e{bottom:178.716000px;}
.y2ae{bottom:178.828500px;}
.y269{bottom:178.993500px;}
.ycb{bottom:179.217000px;}
.y2f8{bottom:179.775000px;}
.y30f{bottom:180.121500px;}
.y316{bottom:180.253500px;}
.y104{bottom:180.277500px;}
.yf9{bottom:180.336000px;}
.y239{bottom:180.430500px;}
.y124{bottom:180.864000px;}
.y25{bottom:180.930000px;}
.yc{bottom:181.251000px;}
.y3a{bottom:181.276500px;}
.yaa{bottom:181.594500px;}
.y1b4{bottom:181.642500px;}
.ya4{bottom:181.939500px;}
.y16a{bottom:182.803500px;}
.y194{bottom:183.637500px;}
.y28a{bottom:184.042500px;}
.y1d6{bottom:184.372500px;}
.y2ce{bottom:184.725000px;}
.ye5{bottom:185.061000px;}
.y8f{bottom:185.209500px;}
.y2ea{bottom:185.583000px;}
.y9a{bottom:187.593000px;}
.y19f{bottom:188.206500px;}
.y1bf{bottom:188.542500px;}
.y13e{bottom:188.550000px;}
.y2c6{bottom:188.620500px;}
.y146{bottom:189.147000px;}
.y4e{bottom:189.373500px;}
.y2c0{bottom:189.681000px;}
.y21f{bottom:190.051500px;}
.y5b{bottom:190.065000px;}
.y16{bottom:190.077000px;}
.y6d{bottom:190.182000px;}
.y249{bottom:190.279500px;}
.y1fd{bottom:192.076500px;}
.yc0{bottom:192.166500px;}
.yad{bottom:192.324000px;}
.y2a{bottom:192.372000px;}
.y18b{bottom:192.688500px;}
.y1aa{bottom:193.435500px;}
.y2a2{bottom:193.465500px;}
.y136{bottom:193.608000px;}
.y290{bottom:193.645500px;}
.y2e1{bottom:194.338500px;}
.y7d{bottom:195.042000px;}
.y214{bottom:195.210000px;}
.y12c{bottom:195.259500px;}
.yca{bottom:195.543000px;}
.y14e{bottom:196.021500px;}
.y1f6{bottom:196.380000px;}
.y210{bottom:196.414500px;}
.y103{bottom:196.603500px;}
.yf8{bottom:196.662000px;}
.y1e9{bottom:196.972500px;}
.y2ad{bottom:197.733000px;}
.y25a{bottom:198.592500px;}
.y238{bottom:199.335000px;}
.y2d4{bottom:199.548000px;}
.y123{bottom:199.768500px;}
.y2f{bottom:200.166000px;}
.y39{bottom:200.179500px;}
.y119{bottom:200.263500px;}
.y262{bottom:200.385000px;}
.y1d5{bottom:200.698500px;}
.y45{bottom:200.941500px;}
.y1d{bottom:201.177000px;}
.y176{bottom:201.184500px;}
.y206{bottom:201.580500px;}
.y268{bottom:202.365000px;}
.y159{bottom:203.148000px;}
.y315{bottom:203.626500px;}
.y241{bottom:203.844000px;}
.y22c{bottom:203.896500px;}
.ye4{bottom:203.965500px;}
.y8e{bottom:204.112500px;}
.y1b3{bottom:205.015500px;}
.y5a{bottom:206.392500px;}
.y6c{bottom:206.508000px;}
.y29{bottom:206.590500px;}
.y299{bottom:206.886000px;}
.y13b{bottom:207.372000px;}
.y289{bottom:207.415500px;}
.y2fd{bottom:207.717000px;}
.y281{bottom:207.804000px;}
.y27a{bottom:208.329000px;}
.y3{bottom:208.563000px;}
.y1be{bottom:209.166000px;}
.y2bb{bottom:209.356500px;}
.y24{bottom:209.734500px;}
.y145{bottom:209.770500px;}
.y2db{bottom:210.009000px;}
.ya3{bottom:210.810000px;}
.y161{bottom:210.964500px;}
.y7c{bottom:211.368000px;}
.yc9{bottom:211.870500px;}
.y2a1{bottom:212.370000px;}
.y102{bottom:212.929500px;}
.yf7{bottom:212.988000px;}
.y19e{bottom:213.460500px;}
.y248{bottom:213.651000px;}
.y2c5{bottom:213.874500px;}
.y2bf{bottom:213.936000px;}
.y213{bottom:214.114500px;}
.yed{bottom:214.372500px;}
.y169{bottom:214.941000px;}
.yc4{bottom:214.990500px;}
.y21e{bottom:215.074500px;}
.yb5{bottom:215.986500px;}
.y18a{bottom:216.061500px;}
.y15{bottom:216.192000px;}
.y1a9{bottom:216.808500px;}
.y1d4{bottom:217.024500px;}
.y10f{bottom:217.272000px;}
.y17f{bottom:217.518000px;}
.y1e2{bottom:217.626000px;}
.y4d{bottom:217.938000px;}
.y2e9{bottom:218.235000px;}
.y237{bottom:218.239500px;}
.y30e{bottom:218.437500px;}
.y122{bottom:218.673000px;}
.y38{bottom:219.084000px;}
.y153{bottom:219.393000px;}
.yd8{bottom:219.610500px;}
.y307{bottom:219.876000px;}
.y175{bottom:220.089000px;}
.y1c9{bottom:221.868000px;}
.y259{bottom:221.964000px;}
.y158{bottom:222.052500px;}
.y193{bottom:222.510000px;}
.y59{bottom:222.718500px;}
.y240{bottom:222.748500px;}
.y6b{bottom:222.834000px;}
.yb{bottom:222.864000px;}
.ye3{bottom:222.870000px;}
.y2d3{bottom:222.921000px;}
.y8d{bottom:223.017000px;}
.y2e{bottom:223.539000px;}
.y250{bottom:224.242500px;}
.y205{bottom:224.953500px;}
.y1b9{bottom:224.989500px;}
.y2ba{bottom:225.682500px;}
.y298{bottom:225.789000px;}
.y99{bottom:225.909000px;}
.y28f{bottom:225.946500px;}
.y44{bottom:226.857000px;}
.ybf{bottom:227.493000px;}
.y7b{bottom:227.694000px;}
.yc8{bottom:228.196500px;}
.y2ac{bottom:228.778500px;}
.y101{bottom:229.255500px;}
.yf6{bottom:229.314000px;}
.y2fc{bottom:229.344000px;}
.y1ef{bottom:229.428000px;}
.y2f7{bottom:229.509000px;}
.y1c{bottom:229.981500px;}
.y20f{bottom:231.046500px;}
.y212{bottom:231.132000px;}
.y2a0{bottom:231.274500px;}
.y279{bottom:231.702000px;}
.y267{bottom:231.715500px;}
.y1e8{bottom:233.010000px;}
.ya9{bottom:233.151000px;}
.y1d3{bottom:233.350500px;}
.y2da{bottom:233.380500px;}
.y2cd{bottom:233.821500px;}
.y135{bottom:234.129000px;}
.y118{bottom:235.591500px;}
.y22b{bottom:236.197500px;}
.y144{bottom:236.370000px;}
.y261{bottom:236.422500px;}
.y236{bottom:237.142500px;}
.y1b2{bottom:237.550500px;}
.yec{bottom:237.744000px;}
.y37{bottom:237.988500px;}
.y23{bottom:238.539000px;}
.y174{bottom:238.992000px;}
.y58{bottom:239.044500px;}
.yb3{bottom:239.358000px;}
.yb4{bottom:239.359500px;}
.y280{bottom:240.144000px;}
.y10e{bottom:240.643500px;}
.y1f5{bottom:240.673500px;}
.y1c8{bottom:240.771000px;}
.y17e{bottom:240.891000px;}
.y157{bottom:240.957000px;}
.y1e1{bottom:240.997500px;}
.ye2{bottom:241.773000px;}
.y13d{bottom:241.809000px;}
.y8c{bottom:241.921500px;}
.y1ca{bottom:241.939500px;}
.y2b9{bottom:242.008500px;}
.y14{bottom:242.305500px;}
.y306{bottom:243.247500px;}
.y288{bottom:243.453000px;}
.y19d{bottom:243.946500px;}
.y7a{bottom:244.020000px;}
.yc7{bottom:244.522500px;}
.y297{bottom:244.693500px;}
.y2be{bottom:244.783500px;}
.y100{bottom:245.581500px;}
.yac{bottom:245.584500px;}
.yf5{bottom:245.640000px;}
.y168{bottom:247.077000px;}
.y24f{bottom:247.615500px;}
.y2ab{bottom:247.683000px;}
.ya2{bottom:248.136000px;}
.y204{bottom:248.325000px;}
.y189{bottom:248.362500px;}
.ya{bottom:248.979000px;}
.y14d{bottom:249.282000px;}
.y29f{bottom:250.177500px;}
.y1bd{bottom:250.410000px;}
.y2e8{bottom:250.887000px;}
.y12b{bottom:251.358000px;}
.y1ee{bottom:252.801000px;}
.y2f6{bottom:252.880500px;}
.y270{bottom:254.302500px;}
.y278{bottom:255.073500px;}
.y266{bottom:255.087000px;}
.y57{bottom:255.370500px;}
.y6a{bottom:255.487500px;}
.y21d{bottom:255.834000px;}
.y1e7{bottom:256.383000px;}
.y121{bottom:256.480500px;}
.y2d9{bottom:256.753500px;}
.y36{bottom:256.891500px;}
.y2cc{bottom:257.193000px;}
.y134{bottom:257.500500px;}
.y1d2{bottom:258.583500px;}
.y1b{bottom:258.786000px;}
.y2f4{bottom:258.928500px;}
.y192{bottom:259.533000px;}
.y2e0{bottom:259.554000px;}
.y22a{bottom:259.570500px;}
.y1c7{bottom:259.675500px;}
.y314{bottom:259.875000px;}
.ydf{bottom:260.116500px;}
.y2b8{bottom:260.542500px;}
.y23f{bottom:260.556000px;}
.ye1{bottom:260.677500px;}
.y8b{bottom:260.824500px;}
.yc6{bottom:260.848500px;}
.y173{bottom:261.259500px;}
.yff{bottom:261.907500px;}
.yf4{bottom:261.966000px;}
.y1fc{bottom:262.731000px;}
.y19c{bottom:262.851000px;}
.y258{bottom:263.269500px;}
.y27f{bottom:263.515500px;}
.ybe{bottom:263.530500px;}
.y296{bottom:263.598000px;}
.y10d{bottom:264.016500px;}
.y98{bottom:264.225000px;}
.y4c{bottom:264.436500px;}
.y28e{bottom:264.972000px;}
.y2{bottom:265.750500px;}
.y2aa{bottom:266.586000px;}
.y2e7{bottom:267.213000px;}
.y22{bottom:267.343500px;}
.y247{bottom:267.621000px;}
.y13{bottom:268.420500px;}
.y1f4{bottom:268.768500px;}
.yab{bottom:268.957500px;}
.y2d{bottom:270.375000px;}
.y24e{bottom:270.987000px;}
.yd7{bottom:271.677000px;}
.y56{bottom:271.696500px;}
.y2fb{bottom:271.698000px;}
.y1a8{bottom:271.734000px;}
.y69{bottom:271.813500px;}
.y17d{bottom:272.445000px;}
.y14c{bottom:272.653500px;}
.y117{bottom:273.007500px;}
.y12a{bottom:274.731000px;}
.y9{bottom:275.094000px;}
.y120{bottom:275.385000px;}
.y35{bottom:275.796000px;}
.y1b1{bottom:276.576000px;}
.y79{bottom:276.673500px;}
.y1e0{bottom:277.035000px;}
.y2bd{bottom:277.123500px;}
.yc5{bottom:277.174500px;}
.y235{bottom:277.342500px;}
.yfe{bottom:278.235000px;}
.yf3{bottom:278.292000px;}
.y265{bottom:278.460000px;}
.y155{bottom:278.764500px;}
.yde{bottom:279.021000px;}
.y2d2{bottom:279.169500px;}
.y23e{bottom:279.460500px;}
.ye0{bottom:279.582000px;}
.y8a{bottom:279.729000px;}
.y188{bottom:279.916500px;}
.y43{bottom:280.125000px;}
.y133{bottom:280.873500px;}
.y19b{bottom:281.754000px;}
.y295{bottom:282.502500px;}
.y277{bottom:282.541500px;}
.y229{bottom:282.942000px;}
.y313{bottom:283.246500px;}
.y2e6{bottom:283.539000px;}
.y2b7{bottom:283.656000px;}
.y156{bottom:284.478000px;}
.y305{bottom:284.553000px;}
.y2a9{bottom:285.490500px;}
.yb2{bottom:286.641000px;}
.y10c{bottom:287.388000px;}
.y160{bottom:287.598000px;}
.y167{bottom:287.668500px;}
.y4b{bottom:287.808000px;}
.y55{bottom:288.022500px;}
.y68{bottom:288.139500px;}
.y1c6{bottom:288.345000px;}
.y1f3{bottom:289.390500px;}
.y78{bottom:292.999500px;}
.y11f{bottom:294.288000px;}
.yfd{bottom:294.561000px;}
.yf2{bottom:294.619500px;}
.y13c{bottom:295.069500px;}
.y172{bottom:295.816500px;}
.y21{bottom:296.148000px;}
.y1{bottom:296.685000px;}
.y129{bottom:298.102500px;}
.y89{bottom:298.633500px;}
.y2e5{bottom:299.866500px;}
.y1b0{bottom:299.949000px;}
.y2b6{bottom:299.982000px;}
.ya1{bottom:300.300000px;}
.y234{bottom:300.714000px;}
.y8{bottom:301.207500px;}
.y97{bottom:302.541000px;}
.y187{bottom:303.289500px;}
.y54{bottom:304.348500px;}
.y2c{bottom:306.412500px;}
.y19a{bottom:307.009500px;}
.y116{bottom:309.045000px;}
.y294{bottom:309.252000px;}
.yb1{bottom:310.014000px;}
.y77{bottom:310.761000px;}
.yfc{bottom:310.887000px;}
.yf1{bottom:310.945500px;}
.y34{bottom:313.603500px;}
.ydd{bottom:315.229500px;}
.y2e4{bottom:316.192500px;}
.y2b5{bottom:316.308000px;}
.y53{bottom:320.674500px;}
.y67{bottom:320.791500px;}
.y7{bottom:354.223500px;}
.h13{height:17.932800px;}
.h12{height:21.901835px;}
.hf{height:22.124998px;}
.ha{height:23.910300px;}
.hd{height:24.890726px;}
.h10{height:26.899200px;}
.h9{height:27.576477px;}
.hc{height:27.656178px;}
.h14{height:27.752750px;}
.h6{height:29.887800px;}
.h11{height:30.283662px;}
.hb{height:32.727300px;}
.he{height:33.091994px;}
.h5{height:33.187635px;}
.h7{height:35.865600px;}
.h4{height:40.456284px;}
.h8{height:43.038600px;}
.h3{height:58.268250px;}
.h2{height:74.361300px;}
.h0{height:382.677000px;}
.h1{height:383.250000px;}
.w0{width:680.314500px;}
.w1{width:681.000000px;}
.x0{left:0.000000px;}
.x4{left:16.000500px;}
.x4d{left:22.234500px;}
.x4b{left:30.484500px;}
.x31{left:32.425500px;}
.x3a{left:36.553500px;}
.x49{left:40.080000px;}
.x1{left:42.519000px;}
.xd{left:47.002500px;}
.x5{left:51.732000px;}
.x30{left:52.980000px;}
.xb{left:54.337500px;}
.x2f{left:55.441500px;}
.x3d{left:57.463500px;}
.x29{left:59.374500px;}
.x3e{left:61.749000px;}
.x2c{left:62.865000px;}
.x2e{left:64.935000px;}
.x10{left:66.057000px;}
.x42{left:68.185500px;}
.x47{left:69.898500px;}
.xf{left:72.408000px;}
.x35{left:73.974000px;}
.x6{left:75.729000px;}
.x3b{left:77.028000px;}
.x44{left:78.385500px;}
.xc{left:79.729500px;}
.x9{left:83.095500px;}
.x54{left:86.796000px;}
.x28{left:88.168500px;}
.x3c{left:90.190500px;}
.x12{left:91.461000px;}
.x4e{left:92.596500px;}
.x56{left:94.338000px;}
.x2b{left:96.357000px;}
.x15{left:97.812000px;}
.x16{left:103.491000px;}
.x1a{left:107.974500px;}
.x45{left:110.551500px;}
.x19{left:112.180500px;}
.x55{left:115.039500px;}
.x4a{left:122.415000px;}
.x1f{left:124.321500px;}
.x34{left:125.518500px;}
.x33{left:134.109000px;}
.x50{left:136.299000px;}
.x20{left:140.860500px;}
.x14{left:148.621500px;}
.x17{left:152.917500px;}
.x1b{left:158.757000px;}
.x8{left:160.158000px;}
.x39{left:164.644500px;}
.x4f{left:175.222500px;}
.x48{left:177.015000px;}
.x46{left:181.162500px;}
.x1c{left:184.161000px;}
.x11{left:186.729000px;}
.x21{left:188.664000px;}
.x32{left:191.959500px;}
.x4c{left:196.443000px;}
.x18{left:207.229500px;}
.x1d{left:209.566500px;}
.x1e{left:234.970500px;}
.x2{left:237.757500px;}
.xa{left:256.287000px;}
.x36{left:260.572500px;}
.x3f{left:280.014000px;}
.x40{left:284.497500px;}
.x37{left:291.769500px;}
.x2d{left:303.499500px;}
.x43{left:305.680500px;}
.x41{left:312.741000px;}
.x38{left:320.014500px;}
.x22{left:340.744500px;}
.x51{left:342.885000px;}
.x26{left:345.843000px;}
.x52{left:347.368500px;}
.xe{left:350.626500px;}
.x27{left:364.896000px;}
.x23{left:368.988000px;}
.x53{left:375.612000px;}
.x24{left:397.233000px;}
.x25{left:425.476500px;}
.x2a{left:456.391500px;}
.x3{left:568.057500px;}
.x13{left:636.604500px;}
.x7{left:642.955500px;}
@media print{
.v0{vertical-align:0.000000pt;}
.ls0{letter-spacing:0.000000pt;}
.ws0{word-spacing:0.000000pt;}
._5{margin-left:-4.922267pt;}
._7{margin-left:-3.417584pt;}
._3{margin-left:-1.689733pt;}
._b{width:0.969166pt;}
._0{width:2.732089pt;}
._37{width:3.681040pt;}
._2e{width:8.505144pt;}
._25{width:9.847477pt;}
._d{width:11.120484pt;}
._c{width:12.493620pt;}
._f{width:13.403669pt;}
._8{width:14.399439pt;}
._17{width:15.355601pt;}
._9{width:16.307881pt;}
._e{width:17.799570pt;}
._6{width:19.281293pt;}
._15{width:20.416336pt;}
._11{width:22.284493pt;}
._10{width:23.667482pt;}
._5c{width:25.831991pt;}
._3a{width:26.779431pt;}
._4{width:27.770400pt;}
._a{width:28.816249pt;}
._14{width:30.019207pt;}
._1{width:32.256279pt;}
._20{width:34.125599pt;}
._2{width:36.366000pt;}
._48{width:38.757071pt;}
._4a{width:39.950818pt;}
._23{width:42.029163pt;}
._44{width:42.944417pt;}
._1c{width:45.161920pt;}
._33{width:46.713489pt;}
._3b{width:48.341155pt;}
._13{width:49.801158pt;}
._39{width:53.261756pt;}
._4b{width:55.790560pt;}
._49{width:57.349287pt;}
._53{width:59.345429pt;}
._46{width:67.175311pt;}
._45{width:76.418977pt;}
._28{width:77.962083pt;}
._3c{width:83.909462pt;}
._1a{width:94.864708pt;}
._27{width:96.558936pt;}
._36{width:100.872365pt;}
._2a{width:102.302610pt;}
._19{width:109.742228pt;}
._31{width:112.883547pt;}
._32{width:115.972787pt;}
._3d{width:117.384022pt;}
._26{width:120.013899pt;}
._35{width:126.254651pt;}
._30{width:131.945748pt;}
._2c{width:133.247201pt;}
._5b{width:136.703727pt;}
._1b{width:139.497268pt;}
._43{width:142.920431pt;}
._18{width:154.374788pt;}
._42{width:159.675978pt;}
._2b{width:170.063274pt;}
._34{width:174.293538pt;}
._41{width:176.394991pt;}
._29{width:188.660127pt;}
._56{width:217.581938pt;}
._5a{width:220.403484pt;}
._3f{width:229.157339pt;}
._58{width:236.918329pt;}
._59{width:262.404551pt;}
._22{width:268.430089pt;}
._2f{width:275.142124pt;}
._1d{width:286.017024pt;}
._57{width:318.005049pt;}
._12{width:368.216462pt;}
._40{width:469.160295pt;}
._24{width:581.422507pt;}
._38{width:709.134224pt;}
._52{width:747.199711pt;}
._51{width:766.115494pt;}
._16{width:819.765634pt;}
._1e{width:851.815359pt;}
._21{width:883.443976pt;}
._54{width:895.498218pt;}
._47{width:904.238573pt;}
._2d{width:971.514748pt;}
._4c{width:997.775132pt;}
._50{width:1097.391973pt;}
._1f{width:1099.506780pt;}
._55{width:1125.531857pt;}
._4e{width:1164.062607pt;}
._4d{width:1201.152482pt;}
._3e{width:1239.353611pt;}
._4f{width:1262.936701pt;}
.fs8{font-size:21.253689pt;}
.fs5{font-size:28.338133pt;}
.fs7{font-size:31.880533pt;}
.fs4{font-size:35.422578pt;}
.fs6{font-size:38.787911pt;}
.fs3{font-size:42.507378pt;}
.fs2{font-size:51.008711pt;}
.fs1{font-size:73.466667pt;}
.fs0{font-size:88.131911pt;}
.y0{bottom:-0.666667pt;}
.y276{bottom:6.381333pt;}
.y17c{bottom:6.906667pt;}
.y1bc{bottom:7.264000pt;}
.y1fb{bottom:7.336000pt;}
.y10b{bottom:7.437333pt;}
.y2bc{bottom:7.492000pt;}
.y199{bottom:7.534667pt;}
.y1af{bottom:7.701333pt;}
.y257{bottom:7.886667pt;}
.y1df{bottom:8.248000pt;}
.y287{bottom:8.457333pt;}
.y24d{bottom:8.518667pt;}
.y186{bottom:8.522667pt;}
.y260{bottom:8.622667pt;}
.y1d1{bottom:8.704000pt;}
.y312{bottom:8.865333pt;}
.yd6{bottom:9.176000pt;}
.y66{bottom:9.313333pt;}
.y76{bottom:9.417333pt;}
.y42{bottom:9.902667pt;}
.yeb{bottom:10.046667pt;}
.y4a{bottom:10.181333pt;}
.y203{bottom:10.260000pt;}
.y293{bottom:10.985333pt;}
.y171{bottom:11.148000pt;}
.y143{bottom:11.173333pt;}
.y166{bottom:12.022667pt;}
.y96{bottom:12.366667pt;}
.y2df{bottom:12.460000pt;}
.y233{bottom:12.654667pt;}
.y154{bottom:12.701333pt;}
.y20e{bottom:12.810667pt;}
.y304{bottom:13.616000pt;}
.y88{bottom:13.737333pt;}
.y21c{bottom:14.245333pt;}
.y152{bottom:14.666667pt;}
.y1a7{bottom:16.925333pt;}
.y13a{bottom:17.012000pt;}
.y12{bottom:17.357333pt;}
.y2f3{bottom:19.840000pt;}
.ya0{bottom:20.246667pt;}
.y30d{bottom:21.396000pt;}
.y228{bottom:21.730667pt;}
.ybd{bottom:22.012000pt;}
.yd5{bottom:23.688000pt;}
.y17b{bottom:23.710667pt;}
.y65{bottom:23.825333pt;}
.y26f{bottom:23.826667pt;}
.y75{bottom:23.929333pt;}
.y185{bottom:25.326667pt;}
.y1d0{bottom:25.508000pt;}
.y41{bottom:26.705333pt;}
.y202{bottom:27.064000pt;}
.y286{bottom:27.917333pt;}
.y87{bottom:28.249333pt;}
.y165{bottom:28.826667pt;}
.y191{bottom:30.753333pt;}
.y151{bottom:31.470667pt;}
.y2de{bottom:31.920000pt;}
.y20d{bottom:33.585333pt;}
.y1a6{bottom:33.729333pt;}
.y2f2{bottom:34.352000pt;}
.y2b4{bottom:34.424000pt;}
.y21b{bottom:35.021333pt;}
.y10a{bottom:35.250667pt;}
.y2d8{bottom:35.828000pt;}
.y227{bottom:36.242667pt;}
.yd4{bottom:38.200000pt;}
.y64{bottom:38.337333pt;}
.y74{bottom:38.441333pt;}
.y115{bottom:38.657333pt;}
.ybc{bottom:38.814667pt;}
.y2a8{bottom:38.902667pt;}
.y1c5{bottom:39.276000pt;}
.y14b{bottom:39.706667pt;}
.y275{bottom:40.836000pt;}
.y9f{bottom:41.021333pt;}
.y246{bottom:41.266667pt;}
.y86{bottom:42.761333pt;}
.y29e{bottom:43.040000pt;}
.y40{bottom:43.509333pt;}
.ya8{bottom:43.849333pt;}
.y201{bottom:43.866667pt;}
.y11{bottom:45.048000pt;}
.y232{bottom:45.392000pt;}
.y256{bottom:45.517333pt;}
.y164{bottom:45.629333pt;}
.y2cb{bottom:45.948000pt;}
.y15f{bottom:46.148000pt;}
.y1bb{bottom:46.626667pt;}
.y95{bottom:47.005333pt;}
.y1de{bottom:47.789333pt;}
.y1b8{bottom:48.221333pt;}
.y2f1{bottom:48.865333pt;}
.y26e{bottom:49.914667pt;}
.y1a5{bottom:50.532000pt;}
.y226{bottom:50.756000pt;}
.y2b3{bottom:51.228000pt;}
.y190{bottom:51.529333pt;}
.yea{bottom:51.934667pt;}
.y28{bottom:52.596000pt;}
.yd3{bottom:52.712000pt;}
.y63{bottom:52.849333pt;}
.y73{bottom:52.953333pt;}
.ycd{bottom:53.513333pt;}
.y11e{bottom:53.714667pt;}
.y1fa{bottom:54.265333pt;}
.y20c{bottom:54.361333pt;}
.y170{bottom:54.949333pt;}
.ybb{bottom:55.618667pt;}
.y109{bottom:56.025333pt;}
.y33{bottom:56.054667pt;}
.y21a{bottom:56.380000pt;}
.y2d7{bottom:56.602667pt;}
.y25f{bottom:56.709333pt;}
.y6{bottom:57.266667pt;}
.y85{bottom:57.273333pt;}
.y303{bottom:57.381333pt;}
.y1c4{bottom:57.606667pt;}
.y142{bottom:57.930667pt;}
.y30c{bottom:58.112000pt;}
.yce{bottom:58.792000pt;}
.y114{bottom:59.432000pt;}
.y2a7{bottom:59.678667pt;}
.y1ae{bottom:60.349333pt;}
.y14a{bottom:60.481333pt;}
.y274{bottom:61.610667pt;}
.y245{bottom:62.042667pt;}
.y1dd{bottom:62.301333pt;}
.y15e{bottom:62.952000pt;}
.y198{bottom:63.341333pt;}
.y2f0{bottom:63.377333pt;}
.y231{bottom:63.722667pt;}
.y49{bottom:63.752000pt;}
.y94{bottom:63.809333pt;}
.y29d{bottom:63.816000pt;}
.y225{bottom:65.268000pt;}
.y255{bottom:66.293333pt;}
.y2ca{bottom:66.722667pt;}
.yd2{bottom:67.224000pt;}
.y1a4{bottom:67.336000pt;}
.y62{bottom:67.362667pt;}
.y1ba{bottom:67.402667pt;}
.y72{bottom:67.465333pt;}
.y2b2{bottom:68.032000pt;}
.y10{bottom:68.260000pt;}
.y319{bottom:68.676000pt;}
.y1b7{bottom:68.996000pt;}
.y52{bottom:69.290667pt;}
.y27e{bottom:69.998667pt;}
.y23d{bottom:70.421333pt;}
.y26d{bottom:70.690667pt;}
.y84{bottom:71.785333pt;}
.y18f{bottom:72.304000pt;}
.yba{bottom:72.422667pt;}
.y132{bottom:72.742667pt;}
.y219{bottom:73.182667pt;}
.y302{bottom:74.185333pt;}
.y285{bottom:74.708000pt;}
.y11d{bottom:75.189333pt;}
.y9e{bottom:75.710667pt;}
.y1c3{bottom:75.937333pt;}
.y184{bottom:76.069333pt;}
.y1a{bottom:76.105333pt;}
.y128{bottom:76.750667pt;}
.y108{bottom:76.801333pt;}
.y1dc{bottom:76.813333pt;}
.y32{bottom:76.829333pt;}
.y3f{bottom:77.116000pt;}
.y25e{bottom:77.484000pt;}
.ye9{bottom:77.538667pt;}
.y1e6{bottom:78.462667pt;}
.y141{bottom:78.706667pt;}
.y30b{bottom:78.886667pt;}
.y5{bottom:79.500000pt;}
.y24c{bottom:79.613333pt;}
.y15d{bottom:79.754667pt;}
.y224{bottom:79.780000pt;}
.y2a6{bottom:80.453333pt;}
.y93{bottom:80.612000pt;}
.y1ad{bottom:81.124000pt;}
.yd1{bottom:81.736000pt;}
.y61{bottom:81.874667pt;}
.y230{bottom:82.054667pt;}
.yb0{bottom:82.062667pt;}
.y16f{bottom:83.516000pt;}
.y1a3{bottom:84.140000pt;}
.y48{bottom:84.528000pt;}
.y29c{bottom:84.590667pt;}
.ya7{bottom:84.733333pt;}
.y17a{bottom:84.914667pt;}
.y83{bottom:86.297333pt;}
.y254{bottom:87.068000pt;}
.y23c{bottom:87.224000pt;}
.yc3{bottom:87.234667pt;}
.y28d{bottom:87.984000pt;}
.y113{bottom:88.177333pt;}
.yb9{bottom:89.225333pt;}
.y318{bottom:89.450667pt;}
.y131{bottom:89.545333pt;}
.y218{bottom:89.986667pt;}
.y244{bottom:90.090667pt;}
.y273{bottom:90.356000pt;}
.y27d{bottom:90.774667pt;}
.y1db{bottom:91.325333pt;}
.yf{bottom:91.473333pt;}
.y284{bottom:91.512000pt;}
.y311{bottom:91.989333pt;}
.y20b{bottom:92.294667pt;}
.y2b1{bottom:92.349333pt;}
.y2ef{bottom:92.401333pt;}
.y18e{bottom:93.080000pt;}
.y127{bottom:93.554667pt;}
.y1f9{bottom:93.637333pt;}
.y3e{bottom:93.920000pt;}
.y2e3{bottom:94.001333pt;}
.y51{bottom:94.050667pt;}
.y1ce{bottom:94.184000pt;}
.y1c2{bottom:94.269333pt;}
.y223{bottom:94.292000pt;}
.y183{bottom:94.401333pt;}
.y27{bottom:94.477333pt;}
.y197{bottom:94.956000pt;}
.ye8{bottom:95.869333pt;}
.yd0{bottom:96.248000pt;}
.y60{bottom:96.386667pt;}
.y9d{bottom:96.486667pt;}
.y71{bottom:96.489333pt;}
.y26c{bottom:96.778667pt;}
.y1ec{bottom:96.821333pt;}
.y1b6{bottom:97.044000pt;}
.y2dd{bottom:97.302667pt;}
.y92{bottom:97.416000pt;}
.y25d{bottom:98.260000pt;}
.y107{bottom:98.870667pt;}
.y1e5{bottom:99.238667pt;}
.y19{bottom:99.318667pt;}
.y140{bottom:99.481333pt;}
.y2fa{bottom:99.653333pt;}
.y11c{bottom:100.162667pt;}
.y16e{bottom:100.318667pt;}
.y24b{bottom:100.388000pt;}
.ydc{bottom:100.438667pt;}
.y82{bottom:100.809333pt;}
.y2c4{bottom:101.390667pt;}
.y179{bottom:101.718667pt;}
.y1ac{bottom:101.900000pt;}
.y20{bottom:102.012000pt;}
.y292{bottom:102.154667pt;}
.y163{bottom:103.945333pt;}
.y23b{bottom:104.028000pt;}
.y149{bottom:105.166667pt;}
.y2a5{bottom:105.181333pt;}
.y1da{bottom:105.837333pt;}
.yb8{bottom:106.029333pt;}
.y150{bottom:106.124000pt;}
.y130{bottom:106.349333pt;}
.y1a2{bottom:106.589333pt;}
.y2d6{bottom:106.601333pt;}
.y20a{bottom:106.808000pt;}
.y2ee{bottom:106.913333pt;}
.y217{bottom:107.122667pt;}
.y301{bottom:107.792000pt;}
.y253{bottom:107.844000pt;}
.yc2{bottom:108.009333pt;}
.y200{bottom:108.408000pt;}
.y16b{bottom:108.721333pt;}
.y28c{bottom:108.760000pt;}
.y222{bottom:108.804000pt;}
.y112{bottom:108.953333pt;}
.y139{bottom:109.769333pt;}
.y317{bottom:110.226667pt;}
.y126{bottom:110.357333pt;}
.ya6{bottom:110.396000pt;}
.y3d{bottom:110.724000pt;}
.ycf{bottom:110.760000pt;}
.y243{bottom:110.865333pt;}
.y5f{bottom:110.898667pt;}
.y1cd{bottom:110.986667pt;}
.y70{bottom:111.002667pt;}
.y272{bottom:111.132000pt;}
.y1cf{bottom:112.025333pt;}
.yf0{bottom:112.984000pt;}
.y196{bottom:113.288000pt;}
.y15c{bottom:113.362667pt;}
.y1f2{bottom:113.562667pt;}
.y2d1{bottom:113.789333pt;}
.ye7{bottom:114.200000pt;}
.y91{bottom:114.220000pt;}
.y1f8{bottom:114.412000pt;}
.ye{bottom:114.686667pt;}
.y2e2{bottom:114.776000pt;}
.y22f{bottom:114.964000pt;}
.y81{bottom:115.322667pt;}
.y30a{bottom:115.602667pt;}
.y31{bottom:116.201333pt;}
.y16d{bottom:117.122667pt;}
.y2c9{bottom:117.252000pt;}
.y9c{bottom:117.261333pt;}
.y26b{bottom:117.554667pt;}
.y1eb{bottom:117.596000pt;}
.y1b5{bottom:117.820000pt;}
.y283{bottom:117.945333pt;}
.y2c3{bottom:118.194667pt;}
.y178{bottom:118.522667pt;}
.y50{bottom:118.810667pt;}
.y25c{bottom:119.034667pt;}
.y182{bottom:119.373333pt;}
.y27c{bottom:119.520000pt;}
.y1d9{bottom:120.349333pt;}
.y2f9{bottom:120.428000pt;}
.y23a{bottom:120.832000pt;}
.y24a{bottom:121.164000pt;}
.y209{bottom:121.320000pt;}
.y2ed{bottom:121.425333pt;}
.y18d{bottom:121.792000pt;}
.y18{bottom:122.532000pt;}
.y12f{bottom:123.153333pt;}
.y148{bottom:123.498667pt;}
.y300{bottom:124.596000pt;}
.y162{bottom:124.720000pt;}
.y221{bottom:125.278667pt;}
.y2b0{bottom:125.352000pt;}
.y5e{bottom:125.410667pt;}
.y310{bottom:126.049333pt;}
.y14f{bottom:126.898667pt;}
.y125{bottom:127.161333pt;}
.y2d5{bottom:127.377333pt;}
.y3c{bottom:127.526667pt;}
.y1f{bottom:127.616000pt;}
.y1cc{bottom:127.790667pt;}
.y252{bottom:128.618667pt;}
.y1ff{bottom:129.184000pt;}
.y29b{bottom:129.277333pt;}
.yaf{bottom:129.404000pt;}
.yda{bottom:129.524000pt;}
.y28b{bottom:129.534667pt;}
.y111{bottom:129.728000pt;}
.y80{bottom:129.834667pt;}
.y15b{bottom:130.165333pt;}
.y138{bottom:130.545333pt;}
.y2d0{bottom:130.592000pt;}
.y1ab{bottom:130.612000pt;}
.y1c1{bottom:130.932000pt;}
.y90{bottom:131.022667pt;}
.y216{bottom:131.038667pt;}
.y106{bottom:131.222667pt;}
.y264{bottom:131.256000pt;}
.yfb{bottom:131.273333pt;}
.y11b{bottom:131.564000pt;}
.y242{bottom:131.641333pt;}
.yb7{bottom:132.464000pt;}
.y1a1{bottom:133.686667pt;}
.y16c{bottom:133.926667pt;}
.y2c8{bottom:134.054667pt;}
.y1f1{bottom:134.337333pt;}
.ydb{bottom:134.802667pt;}
.y1d8{bottom:134.861333pt;}
.y2c2{bottom:134.997333pt;}
.y26{bottom:135.222667pt;}
.y208{bottom:135.290667pt;}
.y47{bottom:135.377333pt;}
.y177{bottom:135.658667pt;}
.y22e{bottom:135.738667pt;}
.y2ec{bottom:135.937333pt;}
.y1e4{bottom:135.953333pt;}
.ya5{bottom:136.060000pt;}
.y309{bottom:136.377333pt;}
.y30{bottom:136.977333pt;}
.y181{bottom:137.705333pt;}
.yef{bottom:137.744000pt;}
.yd{bottom:137.900000pt;}
.y291{bottom:138.070667pt;}
.y26a{bottom:138.329333pt;}
.y2a4{bottom:138.362667pt;}
.y2f5{bottom:138.502667pt;}
.yc1{bottom:139.412000pt;}
.y25b{bottom:139.810667pt;}
.y271{bottom:139.844000pt;}
.y5d{bottom:139.922667pt;}
.y12e{bottom:139.956000pt;}
.y6f{bottom:140.026667pt;}
.y2ff{bottom:141.398667pt;}
.y2dc{bottom:141.989333pt;}
.y2af{bottom:142.154667pt;}
.y2b{bottom:143.500000pt;}
.y4f{bottom:143.572000pt;}
.y3b{bottom:144.330667pt;}
.y7f{bottom:144.346667pt;}
.ycc{bottom:144.792000pt;}
.y195{bottom:144.902667pt;}
.y105{bottom:145.734667pt;}
.y17{bottom:145.744000pt;}
.yfa{bottom:145.785333pt;}
.y9b{bottom:145.974667pt;}
.y13f{bottom:146.824000pt;}
.y15a{bottom:146.969333pt;}
.y2cf{bottom:147.396000pt;}
.ye6{bottom:147.696000pt;}
.y1c0{bottom:149.262667pt;}
.y1d7{bottom:149.374667pt;}
.y147{bottom:149.800000pt;}
.y1fe{bottom:149.958667pt;}
.y29a{bottom:150.052000pt;}
.yae{bottom:150.180000pt;}
.y2eb{bottom:150.450667pt;}
.y1a0{bottom:150.490667pt;}
.y18c{bottom:150.504000pt;}
.y220{bottom:150.604000pt;}
.y2c7{bottom:150.858667pt;}
.y137{bottom:151.320000pt;}
.y2c1{bottom:151.801333pt;}
.y263{bottom:152.030667pt;}
.y46{bottom:152.180000pt;}
.y27b{bottom:152.812000pt;}
.y11a{bottom:153.040000pt;}
.y1e{bottom:153.220000pt;}
.y1cb{bottom:153.274667pt;}
.y1f7{bottom:153.785333pt;}
.yb6{bottom:153.930667pt;}
.y1ea{bottom:154.312000pt;}
.y5c{bottom:154.434667pt;}
.y6e{bottom:154.538667pt;}
.y1f0{bottom:155.113333pt;}
.y2a3{bottom:155.166667pt;}
.y282{bottom:155.969333pt;}
.y4{bottom:156.032000pt;}
.y22d{bottom:156.514667pt;}
.y215{bottom:156.716000pt;}
.y1e3{bottom:156.729333pt;}
.y12d{bottom:156.760000pt;}
.y308{bottom:157.153333pt;}
.y1ed{bottom:157.248000pt;}
.y251{bottom:157.332000pt;}
.y211{bottom:157.786667pt;}
.y2fe{bottom:158.202667pt;}
.y207{bottom:158.408000pt;}
.y110{bottom:158.441333pt;}
.yee{bottom:158.520000pt;}
.yd9{bottom:158.609333pt;}
.y180{bottom:158.660000pt;}
.y7e{bottom:158.858667pt;}
.y2ae{bottom:158.958667pt;}
.y269{bottom:159.105333pt;}
.ycb{bottom:159.304000pt;}
.y2f8{bottom:159.800000pt;}
.y30f{bottom:160.108000pt;}
.y316{bottom:160.225333pt;}
.y104{bottom:160.246667pt;}
.yf9{bottom:160.298667pt;}
.y239{bottom:160.382667pt;}
.y124{bottom:160.768000pt;}
.y25{bottom:160.826667pt;}
.yc{bottom:161.112000pt;}
.y3a{bottom:161.134667pt;}
.yaa{bottom:161.417333pt;}
.y1b4{bottom:161.460000pt;}
.ya4{bottom:161.724000pt;}
.y16a{bottom:162.492000pt;}
.y194{bottom:163.233333pt;}
.y28a{bottom:163.593333pt;}
.y1d6{bottom:163.886667pt;}
.y2ce{bottom:164.200000pt;}
.ye5{bottom:164.498667pt;}
.y8f{bottom:164.630667pt;}
.y2ea{bottom:164.962667pt;}
.y9a{bottom:166.749333pt;}
.y19f{bottom:167.294667pt;}
.y1bf{bottom:167.593333pt;}
.y13e{bottom:167.600000pt;}
.y2c6{bottom:167.662667pt;}
.y146{bottom:168.130667pt;}
.y4e{bottom:168.332000pt;}
.y2c0{bottom:168.605333pt;}
.y21f{bottom:168.934667pt;}
.y5b{bottom:168.946667pt;}
.y16{bottom:168.957333pt;}
.y6d{bottom:169.050667pt;}
.y249{bottom:169.137333pt;}
.y1fd{bottom:170.734667pt;}
.yc0{bottom:170.814667pt;}
.yad{bottom:170.954667pt;}
.y2a{bottom:170.997333pt;}
.y18b{bottom:171.278667pt;}
.y1aa{bottom:171.942667pt;}
.y2a2{bottom:171.969333pt;}
.y136{bottom:172.096000pt;}
.y290{bottom:172.129333pt;}
.y2e1{bottom:172.745333pt;}
.y7d{bottom:173.370667pt;}
.y214{bottom:173.520000pt;}
.y12c{bottom:173.564000pt;}
.yca{bottom:173.816000pt;}
.y14e{bottom:174.241333pt;}
.y1f6{bottom:174.560000pt;}
.y210{bottom:174.590667pt;}
.y103{bottom:174.758667pt;}
.yf8{bottom:174.810667pt;}
.y1e9{bottom:175.086667pt;}
.y2ad{bottom:175.762667pt;}
.y25a{bottom:176.526667pt;}
.y238{bottom:177.186667pt;}
.y2d4{bottom:177.376000pt;}
.y123{bottom:177.572000pt;}
.y2f{bottom:177.925333pt;}
.y39{bottom:177.937333pt;}
.y119{bottom:178.012000pt;}
.y262{bottom:178.120000pt;}
.y1d5{bottom:178.398667pt;}
.y45{bottom:178.614667pt;}
.y1d{bottom:178.824000pt;}
.y176{bottom:178.830667pt;}
.y206{bottom:179.182667pt;}
.y268{bottom:179.880000pt;}
.y159{bottom:180.576000pt;}
.y315{bottom:181.001333pt;}
.y241{bottom:181.194667pt;}
.y22c{bottom:181.241333pt;}
.ye4{bottom:181.302667pt;}
.y8e{bottom:181.433333pt;}
.y1b3{bottom:182.236000pt;}
.y5a{bottom:183.460000pt;}
.y6c{bottom:183.562667pt;}
.y29{bottom:183.636000pt;}
.y299{bottom:183.898667pt;}
.y13b{bottom:184.330667pt;}
.y289{bottom:184.369333pt;}
.y2fd{bottom:184.637333pt;}
.y281{bottom:184.714667pt;}
.y27a{bottom:185.181333pt;}
.y3{bottom:185.389333pt;}
.y1be{bottom:185.925333pt;}
.y2bb{bottom:186.094667pt;}
.y24{bottom:186.430667pt;}
.y145{bottom:186.462667pt;}
.y2db{bottom:186.674667pt;}
.ya3{bottom:187.386667pt;}
.y161{bottom:187.524000pt;}
.y7c{bottom:187.882667pt;}
.yc9{bottom:188.329333pt;}
.y2a1{bottom:188.773333pt;}
.y102{bottom:189.270667pt;}
.yf7{bottom:189.322667pt;}
.y19e{bottom:189.742667pt;}
.y248{bottom:189.912000pt;}
.y2c5{bottom:190.110667pt;}
.y2bf{bottom:190.165333pt;}
.y213{bottom:190.324000pt;}
.yed{bottom:190.553333pt;}
.y169{bottom:191.058667pt;}
.yc4{bottom:191.102667pt;}
.y21e{bottom:191.177333pt;}
.yb5{bottom:191.988000pt;}
.y18a{bottom:192.054667pt;}
.y15{bottom:192.170667pt;}
.y1a9{bottom:192.718667pt;}
.y1d4{bottom:192.910667pt;}
.y10f{bottom:193.130667pt;}
.y17f{bottom:193.349333pt;}
.y1e2{bottom:193.445333pt;}
.y4d{bottom:193.722667pt;}
.y2e9{bottom:193.986667pt;}
.y237{bottom:193.990667pt;}
.y30e{bottom:194.166667pt;}
.y122{bottom:194.376000pt;}
.y38{bottom:194.741333pt;}
.y153{bottom:195.016000pt;}
.yd8{bottom:195.209333pt;}
.y307{bottom:195.445333pt;}
.y175{bottom:195.634667pt;}
.y1c9{bottom:197.216000pt;}
.y259{bottom:197.301333pt;}
.y158{bottom:197.380000pt;}
.y193{bottom:197.786667pt;}
.y59{bottom:197.972000pt;}
.y240{bottom:197.998667pt;}
.y6b{bottom:198.074667pt;}
.yb{bottom:198.101333pt;}
.ye3{bottom:198.106667pt;}
.y2d3{bottom:198.152000pt;}
.y8d{bottom:198.237333pt;}
.y2e{bottom:198.701333pt;}
.y250{bottom:199.326667pt;}
.y205{bottom:199.958667pt;}
.y1b9{bottom:199.990667pt;}
.y2ba{bottom:200.606667pt;}
.y298{bottom:200.701333pt;}
.y99{bottom:200.808000pt;}
.y28f{bottom:200.841333pt;}
.y44{bottom:201.650667pt;}
.ybf{bottom:202.216000pt;}
.y7b{bottom:202.394667pt;}
.yc8{bottom:202.841333pt;}
.y2ac{bottom:203.358667pt;}
.y101{bottom:203.782667pt;}
.yf6{bottom:203.834667pt;}
.y2fc{bottom:203.861333pt;}
.y1ef{bottom:203.936000pt;}
.y2f7{bottom:204.008000pt;}
.y1c{bottom:204.428000pt;}
.y20f{bottom:205.374667pt;}
.y212{bottom:205.450667pt;}
.y2a0{bottom:205.577333pt;}
.y279{bottom:205.957333pt;}
.y267{bottom:205.969333pt;}
.y1e8{bottom:207.120000pt;}
.ya9{bottom:207.245333pt;}
.y1d3{bottom:207.422667pt;}
.y2da{bottom:207.449333pt;}
.y2cd{bottom:207.841333pt;}
.y135{bottom:208.114667pt;}
.y118{bottom:209.414667pt;}
.y22b{bottom:209.953333pt;}
.y144{bottom:210.106667pt;}
.y261{bottom:210.153333pt;}
.y236{bottom:210.793333pt;}
.y1b2{bottom:211.156000pt;}
.yec{bottom:211.328000pt;}
.y37{bottom:211.545333pt;}
.y23{bottom:212.034667pt;}
.y174{bottom:212.437333pt;}
.y58{bottom:212.484000pt;}
.yb3{bottom:212.762667pt;}
.yb4{bottom:212.764000pt;}
.y280{bottom:213.461333pt;}
.y10e{bottom:213.905333pt;}
.y1f5{bottom:213.932000pt;}
.y1c8{bottom:214.018667pt;}
.y17e{bottom:214.125333pt;}
.y157{bottom:214.184000pt;}
.y1e1{bottom:214.220000pt;}
.ye2{bottom:214.909333pt;}
.y13d{bottom:214.941333pt;}
.y8c{bottom:215.041333pt;}
.y1ca{bottom:215.057333pt;}
.y2b9{bottom:215.118667pt;}
.y14{bottom:215.382667pt;}
.y306{bottom:216.220000pt;}
.y288{bottom:216.402667pt;}
.y19d{bottom:216.841333pt;}
.y7a{bottom:216.906667pt;}
.yc7{bottom:217.353333pt;}
.y297{bottom:217.505333pt;}
.y2be{bottom:217.585333pt;}
.y100{bottom:218.294667pt;}
.yac{bottom:218.297333pt;}
.yf5{bottom:218.346667pt;}
.y168{bottom:219.624000pt;}
.y24f{bottom:220.102667pt;}
.y2ab{bottom:220.162667pt;}
.ya2{bottom:220.565333pt;}
.y204{bottom:220.733333pt;}
.y189{bottom:220.766667pt;}
.ya{bottom:221.314667pt;}
.y14d{bottom:221.584000pt;}
.y29f{bottom:222.380000pt;}
.y1bd{bottom:222.586667pt;}
.y2e8{bottom:223.010667pt;}
.y12b{bottom:223.429333pt;}
.y1ee{bottom:224.712000pt;}
.y2f6{bottom:224.782667pt;}
.y270{bottom:226.046667pt;}
.y278{bottom:226.732000pt;}
.y266{bottom:226.744000pt;}
.y57{bottom:226.996000pt;}
.y6a{bottom:227.100000pt;}
.y21d{bottom:227.408000pt;}
.y1e7{bottom:227.896000pt;}
.y121{bottom:227.982667pt;}
.y2d9{bottom:228.225333pt;}
.y36{bottom:228.348000pt;}
.y2cc{bottom:228.616000pt;}
.y134{bottom:228.889333pt;}
.y1d2{bottom:229.852000pt;}
.y1b{bottom:230.032000pt;}
.y2f4{bottom:230.158667pt;}
.y192{bottom:230.696000pt;}
.y2e0{bottom:230.714667pt;}
.y22a{bottom:230.729333pt;}
.y1c7{bottom:230.822667pt;}
.y314{bottom:231.000000pt;}
.ydf{bottom:231.214667pt;}
.y2b8{bottom:231.593333pt;}
.y23f{bottom:231.605333pt;}
.ye1{bottom:231.713333pt;}
.y8b{bottom:231.844000pt;}
.yc6{bottom:231.865333pt;}
.y173{bottom:232.230667pt;}
.yff{bottom:232.806667pt;}
.yf4{bottom:232.858667pt;}
.y1fc{bottom:233.538667pt;}
.y19c{bottom:233.645333pt;}
.y258{bottom:234.017333pt;}
.y27f{bottom:234.236000pt;}
.ybe{bottom:234.249333pt;}
.y296{bottom:234.309333pt;}
.y10d{bottom:234.681333pt;}
.y98{bottom:234.866667pt;}
.y4c{bottom:235.054667pt;}
.y28e{bottom:235.530667pt;}
.y2{bottom:236.222667pt;}
.y2aa{bottom:236.965333pt;}
.y2e7{bottom:237.522667pt;}
.y22{bottom:237.638667pt;}
.y247{bottom:237.885333pt;}
.y13{bottom:238.596000pt;}
.y1f4{bottom:238.905333pt;}
.yab{bottom:239.073333pt;}
.y2d{bottom:240.333333pt;}
.y24e{bottom:240.877333pt;}
.yd7{bottom:241.490667pt;}
.y56{bottom:241.508000pt;}
.y2fb{bottom:241.509333pt;}
.y1a8{bottom:241.541333pt;}
.y69{bottom:241.612000pt;}
.y17d{bottom:242.173333pt;}
.y14c{bottom:242.358667pt;}
.y117{bottom:242.673333pt;}
.y12a{bottom:244.205333pt;}
.y9{bottom:244.528000pt;}
.y120{bottom:244.786667pt;}
.y35{bottom:245.152000pt;}
.y1b1{bottom:245.845333pt;}
.y79{bottom:245.932000pt;}
.y1e0{bottom:246.253333pt;}
.y2bd{bottom:246.332000pt;}
.yc5{bottom:246.377333pt;}
.y235{bottom:246.526667pt;}
.yfe{bottom:247.320000pt;}
.yf3{bottom:247.370667pt;}
.y265{bottom:247.520000pt;}
.y155{bottom:247.790667pt;}
.yde{bottom:248.018667pt;}
.y2d2{bottom:248.150667pt;}
.y23e{bottom:248.409333pt;}
.ye0{bottom:248.517333pt;}
.y8a{bottom:248.648000pt;}
.y188{bottom:248.814667pt;}
.y43{bottom:249.000000pt;}
.y133{bottom:249.665333pt;}
.y19b{bottom:250.448000pt;}
.y295{bottom:251.113333pt;}
.y277{bottom:251.148000pt;}
.y229{bottom:251.504000pt;}
.y313{bottom:251.774667pt;}
.y2e6{bottom:252.034667pt;}
.y2b7{bottom:252.138667pt;}
.y156{bottom:252.869333pt;}
.y305{bottom:252.936000pt;}
.y2a9{bottom:253.769333pt;}
.yb2{bottom:254.792000pt;}
.y10c{bottom:255.456000pt;}
.y160{bottom:255.642667pt;}
.y167{bottom:255.705333pt;}
.y4b{bottom:255.829333pt;}
.y55{bottom:256.020000pt;}
.y68{bottom:256.124000pt;}
.y1c6{bottom:256.306667pt;}
.y1f3{bottom:257.236000pt;}
.y78{bottom:260.444000pt;}
.y11f{bottom:261.589333pt;}
.yfd{bottom:261.832000pt;}
.yf2{bottom:261.884000pt;}
.y13c{bottom:262.284000pt;}
.y172{bottom:262.948000pt;}
.y21{bottom:263.242667pt;}
.y1{bottom:263.720000pt;}
.y129{bottom:264.980000pt;}
.y89{bottom:265.452000pt;}
.y2e5{bottom:266.548000pt;}
.y1b0{bottom:266.621333pt;}
.y2b6{bottom:266.650667pt;}
.ya1{bottom:266.933333pt;}
.y234{bottom:267.301333pt;}
.y8{bottom:267.740000pt;}
.y97{bottom:268.925333pt;}
.y187{bottom:269.590667pt;}
.y54{bottom:270.532000pt;}
.y2c{bottom:272.366667pt;}
.y19a{bottom:272.897333pt;}
.y116{bottom:274.706667pt;}
.y294{bottom:274.890667pt;}
.yb1{bottom:275.568000pt;}
.y77{bottom:276.232000pt;}
.yfc{bottom:276.344000pt;}
.yf1{bottom:276.396000pt;}
.y34{bottom:278.758667pt;}
.ydd{bottom:280.204000pt;}
.y2e4{bottom:281.060000pt;}
.y2b5{bottom:281.162667pt;}
.y53{bottom:285.044000pt;}
.y67{bottom:285.148000pt;}
.y7{bottom:314.865333pt;}
.h13{height:15.940267pt;}
.h12{height:19.468298pt;}
.hf{height:19.666665pt;}
.ha{height:21.253600pt;}
.hd{height:22.125090pt;}
.h10{height:23.910400pt;}
.h9{height:24.512424pt;}
.hc{height:24.583269pt;}
.h14{height:24.669111pt;}
.h6{height:26.566933pt;}
.h11{height:26.918810pt;}
.hb{height:29.090933pt;}
.he{height:29.415105pt;}
.h5{height:29.500120pt;}
.h7{height:31.880533pt;}
.h4{height:35.961141pt;}
.h8{height:38.256533pt;}
.h3{height:51.794000pt;}
.h2{height:66.098933pt;}
.h0{height:340.157333pt;}
.h1{height:340.666667pt;}
.w0{width:604.724000pt;}
.w1{width:605.333333pt;}
.x0{left:0.000000pt;}
.x4{left:14.222667pt;}
.x4d{left:19.764000pt;}
.x4b{left:27.097333pt;}
.x31{left:28.822667pt;}
.x3a{left:32.492000pt;}
.x49{left:35.626667pt;}
.x1{left:37.794667pt;}
.xd{left:41.780000pt;}
.x5{left:45.984000pt;}
.x30{left:47.093333pt;}
.xb{left:48.300000pt;}
.x2f{left:49.281333pt;}
.x3d{left:51.078667pt;}
.x29{left:52.777333pt;}
.x3e{left:54.888000pt;}
.x2c{left:55.880000pt;}
.x2e{left:57.720000pt;}
.x10{left:58.717333pt;}
.x42{left:60.609333pt;}
.x47{left:62.132000pt;}
.xf{left:64.362667pt;}
.x35{left:65.754667pt;}
.x6{left:67.314667pt;}
.x3b{left:68.469333pt;}
.x44{left:69.676000pt;}
.xc{left:70.870667pt;}
.x9{left:73.862667pt;}
.x54{left:77.152000pt;}
.x28{left:78.372000pt;}
.x3c{left:80.169333pt;}
.x12{left:81.298667pt;}
.x4e{left:82.308000pt;}
.x56{left:83.856000pt;}
.x2b{left:85.650667pt;}
.x15{left:86.944000pt;}
.x16{left:91.992000pt;}
.x1a{left:95.977333pt;}
.x45{left:98.268000pt;}
.x19{left:99.716000pt;}
.x55{left:102.257333pt;}
.x4a{left:108.813333pt;}
.x1f{left:110.508000pt;}
.x34{left:111.572000pt;}
.x33{left:119.208000pt;}
.x50{left:121.154667pt;}
.x20{left:125.209333pt;}
.x14{left:132.108000pt;}
.x17{left:135.926667pt;}
.x1b{left:141.117333pt;}
.x8{left:142.362667pt;}
.x39{left:146.350667pt;}
.x4f{left:155.753333pt;}
.x48{left:157.346667pt;}
.x46{left:161.033333pt;}
.x1c{left:163.698667pt;}
.x11{left:165.981333pt;}
.x21{left:167.701333pt;}
.x32{left:170.630667pt;}
.x4c{left:174.616000pt;}
.x18{left:184.204000pt;}
.x1d{left:186.281333pt;}
.x1e{left:208.862667pt;}
.x2{left:211.340000pt;}
.xa{left:227.810667pt;}
.x36{left:231.620000pt;}
.x3f{left:248.901333pt;}
.x40{left:252.886667pt;}
.x37{left:259.350667pt;}
.x2d{left:269.777333pt;}
.x43{left:271.716000pt;}
.x41{left:277.992000pt;}
.x38{left:284.457333pt;}
.x22{left:302.884000pt;}
.x51{left:304.786667pt;}
.x26{left:307.416000pt;}
.x52{left:308.772000pt;}
.xe{left:311.668000pt;}
.x27{left:324.352000pt;}
.x23{left:327.989333pt;}
.x53{left:333.877333pt;}
.x24{left:353.096000pt;}
.x25{left:378.201333pt;}
.x2a{left:405.681333pt;}
.x3{left:504.940000pt;}
.x13{left:565.870667pt;}
.x7{left:571.516000pt;}
}
</style>
<script>
/*
Copyright 2012 Mozilla Foundation
Copyright 2013 Lu Wang <coolwanglu@gmail.com>
Apachine License Version 2.0
*/
(function(){function b(a,b,e,f){var c=(a.className||"").split(/\s+/g);""===c[0]&&c.shift();var d=c.indexOf(b);0>d&&e&&c.push(b);0<=d&&f&&c.splice(d,1);a.className=c.join(" ");return 0<=d}if(!("classList"in document.createElement("div"))){var e={add:function(a){b(this.element,a,!0,!1)},contains:function(a){return b(this.element,a,!1,!1)},remove:function(a){b(this.element,a,!1,!0)},toggle:function(a){b(this.element,a,!0,!0)}};Object.defineProperty(HTMLElement.prototype,"classList",{get:function(){if(this._classList)return this._classList;
var a=Object.create(e,{element:{value:this,writable:!1,enumerable:!0}});Object.defineProperty(this,"_classList",{value:a,writable:!1,enumerable:!1});return a},enumerable:!0})}})();
</script>
<script>
(function(){/*
pdf2htmlEX.js: Core UI functions for pdf2htmlEX
Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com> and other contributors
https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
*/
var pdf2htmlEX=window.pdf2htmlEX=window.pdf2htmlEX||{},CSS_CLASS_NAMES={page_frame:"pf",page_content_box:"pc",page_data:"pi",background_image:"bi",link:"l",input_radio:"ir",__dummy__:"no comma"},DEFAULT_CONFIG={container_id:"page-container",sidebar_id:"sidebar",outline_id:"outline",loading_indicator_cls:"loading-indicator",preload_pages:3,render_timeout:100,scale_step:0.9,key_handler:!0,hashchange_handler:!0,view_history_handler:!0,__dummy__:"no comma"},EPS=1E-6;
function invert(a){var b=a[0]*a[3]-a[1]*a[2];return[a[3]/b,-a[1]/b,-a[2]/b,a[0]/b,(a[2]*a[5]-a[3]*a[4])/b,(a[1]*a[4]-a[0]*a[5])/b]}function transform(a,b){return[a[0]*b[0]+a[2]*b[1]+a[4],a[1]*b[0]+a[3]*b[1]+a[5]]}function get_page_number(a){return parseInt(a.getAttribute("data-page-no"),16)}function disable_dragstart(a){for(var b=0,c=a.length;b<c;++b)a[b].addEventListener("dragstart",function(){return!1},!1)}
function clone_and_extend_objs(a){for(var b={},c=0,e=arguments.length;c<e;++c){var h=arguments[c],d;for(d in h)h.hasOwnProperty(d)&&(b[d]=h[d])}return b}
function Page(a){if(a){this.shown=this.loaded=!1;this.page=a;this.num=get_page_number(a);this.original_height=a.clientHeight;this.original_width=a.clientWidth;var b=a.getElementsByClassName(CSS_CLASS_NAMES.page_content_box)[0];b&&(this.content_box=b,this.original_scale=this.cur_scale=this.original_height/b.clientHeight,this.page_data=JSON.parse(a.getElementsByClassName(CSS_CLASS_NAMES.page_data)[0].getAttribute("data-data")),this.ctm=this.page_data.ctm,this.ictm=invert(this.ctm),this.loaded=!0)}}
Page.prototype={hide:function(){this.loaded&&this.shown&&(this.content_box.classList.remove("opened"),this.shown=!1)},show:function(){this.loaded&&!this.shown&&(this.content_box.classList.add("opened"),this.shown=!0)},rescale:function(a){this.cur_scale=0===a?this.original_scale:a;this.loaded&&(a=this.content_box.style,a.msTransform=a.webkitTransform=a.transform="scale("+this.cur_scale.toFixed(3)+")");a=this.page.style;a.height=this.original_height*this.cur_scale+"px";a.width=this.original_width*this.cur_scale+
"px"},view_position:function(){var a=this.page,b=a.parentNode;return[b.scrollLeft-a.offsetLeft-a.clientLeft,b.scrollTop-a.offsetTop-a.clientTop]},height:function(){return this.page.clientHeight},width:function(){return this.page.clientWidth}};function Viewer(a){this.config=clone_and_extend_objs(DEFAULT_CONFIG,0<arguments.length?a:{});this.pages_loading=[];this.init_before_loading_content();var b=this;document.addEventListener("DOMContentLoaded",function(){b.init_after_loading_content()},!1)}
Viewer.prototype={scale:1,cur_page_idx:0,first_page_idx:0,init_before_loading_content:function(){this.pre_hide_pages()},initialize_radio_button:function(){for(var a=document.getElementsByClassName(CSS_CLASS_NAMES.input_radio),b=0;b<a.length;b++)a[b].addEventListener("click",function(){this.classList.toggle("checked")})},init_after_loading_content:function(){this.sidebar=document.getElementById(this.config.sidebar_id);this.outline=document.getElementById(this.config.outline_id);this.container=document.getElementById(this.config.container_id);
this.loading_indicator=document.getElementsByClassName(this.config.loading_indicator_cls)[0];for(var a=!0,b=this.outline.childNodes,c=0,e=b.length;c<e;++c)if("ul"===b[c].nodeName.toLowerCase()){a=!1;break}a||this.sidebar.classList.add("opened");this.find_pages();if(0!=this.pages.length){disable_dragstart(document.getElementsByClassName(CSS_CLASS_NAMES.background_image));this.config.key_handler&&this.register_key_handler();var h=this;this.config.hashchange_handler&&window.addEventListener("hashchange",
function(a){h.navigate_to_dest(document.location.hash.substring(1))},!1);this.config.view_history_handler&&window.addEventListener("popstate",function(a){a.state&&h.navigate_to_dest(a.state)},!1);this.container.addEventListener("scroll",function(){h.update_page_idx();h.schedule_render(!0)},!1);[this.container,this.outline].forEach(function(a){a.addEventListener("click",h.link_handler.bind(h),!1)});this.initialize_radio_button();this.render()}},find_pages:function(){for(var a=[],b={},c=this.container.childNodes,
e=0,h=c.length;e<h;++e){var d=c[e];d.nodeType===Node.ELEMENT_NODE&&d.classList.contains(CSS_CLASS_NAMES.page_frame)&&(d=new Page(d),a.push(d),b[d.num]=a.length-1)}this.pages=a;this.page_map=b},load_page:function(a,b,c){var e=this.pages;if(!(a>=e.length||(e=e[a],e.loaded||this.pages_loading[a]))){var e=e.page,h=e.getAttribute("data-page-url");if(h){this.pages_loading[a]=!0;var d=e.getElementsByClassName(this.config.loading_indicator_cls)[0];"undefined"===typeof d&&(d=this.loading_indicator.cloneNode(!0),
d.classList.add("active"),e.appendChild(d));var f=this,g=new XMLHttpRequest;g.open("GET",h,!0);g.onload=function(){if(200===g.status||0===g.status){var b=document.createElement("div");b.innerHTML=g.responseText;for(var d=null,b=b.childNodes,e=0,h=b.length;e<h;++e){var p=b[e];if(p.nodeType===Node.ELEMENT_NODE&&p.classList.contains(CSS_CLASS_NAMES.page_frame)){d=p;break}}b=f.pages[a];f.container.replaceChild(d,b.page);b=new Page(d);f.pages[a]=b;b.hide();b.rescale(f.scale);disable_dragstart(d.getElementsByClassName(CSS_CLASS_NAMES.background_image));
f.schedule_render(!1);c&&c(b)}delete f.pages_loading[a]};g.send(null)}void 0===b&&(b=this.config.preload_pages);0<--b&&(f=this,setTimeout(function(){f.load_page(a+1,b)},0))}},pre_hide_pages:function(){var a="@media screen{."+CSS_CLASS_NAMES.page_content_box+"{display:none;}}",b=document.createElement("style");b.styleSheet?b.styleSheet.cssText=a:b.appendChild(document.createTextNode(a));document.head.appendChild(b)},render:function(){for(var a=this.container,b=a.scrollTop,c=a.clientHeight,a=b-c,b=
b+c+c,c=this.pages,e=0,h=c.length;e<h;++e){var d=c[e],f=d.page,g=f.offsetTop+f.clientTop,f=g+f.clientHeight;g<=b&&f>=a?d.loaded?d.show():this.load_page(e):d.hide()}},update_page_idx:function(){var a=this.pages,b=a.length;if(!(2>b)){for(var c=this.container,e=c.scrollTop,c=e+c.clientHeight,h=-1,d=b,f=d-h;1<f;){var g=h+Math.floor(f/2),f=a[g].page;f.offsetTop+f.clientTop+f.clientHeight>=e?d=g:h=g;f=d-h}this.first_page_idx=d;for(var g=h=this.cur_page_idx,k=0;d<b;++d){var f=a[d].page,l=f.offsetTop+f.clientTop,
f=f.clientHeight;if(l>c)break;f=(Math.min(c,l+f)-Math.max(e,l))/f;if(d===h&&Math.abs(f-1)<=EPS){g=h;break}f>k&&(k=f,g=d)}this.cur_page_idx=g}},schedule_render:function(a){if(void 0!==this.render_timer){if(!a)return;clearTimeout(this.render_timer)}var b=this;this.render_timer=setTimeout(function(){delete b.render_timer;b.render()},this.config.render_timeout)},register_key_handler:function(){var a=this;window.addEventListener("DOMMouseScroll",function(b){if(b.ctrlKey){b.preventDefault();var c=a.container,
e=c.getBoundingClientRect(),c=[b.clientX-e.left-c.clientLeft,b.clientY-e.top-c.clientTop];a.rescale(Math.pow(a.config.scale_step,b.detail),!0,c)}},!1);window.addEventListener("keydown",function(b){var c=!1,e=b.ctrlKey||b.metaKey,h=b.altKey;switch(b.keyCode){case 61:case 107:case 187:e&&(a.rescale(1/a.config.scale_step,!0),c=!0);break;case 173:case 109:case 189:e&&(a.rescale(a.config.scale_step,!0),c=!0);break;case 48:e&&(a.rescale(0,!1),c=!0);break;case 33:h?a.scroll_to(a.cur_page_idx-1):a.container.scrollTop-=
a.container.clientHeight;c=!0;break;case 34:h?a.scroll_to(a.cur_page_idx+1):a.container.scrollTop+=a.container.clientHeight;c=!0;break;case 35:a.container.scrollTop=a.container.scrollHeight;c=!0;break;case 36:a.container.scrollTop=0,c=!0}c&&b.preventDefault()},!1)},rescale:function(a,b,c){var e=this.scale;this.scale=a=0===a?1:b?e*a:a;c||(c=[0,0]);b=this.container;c[0]+=b.scrollLeft;c[1]+=b.scrollTop;for(var h=this.pages,d=h.length,f=this.first_page_idx;f<d;++f){var g=h[f].page;if(g.offsetTop+g.clientTop>=
c[1])break}g=f-1;0>g&&(g=0);var g=h[g].page,k=g.clientWidth,f=g.clientHeight,l=g.offsetLeft+g.clientLeft,m=c[0]-l;0>m?m=0:m>k&&(m=k);k=g.offsetTop+g.clientTop;c=c[1]-k;0>c?c=0:c>f&&(c=f);for(f=0;f<d;++f)h[f].rescale(a);b.scrollLeft+=m/e*a+g.offsetLeft+g.clientLeft-m-l;b.scrollTop+=c/e*a+g.offsetTop+g.clientTop-c-k;this.schedule_render(!0)},fit_width:function(){var a=this.cur_page_idx;this.rescale(this.container.clientWidth/this.pages[a].width(),!0);this.scroll_to(a)},fit_height:function(){var a=this.cur_page_idx;
this.rescale(this.container.clientHeight/this.pages[a].height(),!0);this.scroll_to(a)},get_containing_page:function(a){for(;a;){if(a.nodeType===Node.ELEMENT_NODE&&a.classList.contains(CSS_CLASS_NAMES.page_frame)){a=get_page_number(a);var b=this.page_map;return a in b?this.pages[b[a]]:null}a=a.parentNode}return null},link_handler:function(a){var b=a.target,c=b.getAttribute("data-dest-detail");if(c){if(this.config.view_history_handler)try{var e=this.get_current_view_hash();window.history.replaceState(e,
"","#"+e);window.history.pushState(c,"","#"+c)}catch(h){}this.navigate_to_dest(c,this.get_containing_page(b));a.preventDefault()}},navigate_to_dest:function(a,b){try{var c=JSON.parse(a)}catch(e){return}if(c instanceof Array){var h=c[0],d=this.page_map;if(h in d){for(var f=d[h],h=this.pages[f],d=2,g=c.length;d<g;++d){var k=c[d];if(null!==k&&"number"!==typeof k)return}for(;6>c.length;)c.push(null);var g=b||this.pages[this.cur_page_idx],d=g.view_position(),d=transform(g.ictm,[d[0],g.height()-d[1]]),
g=this.scale,l=[0,0],m=!0,k=!1,n=this.scale;switch(c[1]){case "XYZ":l=[null===c[2]?d[0]:c[2]*n,null===c[3]?d[1]:c[3]*n];g=c[4];if(null===g||0===g)g=this.scale;k=!0;break;case "Fit":case "FitB":l=[0,0];k=!0;break;case "FitH":case "FitBH":l=[0,null===c[2]?d[1]:c[2]*n];k=!0;break;case "FitV":case "FitBV":l=[null===c[2]?d[0]:c[2]*n,0];k=!0;break;case "FitR":l=[c[2]*n,c[5]*n],m=!1,k=!0}if(k){this.rescale(g,!1);var p=this,c=function(a){l=transform(a.ctm,l);m&&(l[1]=a.height()-l[1]);p.scroll_to(f,l)};h.loaded?
c(h):(this.load_page(f,void 0,c),this.scroll_to(f))}}}},scroll_to:function(a,b){var c=this.pages;if(!(0>a||a>=c.length)){c=c[a].view_position();void 0===b&&(b=[0,0]);var e=this.container;e.scrollLeft+=b[0]-c[0];e.scrollTop+=b[1]-c[1]}},get_current_view_hash:function(){var a=[],b=this.pages[this.cur_page_idx];a.push(b.num);a.push("XYZ");var c=b.view_position(),c=transform(b.ictm,[c[0],b.height()-c[1]]);a.push(c[0]/this.scale);a.push(c[1]/this.scale);a.push(this.scale);return JSON.stringify(a)}};
pdf2htmlEX.Viewer=Viewer;})();
</script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar">
<div id="outline">
</div>
</div>
<div id="page-container">
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Mo<span class="_ _0"></span>dern<span class="_ _1"> </span>C++</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">Programming</div><div class="t m0 x1 h3 y3 ff2 fs1 fc0 sc0 ls0 ws0">21.<span class="_ _2"> </span>Perf<span class="_ _3"></span>ormance<span class="_ _4"> </span>Optimiza<span class="_ _5"></span>tion<span class="_ _4"> </span>I<span class="_ _0"></span>I</div><div class="t m0 x2 h4 y4 ff2 fs2 fc0 sc0 ls0 ws0">Code<span class="_ _6"> </span>Optimiza<span class="_ _7"></span>tion</div><div class="t m0 x1 h5 y5 ff3 fs3 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>ederico<span class="_ _8"> </span>Busato</div><div class="t m0 x3 h6 y6 ff4 fs4 fc0 sc0 ls0 ws0">2023-12-21</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _7"></span>able<span class="_ _8"> </span>of<span class="_ _9"> </span>Contents</div><div class="t m0 x5 h8 y8 ff1 fs4 fc2 sc0 ls0 ws0">1<span class="_ _a"> </span><span class="fs2 fc0">I/O<span class="_ _6"> </span>Op<span class="_ _b"></span>erations</span></div><div class="t m0 x6 h9 y9 ff5 fs4 fc0 sc0 ls0 ws0">printf</div><div class="t m0 x6 h6 ya ff4 fs4 fc0 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _c"> </span>Mapp<span class="_ _b"></span>ed<span class="_ _c"> </span>I/O</div><div class="t m0 x6 h6 yb ff4 fs4 fc0 sc0 ls0 ws0">Sp<span class="_ _b"></span>eed<span class="_ _c"> </span>Up<span class="_ _d"> </span>Ra<span class="_ _3"></span>w<span class="_ _c"> </span>Data<span class="_ _d"> </span>Loading</div><div class="t m0 x5 h8 yc ff1 fs4 fc2 sc0 ls0 ws0">2<span class="_ _a"> </span><span class="fs2 fc0">Memo<span class="_ _3"></span>ry<span class="_ _6"> </span>Optimizations</span></div><div class="t m0 x6 h6 yd ff4 fs4 fc0 sc0 ls0 ws0">Heap<span class="_ _d"> </span>Memory</div><div class="t m0 x6 h6 ye ff4 fs4 fc0 sc0 ls0 ws0">Stack<span class="_ _d"> </span>Memory</div><div class="t m0 x6 h6 yf ff4 fs4 fc0 sc0 ls0 ws0">Cache<span class="_ _d"> </span>Utilization</div><div class="t m0 x6 h6 y10 ff4 fs4 fc0 sc0 ls0 ws0">Data<span class="_ _d"> </span>Alignment</div><div class="t m0 x6 h6 y11 ff4 fs4 fc0 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _c"> </span>Prefetch</div><div class="t m0 x7 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">1/84</div><a class="l" href="#pf6" data-dest-detail='[6,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:70.614000px;bottom:294.334500px;width:102.826000px;height:16.145000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfa" data-dest-detail='[10,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:270.363000px;width:33.374000px;height:10.327000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfb" data-dest-detail='[11,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:243.748500px;width:91.130000px;height:11.955000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf10" data-dest-detail='[16,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:218.464500px;width:123.176000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf12" data-dest-detail='[18,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:70.614000px;bottom:175.572000px;width:151.843000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf13" data-dest-detail='[19,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:150.736500px;width:60.495000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf14" data-dest-detail='[20,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:124.621500px;width:62.294000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf15" data-dest-detail='[21,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:101.413500px;width:73.281000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf19" data-dest-detail='[25,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:72.393000px;width:68.299000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf1e" data-dest-detail='[30,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:46.278000px;width:73.917000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _7"></span>able<span class="_ _8"> </span>of<span class="_ _9"> </span>Contents</div><div class="t m0 x5 h8 y13 ff1 fs4 fc2 sc0 ls0 ws0">3<span class="_ _a"> </span><span class="fs2 fc0">Arithmetic</span></div><div class="t m0 x6 h6 y14 ff4 fs4 fc0 sc0 ls0 ws0">Data<span class="_ _d"> </span>T<span class="_ _3"></span>ypes</div><div class="t m0 x6 h6 y15 ff4 fs4 fc0 sc0 ls0 ws0">Op<span class="_ _b"></span>erations</div><div class="t m0 x6 h6 y16 ff4 fs4 fc0 sc0 ls0 ws0">Conversion</div><div class="t m0 x6 h6 y17 ff4 fs4 fc0 sc0 ls0 ws0">Floating-P<span class="_ _3"></span>oint</div><div class="t m0 x6 h6 y18 ff4 fs4 fc0 sc0 ls0 ws0">Compiler<span class="_ _d"> </span>Intrinsic<span class="_ _c"> </span>F<span class="_ _3"></span>unctions</div><div class="t m0 x6 h6 y19 ff4 fs4 fc0 sc0 ls0 ws0">V<span class="_ _3"></span>alue<span class="_ _c"> </span>in<span class="_ _d"> </span>a<span class="_ _c"> </span>Range</div><div class="t m0 x6 h6 y1a ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>okup<span class="_ _d"> </span>T<span class="_ _3"></span>able</div><div class="t m0 x7 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">2/84</div><a class="l" href="#pf20" data-dest-detail='[32,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:70.614000px;bottom:264.186000px;width:71.611000px;height:13.782000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf22" data-dest-detail='[34,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:237.906000px;width:49.895000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf23" data-dest-detail='[35,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:211.791000px;width:47.294000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf27" data-dest-detail='[39,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:188.583000px;width:47.239000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf28" data-dest-detail='[40,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:159.562500px;width:61.436000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf2a" data-dest-detail='[42,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:133.447500px;width:118.750000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf30" data-dest-detail='[48,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:107.332500px;width:73.156000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf32" data-dest-detail='[50,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:81.219000px;width:58.807000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _7"></span>able<span class="_ _8"> </span>of<span class="_ _9"> </span>Contents</div><div class="t m0 x5 h8 y1b ff1 fs4 fc2 sc0 ls0 ws0">4<span class="_ _a"> </span><span class="fs2 fc0">Control<span class="_ _6"> </span>Flo<span class="_ _3"></span>w</span></div><div class="t m0 x6 h6 y1c ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _d"> </span>Hoisting</div><div class="t m0 x6 h6 y1d ff4 fs4 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _d"> </span>Unrolling</div><div class="t m0 x6 h6 y1e ff4 fs4 fc0 sc0 ls0 ws0">Branch<span class="_ _d"> </span>Hints<span class="_ _c"> </span>-<span class="_ _d"> </span><span class="ff7">[[likely]]<span class="_ _6"> </span>/<span class="_ _6"> </span>[[unlikely]]</span></div><div class="t m0 x6 h6 y1f ff4 fs4 fc0 sc0 ls0 ws0">Compiler<span class="_ _d"> </span>Hints<span class="_ _c"> </span>-<span class="_ _d"> </span><span class="ff7">[[assume]]</span></div><div class="t m0 x6 h6 y20 ff4 fs4 fc0 sc0 ls0 ws0">Recursion</div><div class="t m0 x7 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">3/84</div><a class="l" href="#pf35" data-dest-detail='[53,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:70.614000px;bottom:254.551500px;width:86.536000px;height:13.782000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf3b" data-dest-detail='[59,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:225.582000px;width:60.439000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf3c" data-dest-detail='[60,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:196.777500px;width:63.747000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf3e" data-dest-detail='[62,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:167.557500px;width:197.592000px;height:11.125000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf3f" data-dest-detail='[63,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:139.168500px;width:126.581000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf40" data-dest-detail='[64,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:113.269500px;width:42.161000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _7"></span>able<span class="_ _8"> </span>of<span class="_ _9"> </span>Contents</div><div class="t m0 x5 h8 y21 ff1 fs4 fc2 sc0 ls0 ws0">5<span class="_ _a"> </span><span class="fs2 fc0">F<span class="_ _3"></span>unctions</span></div><div class="t m0 x6 h6 y22 ff4 fs4 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _c"> </span>Call<span class="_ _d"> </span>Cost</div><div class="t m0 x6 h6 y23 ff4 fs4 fc0 sc0 ls0 ws0">Argument<span class="_ _d"> </span>Passing</div><div class="t m0 x6 h6 y24 ff4 fs4 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _c"> </span>Optimizations</div><div class="t m0 x6 h6 y25 ff4 fs4 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _c"> </span>Inlining</div><div class="t m0 x6 h6 y26 ff4 fs4 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>ointers<span class="_ _c"> </span>Aliasing</div><div class="t m0 x5 h8 y27 ff1 fs4 fc2 sc0 ls0 ws0">6<span class="_ _a"> </span><span class="fs2 fc0">Object-Oriented<span class="_ _6"> </span>Programming</span></div><div class="t m0 x5 h8 y28 ff1 fs4 fc2 sc0 ls0 ws0">7<span class="_ _a"> </span><span class="ff5 fs2 fc0">Std<span class="_ _6"> </span><span class="ff1">Lib<span class="_ _3"></span>ra<span class="_ _3"></span>ry<span class="_ _6"> </span>and<span class="_ _e"> </span>Other<span class="_ _6"> </span>Language<span class="_ _e"> </span>Asp<span class="_ _0"></span>ects</span></span></div><div class="t m0 x7 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">4/84</div><a class="l" href="#pf42" data-dest-detail='[66,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:70.614000px;bottom:291.913500px;width:64.888000px;height:13.782000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf43" data-dest-detail='[67,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:265.848000px;width:79.535000px;height:8.911000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf44" data-dest-detail='[68,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:234.138000px;width:77.598000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf47" data-dest-detail='[71,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:205.333500px;width:99.335000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf48" data-dest-detail='[72,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:176.529000px;width:71.870000px;height:10.849000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf4c" data-dest-detail='[76,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:74.235000px;bottom:147.726000px;width:71.676000px;height:10.848000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf50" data-dest-detail='[80,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:70.614000px;bottom:100.608000px;width:201.724000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf57" data-dest-detail='[87,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:70.614000px;bottom:53.491500px;width:270.846000px;height:14.745000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf6" class="pf w0 h0" data-page-no="6"><div class="pc pc6 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y29 ff1 fs0 fc0 sc0 ls0 ws0">I/O<span class="_ _1"> </span>Op<span class="_ _0"></span>erations</div><a class="l" href="#pf6" data-dest-detail='[6,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:195.801000px;width:176.211000px;height:26.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf7" class="pf w0 h0" data-page-no="7"><div class="pc pc7 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">I/O<span class="_ _9"> </span>Operations</div><div class="t m0 x9 h8 y2a ff1 fs2 fc3 sc0 ls0 ws0">I/O<span class="_ _6"> </span>Op<span class="_ _b"></span>erations<span class="_ _6"> </span>a<span class="_ _3"></span>re<span class="_ _e"> </span>o<span class="_ _3"></span>rders<span class="_ _6"> </span>of<span class="_ _6"> </span>magnitude<span class="_ _e"> </span>slo<span class="_ _3"></span>w<span class="_ _3"></span>er<span class="_ _6"> </span>than</div><div class="t m0 xa h8 y2b ff1 fs2 fc3 sc0 ls0 ws0">memo<span class="_ _3"></span>ry<span class="_ _6"> </span>accesses</div><div class="t m0 x7 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">5/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf8" class="pf w0 h0" data-page-no="8"><div class="pc pc8 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">I/O<span class="_ _9"> </span>Streams</div><div class="t m0 x1 hb y2c ff4 fs6 fc0 sc0 ls0 ws0">In<span class="_ _c"> </span>general,<span class="_ _c"> </span>input/output<span class="_ _8"> </span>operations<span class="_ _f"> </span>a<span class="_ _3"></span>re<span class="_ _f"> </span>one<span class="_ _c"> </span>of<span class="_ _f"> </span>the<span class="_ _c"> </span>most<span class="_ _f"> </span>exp<span class="_ _b"></span>ensive</div><div class="t m0 xb hb y2d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff7">endl<span class="_ _10"> </span></span>fo<span class="_ _3"></span>r<span class="_ _10"> </span><span class="ff7">ostream<span class="_ _10"> </span></span>only<span class="_ _c"> </span>when<span class="_ _f"> </span>it<span class="_ _c"> </span>is<span class="_ _f"> </span>strictly<span class="_ _c"> </span>necessary<span class="_ _c"> </span>(p<span class="_ _3"></span>refer<span class="_ _10"> </span><span class="ff9">\<span class="ff7">n<span class="_ _d"> </span></span></span>)</span></div><div class="t m0 xb hb y2e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Disable<span class="_ _c"> </span><span class="ffa">synchronization<span class="_ _f"> </span></span>with<span class="_ _10"> </span><span class="ff7">printf/scanf<span class="_ _d"> </span></span>:</span></div><div class="t m0 xc hc y2f ff7 fs4 fc0 sc0 ls0 ws0">std::ios<span class="_ _f"> </span>base::sync<span class="_ _c"> </span>with<span class="_ _f"> </span>stdio(false)</div><div class="t m0 xb hb y30 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Disable<span class="_ _c"> </span>IO<span class="_ _f"> </span><span class="ffa">flushing<span class="_ _9"> </span></span>when<span class="_ _f"> </span>mixing<span class="_ _10"> </span><span class="ff7">istream/ostream<span class="_ _10"> </span></span>calls:</span></div><div class="t m0 xc hc y31 ff7 fs4 fc0 sc0 ls0 ws0">&lt;istream<span class="_ _f"> </span>obj&gt;.tie(nullptr);</div><div class="t m0 xb hb y32 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Increase<span class="_ _c"> </span>IO<span class="_ _f"> </span><span class="ffa">buffer<span class="_ _c"> </span>size<span class="_ _0"></span></span>:</span></div><div class="t m0 xc hc y33 ff7 fs4 fc0 sc0 ls0 ws0">file.rdbuf()-&gt;pubsetbuf(buffer<span class="_ _f"> </span>var,<span class="_ _e"> </span>buffer<span class="_ _f"> </span>size);</div><div class="t m0 x7 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">6/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf9" class="pf w0 h0" data-page-no="9"><div class="pc pc9 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">I/O<span class="_ _9"> </span>Streams<span class="_ _8"> </span>-<span class="_ _9"> </span>Example</div><div class="t m0 xd hd y34 ffb fs7 fc4 sc0 ls0 ws0">#include<span class="_ _11"> </span><span class="fc5">&lt;iostream&gt;</span></div><div class="t m0 xd hd y35 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc7">main<span class="fc0">()<span class="_ _9"> </span>{</span></span></div><div class="t m0 x6 hd y36 ffc fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>ifstream<span class="_ _9"> </span>fin;</div><div class="t m0 x6 hd y37 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>--------------------------------------------------------</div><div class="t m0 x6 hd y38 ffc fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>ios_base<span class="fc8">::</span>sync_with_stdio(<span class="fc9">false</span>);<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _9"> </span>sync<span class="_ _e"> </span>disable</span></div><div class="t m0 x6 hd y39 ffc fs7 fc0 sc0 ls0 ws0">fin.tie(<span class="ff5 fc9">nullptr</span>);<span class="_ _12"> </span><span class="ffb fc5">//<span class="_ _9"> </span>flush<span class="_ _9"> </span>disable</span></div><div class="t m0 xe hd y3a ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>buffer<span class="_ _9"> </span>increase</div><div class="t m0 x6 hd y3b ff5 fs7 fc9 sc0 ls0 ws0">const<span class="_ _9"> </span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">BUFFER_SIZE<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>1024<span class="_ _9"> </span>*<span class="_ _e"> </span>1024</span>;<span class="_ _13"> </span><span class="ffb fc5">//<span class="_ _9"> </span>1<span class="_ _9"> </span>MB</span></span></span></div><div class="t m0 x6 hd y3c ff5 fs7 fc6 sc0 ls0 ws0">char<span class="_ _9"> </span><span class="ffc fc0">buffer[BUFFER_SIZE];</span></div><div class="t m0 x6 hd y3d ffc fs7 fc0 sc0 ls0 ws0">fin.rdbuf()<span class="fc8">-&gt;</span>pubsetbuf(buffer,<span class="_ _9"> </span>BUFFER_SIZE);</div><div class="t m0 x6 hd y3e ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>--------------------------------------------------------</div><div class="t m0 x6 hd y3f ffc fs7 fc0 sc0 ls0 ws0">fin.open(filename);<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _9"> </span>Note:<span class="_ _e"> </span>open()<span class="_ _9"> </span>after<span class="_ _9"> </span>optimizations</span></div><div class="t m0 x6 hd y40 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>IO<span class="_ _9"> </span>operations</div><div class="t m0 x6 hd y41 ffc fs7 fc0 sc0 ls0 ws0">fin.close();</div><div class="t m0 xd hd y42 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x7 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">7/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pfa" class="pf w0 h0" data-page-no="a"><div class="pc pca w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 he y7 ff5 fs3 fc1 sc0 ls0 ws0">printf</div><div class="t m0 xb hb y43 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _14"> </span><span class="ff7">printf<span class="_ _10"> </span><span class="ff4">is<span class="_ _c"> </span>faster<span class="_ _c"> </span>than<span class="_ _10"> </span></span>ostream<span class="_ _10"> </span><span class="ff4">(see<span class="_ _f"> </span></span>speed<span class="_ _15"> </span>test<span class="_ _15"> </span>link<span class="ff4">)</span></span></div><div class="t m0 xb hb y44 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _10"> </span><span class="ff7">printf<span class="_ _10"> </span></span>call<span class="_ _c"> </span>with<span class="_ _c"> </span>a<span class="_ _f"> </span>simple<span class="_ _c"> </span>format<span class="_ _c"> </span>string<span class="_ _c"> </span>ending<span class="_ _f"> </span>with<span class="_ _10"> </span><span class="ff9">\<span class="ff7">n<span class="_ _10"> </span></span></span>is<span class="_ _c"> </span>converted<span class="_ _c"> </span>to<span class="_ _f"> </span>a</span></div><div class="t m0 xc hb y45 ff7 fs6 fc0 sc0 ls0 ws0">puts()<span class="_ _10"> </span><span class="ff4">call</span></div><div class="t m0 xc hd y46 ffc fs7 fc0 sc0 ls0 ws0">printf(<span class="fca">&quot;Hello<span class="_ _9"> </span>World<span class="ff5 fcb">\n</span>&quot;</span>);</div><div class="t m0 xc hd y47 ffc fs7 fc0 sc0 ls0 ws0">printf(<span class="fca">&quot;%s<span class="ff5 fcb">\n</span>&quot;</span>,<span class="_ _9"> </span>string);</div><div class="t m0 xb hb y48 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">No<span class="_ _c"> </span>optimization<span class="_ _f"> </span>if<span class="_ _c"> </span>the<span class="_ _f"> </span>string<span class="_ _c"> </span>is<span class="_ _f"> </span>not<span class="_ _c"> </span>ending<span class="_ _c"> </span>with<span class="_ _10"> </span><span class="ff9">\<span class="ff7">n<span class="_ _10"> </span></span></span>or<span class="_ _c"> </span>one<span class="_ _c"> </span>or<span class="_ _c"> </span>mo<span class="_ _3"></span>re<span class="_ _10"> </span><span class="ff7">%<span class="_ _10"> </span></span>a<span class="_ _3"></span>re</span></div><div class="t m0 x6 hb y49 ff4 fs6 fc0 sc0 ls0 ws0">detected<span class="_ _c"> </span>in<span class="_ _c"> </span>the<span class="_ _f"> </span>format<span class="_ _c"> </span>string</div><div class="t m0 xb hd y4a ffc fs7 fcc sc0 ls0 ws0">www.ciselant.de/projects/gcc_printf/gcc_printf.html</div><div class="t m0 x7 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">8/84</div><a class="l" href="https://github.com/fmtlib/fmt#speed-tests"><div class="d m1" style="border-style:none;position:absolute;left:342.048000px;bottom:270.511500px;width:87.902000px;height:16.930000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://www.ciselant.de/projects/gcc_printf/gcc_printf.html"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:4.288500px;width:242.067000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pfb" class="pf w0 h0" data-page-no="b"><div class="pc pcb w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _9"> </span>Mapp<span class="_ _b"></span>ed<span class="_ _9"> </span>I/O</div><div class="t m0 x1 hb y4b ff4 fs6 fc0 sc0 ls0 ws0">A<span class="_ _c"> </span><span class="ff1">memory-mapped<span class="_ _8"> </span>file<span class="_ _c"> </span></span>is<span class="_ _f"> </span>a<span class="_ _c"> </span>segment<span class="_ _f"> </span>of<span class="_ _c"> </span>virtual<span class="_ _f"> </span>memo<span class="_ _3"></span>ry<span class="_ _f"> </span>that<span class="_ _c"> </span>has<span class="_ _f"> </span>b<span class="_ _b"></span>een<span class="_ _c"> </span>assigned<span class="_ _f"> </span>a</div><div class="t m0 x1 hb y4c ff4 fs6 fc0 sc0 ls0 ws0">direct<span class="_ _c"> </span>byte-fo<span class="_ _3"></span>r-b<span class="_ _3"></span>yte<span class="_ _f"> </span>co<span class="_ _3"></span>rrelation<span class="_ _f"> </span>with<span class="_ _c"> </span>some<span class="_ _f"> </span>p<span class="_ _b"></span>ortion<span class="_ _c"> </span>of<span class="_ _c"> </span>a<span class="_ _c"> </span>file</div><div class="t m0 x1 hb y4d ff1 fs6 fc0 sc0 ls0 ws0">Benefits:</div><div class="t m0 xb hb y4e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Orders<span class="_ _c"> </span>of<span class="_ _f"> </span>magnitude<span class="_ _c"> </span>faster<span class="_ _f"> </span>than<span class="_ _c"> </span>system<span class="_ _f"> </span>calls</span></div><div class="t m0 xb hb y4f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Input<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>“cached”<span class="_ _f"> </span>in<span class="_ _c"> </span>RAM<span class="_ _f"> </span>memo<span class="_ _3"></span>ry<span class="_ _f"> </span>(page/file<span class="_ _c"> </span>cache)</span></div><div class="t m0 xb hb y50 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _c"> </span>file<span class="_ _f"> </span>requires<span class="_ _c"> </span>disk<span class="_ _f"> </span>access<span class="_ _c"> </span>only<span class="_ _f"> </span>when<span class="_ _c"> </span>a<span class="_ _c"> </span>new<span class="_ _f"> </span>page<span class="_ _c"> </span>b<span class="_ _0"></span>ounda<span class="_ _3"></span>ry<span class="_ _c"> </span>is<span class="_ _c"> </span>crossed</span></div><div class="t m0 xb hb y51 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Memo<span class="_ _3"></span>ry-mapping<span class="_ _f"> </span>may<span class="_ _c"> </span>b<span class="_ _3"></span>ypass<span class="_ _c"> </span>the<span class="_ _f"> </span>page/sw<span class="_ _3"></span>ap<span class="_ _f"> </span>file<span class="_ _c"> </span>completely</span></div><div class="t m0 xb hb y52 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Load<span class="_ _c"> </span>and<span class="_ _f"> </span>sto<span class="_ _3"></span>re<span class="_ _f"> </span><span class="ffa">raw<span class="_ _9"> </span></span>data<span class="_ _c"> </span>(no<span class="_ _c"> </span>parsing/conversion)</span></div><div class="t m0 x7 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">9/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pfc" class="pf w0 h0" data-page-no="c"><div class="pc pcc w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _9"> </span>Mapp<span class="_ _b"></span>ed<span class="_ _9"> </span>I/O<span class="_ _8"> </span>-<span class="_ _9"> </span>Example<span class="_ _16"> </span>1/2</div><div class="t m0 xd hf y53 ffb fs5 fc4 sc0 ls0 ws0">#if<span class="_ _8"> </span>!defined(__linux__)</div><div class="t m0 xf hf y54 ffb fs5 fc4 sc0 ls0 ws0">#error<span class="_ _8"> </span>It<span class="_ _17"> </span>works<span class="_ _8"> </span>only<span class="_ _17"> </span>on<span class="_ _8"> </span>linux</div><div class="t m0 xd hf y55 ffb fs5 fc4 sc0 ls0 ws0">#endif</div><div class="t m0 xd hf y56 ffb fs5 fc4 sc0 ls0 ws0">#include<span class="_ _6"> </span><span class="fc5">&lt;fcntl.h&gt;<span class="_ _18"> </span>//::open</span></div><div class="t m0 xd hf y57 ffb fs5 fc4 sc0 ls0 ws0">#include<span class="_ _6"> </span><span class="fc5">&lt;sys/mman.h&gt;<span class="_ _19"> </span>//::mmap</span></div><div class="t m0 xd hf y58 ffb fs5 fc4 sc0 ls0 ws0">#include<span class="_ _6"> </span><span class="fc5">&lt;sys/stat.h&gt;<span class="_ _19"> </span>//::open</span></div><div class="t m0 xd hf y59 ffb fs5 fc4 sc0 ls0 ws0">#include<span class="_ _6"> </span><span class="fc5">&lt;sys/types.h&gt;<span class="_ _1a"> </span>//::open</span></div><div class="t m0 xd hf y5a ffb fs5 fc4 sc0 ls0 ws0">#include<span class="_ _6"> </span><span class="fc5">&lt;unistd.h&gt;<span class="_ _1b"> </span>//::lseek</span></div><div class="t m0 xd hf y5b ffb fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>usage:<span class="_ _17"> </span>./exec<span class="_ _8"> </span>&lt;file&gt;<span class="_ _17"> </span>&lt;byte_size&gt;<span class="_ _8"> </span>&lt;mode&gt;</div><div class="t m0 xd hf y5c ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_ _8"> </span><span class="ffd fc7">main<span class="fc0">(</span></span>int<span class="_ _17"> </span><span class="ffd fc0">argc,<span class="_ _17"> </span></span>char<span class="ffd fc8">*<span class="_ _8"> </span><span class="fc0">argv[])<span class="_ _17"> </span>{</span></span></div><div class="t m0 x10 hf y5d ff5 fs5 fc6 sc0 ls0 ws0">size_t<span class="_ _8"> </span><span class="ffd fc0">file_size<span class="_ _17"> </span><span class="fc8">=<span class="_ _17"> </span></span>std<span class="fc8">::</span>stoll(argv[<span class="fc8">2</span>]);</span></div><div class="t m0 x10 hf y5e ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_ _1c"> </span><span class="ffd fc0">is_read<span class="_ _1c"> </span><span class="fc8">=<span class="_ _8"> </span></span>std<span class="fc8">::</span>string(argv[<span class="fc8">3</span>])<span class="_ _17"> </span><span class="fc8">==<span class="_ _17"> </span><span class="fca">&quot;READ&quot;</span></span>;</span></div><div class="t m0 x10 hf y5f ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_ _8"> </span><span class="ffd fc0">fd<span class="_ _17"> </span><span class="fc8">=<span class="_ _17"> </span></span>is_read<span class="_ _8"> </span><span class="fc8">?<span class="_ _17"> </span>::</span>open(argv[<span class="fc8">1</span>],<span class="_ _17"> </span>O_RDONLY)<span class="_ _8"> </span><span class="fc8">:</span></span></div><div class="t m0 x11 hf y60 ffd fs5 fc8 sc0 ls0 ws0">::<span class="fc0">open(argv[</span>1<span class="fc0">],<span class="_ _8"> </span>O_RDWR<span class="_ _17"> </span></span>|<span class="_ _17"> </span><span class="fc0">O_CREAT<span class="_ _8"> </span></span>|<span class="_ _17"> </span><span class="fc0">O_TRUNC,<span class="_ _17"> </span>S_IRUSR<span class="_ _8"> </span></span>|<span class="_ _17"> </span><span class="fc0">S_IWUSR);</span></div><div class="t m0 x10 hf y61 ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_ _8"> </span><span class="ffd fc0">(fd<span class="_ _17"> </span><span class="fc8">==<span class="_ _17"> </span>-1</span>)</span></div><div class="t m0 x12 hf y62 ffd fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::open&quot;</span>)<span class="_ _1d"> </span><span class="ffb fc5">//<span class="_ _8"> </span>try<span class="_ _17"> </span>to<span class="_ _8"> </span>get<span class="_ _17"> </span>the<span class="_ _8"> </span>last<span class="_ _17"> </span>byte</span></div><div class="t m0 x10 hf y63 ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_ _8"> </span><span class="ffd fc0">(<span class="fc8">::</span>lseek(fd,<span class="_ _17"> </span></span>static_cast<span class="ffd fc8">&lt;</span><span class="fc6">off_t<span class="ffd fc8">&gt;<span class="fc0">(file_size<span class="_ _17"> </span></span>-<span class="_ _8"> </span>1<span class="fc0">),<span class="_ _17"> </span>SEEK_SET)<span class="_ _17"> </span></span>==<span class="_ _8"> </span>-1<span class="fc0">)</span></span></span></div><div class="t m0 x12 hf y64 ffd fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::lseek&quot;</span>)</div><div class="t m0 x10 hf y65 ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_ _8"> </span><span class="ffd fc0">(<span class="fc8">!</span>is_read<span class="_ _17"> </span><span class="fc8">&amp;&amp;<span class="_ _17"> </span>::</span>write(fd,<span class="_ _8"> </span><span class="fca">&quot;&quot;</span>,<span class="_ _17"> </span><span class="fc8">1</span>)<span class="_ _17"> </span><span class="fc8">!=<span class="_ _8"> </span>1</span>)<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _17"> </span>try<span class="_ _8"> </span>to<span class="_ _17"> </span>write</span></span></div><div class="t m0 x12 hf y66 ffd fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::write&quot;</span>)</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">10/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pfd" class="pf w0 h0" data-page-no="d"><div class="pc pcd w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _17"> </span>Mapp<span class="_ _0"></span>ed<span class="_ _8"> </span>I/O<span class="_ _17"> </span>Example<span class="_ _1e"> </span>2/2</div><div class="t m0 xd hf y67 ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_ _8"> </span><span class="ffd fc0">mm_mode<span class="_ _17"> </span><span class="fc8">=<span class="_ _17"> </span></span>(is_read)<span class="_ _8"> </span><span class="fc8">?<span class="_ _17"> </span></span>PROT_READ<span class="_ _17"> </span><span class="fc8">:<span class="_ _8"> </span></span>PROT_WRITE;</span></div><div class="t m0 xd hf y68 ffb fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>Open<span class="_ _17"> </span>Memory<span class="_ _8"> </span>Mapped<span class="_ _17"> </span>file</div><div class="t m0 xd hf y69 ff5 fs5 fc9 sc0 ls0 ws0">auto<span class="_ _8"> </span><span class="ffd fc0">mmap_ptr<span class="_ _17"> </span><span class="fc8">=<span class="_ _17"> </span></span></span>static_cast<span class="ffd fc8">&lt;</span><span class="fc6">char<span class="ffd fc8">*&gt;<span class="fc0">(</span></span></span></div><div class="t m0 x14 hf y6a ffd fs5 fc8 sc0 ls0 ws0">::<span class="fc0">mmap(<span class="ff5 fc9">nullptr</span>,<span class="_ _8"> </span>file_size,<span class="_ _17"> </span>mm_mode,<span class="_ _17"> </span>MAP_SHARED,<span class="_ _8"> </span>fd,<span class="_ _17"> </span></span>0<span class="fc0">)<span class="_ _17"> </span>);</span></div><div class="t m0 xd hf y6b ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_ _8"> </span><span class="ffd fc0">(mmap_ptr<span class="_ _17"> </span><span class="fc8">==<span class="_ _17"> </span></span>MAP_FAILED)</span></div><div class="t m0 xf hf y6c ffd fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::mmap&quot;</span>);</div><div class="t m0 xd hf y6d ffb fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>Advise<span class="_ _17"> </span>sequential<span class="_ _8"> </span>access</div><div class="t m0 xd hf y6e ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_ _8"> </span><span class="ffd fc0">(<span class="fc8">::</span>madvise(mmap_ptr,<span class="_ _17"> </span>file_size,<span class="_ _17"> </span>MADV_SEQUENTIAL)<span class="_ _8"> </span><span class="fc8">==<span class="_ _17"> </span>-1</span>)</span></div><div class="t m0 xf hf y6f ffd fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::madvise&quot;</span>);</div><div class="t m0 xd hf y70 ffb fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>MemoryMapped<span class="_ _17"> </span>Operations</div><div class="t m0 xd hf y71 ffb fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>read<span class="_ _17"> </span>from/write<span class="_ _8"> </span>to<span class="_ _17"> </span>&quot;mmap_ptr&quot;<span class="_ _8"> </span>as<span class="_ _17"> </span>a<span class="_ _8"> </span>normal<span class="_ _17"> </span>array:<span class="_ _8"> </span>mmap_ptr[i]</div><div class="t m0 xd hf y72 ffb fs5 fc5 sc0 ls0 ws0">//<span class="_ _8"> </span>Close<span class="_ _17"> </span>Memory<span class="_ _8"> </span>Mapped<span class="_ _17"> </span>file</div><div class="t m0 xd hf y73 ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_ _8"> </span><span class="ffd fc0">(<span class="fc8">::</span>munmap(mmap_ptr,<span class="_ _17"> </span>file_size)<span class="_ _17"> </span><span class="fc8">==<span class="_ _8"> </span>-1</span>)</span></div><div class="t m0 xf hf y74 ffd fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::munmap&quot;</span>);</div><div class="t m0 xd hf y75 ff5 fs5 fc9 sc0 ls0 ws0">if<span class="_ _8"> </span><span class="ffd fc0">(<span class="fc8">::</span>close(fd)<span class="_ _17"> </span><span class="fc8">==<span class="_ _17"> </span>-1</span>)</span></div><div class="t m0 xf hf y76 ffd fs5 fc0 sc0 ls0 ws0">ERROR(<span class="fca">&quot;::close&quot;</span>);</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">11/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pfe" class="pf w0 h0" data-page-no="e"><div class="pc pce w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _3"></span>w-Level<span class="_ _17"> </span>Pa<span class="_ _3"></span>rsing<span class="_ _1f"> </span>1/2</div><div class="t m0 x1 hb y77 ff4 fs6 fc0 sc0 ls0 ws0">Consider<span class="_ _c"> </span>using<span class="_ _c"> </span>optimized<span class="_ _f"> </span>(low-level)<span class="_ _c"> </span>numeric<span class="_ _c"> </span>conversion<span class="_ _c"> </span>routines:</div><div class="t m0 xd hf y78 ff5 fs5 fc9 sc0 ls0 ws0">template<span class="ffd fc8">&lt;</span><span class="fc6">int<span class="_ _8"> </span><span class="ffd fc0">N,<span class="_ _17"> </span></span>unsigned<span class="_ _17"> </span><span class="ffd fc0">MUL,<span class="_ _8"> </span></span>int<span class="_ _17"> </span><span class="ffd fc0">INDEX<span class="_ _17"> </span><span class="fc8">=<span class="_ _8"> </span>0&gt;</span></span></span></div><div class="t m0 xd hf y79 ff5 fs5 fc9 sc0 ls0 ws0">struct<span class="_ _8"> </span><span class="fc7">fastStringToIntStr<span class="ffd fc0">;</span></span></div><div class="t m0 xd hf y7a ff5 fs5 fc9 sc0 ls0 ws0">inline<span class="_ _8"> </span><span class="fc6">unsigned<span class="_ _17"> </span><span class="ffd fc7">fastStringToUnsigned<span class="fc0">(</span></span></span>const<span class="_ _17"> </span><span class="fc6">char<span class="ffd fc8">*<span class="_ _8"> </span><span class="fc0">str,<span class="_ _17"> </span></span></span>int<span class="_ _17"> </span><span class="ffd fc0">length)<span class="_ _8"> </span>{</span></span></div><div class="t m0 xf hf y7b ff5 fs5 fc9 sc0 ls0 ws0">switch<span class="ffd fc0">(length)<span class="_ _8"> </span>{</span></div><div class="t m0 x15 hf y7c ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _8"> </span><span class="ffd fc8">10<span class="fc0">:<span class="_ _17"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">fastStringToIntStr<span class="fc8">&lt;10</span>,<span class="_ _8"> </span><span class="fc8">1000000000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y7d ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _14"> </span><span class="ffd fc8">9<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _17"> </span>9</span>,<span class="_ _8"> </span><span class="fc8">100000000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y7e ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _14"> </span><span class="ffd fc8">8<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _17"> </span>8</span>,<span class="_ _8"> </span><span class="fc8">10000000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y7f ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _14"> </span><span class="ffd fc8">7<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _17"> </span>7</span>,<span class="_ _8"> </span><span class="fc8">1000000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y80 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _14"> </span><span class="ffd fc8">6<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _17"> </span>6</span>,<span class="_ _8"> </span><span class="fc8">100000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y81 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _14"> </span><span class="ffd fc8">5<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _17"> </span>5</span>,<span class="_ _8"> </span><span class="fc8">10000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y82 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _14"> </span><span class="ffd fc8">4<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _17"> </span>4</span>,<span class="_ _8"> </span><span class="fc8">1000&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y83 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _14"> </span><span class="ffd fc8">3<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _17"> </span>3</span>,<span class="_ _8"> </span><span class="fc8">100&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y84 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _14"> </span><span class="ffd fc8">2<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _17"> </span>2</span>,<span class="_ _8"> </span><span class="fc8">10&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y85 ff5 fs5 fc9 sc0 ls0 ws0">case<span class="_ _14"> </span><span class="ffd fc8">1<span class="fc0">:<span class="_ _8"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">fastStringToIntStr<span class="fc8">&lt;<span class="_ _17"> </span>1</span>,<span class="_ _8"> </span><span class="fc8">1&gt;::</span>aux(str);</span></div><div class="t m0 x15 hf y86 ff5 fs5 fc9 sc0 ls0 ws0">default<span class="ffd fc8">:<span class="_ _8"> </span></span>return<span class="_ _17"> </span><span class="ffd fc8">0<span class="fc0">;</span></span></div><div class="t m0 xf hf y87 ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd hf y88 ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">12/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pff" class="pf w0 h0" data-page-no="f"><div class="pc pcf w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _3"></span>w-Level<span class="_ _17"> </span>Pa<span class="_ _3"></span>rsing<span class="_ _1f"> </span>2/2</div><div class="t m0 xd hd y89 ff5 fs7 fc9 sc0 ls0 ws0">template<span class="ffc fc8">&lt;</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">N,<span class="_ _9"> </span></span>unsigned<span class="_ _e"> </span><span class="ffc fc0">MUL,<span class="_ _9"> </span></span>int<span class="_ _9"> </span><span class="ffc fc0">INDEX<span class="fc8">&gt;</span></span></span></div><div class="t m0 xd hd y8a ff5 fs7 fc9 sc0 ls0 ws0">struct<span class="_ _9"> </span><span class="fc7">fastStringToIntStr<span class="_ _9"> </span><span class="ffc fc0">{</span></span></div><div class="t m0 x6 hd y8b ff5 fs7 fc9 sc0 ls0 ws0">static<span class="_ _9"> </span>inline<span class="_ _9"> </span><span class="fc6">unsigned<span class="_ _e"> </span><span class="ffc fc7">aux<span class="fc0">(</span></span></span>const<span class="_ _9"> </span><span class="fc6">char<span class="ffc fc8">*<span class="_ _9"> </span><span class="fc0">str)<span class="_ _e"> </span>{</span></span></span></div><div class="t m0 x16 hd y8c ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_ _9"> </span>static_cast<span class="ffc fc8">&lt;</span><span class="fc6">unsigned<span class="ffc fc8">&gt;<span class="fc0">(str[INDEX]<span class="_ _9"> </span></span>-<span class="_ _e"> </span><span class="ffe fca">&apos;<span class="ffc">0</span>&apos;</span><span class="fc0">)<span class="_ _9"> </span></span>*<span class="_ _9"> </span><span class="fc0">MUL<span class="_ _20"> </span></span>+</span></span></div><div class="t m0 x17 hd y8d ffc fs7 fc0 sc0 ls0 ws0">fastStringToIntStr<span class="fc8">&lt;</span>N<span class="_ _9"> </span><span class="fc8">-<span class="_ _9"> </span>1</span>,<span class="_ _e"> </span>MUL<span class="_ _9"> </span><span class="fc8">/<span class="_ _9"> </span>10</span>,<span class="_ _e"> </span>INDEX<span class="_ _9"> </span><span class="fc8">+<span class="_ _9"> </span>1&gt;::</span>aux(str);</div><div class="t m0 x6 hd y8e ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd hd y8f ffc fs7 fc0 sc0 ls0 ws0">};</div><div class="t m0 xd hd y90 ff5 fs7 fc9 sc0 ls0 ws0">template<span class="ffc fc8">&lt;</span><span class="fc6">unsigned<span class="_ _9"> </span><span class="ffc fc0">MUL,<span class="_ _9"> </span></span>int<span class="_ _e"> </span><span class="ffc fc0">INDEX<span class="fc8">&gt;</span></span></span></div><div class="t m0 xd hd y91 ff5 fs7 fc9 sc0 ls0 ws0">struct<span class="_ _9"> </span><span class="fc7">fastStringToIntStr<span class="ffc fc8">&lt;1<span class="fc0">,<span class="_ _9"> </span>MUL,<span class="_ _e"> </span>INDEX</span>&gt;<span class="_ _9"> </span><span class="fc0">{</span></span></span></div><div class="t m0 x6 hd y92 ff5 fs7 fc9 sc0 ls0 ws0">static<span class="_ _9"> </span>inline<span class="_ _9"> </span><span class="fc6">unsigned<span class="_ _e"> </span><span class="ffc fc7">aux<span class="fc0">(</span></span></span>const<span class="_ _9"> </span><span class="fc6">char<span class="ffc fc8">*<span class="_ _9"> </span><span class="fc0">str)<span class="_ _e"> </span>{</span></span></span></div><div class="t m0 x16 hd y93 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_ _9"> </span>static_cast<span class="ffc fc8">&lt;</span><span class="fc6">unsigned<span class="ffc fc8">&gt;<span class="fc0">(str[INDEX]<span class="_ _9"> </span></span>-<span class="_ _e"> </span><span class="ffe fca">&apos;<span class="ffc">0</span>&apos;</span><span class="fc0">);</span></span></span></div><div class="t m0 x6 hd y94 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd hd y95 ffc fs7 fc0 sc0 ls0 ws0">};</div><div class="t m0 xb h10 y96 fff fs7 fcc sc0 ls0 ws0">F<span class="_ _3"></span>aster<span class="_ _d"> </span>parsing:<span class="_ _f"> </span><span class="ffc">lemire.me/blog/tag/simd-swar-parsing</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">13/84</div><a class="l" href="https://lemire.me/blog/tag/simd-swar-parsing/"><div class="d m1" style="border-style:none;position:absolute;left:142.776000px;bottom:6.747000px;width:171.457000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf10" class="pf w0 h0" data-page-no="10"><div class="pc pc10 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Sp<span class="_ _b"></span>eed<span class="_ _17"> </span>Up<span class="_ _17"> </span>Raw<span class="_ _8"> </span>Data<span class="_ _9"> </span>Loading<span class="_ _21"> </span>1/2</div><div class="t m0 xb hb y97 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Ha<span class="_ _3"></span>rd<span class="_ _f"> </span>disk<span class="_ _c"> </span>is<span class="_ _f"> </span>orders<span class="_ _c"> </span>of<span class="_ _c"> </span>magnitude<span class="_ _c"> </span>slow<span class="_ _3"></span>er<span class="_ _c"> </span>than<span class="_ _c"> </span>RAM</span></div><div class="t m0 xb hb y98 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">P<span class="_ _3"></span>arsing<span class="_ _c"> </span>is<span class="_ _c"> </span>faster<span class="_ _f"> </span>than<span class="_ _c"> </span>data<span class="_ _f"> </span>reading</span></div><div class="t m0 xb hb y99 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">P<span class="_ _3"></span>arsing<span class="_ _c"> </span>can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>avoided<span class="_ _c"> </span>by<span class="_ _c"> </span>using<span class="_ _c"> </span><span class="ffa">binary<span class="_ _9"> </span></span>sto<span class="_ _3"></span>rage<span class="_ _f"> </span>and<span class="_ _10"> </span><span class="ff7">mmap</span></span></div><div class="t m0 xb hb y9a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Decreasing<span class="_ _c"> </span>the<span class="_ _f"> </span>numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _f"> </span>ha<span class="_ _3"></span>rd<span class="_ _f"> </span>disk<span class="_ _c"> </span>accesses<span class="_ _f"> </span>improves<span class="_ _c"> </span>the<span class="_ _c"> </span>p<span class="_ _b"></span>erfo<span class="_ _3"></span>rmance<span class="_ _f"> </span><span class="ff10">→</span></span></div><div class="t m0 x6 hb y9b ff1 fs6 fc0 sc0 ls0 ws0">comp<span class="_ _3"></span>ression</div><div class="t m0 x1 hb y9c ff1 fs6 fc0 sc0 ls0 ws0">LZ4<span class="_ _c"> </span><span class="ff4">is<span class="_ _c"> </span>lossless<span class="_ _f"> </span>compression<span class="_ _c"> </span>algo<span class="_ _3"></span>rithm<span class="_ _c"> </span>providing<span class="_ _c"> </span><span class="ffa">extremely<span class="_ _c"> </span>fast<span class="_ _f"> </span>decomp<span class="_ _3"></span>ression<span class="_ _f"> </span><span class="ff4">up<span class="_ _f"> </span>to</span></span></span></div><div class="t m0 x1 hb y9d ff4 fs6 fc0 sc0 ls0 ws0">35%<span class="_ _c"> </span>of<span class="_ _17"> </span><span class="ff7">memcpy<span class="_ _f"> </span></span>and<span class="_ _c"> </span>go<span class="_ _b"></span>o<span class="_ _b"></span>d<span class="_ _f"> </span>compression<span class="_ _c"> </span>ratio</div><div class="t m0 x1 h11 y9e ff7 fs6 fc0 sc0 ls0 ws0">github.com/lz4/lz4</div><div class="t m0 x1 hb y9f ff4 fs6 fc0 sc0 ls0 ws0">Another<span class="_ _c"> </span>alternative<span class="_ _c"> </span>is<span class="_ _f"> </span><span class="ff1">Facebo<span class="_ _b"></span>ok<span class="_ _8"> </span>zstd</span></div><div class="t m0 x1 h11 ya0 ff7 fs6 fc0 sc0 ls0 ws0">github.com/facebook/zstd</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">14/84</div><a class="l" href="https://github.com/lz4/lz4"><div class="d m1" style="border-style:none;position:absolute;left:41.025000px;bottom:80.044500px;width:105.083000px;height:11.992000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://github.com/facebook/zstd"><div class="d m1" style="border-style:none;position:absolute;left:41.025000px;bottom:17.646000px;width:139.447000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf11" class="pf w0 h0" data-page-no="11"><div class="pc pc11 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Sp<span class="_ _b"></span>eed<span class="_ _17"> </span>Up<span class="_ _17"> </span>Raw<span class="_ _8"> </span>Data<span class="_ _9"> </span>Loading<span class="_ _21"> </span>2/2</div><div class="t m0 x1 hb ya1 ff4 fs6 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>erformance<span class="_ _c"> </span>compa<span class="_ _3"></span>rison<span class="_ _f"> </span>of<span class="_ _c"> </span>different<span class="_ _f"> </span>metho<span class="_ _b"></span>ds<span class="_ _c"> </span>for<span class="_ _c"> </span>a<span class="_ _c"> </span>file<span class="_ _c"> </span>of<span class="_ _f"> </span>4.8<span class="_ _c"> </span>GB<span class="_ _f"> </span>of<span class="_ _c"> </span>integer<span class="_ _f"> </span>values</div><div class="t m0 x18 h6 ya2 ff1 fs4 fc0 sc0 ls0 ws0">Load<span class="_ _c"> </span>Metho<span class="_ _b"></span>d<span class="_ _22"> </span>Exec.<span class="_ _e"> </span>Time<span class="_ _23"> </span>Sp<span class="_ _b"></span>eedup</div><div class="t m0 x19 h6 ya3 ff7 fs4 fc0 sc0 ls0 ws0">ifstream<span class="_ _24"> </span><span class="ff4">102<span class="_ _25"> </span>667<span class="_ _d"> </span>ms<span class="_ _26"> </span>1.0x</span></div><div class="t m0 x19 h6 ya4 ff7 fs4 fc0 sc0 ls0 ws0">memory<span class="_ _e"> </span>mapped<span class="_ _6"> </span>+<span class="_ _6"> </span>parsing<span class="_ _e"> </span>(first<span class="_ _6"> </span>run)<span class="_ _27"> </span><span class="ff4">30<span class="_ _25"> </span>235<span class="_ _d"> </span>ms<span class="_ _26"> </span>3.4x</span></div><div class="t m0 x19 h6 ya5 ff7 fs4 fc0 sc0 ls0 ws0">memory<span class="_ _e"> </span>mapped<span class="_ _6"> </span>+<span class="_ _6"> </span>parsing<span class="_ _e"> </span>(second<span class="_ _6"> </span>run)<span class="_ _28"> </span><span class="ff4">22<span class="_ _25"> </span>509<span class="_ _d"> </span>ms<span class="_ _26"> </span>4.5x</span></div><div class="t m0 x19 h6 ya6 ff7 fs4 fc0 sc0 ls0 ws0">memory<span class="_ _e"> </span>mapped<span class="_ _6"> </span>+<span class="_ _6"> </span>lz4<span class="_ _e"> </span>(first<span class="_ _6"> </span>run)<span class="_ _29"> </span><span class="ff4">3<span class="_ _25"> </span>914<span class="_ _d"> </span>ms<span class="_ _2a"> </span>26.2x</span></div><div class="t m0 x19 h6 ya7 ff7 fs4 fc0 sc0 ls0 ws0">memory<span class="_ _e"> </span>mapped<span class="_ _6"> </span>+<span class="_ _6"> </span>lz4<span class="_ _e"> </span>(second<span class="_ _6"> </span>run)<span class="_ _2b"> </span><span class="ff4">1<span class="_ _25"> </span>261<span class="_ _d"> </span>ms<span class="_ _2a"> </span>81.4x</span></div><div class="t m0 x1 h6 ya8 ff4 fs4 fc0 sc0 ls0 ws0">NOTE:<span class="_ _d"> </span>the<span class="_ _c"> </span>size<span class="_ _d"> </span>of<span class="_ _c"> </span>the<span class="_ _d"> </span>Lz4<span class="_ _c"> </span>comp<span class="_ _3"></span>ressed<span class="_ _c"> </span>file<span class="_ _d"> </span>is<span class="_ _c"> </span>1,8<span class="_ _d"> </span>GB</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">15/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf12" class="pf w0 h0" data-page-no="12"><div class="pc pc12 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 ya9 ff1 fs0 fc0 sc0 ls0 ws0">Memo<span class="_ _7"></span>ry</div><div class="t m0 x8 h2 yaa ff1 fs0 fc0 sc0 ls0 ws0">Optimizations</div><a class="l" href="#pf12" data-dest-detail='[18,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:224.427000px;width:241.993000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf12" data-dest-detail='[18,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:172.870500px;width:158.930000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf13" class="pf w0 h0" data-page-no="13"><div class="pc pc13 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Heap<span class="_ _17"> </span>Memo<span class="_ _3"></span>ry</div><div class="t m0 xb hb yab ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffa">Dynamic<span class="_ _c"> </span>heap<span class="_ _f"> </span>allo<span class="_ _b"></span>cation<span class="_ _c"> </span>is<span class="_ _f"> </span>exp<span class="_ _b"></span>ensive<span class="_ _0"></span><span class="ff4">:<span class="_ _9"> </span>implementation<span class="_ _f"> </span>dep<span class="_ _b"></span>endent<span class="_ _c"> </span>and<span class="_ _f"> </span>interact</span></span></div><div class="t m0 x6 hb yac ff4 fs6 fc0 sc0 ls0 ws0">with<span class="_ _c"> </span>the<span class="_ _c"> </span>op<span class="_ _0"></span>erating<span class="_ _c"> </span>system</div><div class="t m0 xb hb yad ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffa">Many<span class="_ _c"> </span>small<span class="_ _c"> </span>heap<span class="_ _f"> </span>allo<span class="_ _b"></span>cations<span class="_ _c"> </span>are<span class="_ _c"> </span>mo<span class="_ _3"></span>re<span class="_ _f"> </span>exp<span class="_ _b"></span>ensive<span class="_ _c"> </span>than<span class="_ _c"> </span>one<span class="_ _f"> </span>large<span class="_ _c"> </span>memo<span class="_ _3"></span>ry<span class="_ _c"> </span>allo<span class="_ _b"></span>cation</span></div><div class="t m0 x6 h6 yae ff4 fs4 fc0 sc0 ls0 ws0">The<span class="_ _d"> </span>default<span class="_ _c"> </span>page<span class="_ _d"> </span>size<span class="_ _c"> </span>on<span class="_ _d"> </span>Linux<span class="_ _c"> </span>is<span class="_ _d"> </span>4<span class="_ _c"> </span>KB.<span class="_ _d"> </span>Fo<span class="_ _3"></span>r<span class="_ _c"> </span>smaller/multiple<span class="_ _d"> </span>sizes,<span class="_ _c"> </span>C++<span class="_ _d"> </span>uses<span class="_ _c"> </span>a</div><div class="t m0 x6 h6 yaf ff4 fs4 fc0 sc0 ls0 ws0">sub-allo<span class="_ _b"></span>cato<span class="_ _3"></span>r</div><div class="t m0 xb hb yb0 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffa">Allo<span class="_ _b"></span>cations<span class="_ _c"> </span>within<span class="_ _f"> </span>the<span class="_ _c"> </span>page<span class="_ _f"> </span>size<span class="_ _c"> </span>is<span class="_ _f"> </span>faster<span class="_ _c"> </span>than<span class="_ _f"> </span>la<span class="_ _3"></span>rger<span class="_ _f"> </span>allo<span class="_ _b"></span>cations<span class="_ _9"> </span><span class="ff4">(sub-allo<span class="_ _b"></span>cato<span class="_ _3"></span>r)</span></span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">16/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf14" class="pf w0 h0" data-page-no="14"><div class="pc pc14 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Stack<span class="_ _17"> </span>Memo<span class="_ _3"></span>ry</div><div class="t m0 xb hb yb1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffa">Stack<span class="_ _c"> </span>memory<span class="_ _c"> </span>is<span class="_ _c"> </span>faster<span class="_ _c"> </span>than<span class="_ _f"> </span>heap<span class="_ _c"> </span>memory<span class="ff4">.<span class="_ _9"> </span>The<span class="_ _f"> </span>stack<span class="_ _c"> </span>memory<span class="_ _c"> </span>p<span class="_ _3"></span>rovides<span class="_ _f"> </span>high</span></span></div><div class="t m0 x6 hb yb2 ff4 fs6 fc0 sc0 ls0 ws0">lo<span class="_ _b"></span>calit<span class="_ _3"></span>y<span class="_ _3"></span>,<span class="_ _c"> </span>it<span class="_ _c"> </span>is<span class="_ _c"> </span>small<span class="_ _f"> </span>(cache<span class="_ _c"> </span>fit),<span class="_ _f"> </span>and<span class="_ _c"> </span>its<span class="_ _c"> </span>size<span class="_ _f"> </span>is<span class="_ _c"> </span>known<span class="_ _c"> </span>at<span class="_ _c"> </span>compile-time</div><div class="t m0 xb hb yb3 ff8 fs6 fc0 sc0 ls0 ws0">•</div><div class="t m0 xc hb yb4 ff5 fs6 fc0 sc0 ls0 ws0">static<span class="_ _10"> </span><span class="ff4">stack<span class="_ _c"> </span>allo<span class="_ _b"></span>cations<span class="_ _f"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>duce<span class="_ _f"> </span>b<span class="_ _b"></span>etter<span class="_ _c"> </span>co<span class="_ _b"></span>de.<span class="_ _e"> </span>It<span class="_ _c"> </span>avoids<span class="_ _f"> </span>filling<span class="_ _c"> </span>the<span class="_ _f"> </span>stack<span class="_ _c"> </span>each</span></div><div class="t m0 x6 hb yb5 ff4 fs6 fc0 sc0 ls0 ws0">time<span class="_ _c"> </span>the<span class="_ _c"> </span>function<span class="_ _f"> </span>is<span class="_ _c"> </span>reached</div><div class="t m0 xb hb yb6 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _14"> </span><span class="ff5">constexpr<span class="_ _10"> </span><span class="ff4">a<span class="_ _3"></span>rrays<span class="_ _c"> </span>with<span class="_ _c"> </span>dynamic<span class="_ _c"> </span>indexing<span class="_ _f"> </span>produces<span class="_ _c"> </span>very<span class="_ _f"> </span>inefficient<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>with</span></span></div><div class="t m0 x6 hb yb7 ff4 fs6 fc0 sc0 ls0 ws0">GCC.<span class="_ _c"> </span>Use<span class="_ _10"> </span><span class="ff5">static<span class="_ _15"> </span>constexpr<span class="_ _10"> </span></span>instead</div><div class="t m0 xc hd yb8 ff5 fs7 fc6 sc0 ls0 ws0">void<span class="_ _9"> </span><span class="ffc fc7">f<span class="fc0">(</span></span>int<span class="_ _9"> </span><span class="ffc fc0">x)<span class="_ _e"> </span>{</span></div><div class="t m0 xc hd yb9 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>bad<span class="_ _9"> </span>performance<span class="_ _e"> </span>with<span class="_ _9"> </span>GCC</div><div class="t m0 xc hd yba ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _20"> </span>constexpr<span class="_ _2c"> </span>int<span class="_ _9"> </span>array[]<span class="_ _9"> </span>=<span class="_ _e"> </span>{1,2,3,4,5,6,7,8,9};</div><div class="t m0 x1a hd ybb ff5 fs7 fc9 sc0 ls0 ws0">static<span class="_ _9"> </span>constexpr<span class="_ _9"> </span><span class="fc6">int<span class="_ _e"> </span><span class="ffc fc0">array[]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>{<span class="fc8">1</span>,<span class="fc8">2</span>,<span class="fc8">3</span>,<span class="fc8">4</span>,<span class="fc8">5</span>,<span class="fc8">6</span>,<span class="fc8">7</span>,<span class="fc8">8</span>,<span class="fc8">9</span>};</span></span></div><div class="t m0 x1a hd ybc ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_ _9"> </span><span class="ffc fc0">array[x];</span></div><div class="t m0 xc hd ybd ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">17/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf15" class="pf w0 h0" data-page-no="15"><div class="pc pc15 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Cache<span class="_ _17"> </span>Utilization</div><div class="t m0 x1 hb ybe ff1 fs6 fc0 sc0 ls0 ws0">Maximize<span class="_ _f"> </span>cache<span class="_ _8"> </span>utilization<span class="ff4">:</span></div><div class="t m0 xb hb ybf ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Maximize<span class="_ _c"> </span>spatial<span class="_ _f"> </span>and<span class="_ _c"> </span>temp<span class="_ _b"></span>oral<span class="_ _c"> </span>lo<span class="_ _b"></span>calit<span class="_ _3"></span>y<span class="_ _f"> </span>(see<span class="_ _c"> </span>next<span class="_ _f"> </span>examples)</span></div><div class="t m0 xb hb yc0 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _c"> </span>small<span class="_ _f"> </span>data<span class="_ _c"> </span>types</span></div><div class="t m0 xb hb yc1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff7">std::vector&lt;bool&gt;<span class="_ _10"> </span></span>over<span class="_ _c"> </span>arra<span class="_ _3"></span>y<span class="_ _c"> </span>of<span class="_ _10"> </span><span class="ff7">bool</span></span></div><div class="t m0 xb hb yc2 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff7">std::bitset&lt;N&gt;<span class="_ _10"> </span></span>over<span class="_ _10"> </span><span class="ff7">std::vector&lt;bool&gt;<span class="_ _10"> </span></span>if<span class="_ _c"> </span>the<span class="_ _c"> </span>data<span class="_ _f"> </span>size<span class="_ _c"> </span>is<span class="_ _f"> </span>kno<span class="_ _3"></span>wn<span class="_ _f"> </span>in</span></div><div class="t m0 x6 hb yc3 ff4 fs6 fc0 sc0 ls0 ws0">advance<span class="_ _c"> </span>or<span class="_ _c"> </span>bounded</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">18/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf16" class="pf w0 h0" data-page-no="16"><div class="pc pc16 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Spatial<span class="_ _17"> </span>Lo<span class="_ _b"></span>cality<span class="_ _8"> </span>Example<span class="_ _2d"> </span>1/2</div><div class="t m0 x1 hb y77 ff7 fs6 fc0 sc0 ls0 ws0">A,<span class="_ _15"> </span>B,<span class="_ _15"> </span>C<span class="_ _c"> </span><span class="ff4">matrices<span class="_ _c"> </span>of<span class="_ _f"> </span>size<span class="_ _c"> </span><span class="ffa">N<span class="_ _c"> </span><span class="ff10">×<span class="_ _2e"> </span></span>N</span></span></div><div class="t m0 xd h11 yc4 ff7 fs6 fc0 sc0 ls0 ws0">C<span class="_ _15"> </span>=<span class="_ _15"> </span>A<span class="_ _15"> </span>*<span class="_ _15"> </span>B</div><div class="t m0 x1b hf yc5 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_ _8"> </span><span class="ffd fc0">(</span><span class="fc6">int<span class="_ _17"> </span><span class="ffd fc0">i<span class="_ _17"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _17"> </span>i<span class="_ _17"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _17"> </span>i<span class="fc8">++</span>)<span class="_ _17"> </span>{</span></span></div><div class="t m0 x1c hf yc6 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_ _8"> </span><span class="ffd fc0">(</span><span class="fc6">int<span class="_ _17"> </span><span class="ffd fc0">j<span class="_ _17"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _17"> </span>j<span class="_ _17"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _17"> </span>j<span class="fc8">++</span>)<span class="_ _17"> </span>{</span></span></div><div class="t m0 x1d hf yc7 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_ _8"> </span><span class="ffd fc0">sum<span class="_ _17"> </span><span class="fc8">=<span class="_ _17"> </span>0</span>;</span></div><div class="t m0 x1d hf yc8 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_ _8"> </span><span class="ffd fc0">(</span><span class="fc6">int<span class="_ _17"> </span><span class="ffd fc0">k<span class="_ _17"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _17"> </span>k<span class="_ _17"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _17"> </span>k<span class="fc8">++</span>)</span></span></div><div class="t m0 x1e hf yc9 ffd fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _17"> </span></span>A[i][k]<span class="_ _17"> </span><span class="fc8">*<span class="_ _8"> </span></span>B[k][j];<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>row<span class="_ _17"> </span><span class="ff11">×<span class="_ _8"> </span></span>column</span></div><div class="t m0 x1d hf yca ffd fs5 fc0 sc0 ls0 ws0">C[i][j]<span class="_ _8"> </span><span class="fc8">=<span class="_ _17"> </span></span>sum;</div><div class="t m0 x1c hf ycb ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1b hf ycc ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd h11 ycd ff7 fs6 fc0 sc0 ls0 ws0">C<span class="_ _15"> </span>=<span class="_ _15"> </span>A<span class="_ _15"> </span>*<span class="_ _15"> </span>B</div><div class="t m0 x1f h12 yce ff12 fs5 fc0 sc0 ls0 ws0">T</div><div class="t m0 x1b hf ycf ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_ _8"> </span><span class="ffd fc0">(</span><span class="fc6">int<span class="_ _17"> </span><span class="ffd fc0">i<span class="_ _17"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _17"> </span>i<span class="_ _17"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _17"> </span>i<span class="fc8">++</span>)<span class="_ _17"> </span>{</span></span></div><div class="t m0 x1c hf yd0 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_ _8"> </span><span class="ffd fc0">(</span><span class="fc6">int<span class="_ _17"> </span><span class="ffd fc0">j<span class="_ _17"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _17"> </span>j<span class="_ _17"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _17"> </span>j<span class="fc8">++</span>)<span class="_ _17"> </span>{</span></span></div><div class="t m0 x1d hf yd1 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_ _8"> </span><span class="ffd fc0">sum<span class="_ _17"> </span><span class="fc8">=<span class="_ _17"> </span>0</span>;</span></div><div class="t m0 x1d hf yd2 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_ _8"> </span><span class="ffd fc0">(</span><span class="fc6">int<span class="_ _17"> </span><span class="ffd fc0">k<span class="_ _17"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _17"> </span>k<span class="_ _17"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _17"> </span>k<span class="fc8">++</span>)</span></span></div><div class="t m0 x1e hf yd3 ffd fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _17"> </span></span>A[i][k]<span class="_ _17"> </span><span class="fc8">*<span class="_ _8"> </span><span class="fc3">B[j][k]</span></span>;<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>row<span class="_ _17"> </span><span class="ff11">×<span class="_ _8"> </span></span>row</span></div><div class="t m0 x1d hf yd4 ffd fs5 fc0 sc0 ls0 ws0">C[i][j]<span class="_ _8"> </span><span class="fc8">=<span class="_ _17"> </span></span>sum;</div><div class="t m0 x1c hf yd5 ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1b hf yd6 ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">19/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf17" class="pf w0 h0" data-page-no="17"><div class="pc pc17 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Spatial<span class="_ _17"> </span>Lo<span class="_ _b"></span>cality<span class="_ _8"> </span>Example<span class="_ _2d"> </span>2/2</div><div class="t m0 x1 hb yd7 ff1 fs6 fc0 sc0 ls0 ws0">Benchma<span class="_ _3"></span>rk:</div><div class="t m0 x15 h11 yd8 ff5 fs6 fc0 sc0 ls0 ws0">N<span class="_ _2f"> </span><span class="ff7">64<span class="_ _2c"> </span>128<span class="_ _30"> </span>256<span class="_ _30"> </span>512<span class="_ _31"> </span>1024</span></div><div class="t m0 x15 hb yd9 ff7 fs6 fc0 sc0 ls0 ws0">A<span class="_ _15"> </span>*<span class="_ _15"> </span>B<span class="_ _31"> </span><span class="ff13">&lt;<span class="_ _c"> </span><span class="ff4">1<span class="_ _f"> </span>ms<span class="_ _32"> </span>5<span class="_ _c"> </span>ms<span class="_ _27"> </span>29<span class="_ _c"> </span>ms<span class="_ _28"> </span>141<span class="_ _c"> </span>ms<span class="_ _33"> </span>1,030<span class="_ _c"> </span>ms</span></span></div><div class="t m0 x15 h11 yda ff7 fs6 fc0 sc0 ls0 ws0">A<span class="_ _15"> </span>*<span class="_ _15"> </span>B</div><div class="t m0 x20 h12 ydb ff12 fs5 fc0 sc0 ls0 ws0">T</div><div class="t m0 x21 hb yda ff13 fs6 fc0 sc0 ls0 ws0">&lt;<span class="_ _c"> </span><span class="ff4">1<span class="_ _c"> </span>ms<span class="_ _32"> </span>2<span class="_ _f"> </span>ms<span class="_ _32"> </span>6<span class="_ _c"> </span>ms<span class="_ _27"> </span>48<span class="_ _c"> </span>ms<span class="_ _28"> </span>385<span class="_ _c"> </span>ms</span></div><div class="t m0 x15 hb ydc ff7 fs6 fc0 sc0 ls0 ws0">Speedup<span class="_ _34"> </span><span class="ff4">/<span class="_ _35"> </span>2.5x<span class="_ _35"> </span>4.8x<span class="_ _35"> </span>2.9x<span class="_ _35"> </span>2.7x</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">20/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf18" class="pf w0 h0" data-page-no="18"><div class="pc pc18 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">T<span class="_ _7"></span>emporal-Locality<span class="_ _8"> </span>Example</div><div class="t m0 x1 hb ydd ff1 fs6 fc0 sc0 ls0 ws0">Sp<span class="_ _b"></span>eeding<span class="_ _8"> </span>up<span class="_ _f"> </span>a<span class="_ _8"> </span>random-access<span class="_ _8"> </span>function</div><div class="t m0 xd hd yde ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _36"> </span><span class="ffb fc5">//<span class="_ _9"> </span>V1</span></span></span></div><div class="t m0 x6 hd ydf ffc fs7 fc0 sc0 ls0 ws0">out_array[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>in_array[hash(i)];</div><div class="t m0 x22 hd ye0 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">K<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>K<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>N;<span class="_ _9"> </span>K<span class="_ _9"> </span><span class="fc8">+=<span class="_ _e"> </span></span>CACHE)<span class="_ _9"> </span>{<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _e"> </span>V2</span></span></span></div><div class="t m0 x23 hd ye1 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x24 hd ye2 ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_ _9"> </span><span class="ffc fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>hash(i);</span></div><div class="t m0 x24 hd ye3 ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_ _9"> </span><span class="ffc fc0">(x<span class="_ _9"> </span><span class="fc8">&gt;=<span class="_ _e"> </span></span>K<span class="_ _9"> </span><span class="fc8">&amp;&amp;<span class="_ _9"> </span></span>x<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>K<span class="_ _9"> </span><span class="fc8">+<span class="_ _9"> </span></span>CACHE)</span></div><div class="t m0 x25 hd ye4 ffc fs7 fc0 sc0 ls0 ws0">out_array[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>in_array[x];</div><div class="t m0 x23 hd ye5 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x22 hd ye6 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd h6 ye7 ff7 fs4 fc0 sc0 ls0 ws0">V1<span class="_ _25"> </span><span class="ff4">:<span class="_ _9"> </span>436<span class="_ _c"> </span>ms,<span class="_ _11"> </span></span>V2<span class="_ _25"> </span><span class="ff4">:<span class="_ _17"> </span>336<span class="_ _c"> </span>ms<span class="_ _d"> </span><span class="ff10">→<span class="_ _c"> </span></span>1.3x<span class="_ _d"> </span>sp<span class="_ _b"></span>eedup<span class="_ _c"> </span>(temp<span class="_ _b"></span>oral<span class="_ _d"> </span>locality<span class="_ _d"> </span>improvement)</span></div><div class="t m0 x1 h6 ye8 ff4 fs4 fc0 sc0 ls0 ws0">..<span class="_ _17"> </span>but<span class="_ _c"> </span>it<span class="_ _d"> </span>needs<span class="_ _c"> </span>a<span class="_ _d"> </span>careful<span class="_ _d"> </span>evaluation<span class="_ _d"> </span>of<span class="_ _10"> </span><span class="ff7">CACHE<span class="_ _11"> </span></span>and<span class="_ _d"> </span>it<span class="_ _c"> </span>can<span class="_ _d"> </span>even<span class="_ _c"> </span>decrease<span class="_ _d"> </span>the<span class="_ _c"> </span>performance<span class="_ _d"> </span>for</div><div class="t m0 x1 h6 ye9 ff4 fs4 fc0 sc0 ls0 ws0">other<span class="_ _d"> </span>sizes</div><div class="t m0 x1 h6 yea ff4 fs4 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>re-sorted<span class="_ _11"> </span><span class="ff7">hash(i)<span class="_ _25"> </span></span>:<span class="_ _9"> </span>135<span class="_ _d"> </span>ms<span class="_ _c"> </span><span class="ff10">→<span class="_ _d"> </span></span>3.2x<span class="_ _c"> </span>sp<span class="_ _b"></span>eedup<span class="_ _d"> </span>(spatial<span class="_ _c"> </span>lo<span class="_ _b"></span>calit<span class="_ _3"></span>y<span class="_ _c"> </span>improvement)</div><div class="t m0 xb hd yeb ffc fs7 fcc sc0 ls0 ws0">lemire.me/blog/2019/04/27</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">21/84</div><a class="l" href="https://lemire.me/blog/2019/04/27/speeding-up-a-random-access-function/"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:4.137000px;width:119.676000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf19" class="pf w0 h0" data-page-no="19"><div class="pc pc19 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Data<span class="_ _17"> </span>Alignment</div><div class="t m0 x1 hb yec ff1 fs6 fc0 sc0 ls0 ws0">Data<span class="_ _f"> </span>alignment<span class="_ _f"> </span><span class="ff4">allows<span class="_ _c"> </span>avoiding<span class="_ _c"> </span>unnecessa<span class="_ _3"></span>ry<span class="_ _f"> </span>memory<span class="_ _c"> </span>accesses,<span class="_ _c"> </span>and<span class="_ _c"> </span>it<span class="_ _f"> </span>is<span class="_ _c"> </span>also<span class="_ _f"> </span>essential</span></div><div class="t m0 x1 hb yed ff4 fs6 fc0 sc0 ls0 ws0">to<span class="_ _c"> </span>exploit<span class="_ _c"> </span>hardw<span class="_ _3"></span>are<span class="_ _c"> </span>vecto<span class="_ _3"></span>r<span class="_ _c"> </span>instructions<span class="_ _f"> </span>(SIMD)<span class="_ _c"> </span>like<span class="_ _c"> </span><span class="ff7">SSE</span>,<span class="_ _c"> </span><span class="ff7">AVX</span>,<span class="_ _f"> </span>etc.</div><div class="t m0 xb hb yee ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Internal<span class="_ _8"> </span>alignment<span class="ff4">:<span class="_ _9"> </span>reducing<span class="_ _f"> </span>memory<span class="_ _c"> </span>footprint,<span class="_ _c"> </span>optimizing<span class="_ _c"> </span>memory<span class="_ _c"> </span>bandwidth,</span></span></div><div class="t m0 x6 hb yef ff4 fs6 fc0 sc0 ls0 ws0">and<span class="_ _c"> </span>minimizing<span class="_ _c"> </span>cache-line<span class="_ _f"> </span>misses</div><div class="t m0 xb hb yf0 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">External<span class="_ _8"> </span>alignment<span class="ff4">:<span class="_ _9"> </span>minimizing<span class="_ _f"> </span>cache-line<span class="_ _c"> </span>misses</span></span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">22/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf1a" class="pf w0 h0" data-page-no="1a"><div class="pc pc1a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Internal<span class="_ _17"> </span>Structure<span class="_ _17"> </span>Alignment</div><div class="t m0 xd hf yf1 ff5 fs5 fc9 sc0 ls0 ws0">struct<span class="_ _8"> </span><span class="fc7">A1<span class="_ _17"> </span><span class="ffd fc0">{</span></span></div><div class="t m0 x10 hf yf2 ff5 fs5 fc6 sc0 ls0 ws0">char<span class="_ _1c"> </span><span class="ffd fc0">x1;<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>offset<span class="_ _8"> </span>0</span></span></div><div class="t m0 x10 hf yf3 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_ _8"> </span><span class="ffd fc0">y1;<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>offset<span class="_ _17"> </span>8!!<span class="_ _8"> </span>(not<span class="_ _17"> </span>1)</span></span></div><div class="t m0 x10 hf yf4 ff5 fs5 fc6 sc0 ls0 ws0">char<span class="_ _1c"> </span><span class="ffd fc0">x2;<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>offset<span class="_ _8"> </span>16</span></span></div><div class="t m0 x10 hf yf5 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_ _8"> </span><span class="ffd fc0">y2;<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>offset<span class="_ _17"> </span>24</span></span></div><div class="t m0 x10 hf yf6 ff5 fs5 fc6 sc0 ls0 ws0">char<span class="_ _1c"> </span><span class="ffd fc0">x3;<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>offset<span class="_ _8"> </span>32</span></span></div><div class="t m0 x10 hf yf7 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_ _8"> </span><span class="ffd fc0">y3;<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>offset<span class="_ _17"> </span>40</span></span></div><div class="t m0 x10 hf yf8 ff5 fs5 fc6 sc0 ls0 ws0">char<span class="_ _1c"> </span><span class="ffd fc0">x4;<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>offset<span class="_ _8"> </span>48</span></span></div><div class="t m0 x10 hf yf9 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_ _8"> </span><span class="ffd fc0">y4;<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>offset<span class="_ _17"> </span>56</span></span></div><div class="t m0 x10 hf yfa ff5 fs5 fc6 sc0 ls0 ws0">char<span class="_ _1c"> </span><span class="ffd fc0">x5;<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>offset<span class="_ _8"> </span>64<span class="_ _17"> </span>(65<span class="_ _8"> </span>bytes)</span></span></div><div class="t m0 xd hf yfb ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x26 hf yfc ff5 fs5 fc9 sc0 ls0 ws0">struct<span class="_ _8"> </span><span class="fc7">A2<span class="_ _17"> </span><span class="ffd fc0">{<span class="_ _1c"> </span><span class="ffb fc5">//<span class="_ _8"> </span>internal<span class="_ _17"> </span>alignment</span></span></span></div><div class="t m0 x27 hf yfd ff5 fs5 fc6 sc0 ls0 ws0">char<span class="_ _1c"> </span><span class="ffd fc0">x1;<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>offset<span class="_ _8"> </span>0</span></span></div><div class="t m0 x27 hf yfe ff5 fs5 fc6 sc0 ls0 ws0">char<span class="_ _1c"> </span><span class="ffd fc0">x2;<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>offset<span class="_ _8"> </span>1</span></span></div><div class="t m0 x27 hf yff ff5 fs5 fc6 sc0 ls0 ws0">char<span class="_ _1c"> </span><span class="ffd fc0">x3;<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>offset<span class="_ _8"> </span>2</span></span></div><div class="t m0 x27 hf y100 ff5 fs5 fc6 sc0 ls0 ws0">char<span class="_ _1c"> </span><span class="ffd fc0">x4;<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>offset<span class="_ _8"> </span>3</span></span></div><div class="t m0 x27 hf y101 ff5 fs5 fc6 sc0 ls0 ws0">char<span class="_ _1c"> </span><span class="ffd fc0">x5;<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>offset<span class="_ _8"> </span>4</span></span></div><div class="t m0 x27 hf y102 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_ _8"> </span><span class="ffd fc0">y1;<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>offset<span class="_ _17"> </span>8</span></span></div><div class="t m0 x27 hf y103 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_ _8"> </span><span class="ffd fc0">y2;<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>offset<span class="_ _17"> </span>16</span></span></div><div class="t m0 x27 hf y104 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_ _8"> </span><span class="ffd fc0">y3;<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>offset<span class="_ _17"> </span>24</span></span></div><div class="t m0 x27 hf y105 ff5 fs5 fc6 sc0 ls0 ws0">double<span class="_ _8"> </span><span class="ffd fc0">y4;<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>offset<span class="_ _17"> </span>32<span class="_ _8"> </span>(40<span class="_ _17"> </span>bytes)</span></span></div><div class="t m0 x26 hf y106 ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hb y107 ff4 fs6 fc0 sc0 ls0 ws0">Considering<span class="_ _c"> </span>an<span class="_ _c"> </span><span class="ffa">arra<span class="_ _3"></span>y<span class="_ _c"> </span>of<span class="_ _f"> </span>structures<span class="_ _9"> </span><span class="ff4">(</span>A<span class="_ _3"></span>oS<span class="_ _37"></span><span class="ff4">),<span class="_ _c"> </span>there<span class="_ _c"> </span>are<span class="_ _c"> </span>tw<span class="_ _3"></span>o<span class="_ _c"> </span>problems:</span></span></div><div class="t m0 xb hb y108 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">W<span class="_ _3"></span>e<span class="_ _f"> </span>are<span class="_ _c"> </span>w<span class="_ _3"></span>asting<span class="_ _c"> </span>40%<span class="_ _f"> </span>of<span class="_ _c"> </span>memory<span class="_ _c"> </span>in<span class="_ _c"> </span>the<span class="_ _c"> </span>first<span class="_ _f"> </span>case<span class="_ _c"> </span>(<span class="_ _d"> </span><span class="ff7">A1<span class="_ _d"> </span></span>)</span></div><div class="t m0 xb hb y109 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">In<span class="_ _c"> </span>common<span class="_ _f"> </span>x64<span class="_ _c"> </span>processors<span class="_ _c"> </span>the<span class="_ _c"> </span>cache<span class="_ _c"> </span>line<span class="_ _f"> </span>is<span class="_ _c"> </span>64<span class="_ _f"> </span>bytes.<span class="_ _9"> </span>F<span class="_ _3"></span>or<span class="_ _c"> </span>the<span class="_ _c"> </span>first<span class="_ _f"> </span>structure<span class="_ _10"> </span><span class="ff7">A1<span class="_ _25"> </span></span>,</span></div><div class="t m0 x6 hb y10a ff4 fs6 fc0 sc0 ls0 ws0">every<span class="_ _c"> </span>access<span class="_ _c"> </span>involves<span class="_ _f"> </span>tw<span class="_ _3"></span>o<span class="_ _c"> </span>cache<span class="_ _c"> </span>line<span class="_ _f"> </span>op<span class="_ _b"></span>erations<span class="_ _c"> </span>(2x<span class="_ _f"> </span>slow<span class="_ _3"></span>er)</div><div class="t m0 xb h10 y10b fff fs7 fcc sc0 ls0 ws0">see<span class="_ _d"> </span>also<span class="_ _25"> </span><span class="ffc">#pragma<span class="_ _e"> </span>pack(1)</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">23/84</div><a class="l" href="https://devblogs.microsoft.com/oldnewthing/20200103-00/?p=103290"><div class="d m1" style="border-style:none;position:absolute;left:101.038500px;bottom:1.201500px;width:72.602000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf1b" class="pf w0 h0" data-page-no="1b"><div class="pc pc1b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">External<span class="_ _17"> </span>Structure<span class="_ _17"> </span>Alignment<span class="_ _17"> </span>and<span class="_ _9"> </span>P<span class="_ _3"></span>adding</div><div class="t m0 x1 hb y77 ff4 fs6 fc0 sc0 ls0 ws0">Considering<span class="_ _c"> </span>the<span class="_ _c"> </span>previous<span class="_ _c"> </span>example<span class="_ _c"> </span>for<span class="_ _c"> </span>the<span class="_ _c"> </span>structure<span class="_ _10"> </span><span class="ff7">A2<span class="_ _d"> </span></span>,<span class="_ _c"> </span>random<span class="_ _c"> </span>loads<span class="_ _f"> </span>from<span class="_ _c"> </span>an<span class="_ _f"> </span>a<span class="_ _3"></span>rray<span class="_ _c"> </span>of</div><div class="t m0 x1 hb y10c ff4 fs6 fc0 sc0 ls0 ws0">structures<span class="_ _11"> </span><span class="ff7">A2<span class="_ _10"> </span></span>leads<span class="_ _d"> </span>to<span class="_ _c"> </span>one<span class="_ _c"> </span>or<span class="_ _d"> </span>tw<span class="_ _3"></span>o<span class="_ _d"> </span>cache<span class="_ _c"> </span>line<span class="_ _c"> </span>op<span class="_ _b"></span>erations<span class="_ _c"> </span>dep<span class="_ _b"></span>ending<span class="_ _c"> </span>on<span class="_ _c"> </span>the<span class="_ _d"> </span>alignment<span class="_ _c"> </span>at</div><div class="t m0 x1 hb y10d ff4 fs6 fc0 sc0 ls0 ws0">a<span class="_ _c"> </span>sp<span class="_ _b"></span>ecific<span class="_ _f"> </span>index,<span class="_ _c"> </span>e.g.</div><div class="t m0 x10 hb y10e ff7 fs6 fc0 sc0 ls0 ws0">index<span class="_ _15"> </span>0<span class="_ _c"> </span><span class="ff10">→<span class="_ _c"> </span><span class="ff4">one<span class="_ _f"> </span>cache<span class="_ _c"> </span>line<span class="_ _f"> </span>load</span></span></div><div class="t m0 x10 hb y10f ff7 fs6 fc0 sc0 ls0 ws0">index<span class="_ _15"> </span>1<span class="_ _c"> </span><span class="ff10">→<span class="_ _c"> </span><span class="ff4">tw<span class="_ _3"></span>o<span class="_ _c"> </span>cache<span class="_ _f"> </span>line<span class="_ _c"> </span>loads</span></span></div><div class="t m0 x1 hb y110 ff4 fs6 fc0 sc0 ls0 ws0">It<span class="_ _c"> </span>is<span class="_ _c"> </span>p<span class="_ _0"></span>ossible<span class="_ _c"> </span>to<span class="_ _c"> </span>fix<span class="_ _c"> </span>the<span class="_ _f"> </span>structure<span class="_ _c"> </span>alignment<span class="_ _f"> </span>in<span class="_ _c"> </span>tw<span class="_ _3"></span>o<span class="_ _c"> </span>wa<span class="_ _3"></span>ys:</div><div class="t m0 xb hb y111 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span><span class="ff1">memory<span class="_ _f"> </span>padding<span class="_ _f"> </span></span>refers<span class="_ _c"> </span>to<span class="_ _f"> </span>intro<span class="_ _b"></span>duce<span class="_ _c"> </span>extra<span class="_ _f"> </span>b<span class="_ _3"></span>ytes<span class="_ _f"> </span>at<span class="_ _c"> </span>the<span class="_ _f"> </span>end<span class="_ _c"> </span>of<span class="_ _f"> </span>the<span class="_ _c"> </span>data</span></div><div class="t m0 x6 hb y112 ff4 fs6 fc0 sc0 ls0 ws0">structure<span class="_ _c"> </span>to<span class="_ _c"> </span>enforce<span class="_ _c"> </span>the<span class="_ _c"> </span>memory<span class="_ _c"> </span>alignment</div><div class="t m0 x6 h6 y113 ff4 fs4 fc0 sc0 ls0 ws0">e.g.<span class="_ _17"> </span>add<span class="_ _c"> </span>a<span class="_ _11"> </span><span class="ff7">char<span class="_ _11"> </span></span>a<span class="_ _3"></span>rray<span class="_ _d"> </span>of<span class="_ _c"> </span>size<span class="_ _d"> </span>24<span class="_ _c"> </span>to<span class="_ _d"> </span>the<span class="_ _c"> </span>structure<span class="_ _11"> </span><span class="ff7">A2</span></div><div class="t m0 xb hb y114 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Align<span class="_ _8"> </span>k<span class="_ _3"></span>eywo<span class="_ _3"></span>rd<span class="_ _f"> </span>or<span class="_ _f"> </span>attribute<span class="_ _c"> </span><span class="ff4">allows<span class="_ _c"> </span>sp<span class="_ _b"></span>ecifying<span class="_ _c"> </span>the<span class="_ _f"> </span>alignment<span class="_ _c"> </span>requirement<span class="_ _f"> </span>of<span class="_ _c"> </span>a</span></span></div><div class="t m0 x6 hb y115 ff4 fs6 fc0 sc0 ls0 ws0">t<span class="_ _3"></span>yp<span class="_ _b"></span>e<span class="_ _f"> </span>or<span class="_ _c"> </span>an<span class="_ _c"> </span>object<span class="_ _c"> </span>(next<span class="_ _f"> </span>slide)</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">24/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf1c" class="pf w0 h0" data-page-no="1c"><div class="pc pc1c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">External<span class="_ _17"> </span>Structure<span class="_ _17"> </span>Alignment<span class="_ _17"> </span>in<span class="_ _9"> </span>C++<span class="_ _38"> </span>1/2</div><div class="t m0 x1 hb y116 ff4 fs6 fc0 sc0 ls0 ws0">C++<span class="_ _c"> </span>allows<span class="_ _c"> </span>specifying<span class="_ _f"> </span>the<span class="_ _c"> </span>alignment<span class="_ _f"> </span>requirement<span class="_ _c"> </span>in<span class="_ _f"> </span>different<span class="_ _c"> </span>wa<span class="_ _3"></span>ys:</div><div class="t m0 xb hb y117 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4 fcd">C++11<span class="_ _10"> </span></span><span class="ff7">alignas(N)<span class="_ _10"> </span><span class="ff4">only<span class="_ _c"> </span>for<span class="_ _c"> </span>va<span class="_ _3"></span>riable<span class="_ _c"> </span>/<span class="_ _f"> </span>struct<span class="_ _c"> </span>declaration</span></span></div><div class="t m0 xb hb y118 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4 fcd">C++17<span class="_ _c"> </span><span class="fc0">aligned<span class="_ _10"> </span><span class="ff7">new<span class="_ _10"> </span></span>(e.g.<span class="_ _4"> </span><span class="ff7">new<span class="_ _15"> </span>int[2,<span class="_ _15"> </span>N]<span class="_ _d"> </span></span>)</span></span></div><div class="t m0 xb hb y119 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Compiler<span class="_ _c"> </span>Intrinsic<span class="_ _f"> </span>only<span class="_ _c"> </span>for<span class="_ _c"> </span>va<span class="_ _3"></span>riables<span class="_ _f"> </span>/<span class="_ _c"> </span>struct<span class="_ _c"> </span>declaration</span></div><div class="t m0 x28 h6 y11a ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">GCC/Clang:<span class="_ _39"> </span><span class="ff7">attribute<span class="_ _3a"> </span>((aligned(N)))</span></span></div><div class="t m0 x28 h6 y11b ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">MSVC:<span class="_ _3b"> </span><span class="ff7">declspec(align(N))</span></span></div><div class="t m0 xb hb y11c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Compiler<span class="_ _c"> </span>Intrinsic<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>dynamic<span class="_ _c"> </span>p<span class="_ _b"></span>ointer</span></div><div class="t m0 x28 h6 y11d ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">GCC/Clang:<span class="_ _39"> </span><span class="ff7">builtin<span class="_ _f"> </span>assume<span class="_ _c"> </span>aligned(x)</span></span></div><div class="t m0 x28 h6 y11e ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Intel:<span class="_ _39"> </span><span class="ff7">assume<span class="_ _f"> </span>aligned(x)</span></span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">25/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf1d" class="pf w0 h0" data-page-no="1d"><div class="pc pc1d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">External<span class="_ _17"> </span>Structure<span class="_ _17"> </span>Alignment<span class="_ _17"> </span>in<span class="_ _9"> </span>C++<span class="_ _38"> </span>2/2</div><div class="t m0 xd hd y11f ff5 fs7 fc9 sc0 ls0 ws0">struct<span class="_ _9"> </span><span class="fc7">alignas<span class="ffc fc0">(<span class="fc8">16</span>)<span class="_ _9"> </span>A1<span class="_ _e"> </span>{<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _9"> </span>C++11</span></span></span></div><div class="t m0 x6 hd y120 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc0">x,<span class="_ _9"> </span>y;</span></div><div class="t m0 xd hd y121 ffc fs7 fc0 sc0 ls0 ws0">};</div><div class="t m0 xd hd y122 ff5 fs7 fc9 sc0 ls0 ws0">struct<span class="_ _9"> </span><span class="fc7">__attribute__<span class="ffc fc0">((aligned(<span class="fc8">16</span>)))<span class="_ _9"> </span>A2<span class="_ _e"> </span>{<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _9"> </span>compiler-specific<span class="_ _e"> </span>attribute</span></span></span></div><div class="t m0 x6 hd y123 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc0">x,<span class="_ _9"> </span>y;</span></div><div class="t m0 xd hd y124 ffc fs7 fc0 sc0 ls0 ws0">};</div><div class="t m0 xd hd y125 ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_ _9"> </span><span class="ffc fc0">ptr1<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span></span>new<span class="_ _9"> </span><span class="fc6">int<span class="ffc fc0">[<span class="fc8">100</span>,<span class="_ _9"> </span><span class="fc8">16</span>];<span class="_ _e"> </span><span class="ffb fc5">//<span class="_ _9"> </span>16B<span class="_ _9"> </span>alignment,<span class="_ _9"> </span>C++17</span></span></span></div><div class="t m0 xd hd y126 ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_ _9"> </span><span class="ffc fc0">ptr2<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span></span>new<span class="_ _9"> </span><span class="fc6">int<span class="ffc fc0">[<span class="fc8">100</span>];<span class="_ _3c"> </span><span class="ffb fc5">//<span class="_ _9"> </span>4B<span class="_ _9"> </span>alignment<span class="_ _e"> </span>guarantee</span></span></span></div><div class="t m0 xd hd y127 ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_ _9"> </span><span class="ffc fc0">ptr3<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>__builtin_assume_aligned(ptr2,<span class="_ _9"> </span><span class="fc8">16</span>);<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _e"> </span>compiler-specific<span class="_ _9"> </span>attribute</span></span></div><div class="t m0 xd hd y128 ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_ _9"> </span><span class="ffc fc0">ptr4<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span></span>new<span class="_ _9"> </span><span class="ffc fc0">A1[<span class="fc8">10</span>];<span class="_ _3d"> </span><span class="ffb fc5">//<span class="_ _9"> </span>no<span class="_ _9"> </span>aligment<span class="_ _e"> </span>guarantee</span></span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">26/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf1e" class="pf w0 h0" data-page-no="1e"><div class="pc pc1e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Memo<span class="_ _3"></span>ry<span class="_ _17"> </span>Prefetch</div><div class="t m0 x29 hb y129 ff7 fs6 fc0 sc0 ls0 ws0">builtin<span class="_ _8"> </span>prefetch<span class="_ _10"> </span><span class="ff4">is<span class="_ _c"> </span>used<span class="_ _f"> </span>to<span class="_ _c"> </span><span class="ffa">minimize<span class="_ _f"> </span>cache-miss<span class="_ _c"> </span>latency<span class="_ _e"> </span></span>b<span class="_ _3"></span>y<span class="_ _c"> </span>moving<span class="_ _f"> </span>data<span class="_ _c"> </span>into<span class="_ _f"> </span>a</span></div><div class="t m0 x1 hb y12a ff4 fs6 fc0 sc0 ls0 ws0">cache<span class="_ _c"> </span>b<span class="_ _b"></span>efore<span class="_ _c"> </span>it<span class="_ _c"> </span>is<span class="_ _c"> </span>accessed.<span class="_ _e"> </span>It<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>used<span class="_ _f"> </span>not<span class="_ _c"> </span>only<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>improving<span class="_ _c"> </span><span class="ffa">spatial<span class="_ _c"> </span>lo<span class="_ _b"></span>calit<span class="_ _3"></span>y<span class="ff4">,<span class="_ _f"> </span>but</span></span></div><div class="t m0 x1 hb y12b ff4 fs6 fc0 sc0 ls0 ws0">also<span class="_ _c"> </span><span class="ffa">temp<span class="_ _b"></span>oral<span class="_ _c"> </span>lo<span class="_ _b"></span>calit<span class="_ _3"></span>y</span></div><div class="t m0 xd hd y12c ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>size;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x6 hd y12d ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_ _9"> </span><span class="ffc fc0">data<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>array[i];</span></div><div class="t m0 x6 hd y12e ffc fs7 fc0 sc0 ls0 ws0">__builtin_prefetch(array<span class="_ _9"> </span><span class="fc8">+<span class="_ _9"> </span></span>i<span class="_ _e"> </span><span class="fc8">+<span class="_ _9"> </span>1</span>,<span class="_ _9"> </span><span class="fc8">0</span>,<span class="_ _e"> </span><span class="fc8">1</span>);<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _9"> </span>2nd<span class="_ _9"> </span>argument,<span class="_ _e"> </span><span class="ff14">&apos;</span>0<span class="ff14">&apos;<span class="_ _9"> </span></span>means<span class="_ _9"> </span>read-only</span></div><div class="t m0 x27 hd y12f ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>3th<span class="_ _9"> </span>argument,<span class="_ _e"> </span><span class="ff14">&apos;</span>1<span class="ff14">&apos;<span class="_ _9"> </span></span>means</div><div class="t m0 x27 hd y130 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>temporal<span class="_ _9"> </span>locality=1,<span class="_ _e"> </span>default=3</div><div class="t m0 x6 hd y131 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>do<span class="_ _9"> </span>some<span class="_ _e"> </span>computation<span class="_ _9"> </span>on<span class="_ _9"> </span><span class="ff14">&apos;</span>data<span class="ff14">&apos;</span>,<span class="_ _e"> </span>e.g.<span class="_ _9"> </span>CRC</div><div class="t m0 xd hd y132 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">27/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf1f" class="pf w0 h0" data-page-no="1f"><div class="pc pc1f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Multi-Threading<span class="_ _17"> </span>and<span class="_ _17"> </span>Caches</div><div class="t m0 x1 hb y133 ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span><span class="ff1">CPU/threads<span class="_ _8"> </span>affinit<span class="_ _3"></span>y<span class="_ _f"> </span><span class="ff4">controls<span class="_ _c"> </span>how<span class="_ _c"> </span>a<span class="_ _c"> </span>process<span class="_ _f"> </span>is<span class="_ _c"> </span>mapp<span class="_ _b"></span>ed<span class="_ _f"> </span>and<span class="_ _c"> </span>executed<span class="_ _f"> </span>over</span></span></div><div class="t m0 x1 hb y134 ff4 fs6 fc0 sc0 ls0 ws0">multiple<span class="_ _c"> </span>cores<span class="_ _c"> </span>(including<span class="_ _c"> </span>so<span class="_ _b"></span>ckets).<span class="_ _9"> </span>It<span class="_ _c"> </span>affects<span class="_ _f"> </span>the<span class="_ _c"> </span>process<span class="_ _f"> </span>p<span class="_ _b"></span>erfo<span class="_ _3"></span>rmance<span class="_ _f"> </span>due<span class="_ _c"> </span>to</div><div class="t m0 x1 hb y135 ff4 fs6 fc0 sc0 ls0 ws0">co<span class="_ _3"></span>re-to-core<span class="_ _c"> </span>communication<span class="_ _c"> </span>and<span class="_ _c"> </span>cache<span class="_ _f"> </span>line<span class="_ _c"> </span>invalidation<span class="_ _f"> </span>overhead</div><div class="t m0 x1 hb y136 ff4 fs6 fc0 sc0 ls0 ws0">Maximizing<span class="_ _c"> </span>threads<span class="_ _c"> </span><span class="ffa">“clustering”<span class="_ _9"> </span></span>on<span class="_ _f"> </span>a<span class="_ _c"> </span>single<span class="_ _f"> </span>co<span class="_ _3"></span>re<span class="_ _f"> </span>can<span class="_ _c"> </span>p<span class="_ _b"></span>otentially<span class="_ _f"> </span>lead<span class="_ _c"> </span>to<span class="_ _f"> </span>higher<span class="_ _c"> </span>cache</div><div class="t m0 x1 hb y137 ff4 fs6 fc0 sc0 ls0 ws0">hits<span class="_ _c"> </span>rate<span class="_ _c"> </span>and<span class="_ _f"> </span>faster<span class="_ _c"> </span>communication.<span class="_ _e"> </span>On<span class="_ _c"> </span>the<span class="_ _f"> </span>other<span class="_ _c"> </span>hand,<span class="_ _f"> </span>if<span class="_ _c"> </span>the<span class="_ _f"> </span>threads<span class="_ _c"> </span>wo<span class="_ _3"></span>rk</div><div class="t m0 x1 hb y138 ff4 fs6 fc0 sc0 ls0 ws0">indep<span class="_ _b"></span>endently/almost<span class="_ _c"> </span>indep<span class="_ _b"></span>endently<span class="_ _7"></span>,<span class="_ _f"> </span>namely<span class="_ _c"> </span>they<span class="_ _f"> </span>show<span class="_ _c"> </span>high<span class="_ _c"> </span>lo<span class="_ _b"></span>cality<span class="_ _c"> </span>on<span class="_ _c"> </span>their<span class="_ _c"> </span>wo<span class="_ _3"></span>rking</div><div class="t m0 x1 hb y139 ff4 fs6 fc0 sc0 ls0 ws0">set,<span class="_ _c"> </span>mapping<span class="_ _c"> </span>them<span class="_ _f"> </span>to<span class="_ _c"> </span>different<span class="_ _f"> </span>cores<span class="_ _c"> </span>can<span class="_ _c"> </span>imp<span class="_ _3"></span>rove<span class="_ _f"> </span>the<span class="_ _c"> </span>p<span class="_ _b"></span>erformance</div><div class="t m0 xb hd y13a ffc fs7 fcc sc0 ls0 ws0">C++11<span class="_ _9"> </span>threads,<span class="_ _9"> </span>affinity<span class="_ _e"> </span>and<span class="_ _9"> </span>hyper-threading</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">28/84</div><a class="l" href="https://eli.thegreenplace.net/2016/c11-threads-affinity-and-hyperthreading/"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:11.973000px;width:204.409000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf20" class="pf w0 h0" data-page-no="20"><div class="pc pc20 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y13b ff1 fs0 fc0 sc0 ls0 ws0">Arithmetic</div><a class="l" href="#pf20" data-dest-detail='[32,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:205.878000px;width:122.278000px;height:19.206000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf21" class="pf w0 h0" data-page-no="21"><div class="pc pc21 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Ha<span class="_ _3"></span>rdw<span class="_ _3"></span>are<span class="_ _8"> </span>Notes</div><div class="t m0 xb hb y13c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Instruction<span class="_ _c"> </span>throughput<span class="_ _f"> </span>greatly<span class="_ _c"> </span>dep<span class="_ _b"></span>ends<span class="_ _f"> </span>on<span class="_ _c"> </span>processor<span class="_ _c"> </span>mo<span class="_ _b"></span>del<span class="_ _c"> </span>and<span class="_ _f"> </span>cha<span class="_ _3"></span>racteristics</span></div><div class="t m0 xb hb y13d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Mo<span class="_ _b"></span>dern<span class="_ _c"> </span>processors<span class="_ _c"> </span>p<span class="_ _3"></span>rovide<span class="_ _f"> </span>sepa<span class="_ _3"></span>rated<span class="_ _f"> </span>units<span class="_ _c"> </span>for<span class="_ _c"> </span>floating-p<span class="_ _b"></span>oint<span class="_ _c"> </span>computation<span class="_ _f"> </span>(<span class="ff7">FPU</span>)</span></div><div class="t m0 xb hb y13e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffa">A<span class="_ _3"></span>ddition<span class="ff4">,<span class="_ _f"> </span></span>subtraction<span class="ff4">,<span class="_ _c"> </span>and<span class="_ _f"> </span></span>bit<span class="_ _3"></span>wise<span class="_ _f"> </span>op<span class="_ _b"></span>erations<span class="_ _9"> </span><span class="ff4">a<span class="_ _3"></span>re<span class="_ _f"> </span>computed<span class="_ _c"> </span>by<span class="_ _c"> </span>the<span class="_ _c"> </span><span class="ff7">ALU<span class="_ _c"> </span></span>and<span class="_ _f"> </span>they</span></span></div><div class="t m0 x6 hb y13f ff4 fs6 fc0 sc0 ls0 ws0">have<span class="_ _c"> </span>very<span class="_ _c"> </span>similar<span class="_ _c"> </span>throughput</div><div class="t m0 xb hb y140 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">In<span class="_ _c"> </span>mo<span class="_ _b"></span>dern<span class="_ _f"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>cessors,<span class="_ _c"> </span><span class="ffa">multiplication<span class="_ _f"> </span></span>and<span class="_ _c"> </span><span class="ffa">addition<span class="_ _8"> </span></span>a<span class="_ _3"></span>re<span class="_ _f"> </span>computed<span class="_ _c"> </span>by<span class="_ _c"> </span>the<span class="_ _c"> </span>same</span></div><div class="t m0 x6 hb y141 ff4 fs6 fc0 sc0 ls0 ws0">ha<span class="_ _3"></span>rdwa<span class="_ _3"></span>re<span class="_ _c"> </span>comp<span class="_ _b"></span>onent<span class="_ _c"> </span>for<span class="_ _c"> </span>decreasing<span class="_ _c"> </span>circuit<span class="_ _c"> </span>area<span class="_ _c"> </span><span class="ff10">→<span class="_ _c"> </span></span>multiplication<span class="_ _c"> </span>and<span class="_ _c"> </span>addition<span class="_ _c"> </span>can</div><div class="t m0 x6 hb y142 ff4 fs6 fc0 sc0 ls0 ws0">b<span class="_ _b"></span>e<span class="_ _c"> </span>fused<span class="_ _f"> </span>in<span class="_ _c"> </span>a<span class="_ _f"> </span>single<span class="_ _c"> </span>op<span class="_ _b"></span>eration<span class="_ _10"> </span><span class="ff7">fma<span class="_ _10"> </span></span>(floating-p<span class="_ _b"></span>oint)<span class="_ _c"> </span>and<span class="_ _10"> </span><span class="ff7">mad<span class="_ _10"> </span></span>(integer)</div><div class="t m0 xb hd y143 ffc fs7 fcc sc0 ls0 ws0">uops.info:<span class="_ _20"> </span>Latency,<span class="_ _17"> </span>Throughput,<span class="_ _e"> </span>and<span class="_ _9"> </span>Port<span class="_ _9"> </span>Usage<span class="_ _e"> </span>Information</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">29/84</div><a class="l" href="https://uops.info/table.html"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:5.404500px;width:279.726000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf22" class="pf w0 h0" data-page-no="22"><div class="pc pc22 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Data<span class="_ _17"> </span>T<span class="_ _7"></span>yp<span class="_ _b"></span>es</div><div class="t m0 xb hb yb1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">32-bit<span class="_ _8"> </span>integral<span class="_ _f"> </span>vs.<span class="_ _6"> </span>floating-p<span class="_ _b"></span>oint<span class="ff4">:<span class="_ _e"> </span>in<span class="_ _c"> </span>general,<span class="_ _f"> </span>integral<span class="_ _c"> </span>types<span class="_ _f"> </span>a<span class="_ _3"></span>re<span class="_ _f"> </span>faster,<span class="_ _c"> </span>but<span class="_ _f"> </span>it</span></span></div><div class="t m0 x6 hb yb2 ff4 fs6 fc0 sc0 ls0 ws0">dep<span class="_ _b"></span>ends<span class="_ _c"> </span>on<span class="_ _f"> </span>the<span class="_ _c"> </span>processor<span class="_ _c"> </span>cha<span class="_ _3"></span>racteristics</div><div class="t m0 xb hb y144 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">32-bit<span class="_ _8"> </span>t<span class="_ _3"></span>yp<span class="_ _b"></span>es<span class="_ _8"> </span>are<span class="_ _f"> </span>faster<span class="_ _8"> </span>than<span class="_ _f"> </span>64-bit<span class="_ _8"> </span>types</span></div><div class="t m0 x28 h6 y145 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">64-bit<span class="_ _d"> </span>integral<span class="_ _d"> </span>types<span class="_ _c"> </span>a<span class="_ _3"></span>re<span class="_ _d"> </span>slightly<span class="_ _c"> </span>slo<span class="_ _3"></span>wer<span class="_ _d"> </span>than<span class="_ _d"> </span>32-bit<span class="_ _d"> </span>integral<span class="_ _d"> </span>types.<span class="_ _9"> </span>Mo<span class="_ _b"></span>dern<span class="_ _d"> </span>processors</span></div><div class="t m0 x1a h6 y146 ff4 fs4 fc0 sc0 ls0 ws0">widely<span class="_ _d"> </span>supp<span class="_ _b"></span>ort<span class="_ _d"> </span>native<span class="_ _c"> </span>64-bit<span class="_ _d"> </span>instructions<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _c"> </span>most<span class="_ _d"> </span>op<span class="_ _b"></span>erations,<span class="_ _c"> </span>otherwise<span class="_ _d"> </span>they<span class="_ _c"> </span>require</div><div class="t m0 x1a h6 y147 ff4 fs4 fc0 sc0 ls0 ws0">multiple<span class="_ _d"> </span>op<span class="_ _b"></span>erations</div><div class="t m0 x28 h6 y148 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Single<span class="_ _d"> </span>precision<span class="_ _d"> </span>floating-p<span class="_ _b"></span>oints<span class="_ _c"> </span>a<span class="_ _3"></span>re<span class="_ _c"> </span>up<span class="_ _d"> </span>to<span class="_ _c"> </span>three<span class="_ _d"> </span>times<span class="_ _c"> </span>faster<span class="_ _d"> </span>than<span class="_ _c"> </span>double<span class="_ _d"> </span>precision</span></div><div class="t m0 x1a h6 y149 ff4 fs4 fc0 sc0 ls0 ws0">floating-p<span class="_ _b"></span>oints</div><div class="t m0 xb hb y14a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Small<span class="_ _8"> </span>integral<span class="_ _f"> </span>types<span class="_ _8"> </span>are<span class="_ _f"> </span>slo<span class="_ _3"></span>wer<span class="_ _f"> </span>than<span class="_ _8"> </span>32-bit<span class="_ _8"> </span>integer<span class="ff4">,<span class="_ _c"> </span>but<span class="_ _c"> </span>they<span class="_ _f"> </span>require<span class="_ _c"> </span>less</span></span></div><div class="t m0 x6 hb y14b ff4 fs6 fc0 sc0 ls0 ws0">memo<span class="_ _3"></span>ry<span class="_ _f"> </span><span class="ff10">→<span class="_ _c"> </span></span>cache/memory<span class="_ _c"> </span>efficiency</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">30/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf23" class="pf w0 h0" data-page-no="23"><div class="pc pc23 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Op<span class="_ _b"></span>erations<span class="_ _3e"> </span>1/2</div><div class="t m0 xb hb y14c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">In<span class="_ _c"> </span>mo<span class="_ _b"></span>dern<span class="_ _f"> </span>ar<span class="_ _3"></span>chitectures,<span class="_ _f"> </span>arithmetic<span class="_ _c"> </span>increment/decrement<span class="_ _11"> </span><span class="ff7">++<span class="_ _d"> </span></span>/<span class="_ _d"> </span><span class="ff7">--<span class="_ _10"> </span></span>has<span class="_ _c"> </span>the<span class="_ _c"> </span>same</span></div><div class="t m0 x6 hb y14d ff4 fs6 fc0 sc0 ls0 ws0">p<span class="_ _b"></span>erfo<span class="_ _3"></span>rmance<span class="_ _f"> </span>of<span class="_ _10"> </span><span class="ff7">add<span class="_ _d"> </span></span>/<span class="_ _25"> </span><span class="ff7">sub</span></div><div class="t m0 xb hb y14e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Prefer<span class="_ _8"> </span>p<span class="_ _3"></span>refix<span class="_ _8"> </span>op<span class="_ _b"></span>erator<span class="_ _c"> </span><span class="ff4">(<span class="_ _d"> </span><span class="ff7">++var<span class="_ _25"> </span></span>)<span class="_ _c"> </span>instead<span class="_ _f"> </span>of<span class="_ _c"> </span>the<span class="_ _f"> </span>p<span class="_ _b"></span>ostfix<span class="_ _f"> </span>op<span class="_ _b"></span>erato<span class="_ _3"></span>r<span class="_ _f"> </span>(<span class="_ _d"> </span><span class="ff7">var++<span class="_ _25"> </span></span>)<span class="_ _f"> </span><span class="ff1">*</span></span></span></div><div class="t m0 xb hb y14f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _c"> </span>the<span class="_ _f"> </span>a<span class="_ _3"></span>rithmetic<span class="_ _f"> </span><span class="ff1">comp<span class="_ _b"></span>ound<span class="_ _8"> </span>op<span class="_ _b"></span>erators<span class="_ _c"> </span></span>(<span class="_ _25"> </span><span class="ff7">a<span class="_ _15"> </span>+=<span class="_ _15"> </span>b<span class="_ _d"> </span></span>)<span class="_ _c"> </span>instead<span class="_ _c"> </span>of<span class="_ _f"> </span>op<span class="_ _b"></span>erators</span></div><div class="t m0 x6 hb y150 ff4 fs6 fc0 sc0 ls0 ws0">combined<span class="_ _c"> </span>with<span class="_ _c"> </span>assignment<span class="_ _f"> </span>(<span class="_ _d"> </span><span class="ff7">a<span class="_ _15"> </span>=<span class="_ _15"> </span>a<span class="_ _6"> </span>+<span class="_ _15"> </span>b<span class="_ _d"> </span></span>)<span class="_ _c"> </span><span class="ff1">*</span></div><div class="t m0 xb h10 y151 ff1 fs7 fcc sc0 ls0 ws0">*<span class="_ _d"> </span><span class="fff">the<span class="_ _25"> </span>compiler<span class="_ _d"> </span>automatically<span class="_ _d"> </span>applies<span class="_ _d"> </span>such<span class="_ _d"> </span>optimization<span class="_ _d"> </span>whenever<span class="_ _d"> </span>possible.<span class="_ _8"> </span>This<span class="_ _d"> </span>is<span class="_ _d"> </span>not<span class="_ _d"> </span>ensured<span class="_ _d"> </span>fo<span class="_ _3"></span>r</span></div><div class="t m0 x1 h10 y152 fff fs7 fcc sc0 ls0 ws0">object<span class="_ _d"> </span>t<span class="_ _3"></span>yp<span class="_ _b"></span>es</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">31/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf24" class="pf w0 h0" data-page-no="24"><div class="pc pc24 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Op<span class="_ _b"></span>erations<span class="_ _3e"> </span>2/2</div><div class="t m0 xb hb y14c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Keep<span class="_ _8"> </span>nea<span class="_ _3"></span>r<span class="_ _8"> </span>constant<span class="_ _8"> </span>values/va<span class="_ _3"></span>riables<span class="_ _f"> </span><span class="ff10">→<span class="_ _c"> </span><span class="ff4">the<span class="_ _f"> </span>compiler<span class="_ _c"> </span>can<span class="_ _f"> </span>merge<span class="_ _c"> </span>their<span class="_ _f"> </span>values</span></span></span></div><div class="t m0 xb hb y153 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Some<span class="_ _c"> </span><span class="ff5">unsigned<span class="_ _f"> </span></span>op<span class="_ _b"></span>erations<span class="_ _c"> </span>are<span class="_ _c"> </span>faster<span class="_ _c"> </span>than<span class="_ _c"> </span><span class="ff5">signed<span class="_ _f"> </span></span>op<span class="_ _b"></span>erations<span class="_ _c"> </span>(deal<span class="_ _f"> </span>with<span class="_ _c"> </span>negative</span></div><div class="t m0 x6 hb y14e ff4 fs6 fc0 sc0 ls0 ws0">numb<span class="_ _b"></span>er),<span class="_ _c"> </span>e.g.<span class="_ _4"> </span><span class="ff7">x<span class="_ _15"> </span>/<span class="_ _15"> </span>2</span></div><div class="t m0 xb hb y14f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">logic<span class="_ _8"> </span>op<span class="_ _b"></span>erations<span class="_ _10"> </span><span class="ff7">||<span class="_ _10"> </span></span></span>to<span class="_ _c"> </span><span class="ff1">bitwise<span class="_ _f"> </span>op<span class="_ _b"></span>erations<span class="_ _10"> </span><span class="ff7">|<span class="_ _10"> </span></span></span>to<span class="_ _c"> </span>take<span class="_ _c"> </span>advantage<span class="_ _c"> </span>of</span></div><div class="t m0 x6 hb y150 ff4 fs6 fc0 sc0 ls0 ws0">sho<span class="_ _3"></span>rt-circuiting</div><div class="t m0 xb hd y154 ffc fs7 fcc sc0 ls0 ws0">Is<span class="_ _9"> </span>if(A<span class="_ _9"> </span>|<span class="_ _e"> </span>B)<span class="_ _9"> </span>always<span class="_ _9"> </span>faster<span class="_ _e"> </span>than<span class="_ _9"> </span>if(A<span class="_ _9"> </span>||<span class="_ _9"> </span>B)?</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">32/84</div><a class="l" href="https://stackoverflow.com/questions/71039947/is-ifa-b-always-faster-than-ifa-b"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:7.123500px;width:204.409000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf25" class="pf w0 h0" data-page-no="25"><div class="pc pc25 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Integer<span class="_ _17"> </span>Multiplication</div><div class="t m0 x1 hb y77 ff4 fs6 fc0 sc0 ls0 ws0">Integer<span class="_ _c"> </span>multiplication<span class="_ _c"> </span>requires<span class="_ _f"> </span>double<span class="_ _c"> </span>the<span class="_ _f"> </span>numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _f"> </span>bits<span class="_ _c"> </span>of<span class="_ _f"> </span>the<span class="_ _c"> </span>op<span class="_ _0"></span>erands</div><div class="t m0 xd h10 y155 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span><span class="ff15">32-bit<span class="_ _9"> </span>platforms<span class="_ _e"> </span>or<span class="_ _9"> </span>knowledge<span class="_ _9"> </span>that<span class="_ _e"> </span>x,<span class="_ _9"> </span>y<span class="_ _9"> </span>are<span class="_ _9"> </span>less<span class="_ _e"> </span>than<span class="_ _9"> </span><span class="fff">2</span></span></div><div class="t m0 x2a h13 y156 ff6 fs8 fc5 sc0 ls0 ws0">32</div><div class="t m0 xd hd y157 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc7">f1<span class="fc0">(</span></span>int<span class="_ _9"> </span><span class="ffc fc0">x,<span class="_ _e"> </span></span>int<span class="_ _9"> </span><span class="ffc fc0">y)<span class="_ _9"> </span>{</span></div><div class="t m0 x6 hd y158 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_ _9"> </span><span class="ffc fc0">x<span class="_ _9"> </span><span class="fc8">*<span class="_ _e"> </span></span>y;<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _9"> </span>efficient<span class="_ _e"> </span>but<span class="_ _9"> </span>can<span class="_ _9"> </span>overflow</span></span></div><div class="t m0 xd hd y159 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd hd y15a ff5 fs7 fc6 sc0 ls0 ws0">int64_t<span class="_ _9"> </span><span class="ffc fc7">f2<span class="fc0">(</span></span>int64_t<span class="_ _9"> </span><span class="ffc fc0">x,<span class="_ _e"> </span></span>int64_t<span class="_ _9"> </span><span class="ffc fc0">y)<span class="_ _9"> </span>{</span></div><div class="t m0 x6 hd y15b ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_ _9"> </span><span class="ffc fc0">x<span class="_ _9"> </span><span class="fc8">*<span class="_ _e"> </span></span>y;<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _9"> </span>always<span class="_ _e"> </span>correct<span class="_ _9"> </span>but<span class="_ _9"> </span>slow</span></span></div><div class="t m0 xd hd y15c ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd hd y15d ff5 fs7 fc6 sc0 ls0 ws0">int64_t<span class="_ _9"> </span><span class="ffc fc7">f3<span class="fc0">(</span></span>int<span class="_ _9"> </span><span class="ffc fc0">x,<span class="_ _e"> </span></span>int<span class="_ _9"> </span><span class="ffc fc0">y)<span class="_ _9"> </span>{</span></div><div class="t m0 x6 hd y15e ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_ _9"> </span><span class="ffc fc0">x<span class="_ _9"> </span><span class="fc8">*<span class="_ _e"> </span></span></span>static_cast<span class="ffc fc8">&lt;</span><span class="fc6">int64_t<span class="ffc fc8">&gt;<span class="fc0">(y);<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _9"> </span>correct<span class="_ _e"> </span>and<span class="_ _9"> </span>efficient!!</span></span></span></span></div><div class="t m0 xd hd y15f ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">33/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf26" class="pf w0 h0" data-page-no="26"><div class="pc pc26 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>o<span class="_ _3"></span>wer-of-T<span class="_ _5"></span>wo<span class="_ _8"> </span>Multiplication/Division/Mo<span class="_ _b"></span>dulo</div><div class="t m0 xb hb y160 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _c"> </span>shift<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span><span class="ff1">p<span class="_ _0"></span>o<span class="_ _3"></span>w<span class="_ _3"></span>er-of-t<span class="_ _3"></span>wo<span class="_ _f"> </span>multiplications<span class="_ _c"> </span><span class="ff4">(<span class="_ _d"> </span><span class="ff7">a<span class="_ _15"> </span><span class="ff10">≪<span class="_ _15"> </span></span>b<span class="_ _d"> </span></span>)<span class="_ _c"> </span>and<span class="_ _c"> </span></span>divisions</span></span></div><div class="t m0 x6 hb y98 ff4 fs6 fc0 sc0 ls0 ws0">(<span class="_ _25"> </span><span class="ff7">a<span class="_ _15"> </span><span class="ff10">≫<span class="_ _15"> </span></span>b<span class="_ _d"> </span></span>)<span class="_ _c"> </span>only<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>run-time<span class="_ _c"> </span>values<span class="_ _f"> </span><span class="ff1">*</span></div><div class="t m0 xb hb y161 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _c"> </span>bitwise<span class="_ _c"> </span><span class="ff16">and<span class="_ _c"> </span></span>(<span class="_ _d"> </span><span class="ff7">a<span class="_ _15"> </span>%<span class="_ _6"> </span>b<span class="_ _15"> </span><span class="ff10">→<span class="_ _15"> </span></span>a<span class="_ _15"> </span>&amp;<span class="_ _15"> </span>(b<span class="_ _15"> </span>-<span class="_ _15"> </span>1)<span class="_ _d"> </span></span>)<span class="_ _c"> </span>for<span class="_ _c"> </span><span class="ff1">p<span class="_ _b"></span>ow<span class="_ _3"></span>er-of-t<span class="_ _3"></span>wo<span class="_ _f"> </span>mo<span class="_ _b"></span>dulo</span></span></div><div class="t m0 x6 hb y9a ff4 fs6 fc0 sc0 ls0 ws0">op<span class="_ _b"></span>erations<span class="_ _c"> </span>only<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>run-time<span class="_ _c"> </span>values<span class="_ _f"> </span><span class="ff1">*</span></div><div class="t m0 xb hb y162 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Constant<span class="_ _8"> </span>multiplication<span class="_ _f"> </span>and<span class="_ _8"> </span>division<span class="_ _f"> </span><span class="ff4">can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>heavily<span class="_ _c"> </span>optimized<span class="_ _f"> </span>b<span class="_ _3"></span>y<span class="_ _f"> </span>the<span class="_ _c"> </span>compiler,</span></span></div><div class="t m0 x6 hb y163 ff4 fs6 fc0 sc0 ls0 ws0">even<span class="_ _c"> </span>for<span class="_ _c"> </span>non-trivial<span class="_ _c"> </span>values</div><div class="t m0 xb h10 y164 ff1 fs7 fcc sc0 ls0 ws0">*<span class="_ _d"> </span><span class="fff">the<span class="_ _25"> </span>compiler<span class="_ _d"> </span>automatically<span class="_ _d"> </span>applies<span class="_ _d"> </span>such<span class="_ _d"> </span>optimizations<span class="_ _d"> </span>if<span class="_ _11"> </span><span class="ffc">b<span class="_ _15"> </span></span>is<span class="_ _d"> </span>known<span class="_ _25"> </span>at<span class="_ _d"> </span>compile-time.<span class="_ _8"> </span>Bitwise</span></div><div class="t m0 x1 h10 y165 fff fs7 fcc sc0 ls0 ws0">op<span class="_ _b"></span>erations<span class="_ _d"> </span>mak<span class="_ _3"></span>e<span class="_ _d"> </span>the<span class="_ _d"> </span>co<span class="_ _b"></span>de<span class="_ _d"> </span>ha<span class="_ _3"></span>rder<span class="_ _d"> </span>to<span class="_ _d"> </span>read</div><div class="t m0 x1 hd y166 ffc fs7 fcc sc0 ls0 ws0">Ideal<span class="_ _9"> </span>divisors:<span class="_ _20"> </span>when<span class="_ _9"> </span>a<span class="_ _9"> </span>division<span class="_ _e"> </span>compiles<span class="_ _9"> </span>down<span class="_ _9"> </span>to<span class="_ _9"> </span>just<span class="_ _e"> </span>a<span class="_ _9"> </span>multiplication</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">34/84</div><a class="l" href="https://lemire.me/blog/2021/04/28/ideal-divisors-when-a-division-compiles-down-to-just-a-multiplication/?amp&amp;__twitter_impression=true"><div class="d m1" style="border-style:none;position:absolute;left:41.025000px;bottom:6.360000px;width:336.214000px;height:11.154000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf27" class="pf w0 h0" data-page-no="27"><div class="pc pc27 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Conversion</div><div class="t m0 x2b h10 y167 ff1 fs7 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>rom<span class="_ _3f"> </span>T<span class="_ _7"></span>o<span class="_ _40"> </span>Cost</div><div class="t m0 x2c h10 y168 ffc fs7 fc0 sc0 ls0 ws0">Signed<span class="_ _41"> </span>Unsigned<span class="_ _42"> </span><span class="fff">no<span class="_ _d"> </span>cost,<span class="_ _25"> </span>bit<span class="_ _d"> </span>representation<span class="_ _25"> </span>is<span class="_ _d"> </span>the<span class="_ _d"> </span>same</span></div><div class="t m0 x2c h10 y169 ffc fs7 fc0 sc0 ls0 ws0">Unsigned<span class="_ _43"> </span>Larger<span class="_ _9"> </span>Unsigned<span class="_ _44"> </span><span class="fff">no<span class="_ _d"> </span>cost,<span class="_ _25"> </span>register<span class="_ _d"> </span>extended</span></div><div class="t m0 x2c h10 y16a ffc fs7 fc0 sc0 ls0 ws0">Signed<span class="_ _41"> </span>Larger<span class="_ _9"> </span>Signed<span class="_ _45"> </span><span class="fff">1<span class="_ _d"> </span>clock-cycle,<span class="_ _d"> </span>register<span class="_ _d"> </span>+<span class="_ _d"> </span>sign<span class="_ _d"> </span>extended</span></div><div class="t m0 x2c hd y16b ffc fs7 fc0 sc0 ls0 ws0">Integer<span class="_ _42"> </span>Floating-point</div><div class="t m0 x2d h10 y16c fff fs7 fc0 sc0 ls0 ws0">4-16<span class="_ _d"> </span>clock-cycles</div><div class="t m0 x2d h10 y16d fff fs7 fc0 sc0 ls0 ws0">Signed<span class="_ _d"> </span><span class="ff17">→<span class="_ _25"> </span></span>Floating-p<span class="_ _b"></span>oint<span class="_ _d"> </span>is<span class="_ _d"> </span>faster<span class="_ _d"> </span>than</div><div class="t m0 x2d h10 y16e fff fs7 fc0 sc0 ls0 ws0">Unsigned<span class="_ _d"> </span><span class="ff17">→<span class="_ _25"> </span></span>Floating-p<span class="_ _b"></span>oint<span class="_ _d"> </span>(except<span class="_ _d"> </span><span class="ffc">AVX512</span></div><div class="t m0 x2d h10 y16f fff fs7 fc0 sc0 ls0 ws0">instruction<span class="_ _d"> </span>set<span class="_ _25"> </span>is<span class="_ _d"> </span>enabled)</div><div class="t m0 x2c h10 y170 ffc fs7 fc0 sc0 ls0 ws0">Floating-point<span class="_ _23"> </span>Integer<span class="_ _41"> </span><span class="fff">fast<span class="_ _d"> </span>if<span class="_ _f"> </span></span>SSE2<span class="fff">,<span class="_ _d"> </span>slo<span class="_ _3"></span>w<span class="_ _d"> </span>otherwise<span class="_ _d"> </span>(50-100<span class="_ _d"> </span>clo<span class="_"> </span>ck-cycles)</span></div><div class="t m0 xb h10 y171 ffc fs7 fcc sc0 ls0 ws0">Optimizing<span class="_ _9"> </span>software<span class="_ _9"> </span>in<span class="_ _e"> </span>C++<span class="fff">,<span class="_ _25"> </span><span class="ff18">Agner<span class="_ _d"> </span>Fog</span></span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">35/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf28" class="pf w0 h0" data-page-no="28"><div class="pc pc28 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Floating-P<span class="_ _3"></span>oint<span class="_ _17"> </span>Division</div><div class="t m0 x1 hb y172 ff1 fs6 fc0 sc0 ls0 ws0">Multiplication<span class="_ _f"> </span>is<span class="_ _8"> </span>much<span class="_ _8"> </span>faster<span class="_ _8"> </span>than<span class="_ _8"> </span>division*</div><div class="t m0 x1 hd y173 ffc fs7 fc0 sc0 ls0 ws0">not<span class="_ _9"> </span>optimized:</div><div class="t m0 xd hd y174 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>&quot;value&quot;<span class="_ _9"> </span>is<span class="_ _e"> </span>floating-point<span class="_ _9"> </span>(dynamic)</div><div class="t m0 xd hd y175 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x6 hd y176 ffc fs7 fc0 sc0 ls0 ws0">A[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>B[i]<span class="_ _e"> </span><span class="fc8">/<span class="_ _9"> </span></span>value;</div><div class="t m0 x1 hd y177 ffc fs7 fc0 sc0 ls0 ws0">optimized:</div><div class="t m0 xd hd y178 ffc fs7 fc0 sc0 ls0 ws0">div<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span>1.0<span class="_ _e"> </span>/<span class="_ _9"> </span></span>value;<span class="_ _46"> </span><span class="ffb fc5">//<span class="_ _9"> </span>div<span class="_ _9"> </span>is<span class="_ _e"> </span>floating-point</span></div><div class="t m0 xd hd y179 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x6 hd y17a ffc fs7 fc0 sc0 ls0 ws0">A[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>B[i]<span class="_ _e"> </span><span class="fc8">*<span class="_ _9"> </span></span>div;</div><div class="t m0 xb h10 y17b ff1 fs7 fcc sc0 ls0 ws0">*<span class="_ _d"> </span><span class="fff">Multiplying<span class="_ _25"> </span>by<span class="_ _d"> </span>the<span class="_ _25"> </span>inverse<span class="_ _d"> </span>is<span class="_ _d"> </span>not<span class="_ _d"> </span>the<span class="_ _d"> </span>same<span class="_ _d"> </span>as<span class="_ _d"> </span>the<span class="_ _25"> </span>division</span></div><div class="t m0 x2e h10 y17c fff fs7 fcc sc0 ls0 ws0">see<span class="_ _d"> </span><span class="ffc">lemire.me/blog/2019/03/12</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">36/84</div><a class="l" href="https://lemire.me/blog/2019/03/12/multiplying-by-the-inverse-is-not-the-same-as-the-division/"><div class="d m1" style="border-style:none;position:absolute;left:85.635000px;bottom:0.604500px;width:119.676000px;height:12.000000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf29" class="pf w0 h0" data-page-no="29"><div class="pc pc29 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Floating-P<span class="_ _3"></span>oint<span class="_ _17"> </span>FMA</div><div class="t m0 x1 hb y172 ff4 fs6 fc0 sc0 ls0 ws0">Mo<span class="_ _b"></span>dern<span class="_ _c"> </span>processors<span class="_ _c"> </span>allo<span class="_ _3"></span>w<span class="_ _f"> </span>p<span class="_ _b"></span>erfo<span class="_ _3"></span>rming<span class="_ _10"> </span><span class="ff7">a<span class="_ _15"> </span>*<span class="_ _15"> </span>b<span class="_ _15"> </span>+<span class="_ _15"> </span>c<span class="_ _10"> </span></span>in<span class="_ _c"> </span>a<span class="_ _f"> </span>single<span class="_ _c"> </span>op<span class="_ _b"></span>eration,<span class="_ _f"> </span>called<span class="_ _c"> </span><span class="ff1">fused</span></div><div class="t m0 x1 hb y17d ff1 fs6 fc0 sc0 ls0 ws0">multiply-add<span class="_ _c"> </span><span class="ff4">(<span class="_ _d"> </span><span class="ff7">std::fma<span class="_ _10"> </span></span>in<span class="_ _c"> </span><span class="fcd">C++11</span>).<span class="_ _e"> </span>This<span class="_ _c"> </span>implies<span class="_ _c"> </span>b<span class="_ _b"></span>etter<span class="_ _f"> </span>p<span class="_ _b"></span>erformance<span class="_ _c"> </span>and<span class="_ _c"> </span>accuracy</span></div><div class="t m0 x1 hb y17e ff4 fs6 fc0 sc0 ls0 ws0">CPU<span class="_ _c"> </span>processors<span class="_ _c"> </span>perform<span class="_ _c"> </span>computations<span class="_ _c"> </span>with<span class="_ _f"> </span>a<span class="_ _c"> </span>larger<span class="_ _c"> </span>register<span class="_ _c"> </span>size<span class="_ _c"> </span>than<span class="_ _f"> </span>the<span class="_ _c"> </span>original<span class="_ _c"> </span>data</div><div class="t m0 x1 hb y17f ff4 fs6 fc0 sc0 ls0 ws0">t<span class="_ _3"></span>yp<span class="_ _b"></span>e<span class="_ _f"> </span>(e.g.<span class="_ _e"> </span>48-bit<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>32-bit<span class="_ _c"> </span>floating-p<span class="_ _b"></span>oint)<span class="_ _f"> </span>for<span class="_ _c"> </span>performing<span class="_ _c"> </span>this<span class="_ _c"> </span>op<span class="_ _b"></span>eration</div><div class="t m0 x1 hb y180 ff4 fs6 fc0 sc0 ls0 ws0">Compiler<span class="_ _c"> </span>b<span class="_ _b"></span>ehavior:</div><div class="t m0 x2f h6 y181 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">GCC<span class="_ _d"> </span>9<span class="_ _c"> </span>and<span class="_ _d"> </span>ICC<span class="_ _c"> </span>19<span class="_ _d"> </span>produce<span class="_ _c"> </span>a<span class="_ _d"> </span>single<span class="_ _c"> </span>instruction<span class="_ _d"> </span>for<span class="_ _11"> </span><span class="ff7">std::fma<span class="_ _11"> </span></span>and<span class="_ _d"> </span>for<span class="_ _11"> </span><span class="ff7">a<span class="_ _e"> </span>*<span class="_ _6"> </span>b<span class="_ _e"> </span>+<span class="_ _6"> </span>c<span class="_ _11"> </span></span>with</span></div><div class="t m0 xc hc y182 ff7 fs4 fc0 sc0 ls0 ws0">-O3<span class="_ _e"> </span>-march=native</div><div class="t m0 x2f h6 y183 ff8 fs4 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Clang<span class="_ _d"> </span>9<span class="_ _c"> </span>and<span class="_ _d"> </span>MSVC<span class="_ _d"> </span>19.*<span class="_ _c"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>duce<span class="_ _c"> </span>a<span class="_ _d"> </span>single<span class="_ _c"> </span>instruction<span class="_ _d"> </span>for<span class="_ _11"> </span><span class="ff7">std::fma<span class="_ _11"> </span></span>but<span class="_ _d"> </span>not<span class="_ _c"> </span>fo<span class="_ _3"></span>r</span></div><div class="t m0 xc hc y184 ff7 fs4 fc0 sc0 ls0 ws0">a<span class="_ _e"> </span>*<span class="_ _6"> </span>b<span class="_ _6"> </span>+<span class="_ _e"> </span>c</div><div class="t m0 xb hd y185 ffc fs7 fcc sc0 ls0 ws0">FMA:<span class="_ _9"> </span>solve<span class="_ _9"> </span>quadratic<span class="_ _e"> </span>equation</div><div class="t m0 x30 hd y186 ffc fs7 fcc sc0 ls0 ws0">FMA:<span class="_ _9"> </span>extended<span class="_ _9"> </span>precision<span class="_ _e"> </span>addition<span class="_ _9"> </span>and<span class="_ _9"> </span>multiplication<span class="_ _e"> </span>by<span class="_ _9"> </span>constant</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">37/84</div><a class="l" href="https://marc-b-reynolds.github.io/math/2020/01/10/Quadratic.html"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:24.009000px;width:138.506000px;height:11.657000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://marc-b-reynolds.github.io/math/2020/01/09/ConstAddMul.html"><div class="d m1" style="border-style:none;position:absolute;left:51.486000px;bottom:2.422500px;width:298.555000px;height:11.154000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf2a" class="pf w0 h0" data-page-no="2a"><div class="pc pc2a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _17"> </span>Intrinsic<span class="_ _17"> </span>Functions<span class="_ _47"> </span>1/5</div><div class="t m0 x1 hb y187 ff1 fs6 fc0 sc0 ls0 ws0">Compiler<span class="_ _f"> </span>intrinsics<span class="_ _f"> </span><span class="ff4">are<span class="_ _c"> </span>highly<span class="_ _c"> </span>optimized<span class="_ _c"> </span>functions<span class="_ _f"> </span>directly<span class="_ _c"> </span>provided<span class="_ _c"> </span>b<span class="_ _3"></span>y<span class="_ _f"> </span>the<span class="_ _c"> </span>compiler</span></div><div class="t m0 x1 hb y188 ff4 fs6 fc0 sc0 ls0 ws0">instead<span class="_ _c"> </span>of<span class="_ _c"> </span>external<span class="_ _f"> </span>libra<span class="_ _3"></span>ries</div><div class="t m0 x1 hb y189 ffa fs6 fc0 sc0 ls0 ws0">A<span class="_ _3"></span>dvantages:</div><div class="t m0 xb hb y18a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Directly<span class="_ _c"> </span>mapp<span class="_ _b"></span>ed<span class="_ _f"> </span>to<span class="_ _c"> </span>hardw<span class="_ _3"></span>a<span class="_ _3"></span>re<span class="_ _f"> </span>functionalities<span class="_ _c"> </span>if<span class="_ _f"> </span>available</span></div><div class="t m0 xb hb y18b ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Inline<span class="_ _c"> </span>expansion</span></div><div class="t m0 xb hb y18c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Do<span class="_ _c"> </span>not<span class="_ _c"> </span>inhibit<span class="_ _c"> </span>high-level<span class="_ _f"> </span>optimizations<span class="_ _c"> </span>and<span class="_ _c"> </span>they<span class="_ _c"> </span>are<span class="_ _c"> </span>portable<span class="_ _c"> </span>contra<span class="_ _3"></span>ry<span class="_ _c"> </span>to<span class="_ _c"> </span><span class="ff7">asm<span class="_ _f"> </span></span>co<span class="_ _b"></span>de</span></div><div class="t m0 x1 hb y18d ffa fs6 fc0 sc0 ls0 ws0">Dra<span class="_ _3"></span>wbacks:</div><div class="t m0 xb hb y18e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">P<span class="_ _3"></span>ortabilit<span class="_ _3"></span>y<span class="_ _c"> </span>is<span class="_ _f"> </span>limited<span class="_ _c"> </span>to<span class="_ _f"> </span>a<span class="_ _c"> </span>sp<span class="_ _b"></span>ecific<span class="_ _f"> </span>compiler</span></div><div class="t m0 xb hb y18f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Some<span class="_ _c"> </span>intrinsics<span class="_ _f"> </span>do<span class="_ _c"> </span>not<span class="_ _f"> </span>w<span class="_ _3"></span>ork<span class="_ _c"> </span>on<span class="_ _c"> </span>all<span class="_ _c"> </span>platforms</span></div><div class="t m0 xb hb y190 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>same<span class="_ _f"> </span>instricics<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>mapp<span class="_ _b"></span>ed<span class="_ _f"> </span>to<span class="_ _c"> </span>a<span class="_ _f"> </span>non-optimal<span class="_ _c"> </span>instruction<span class="_ _f"> </span>sequence</span></div><div class="t m0 x6 hb y191 ff4 fs6 fc0 sc0 ls0 ws0">dep<span class="_ _b"></span>ending<span class="_ _c"> </span>on<span class="_ _f"> </span>the<span class="_ _c"> </span>compiler</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">38/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf2b" class="pf w0 h0" data-page-no="2b"><div class="pc pc2b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _17"> </span>Intrinsic<span class="_ _17"> </span>Functions<span class="_ _47"> </span>2/5</div><div class="t m0 x1 hb y77 ff4 fs6 fc0 sc0 ls0 ws0">Most<span class="_ _c"> </span>compilers<span class="_ _c"> </span>provide<span class="_ _c"> </span>intrinsics<span class="_ _c"> </span><span class="ff1">bit-manipulation<span class="_ _8"> </span>functions<span class="_ _f"> </span></span>for<span class="_ _c"> </span><span class="ff7">SSE4.2<span class="_ _c"> </span></span>or<span class="_ _c"> </span><span class="ff7">ABM</span></div><div class="t m0 x1 hb y10c ff4 fs6 fc0 sc0 ls0 ws0">(A<span class="_ _3"></span>dvanced<span class="_ _f"> </span>Bit<span class="_ _c"> </span>Manipulation)<span class="_ _f"> </span>instruction<span class="_ _c"> </span>sets<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>Intel<span class="_ _c"> </span>and<span class="_ _f"> </span>AMD<span class="_ _c"> </span>processors</div><div class="t m0 x1 hb y192 ff4 fs6 fc0 sc0 ls0 ws0">GCC<span class="_ _c"> </span>examples:</div><div class="t m0 x31 h6 y193 ff5 fs4 fc0 sc0 ls0 ws0">builtin<span class="_ _f"> </span>popcount(x)<span class="_ _14"> </span><span class="ff4">count<span class="_ _d"> </span>the<span class="_ _c"> </span>numb<span class="_ _b"></span>er<span class="_ _d"> </span>of<span class="_ _c"> </span>one<span class="_ _d"> </span>bits</span></div><div class="t m0 xf h6 y194 ff5 fs4 fc0 sc0 ls0 ws0">builtin<span class="_ _f"> </span>clz(x)<span class="_ _14"> </span><span class="ff4">(<span class="ff7">count<span class="_ _e"> </span>leading<span class="_ _6"> </span>zeros</span>)<span class="_ _d"> </span>counts<span class="_ _c"> </span>the<span class="_ _d"> </span>numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _d"> </span>zero<span class="_ _c"> </span>bits<span class="_ _d"> </span>following<span class="_ _d"> </span>the</span></div><div class="t m0 x32 h6 y195 ff4 fs4 fc0 sc0 ls0 ws0">most<span class="_ _d"> </span>significant<span class="_ _c"> </span>one<span class="_ _d"> </span>bit</div><div class="t m0 xf h6 y196 ff5 fs4 fc0 sc0 ls0 ws0">builtin<span class="_ _f"> </span>ctz(x)<span class="_ _14"> </span><span class="ff4">(<span class="ff7">count<span class="_ _e"> </span>trailing<span class="_ _6"> </span>zeros</span>)<span class="_ _d"> </span>counts<span class="_ _c"> </span>the<span class="_ _d"> </span>numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _d"> </span>zero<span class="_ _c"> </span>bits<span class="_ _d"> </span>preceding</span></div><div class="t m0 x32 h6 y197 ff4 fs4 fc0 sc0 ls0 ws0">the<span class="_ _d"> </span>least<span class="_ _c"> </span>significant<span class="_ _d"> </span>one<span class="_ _c"> </span>bit</div><div class="t m0 xf h6 y198 ff5 fs4 fc0 sc0 ls0 ws0">builtin<span class="_ _f"> </span>ffs(x)<span class="_ _14"> </span><span class="ff4">(<span class="ff7">find<span class="_ _e"> </span>first<span class="_ _6"> </span>set</span>)<span class="_ _d"> </span>index<span class="_ _c"> </span>of<span class="_ _d"> </span>the<span class="_ _c"> </span>least<span class="_ _d"> </span>significant<span class="_ _c"> </span>one<span class="_ _d"> </span>bit</span></div><div class="t m0 x30 hd y199 ffc fs7 fcc sc0 ls0 ws0">gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">39/84</div><a class="l" href="https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:1.311000px;width:218.531000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf2c" class="pf w0 h0" data-page-no="2c"><div class="pc pc2c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _17"> </span>Intrinsic<span class="_ _17"> </span>Functions<span class="_ _47"> </span>3/5</div><div class="t m0 xb hb y19a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Compute<span class="_ _c"> </span><span class="ff7">integer<span class="_ _15"> </span>log2</span></span></div><div class="t m0 xc hd y19b ff5 fs7 fc9 sc0 ls0 ws0">inline<span class="_ _9"> </span><span class="fc6">unsigned<span class="_ _9"> </span><span class="ffc fc7">log2<span class="fc0">(</span></span>unsigned<span class="_ _e"> </span><span class="ffc fc0">x)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x1a hd y19c ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_ _9"> </span><span class="ffc fc8">31<span class="_ _9"> </span>-<span class="_ _e"> </span><span class="fc0">__builtin_clz(x);</span></span></div><div class="t m0 xc hd y19d ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xb hb y19e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Check<span class="_ _c"> </span>if<span class="_ _f"> </span>a<span class="_ _c"> </span>numb<span class="_ _b"></span>er<span class="_ _f"> </span>is<span class="_ _c"> </span>a<span class="_ _f"> </span><span class="ff7">power<span class="_ _15"> </span>of<span class="_ _15"> </span>2</span></span></div><div class="t m0 xc hd y19f ff5 fs7 fc9 sc0 ls0 ws0">inline<span class="_ _9"> </span><span class="fc6">bool<span class="_ _9"> </span><span class="ffc fc7">is_power2<span class="fc0">(</span></span>unsigned<span class="_ _e"> </span><span class="ffc fc0">x)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x1a hd y1a0 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_ _9"> </span><span class="ffc fc0">__builtin_popcount(x)<span class="_ _9"> </span><span class="fc8">==<span class="_ _e"> </span>1</span>;</span></div><div class="t m0 xc hd y1a1 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xb hb y1a2 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Bit<span class="_ _c"> </span>search<span class="_ _c"> </span>and<span class="_ _c"> </span>clear</span></div><div class="t m0 xc hd y1a3 ff5 fs7 fc9 sc0 ls0 ws0">inline<span class="_ _9"> </span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc7">bit_search_clear<span class="fc0">(</span></span>unsigned<span class="_ _e"> </span><span class="ffc fc0">x)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x1a hd y1a4 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc0">pos<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>__builtin_ffs(x);<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _9"> </span>range<span class="_ _e"> </span>[0,<span class="_ _9"> </span>31]</span></span></div><div class="t m0 x1a hd y1a5 ffc fs7 fc0 sc0 ls0 ws0">x<span class="_ _36"> </span><span class="fc8">&amp;=<span class="_ _9"> </span></span><span class="ff17"></span>(<span class="fc8">1u<span class="_ _9"> </span>&lt;&lt;<span class="_ _9"> </span></span>pos);</div><div class="t m0 x1a hd y1a6 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_ _9"> </span><span class="ffc fc0">pos;</span></div><div class="t m0 xc hd y1a7 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">40/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf2d" class="pf w0 h0" data-page-no="2d"><div class="pc pc2d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _17"> </span>Intrinsic<span class="_ _17"> </span>Functions<span class="_ _47"> </span>4/5</div><div class="t m0 x1 hb y187 ff1 fs6 fc0 sc0 ls0 ws0">Example<span class="_ _f"> </span>of<span class="_ _8"> </span>intrinsic<span class="_ _8"> </span>p<span class="_ _b"></span>ortabilit<span class="_ _3"></span>y<span class="_ _f"> </span>issue:</div><div class="t m0 x29 hb y1a8 ff5 fs6 fc0 sc0 ls0 ws0">builtin<span class="_ _8"> </span>popcount()<span class="_ _10"> </span><span class="ff4">GCC<span class="_ _c"> </span>produces<span class="_ _39"> </span><span class="ff7">popcountdi2<span class="_ _10"> </span></span>instruction<span class="_ _c"> </span>while<span class="_ _f"> </span>Intel</span></div><div class="t m0 x1 hb y189 ff4 fs6 fc0 sc0 ls0 ws0">Compiler<span class="_ _c"> </span>(ICC)<span class="_ _c"> </span>produces<span class="_ _f"> </span>13<span class="_ _c"> </span>instructions</div><div class="t m0 x30 hb y1a9 ff5 fs6 fc0 sc0 ls0 ws0">mm<span class="_ _8"> </span>popcnt<span class="_ _8"> </span>u32<span class="_ _10"> </span><span class="ff4">GCC<span class="_ _c"> </span>and<span class="_ _f"> </span>ICC<span class="_ _c"> </span>produce<span class="_ _10"> </span><span class="ff7">popcnt<span class="_ _10"> </span></span>instruction,<span class="_ _f"> </span>but<span class="_ _c"> </span>it<span class="_ _f"> </span>is<span class="_ _c"> </span>available<span class="_ _f"> </span>only</span></div><div class="t m0 x1 hb y1aa ff4 fs6 fc0 sc0 ls0 ws0">fo<span class="_ _3"></span>r<span class="_ _f"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>cessor<span class="_ _c"> </span>with<span class="_ _c"> </span>supp<span class="_ _b"></span>ort<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span><span class="ff7">SSE4.2<span class="_ _f"> </span></span>instruction<span class="_ _c"> </span>set</div><div class="t m0 x1 hb y1ab ff1 fs6 fc0 sc0 ls0 ws0">Mo<span class="_ _3"></span>re<span class="_ _8"> </span>advanced<span class="_ _8"> </span>usage</div><div class="t m0 xb hb y1ac ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Compute<span class="_ _c"> </span>CRC:<span class="_ _48"> </span><span class="ff7">mm<span class="_ _8"> </span>crc32<span class="_ _8"> </span>u32</span></span></div><div class="t m0 xb hb y1ad ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">AES<span class="_ _c"> </span>cryptography:<span class="_ _44"> </span><span class="ff7">mm256<span class="_ _8"> </span>aesenclast<span class="_ _8"> </span>epi128</span></span></div><div class="t m0 xb hb y1ae ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Hash<span class="_ _c"> </span>function:<span class="_ _44"> </span><span class="ff7">mm<span class="_ _8"> </span>sha256msg1<span class="_ _8"> </span>epu32</span></span></div><div class="t m0 x30 hd y1af ffc fs7 fcc sc0 ls0 ws0">software.intel.com/sites/landingpage/IntrinsicsGuide/</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">41/84</div><a class="l" href="https://software.intel.com/sites/landingpage/IntrinsicsGuide/"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:1.498500px;width:251.482000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf2e" class="pf w0 h0" data-page-no="2e"><div class="pc pc2e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _17"> </span>Intrinsic<span class="_ _17"> </span>Functions<span class="_ _47"> </span>5/5</div><div class="t m0 x1 hb y1b0 ffa fs6 fc0 sc0 ls0 ws0">Using<span class="_ _c"> </span>intrinsic<span class="_ _c"> </span>instructions<span class="_ _f"> </span>is<span class="_ _c"> </span>extremely<span class="_ _f"> </span>dangerous<span class="_ _c"> </span>if<span class="_ _f"> </span>the<span class="_ _c"> </span>target<span class="_ _c"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>cessor<span class="_ _c"> </span>do<span class="_ _b"></span>es<span class="_ _c"> </span>not</div><div class="t m0 x1 hb y1b1 ffa fs6 fc0 sc0 ls0 ws0">natively<span class="_ _c"> </span>supp<span class="_ _b"></span>ort<span class="_ _c"> </span>such<span class="_ _c"> </span>instructions</div><div class="t m0 x1 hb y1b2 ff4 fs6 fc0 sc0 ls0 ws0">Example:</div><div class="t m0 xd hb y1b3 ffa fs6 fc0 sc0 ls0 ws0">“If<span class="_ _8"> </span>you<span class="_ _8"> </span>run<span class="_ _8"> </span>co<span class="_ _b"></span>de<span class="_ _17"> </span>that<span class="_ _8"> </span>uses<span class="_ _17"> </span>the<span class="_ _17"> </span>intrinsic<span class="_ _8"> </span>on<span class="_ _17"> </span>ha<span class="_ _3"></span>rdwa<span class="_ _3"></span>re<span class="_ _8"> </span>that<span class="_ _17"> </span>do<span class="_ _b"></span>esnt<span class="_ _17"> </span>supp<span class="_ _b"></span>ort<span class="_ _f"> </span>the<span class="_ _3a"> </span><span class="ffb">lzcnt</span></div><div class="t m0 xd hb y1b4 ffa fs6 fc0 sc0 ls0 ws0">instruction,<span class="_ _c"> </span>the<span class="_ _c"> </span>results<span class="_ _f"> </span>are<span class="_ _c"> </span>unp<span class="_ _3"></span>redictable”<span class="_ _c"> </span>-<span class="_ _f"> </span>MSVC</div><div class="t m0 x1 hb y1b5 ff4 fs6 fc0 sc0 ls0 ws0">on<span class="_ _c"> </span>the<span class="_ _c"> </span>contrary<span class="_ _7"></span>,<span class="_ _c"> </span>GNU<span class="_ _c"> </span>and<span class="_ _f"> </span>clang<span class="_ _39"> </span><span class="ff7">builtin<span class="_ _8"> </span>*<span class="_ _10"> </span></span>instructions<span class="_ _c"> </span>are<span class="_ _c"> </span>alw<span class="_ _3"></span>ays<span class="_ _c"> </span>w<span class="_ _3"></span>ell-defined.</div><div class="t m0 x1 hb y1b6 ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>instruction<span class="_ _c"> </span>is<span class="_ _f"> </span>translated<span class="_ _c"> </span>to<span class="_ _f"> </span>a<span class="_ _c"> </span>non-optimal<span class="_ _f"> </span>op<span class="_ _b"></span>eration<span class="_ _c"> </span>sequence<span class="_ _f"> </span>in<span class="_ _c"> </span>the<span class="_ _f"> </span>wo<span class="_ _3"></span>rst<span class="_ _c"> </span>case</div><div class="t m0 x1 hb y1b7 ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>instruction<span class="_ _c"> </span>set<span class="_ _f"> </span>supp<span class="_ _b"></span>ort<span class="_ _c"> </span>should<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>checked<span class="_ _c"> </span>at<span class="_ _c"> </span><span class="ffa">run-time<span class="_ _17"> </span></span>(e.g.<span class="_ _e"> </span>with<span class="_ _39"> </span><span class="ff7">cpuid</span></div><div class="t m0 x1 hb y1b8 ff4 fs6 fc0 sc0 ls0 ws0">function<span class="_ _c"> </span>on<span class="_ _c"> </span>MSVC),<span class="_ _c"> </span>or,<span class="_ _c"> </span>when<span class="_ _c"> </span>available,<span class="_ _c"> </span>by<span class="_ _c"> </span>using<span class="_ _c"> </span>compiler-time<span class="_ _c"> </span>macro<span class="_ _f"> </span>(e.g.<span class="_ _49"> </span><span class="ff7">AVX<span class="_ _4a"> </span></span>)</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">42/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf2f" class="pf w0 h0" data-page-no="2f"><div class="pc pc2f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">A<span class="_ _3"></span>utomatic<span class="_ _17"> </span>Compiler<span class="_ _17"> </span>Function<span class="_ _8"> </span>T<span class="_ _7"></span>ransfo<span class="_ _3"></span>rmation</div><div class="t m0 xd hb y187 ff7 fs6 fc0 sc0 ls0 ws0">std::abs<span class="_ _10"> </span><span class="ff4">can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>recognized<span class="_ _f"> </span>by<span class="_ _c"> </span>the<span class="_ _c"> </span>compiler<span class="_ _c"> </span>and<span class="_ _f"> </span>transfo<span class="_ _3"></span>rmed<span class="_ _f"> </span>to<span class="_ _c"> </span>a<span class="_ _f"> </span>hardw<span class="_ _3"></span>a<span class="_ _3"></span>re</span></div><div class="t m0 x1 hb y188 ff4 fs6 fc0 sc0 ls0 ws0">instruction</div><div class="t m0 x1 hb y189 ff4 fs6 fc0 sc0 ls0 ws0">In<span class="_ _c"> </span>a<span class="_ _c"> </span>similar<span class="_ _c"> </span>w<span class="_ _3"></span>ay<span class="_ _7"></span>,<span class="_ _c"> </span><span class="fcd">C++20<span class="_ _c"> </span></span>p<span class="_ _3"></span>rovides<span class="_ _f"> </span>a<span class="_ _c"> </span>p<span class="_ _b"></span>ortable<span class="_ _c"> </span>and<span class="_ _c"> </span>efficient<span class="_ _c"> </span>wa<span class="_ _3"></span>y<span class="_ _c"> </span>to<span class="_ _c"> </span>express<span class="_ _c"> </span>bit<span class="_ _c"> </span>op<span class="_ _b"></span>erations</div><div class="t m0 xd h11 y1b9 ff19 fs6 fc0 sc0 ls0 ws0">&lt;<span class="ff7">bit</span>&gt;</div><div class="t m0 x33 hb y18b ff7 fs6 fc0 sc0 ls0 ws0">rotate<span class="_ _15"> </span>left<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::rotl</div><div class="t m0 x34 hb y18c ff7 fs6 fc0 sc0 ls0 ws0">rotate<span class="_ _15"> </span>right<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::rotr</div><div class="t m0 x35 hb y111 ff7 fs6 fc0 sc0 ls0 ws0">count<span class="_ _15"> </span>leading<span class="_ _15"> </span>zero<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::countl<span class="_ _8"> </span>zero</div><div class="t m0 x9 hb y112 ff7 fs6 fc0 sc0 ls0 ws0">count<span class="_ _15"> </span>leading<span class="_ _15"> </span>one<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::countl<span class="_ _8"> </span>one</div><div class="t m0 x2e hb y113 ff7 fs6 fc0 sc0 ls0 ws0">count<span class="_ _15"> </span>trailing<span class="_ _15"> </span>zero<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::countr<span class="_ _8"> </span>zero</div><div class="t m0 x35 hb y1ba ff7 fs6 fc0 sc0 ls0 ws0">count<span class="_ _15"> </span>trailing<span class="_ _15"> </span>one<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::countr<span class="_ _8"> </span>one</div><div class="t m0 x12 hb y1bb ff7 fs6 fc0 sc0 ls0 ws0">population<span class="_ _15"> </span>count<span class="_ _6"> </span><span class="ff4">:<span class="_ _4"> </span></span>std::popcount</div><div class="t m0 x30 hd y1bc ffc fs7 fcc sc0 ls0 ws0">Why<span class="_ _9"> </span>is<span class="_ _9"> </span>the<span class="_ _e"> </span>standard<span class="_ _9"> </span>&quot;abs&quot;<span class="_ _9"> </span>function<span class="_ _e"> </span>faster<span class="_ _9"> </span>than<span class="_ _9"> </span>mine?</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">43/84</div><a class="l" href="https://stackoverflow.com/questions/66023408/why-is-the-standard-abs-function-faster-than-mine"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:1.006500px;width:246.775000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf30" class="pf w0 h0" data-page-no="30"><div class="pc pc30 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">V<span class="_ _3"></span>alue<span class="_ _17"> </span>in<span class="_ _17"> </span>a<span class="_ _9"> </span>Range</div><div class="t m0 x1 hb y77 ff1 fs6 fc0 sc0 ls0 ws0">Checking<span class="_ _f"> </span>if<span class="_ _8"> </span>a<span class="_ _8"> </span>non-negative<span class="_ _8"> </span>value<span class="_ _8"> </span><span class="ff1a">x<span class="_ _e"> </span></span>is<span class="_ _f"> </span>within<span class="_ _8"> </span>a<span class="_ _8"> </span>range<span class="_ _f"> </span><span class="ff1a">[A,<span class="_ _8"> </span>B]<span class="_ _e"> </span></span>can<span class="_ _8"> </span>b<span class="_ _b"></span>e<span class="_ _8"> </span>optimized<span class="_ _8"> </span>if</div><div class="t m0 x1 hb y10c ff1a fs6 fc0 sc0 ls0 ws0">B<span class="_ _17"> </span><span class="ff19">&gt;<span class="_ _8"> </span></span>A<span class="_ _f"> </span><span class="ff4">(useful<span class="_ _c"> </span>when<span class="_ _f"> </span>the<span class="_ _c"> </span>condition<span class="_ _f"> </span>is<span class="_ _c"> </span>rep<span class="_ _b"></span>eated<span class="_ _f"> </span>multiple<span class="_ _c"> </span>times)</span></div><div class="t m0 xd hc y1bd ff5 fs4 fc9 sc0 ls0 ws0">if<span class="_ _e"> </span><span class="ff7 fc0">(x<span class="_ _6"> </span><span class="fc8">&gt;=<span class="_ _6"> </span></span>A<span class="_ _e"> </span><span class="fc8">&amp;&amp;<span class="_ _6"> </span></span>x<span class="_ _e"> </span><span class="fc8">&lt;=<span class="_ _6"> </span></span>B)</span></div><div class="t m0 xd hc y1be ffb fs4 fc5 sc0 ls0 ws0">//<span class="_ _e"> </span><span class="ff15">STEP<span class="_ _6"> </span>1</span>:<span class="_ _6"> </span>subtract<span class="_ _e"> </span><span class="ff15">A</span></div><div class="t m0 xd hc y1bf ff5 fs4 fc9 sc0 ls0 ws0">if<span class="_ _e"> </span><span class="ff7 fc0">(x<span class="_ _6"> </span><span class="fc8">-<span class="_ _6"> </span></span>A<span class="_ _e"> </span><span class="fc8">&gt;=<span class="_ _6"> </span></span>A<span class="_ _e"> </span><span class="fc8">-<span class="_ _6"> </span></span>A<span class="_ _e"> </span><span class="fc8">&amp;&amp;<span class="_ _6"> </span></span>x<span class="_ _e"> </span><span class="fc8">-<span class="_ _6"> </span></span>A<span class="_ _e"> </span><span class="fc8">&lt;=<span class="_ _6"> </span></span>B<span class="_ _e"> </span><span class="fc8">-<span class="_ _6"> </span></span>A)</span></div><div class="t m0 xd hc y1c0 ffb fs4 fc5 sc0 ls0 ws0">//<span class="_ _e"> </span>--&gt;</div><div class="t m0 xd hc y1c1 ff5 fs4 fc9 sc0 ls0 ws0">if<span class="_ _e"> </span><span class="ff7 fc0">(x<span class="_ _6"> </span><span class="fc8">-<span class="_ _6"> </span></span>A<span class="_ _e"> </span><span class="fc8">&gt;=<span class="_ _6"> </span>0<span class="_ _e"> </span>&amp;&amp;<span class="_ _6"> </span></span>x<span class="_ _e"> </span><span class="fc8">-<span class="_ _6"> </span></span>A<span class="_ _e"> </span><span class="fc8">&lt;=<span class="_ _6"> </span></span>B<span class="_ _e"> </span><span class="fc8">-<span class="_ _6"> </span></span>A)<span class="_ _e"> </span><span class="ffb fc5">//<span class="_ _6"> </span>B<span class="_ _6"> </span>-<span class="_ _e"> </span>A<span class="_ _6"> </span>is<span class="_ _e"> </span>precomputed</span></span></div><div class="t m0 xd hc y1c2 ffb fs4 fc5 sc0 ls0 ws0">//<span class="_ _e"> </span><span class="ff15">STEP<span class="_ _6"> </span>2</span></div><div class="t m0 xd hc y1c3 ffb fs4 fc5 sc0 ls0 ws0">//<span class="_ _4b"> </span>-<span class="_ _e"> </span>convert<span class="_ _6"> </span>&quot;x<span class="_ _6"> </span>-<span class="_ _e"> </span>A<span class="_ _6"> </span>&gt;=<span class="_ _e"> </span>0&quot;<span class="_ _6"> </span>--&gt;<span class="_ _e"> </span>(unsigned)<span class="_ _6"> </span>(x<span class="_ _e"> </span>-<span class="_ _6"> </span>A)</div><div class="t m0 xd hc y1c4 ffb fs4 fc5 sc0 ls0 ws0">//<span class="_ _4b"> </span>-<span class="_ _e"> </span>&quot;B<span class="_ _6"> </span>-<span class="_ _6"> </span>A&quot;<span class="_ _e"> </span>is<span class="_ _6"> </span>always<span class="_ _e"> </span>positive</div><div class="t m0 xd hc y1c5 ff5 fs4 fc9 sc0 ls0 ws0">if<span class="_ _e"> </span><span class="ff7 fc0">((</span><span class="fc6">unsigned<span class="ff7 fc0">)<span class="_ _6"> </span>(x<span class="_ _6"> </span><span class="fc8">-<span class="_ _e"> </span></span>A)<span class="_ _6"> </span><span class="fc8">&lt;=<span class="_ _e"> </span></span>(</span>unsigned<span class="ff7 fc0">)<span class="_ _6"> </span>(B<span class="_ _e"> </span><span class="fc8">-<span class="_ _6"> </span></span>A))</span></span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">44/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf31" class="pf w0 h0" data-page-no="31"><div class="pc pc31 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">V<span class="_ _3"></span>alue<span class="_ _17"> </span>in<span class="_ _17"> </span>a<span class="_ _9"> </span>Range<span class="_ _17"> </span>Examples</div><div class="t m0 x1 hb y1c6 ff4 fs6 fc0 sc0 ls0 ws0">Check<span class="_ _c"> </span>if<span class="_ _c"> </span>a<span class="_ _f"> </span>value<span class="_ _c"> </span>is<span class="_ _f"> </span>an<span class="_ _c"> </span>upp<span class="_ _0"></span>ercase<span class="_ _c"> </span>letter:</div><div class="t m0 xd hd y1c7 ff5 fs7 fc6 sc0 ls0 ws0">uint8_t<span class="_ _9"> </span><span class="ffc fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>...</span></div><div class="t m0 xd hd y1c8 ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_ _9"> </span><span class="ffc fc0">(x<span class="_ _9"> </span><span class="fc8">&gt;=<span class="_ _e"> </span><span class="ffe fca">&apos;<span class="ffc">A</span>&apos;<span class="_ _9"> </span></span>&amp;&amp;<span class="_ _9"> </span></span>x<span class="_ _e"> </span><span class="fc8">&lt;=<span class="_ _9"> </span><span class="ffe fca">&apos;<span class="ffc">Z</span>&apos;</span></span>)</span></div><div class="t m0 x6 hd y1c9 ffc fs7 fc0 sc0 ls0 ws0">...</div><div class="t m0 x36 h14 y1ca ff10 fs6 fc0 sc0 ls0 ws0">→</div><div class="t m0 x37 hd y1c7 ff5 fs7 fc6 sc0 ls0 ws0">uint8_t<span class="_ _9"> </span><span class="ffc fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>...</span></div><div class="t m0 x37 hd y1c8 ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_ _9"> </span><span class="ffc fc0">(x<span class="_ _9"> </span><span class="fc8">-<span class="_ _e"> </span><span class="ffe fca">&apos;<span class="ffc">A</span>&apos;<span class="_ _9"> </span></span>&lt;=<span class="_ _9"> </span><span class="ffe fca">&apos;<span class="ffc">Z</span>&apos;</span></span>)</span></div><div class="t m0 x38 hd y1c9 ffc fs7 fc0 sc0 ls0 ws0">...</div><div class="t m0 x1 hb y1cb ff4 fs6 fc0 sc0 ls0 ws0">A<span class="_ _c"> </span>more<span class="_ _c"> </span>general<span class="_ _c"> </span>case:</div><div class="t m0 xd hd y1cc ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>...</span></div><div class="t m0 xd hd y1cd ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_ _9"> </span><span class="ffc fc0">(x<span class="_ _9"> </span><span class="fc8">&gt;=<span class="_ _e"> </span>-10<span class="_ _9"> </span>&amp;&amp;<span class="_ _9"> </span></span>x<span class="_ _e"> </span><span class="fc8">&lt;=<span class="_ _9"> </span>30</span>)</span></div><div class="t m0 x6 hd y1ce ffc fs7 fc0 sc0 ls0 ws0">...</div><div class="t m0 x36 h14 y1cf ff10 fs6 fc0 sc0 ls0 ws0">→</div><div class="t m0 x37 hd y1cc ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>...</span></div><div class="t m0 x37 hd y1cd ff5 fs7 fc9 sc0 ls0 ws0">if<span class="_ _9"> </span><span class="ffc fc0">((</span><span class="fc6">unsigned<span class="ffc fc0">)<span class="_ _9"> </span>(x<span class="_ _e"> </span><span class="fc8">+<span class="_ _9"> </span>10</span>)<span class="_ _9"> </span><span class="fc8">&lt;=<span class="_ _e"> </span>40</span>)</span></span></div><div class="t m0 x38 hd y1ce ffc fs7 fc0 sc0 ls0 ws0">...</div><div class="t m0 x30 h10 y1d0 fff fs7 fcc sc0 ls0 ws0">The<span class="_ _d"> </span>compiler<span class="_ _25"> </span>applies<span class="_ _d"> </span>this<span class="_ _d"> </span>optimization<span class="_ _d"> </span>only<span class="_ _d"> </span>in<span class="_ _d"> </span>some<span class="_ _d"> </span>cases</div><div class="t m0 xb h10 y1d1 fff fs7 fcc sc0 ls0 ws0">(tested<span class="_ _d"> </span>with<span class="_ _25"> </span>GCC/Clang<span class="_ _d"> </span>9<span class="_ _d"> </span><span class="ffc">-O3</span>)</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">45/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf32" class="pf w0 h0" data-page-no="32"><div class="pc pc32 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _b"></span>okup<span class="_ _17"> </span>T<span class="_ _7"></span>able</div><div class="t m0 x1 hb y77 ff1 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>okup<span class="_ _8"> </span>table<span class="_ _f"> </span>(LUT)<span class="_ _f"> </span><span class="ff4">is<span class="_ _c"> </span>a<span class="_ _f"> </span><span class="ffa">memoization<span class="_ _f"> </span></span>technique<span class="_ _f"> </span>which<span class="_ _c"> </span>allows<span class="_ _c"> </span>replacing<span class="_ _c"> </span><span class="ffa">runtime</span></span></div><div class="t m0 x1 hb y10c ff4 fs6 fc0 sc0 ls0 ws0">computation<span class="_ _c"> </span>with<span class="_ _c"> </span>precomputed<span class="_ _c"> </span>values</div><div class="t m0 x1 h6 y1d2 ff4 fs4 fc0 sc0 ls0 ws0">Example:<span class="_ _17"> </span>a<span class="_ _c"> </span>function<span class="_ _d"> </span>that<span class="_ _c"> </span>computes<span class="_ _d"> </span>the<span class="_ _c"> </span>loga<span class="_ _3"></span>rithm<span class="_ _c"> </span>base<span class="_ _d"> </span>10<span class="_ _c"> </span>of<span class="_ _d"> </span>a<span class="_ _c"> </span>number<span class="_ _c"> </span>in<span class="_ _d"> </span>the<span class="_ _c"> </span>range<span class="_ _d"> </span>[1-100]</div><div class="t m0 xd hf y1d3 ff5 fs5 fc9 sc0 ls0 ws0">template<span class="ffd fc8">&lt;</span><span class="fc6">int<span class="_ _8"> </span><span class="ffd fc0">SIZE,<span class="_ _17"> </span></span></span>typename<span class="_ _17"> </span><span class="fc7">Lambda<span class="ffd fc8">&gt;</span></span></div><div class="t m0 xd hf y1d4 ff5 fs5 fc9 sc0 ls0 ws0">constexpr<span class="_ _8"> </span><span class="ffd fc0">std<span class="fc8">::</span>array<span class="fc8">&lt;</span></span><span class="fc6">float<span class="ffd fc0">,<span class="_ _17"> </span>SIZE<span class="fc8">&gt;<span class="_ _17"> </span></span>build(Lambda<span class="_ _8"> </span>lambda)<span class="_ _17"> </span>{</span></span></div><div class="t m0 xf hf y1d5 ffd fs5 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>array<span class="fc8">&lt;<span class="ff5 fc6">float</span></span>,<span class="_ _8"> </span>SIZE<span class="fc8">&gt;<span class="_ _17"> </span></span>array{};</div><div class="t m0 xf hf y1d6 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_ _8"> </span><span class="ffd fc0">(</span><span class="fc6">int<span class="_ _17"> </span><span class="ffd fc0">i<span class="_ _17"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _17"> </span>i<span class="_ _17"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>SIZE;<span class="_ _17"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x15 hf y1d7 ffd fs5 fc0 sc0 ls0 ws0">array[i]<span class="_ _8"> </span><span class="fc8">=<span class="_ _17"> </span></span>lambda(i);</div><div class="t m0 xf hf y1d8 ff5 fs5 fc9 sc0 ls0 ws0">return<span class="_ _8"> </span><span class="ffd fc0">array;</span></div><div class="t m0 xd hf y1d9 ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd hf y1da ff5 fs5 fc6 sc0 ls0 ws0">float<span class="_ _8"> </span><span class="ffd fc0">log10(</span>int<span class="_ _17"> </span><span class="ffd fc0">value)<span class="_ _17"> </span>{</span></div><div class="t m0 xf hf y1db ff5 fs5 fc9 sc0 ls0 ws0">constexpr<span class="_ _8"> </span>auto<span class="_ _17"> </span><span class="ffd fc0">lamba<span class="_ _17"> </span><span class="fc8">=<span class="_ _8"> </span></span>[](</span><span class="fc6">int<span class="_ _17"> </span><span class="ffd fc0">i)<span class="_ _17"> </span>{<span class="_ _8"> </span></span></span>return<span class="_ _17"> </span><span class="ffd fc0">std<span class="fc8">::</span>log10f((</span><span class="fc6">float<span class="ffd fc0">)<span class="_ _17"> </span>i);<span class="_ _8"> </span>};</span></span></div><div class="t m0 xf hf y1dc ff5 fs5 fc9 sc0 ls0 ws0">static<span class="_ _8"> </span>constexpr<span class="_ _17"> </span>auto<span class="_ _17"> </span><span class="ffd fc0">table<span class="_ _8"> </span><span class="fc8">=<span class="_ _17"> </span></span>build<span class="fc8">&lt;100&gt;</span>(lambda);</span></div><div class="t m0 xf hf y1dd ff5 fs5 fc9 sc0 ls0 ws0">return<span class="_ _8"> </span><span class="ffd fc0">table[value];</span></div><div class="t m0 xd hf y1de ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x30 hd y1df ffc fs7 fcc sc0 ls0 ws0">Make<span class="_ _9"> </span>your<span class="_ _9"> </span>lookup<span class="_ _e"> </span>table<span class="_ _9"> </span>do<span class="_ _9"> </span>more</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">46/84</div><a class="l" href="https://commaok.xyz/post/lookup_tables/"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:2.113500px;width:143.213000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf33" class="pf w0 h0" data-page-no="33"><div class="pc pc33 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _3"></span>w-Level<span class="_ _17"> </span>Optimizations</div><div class="t m0 x1 hb y1e0 ff1 fs6 fc0 sc0 ls0 ws0">Collection<span class="_ _f"> </span>of<span class="_ _8"> </span>low-level<span class="_ _f"> </span>implementations/optimization<span class="_ _8"> </span>of<span class="_ _8"> </span>common<span class="_ _f"> </span>op<span class="_ _0"></span>erations:</div><div class="t m0 xb hb y1e1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Bit<span class="_ _8"> </span>T<span class="_ _7"></span>widdling<span class="_ _f"> </span>Hacks</span></div><div class="t m0 x6 h11 y1e2 ff7 fs6 fc0 sc0 ls0 ws0">graphics.stanford.edu/<span class="ff10"></span>seander/bithacks.html</div><div class="t m0 xb hb y1e3 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">The<span class="_ _8"> </span>Aggregate<span class="_ _f"> </span>Magic<span class="_ _8"> </span>Algorithms</span></div><div class="t m0 x6 h11 y1e4 ff7 fs6 fc0 sc0 ls0 ws0">aggregate.org/MAGIC</div><div class="t m0 xb hb y1e5 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Hack<span class="_ _3"></span>ers<span class="_ _8"> </span>Delight<span class="_ _8"> </span>Bo<span class="_ _b"></span>ok</span></div><div class="t m0 x6 h11 y1e6 ff7 fs6 fc0 sc0 ls0 ws0">www.hackersdelight.org</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">47/84</div><a class="l" href="https://graphics.stanford.edu/~seander/bithacks.html"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:212.494500px;width:256.750000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://aggregate.org/MAGIC/"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:147.817500px;width:110.811000px;height:11.992000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://www.hackersdelight.org/"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:83.140500px;width:127.993000px;height:10.952000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf34" class="pf w0 h0" data-page-no="34"><div class="pc pc34 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _3"></span>w-Level<span class="_ _17"> </span>Information</div><div class="t m0 x1 hb y1e7 ff1 fs6 fc0 sc0 ls0 ws0">The<span class="_ _f"> </span>same<span class="_ _8"> </span>instruction/op<span class="_ _b"></span>eration<span class="_ _8"> </span>may<span class="_ _f"> </span>take<span class="_ _c"> </span>different<span class="_ _8"> </span>clo<span class="_ _0"></span>ck-cycles<span class="_ _c"> </span>on<span class="_ _8"> </span>different</div><div class="t m0 x1 hb y1e8 ff1 fs6 fc0 sc0 ls0 ws0">a<span class="_ _3"></span>rchitectures/CPU<span class="_ _8"> </span>type</div><div class="t m0 xb hb y1e9 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Agner<span class="_ _8"> </span>F<span class="_ _3"></span>og<span class="_ _8"> </span>-<span class="_ _8"> </span>Instruction<span class="_ _8"> </span>tables<span class="_ _c"> </span><span class="ff4">(latencies,<span class="_ _c"> </span>throughputs)</span></span></div><div class="t m0 x6 h11 y1ea ff7 fs6 fc0 sc0 ls0 ws0">www.agner.org/optimize/instruction<span class="_ _8"> </span>tables.pdf</div><div class="t m0 xb hb y1eb ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Latency<span class="_ _7"></span>,<span class="_ _f"> </span>Throughput,<span class="_ _8"> </span>and<span class="_ _8"> </span>Po<span class="_ _3"></span>rt<span class="_ _f"> </span>Usage<span class="_ _8"> </span>Information</span></div><div class="t m0 x6 h11 y1ec ff7 fs6 fc0 sc0 ls0 ws0">uops.info/table.html</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">48/84</div><a class="l" href="http://www.agner.org/optimize/instruction_tables.pdf"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:168.469500px;width:258.116000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="http://uops.info/table.html"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:103.792500px;width:116.538000px;height:11.993000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf35" class="pf w0 h0" data-page-no="35"><div class="pc pc35 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y13b ff1 fs0 fc0 sc0 ls0 ws0">Control<span class="_ _1"> </span>Flo<span class="_ _7"></span>w</div><a class="l" href="#pf35" data-dest-detail='[53,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:205.878000px;width:148.064000px;height:19.206000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf36" class="pf w0 h0" data-page-no="36"><div class="pc pc36 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Branches<span class="_ _17"> </span>a<span class="_ _3"></span>re<span class="_ _17"> </span>exp<span class="_ _0"></span>ensive<span class="_ _4c"> </span>1/2</div><div class="t m0 x39 h8 y1ed ff1 fs2 fc3 sc0 ls0 ws0">Computation<span class="_ _6"> </span>is<span class="_ _e"> </span>faster<span class="_ _6"> </span>than<span class="_ _e"> </span>decision</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">49/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf37" class="pf w0 h0" data-page-no="37"><div class="pc pc37 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Branches<span class="_ _17"> </span>a<span class="_ _3"></span>re<span class="_ _17"> </span>exp<span class="_ _0"></span>ensive<span class="_ _4c"> </span>2/2</div><div class="t m0 x1 hb y1ee ff1 fs6 fc0 sc0 ls0 ws0">Pip<span class="_ _b"></span>elines<span class="_ _c"> </span><span class="ff4">are<span class="_ _c"> </span>an<span class="_ _c"> </span>essential<span class="_ _f"> </span>element<span class="_ _c"> </span>in<span class="_ _f"> </span>mo<span class="_ _b"></span>dern<span class="_ _c"> </span>processors.<span class="_ _9"> </span>Some<span class="_ _c"> </span>processors<span class="_ _c"> </span>have<span class="_ _c"> </span>up<span class="_ _f"> </span>to</span></div><div class="t m0 x1 hb y1ef ff4 fs6 fc0 sc0 ls0 ws0">20<span class="_ _c"> </span>pip<span class="_ _b"></span>eline<span class="_ _f"> </span>stages<span class="_ _c"> </span>(14/16<span class="_ _f"> </span>t<span class="_ _3"></span>ypically)</div><div class="t m0 x1 hb y1f0 ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>downside<span class="_ _c"> </span>to<span class="_ _c"> </span>long<span class="_ _c"> </span>pip<span class="_ _b"></span>elines<span class="_ _f"> </span>includes<span class="_ _c"> </span>the<span class="_ _f"> </span>danger<span class="_ _c"> </span>of<span class="_ _9"> </span><span class="ff1">pip<span class="_ _b"></span>eline<span class="_ _8"> </span>stalls<span class="_ _c"> </span></span>that<span class="_ _f"> </span>w<span class="_ _3"></span>aste<span class="_ _f"> </span>CPU</div><div class="t m0 x1 hb y1f1 ff4 fs6 fc0 sc0 ls0 ws0">time,<span class="_ _c"> </span>and<span class="_ _c"> </span>the<span class="_ _f"> </span>time<span class="_ _c"> </span>it<span class="_ _f"> </span>takes<span class="_ _c"> </span>to<span class="_ _c"> </span>reload<span class="_ _c"> </span>the<span class="_ _f"> </span>pip<span class="_ _b"></span>eline<span class="_ _c"> </span>on<span class="_ _f"> </span><span class="ff1">conditional<span class="_ _8"> </span>b<span class="_ _3"></span>ranch<span class="_ _f"> </span><span class="ff4">op<span class="_ _b"></span>erations</span></span></div><div class="t m0 x1 hb y1f2 ff4 fs6 fc0 sc0 ls0 ws0">(<span class="_ _25"> </span><span class="ff7">if<span class="_ _d"> </span></span>,<span class="_ _10"> </span><span class="ff7">while<span class="_ _d"> </span></span>,<span class="_ _10"> </span><span class="ff7">for<span class="_ _25"> </span></span>)</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">50/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf38" class="pf w0 h0" data-page-no="38"><div class="pc pc38 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Control<span class="_ _17"> </span>Flo<span class="_ _3"></span>w<span class="_ _4d"> </span>1/2</div><div class="t m0 x3a hb yb1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff5">switch<span class="_ _10"> </span></span>statements<span class="_ _c"> </span>instead<span class="_ _c"> </span>of<span class="_ _f"> </span>multiple<span class="_ _10"> </span><span class="ff5">if</span></span></div><div class="t m0 x3b h6 y1f3 ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span>If<span class="_ _d"> </span>the<span class="_ _c"> </span>compiler<span class="_ _d"> </span>do<span class="_ _b"></span>es<span class="_ _c"> </span>not<span class="_ _d"> </span>use<span class="_ _c"> </span>a<span class="_ _d"> </span>jump-table,<span class="_ _c"> </span>the<span class="_ _d"> </span>cases<span class="_ _c"> </span>are<span class="_ _d"> </span>evaluated<span class="_ _d"> </span>in<span class="_ _c"> </span>o<span class="_ _3"></span>rder<span class="_ _c"> </span>of</div><div class="t m0 x3c h6 y1f4 ff4 fs4 fc0 sc0 ls0 ws0">app<span class="_ _b"></span>ea<span class="_ _3"></span>rance<span class="_ _c"> </span><span class="ff10">→<span class="_ _d"> </span></span>the<span class="_ _c"> </span>most<span class="_ _d"> </span>frequent<span class="_ _c"> </span>cases<span class="_ _d"> </span>should<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _d"> </span>placed<span class="_ _c"> </span>b<span class="_ _b"></span>efo<span class="_ _3"></span>re</div><div class="t m0 x3b h6 y1f5 ff4 fs4 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span>Some<span class="_ _d"> </span>compilers<span class="_ _c"> </span>(e.g.<span class="_ _17"> </span><span class="ff7">clang</span>)<span class="_ _c"> </span>a<span class="_ _3"></span>re<span class="_ _c"> </span>able<span class="_ _d"> </span>to<span class="_ _c"> </span>translate<span class="_ _d"> </span>a<span class="_ _c"> </span>sequence<span class="_ _d"> </span>of<span class="_ _11"> </span><span class="ff7">if<span class="_ _11"> </span></span>into<span class="_ _c"> </span>a<span class="_ _11"> </span><span class="ff7">switch</span></div><div class="t m0 x3a hb y1f6 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">squa<span class="_ _3"></span>re<span class="_ _8"> </span>brack<span class="_ _3"></span>ets<span class="_ _c"> </span><span class="ff4">syntax<span class="_ _10"> </span><span class="ff7">[]<span class="_ _10"> </span></span>over<span class="_ _c"> </span>p<span class="_ _b"></span>ointer<span class="_ _f"> </span>a<span class="_ _3"></span>rithmetic<span class="_ _f"> </span>op<span class="_ _b"></span>erations<span class="_ _c"> </span>for<span class="_ _c"> </span>arra<span class="_ _3"></span>y</span></span></span></div><div class="t m0 x3d hb y1f7 ff4 fs6 fc0 sc0 ls0 ws0">access<span class="_ _c"> </span>to<span class="_ _c"> </span>facilitate<span class="_ _f"> </span>compiler<span class="_ _c"> </span>lo<span class="_ _0"></span>op<span class="_ _c"> </span>optimizations<span class="_ _c"> </span>(p<span class="_ _b"></span>olyhedral<span class="_ _c"> </span>lo<span class="_ _b"></span>op<span class="_ _f"> </span>transformations)</div><div class="t m0 x3a hb y1f8 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">signed<span class="_ _8"> </span>integer<span class="_ _c"> </span></span>for<span class="_ _c"> </span><span class="ff1">lo<span class="_ _0"></span>op<span class="_ _c"> </span>indexing<span class="_ _b"></span></span>.<span class="_ _9"> </span>The<span class="_ _f"> </span>compiler<span class="_ _c"> </span>optimizes<span class="_ _f"> </span>more<span class="_ _c"> </span>aggressively</span></div><div class="t m0 x3d hb y1f9 ff4 fs6 fc0 sc0 ls0 ws0">such<span class="_ _c"> </span>lo<span class="_ _b"></span>ops<span class="_ _f"> </span>since<span class="_ _c"> </span>integer<span class="_ _f"> </span>overflo<span class="_ _3"></span>w<span class="_ _f"> </span>is<span class="_ _c"> </span>not<span class="_ _f"> </span>defined</div><div class="t m0 x3a hb y1fa ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _c"> </span>range-based<span class="_ _f"> </span>lo<span class="_ _b"></span>op<span class="_ _c"> </span>for<span class="_ _c"> </span>iterating<span class="_ _c"> </span>over<span class="_ _c"> </span>a<span class="_ _f"> </span>container<span class="_ _f"> </span><span class="ff1b">1</span></span></div><div class="t m0 x30 hd y1fb ffc fs7 fcc sc0 ls0 ws0">The<span class="_ _9"> </span>Little<span class="_ _9"> </span>Things:<span class="_ _20"> </span>Everyday<span class="_ _9"> </span>efficiencies</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">51/84</div><a class="l" href="https://codingnest.com/the-little-things-everyday-efficiencies/amp/?__twitter_impression=true"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:1.086000px;width:194.994000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf39" class="pf w0 h0" data-page-no="39"><div class="pc pc39 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Control<span class="_ _17"> </span>Flo<span class="_ _3"></span>w<span class="_ _4d"> </span>2/2</div><div class="t m0 xb hb yb1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">In<span class="_ _c"> </span>general,<span class="_ _10"> </span><span class="ff7">if<span class="_ _10"> </span></span>statements<span class="_ _c"> </span>affect<span class="_ _f"> </span>p<span class="_ _b"></span>erformance<span class="_ _c"> </span>when<span class="_ _c"> </span>the<span class="_ _c"> </span>branch<span class="_ _c"> </span>is<span class="_ _c"> </span>taken</span></div><div class="t m0 xb hb y1fc ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Some<span class="_ _c"> </span>compilers<span class="_ _f"> </span>(e.g.<span class="_ _e"> </span><span class="ff7">clang</span>)<span class="_ _c"> </span>use<span class="_ _c"> </span>assertion<span class="_ _c"> </span>for<span class="_ _c"> </span>optimization<span class="_ _c"> </span>purp<span class="_ _b"></span>oses:<span class="_ _e"> </span>most<span class="_ _c"> </span>likely</span></div><div class="t m0 x6 hb yb4 ff4 fs6 fc0 sc0 ls0 ws0">co<span class="_ _b"></span>de<span class="_ _c"> </span>path,<span class="_ _f"> </span>not<span class="_ _c"> </span>p<span class="_ _b"></span>ossible<span class="_ _f"> </span>values,<span class="_ _c"> </span>etc.<span class="_ _e"> </span><span class="ff1b">2</span></div><div class="t m0 xb hb y1fd ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Not<span class="_ _c"> </span>all<span class="_ _f"> </span>control<span class="_ _c"> </span>flow<span class="_ _c"> </span>instructions<span class="_ _c"> </span>(or<span class="_ _c"> </span>b<span class="_ _3"></span>ranches)<span class="_ _c"> </span>are<span class="_ _c"> </span>translated<span class="_ _c"> </span>into<span class="_ _10"> </span><span class="ff7">jump</span></span></div><div class="t m0 x6 hb y1fe ff4 fs6 fc0 sc0 ls0 ws0">instructions.<span class="_ _e"> </span>If<span class="_ _c"> </span>the<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>in<span class="_ _f"> </span>the<span class="_ _c"> </span>branch<span class="_ _c"> </span>is<span class="_ _c"> </span>small,<span class="_ _f"> </span>the<span class="_ _c"> </span>compiler<span class="_ _f"> </span>could<span class="_ _c"> </span>optimize<span class="_ _f"> </span>it<span class="_ _c"> </span>in<span class="_ _c"> </span>a</div><div class="t m0 x6 hb y1ff ff4 fs6 fc0 sc0 ls0 ws0">conditional<span class="_ _c"> </span>instruction,<span class="_ _c"> </span>e.g.<span class="_ _a"> </span><span class="ff7">ccmovl</span></div><div class="t m0 x6 hb y200 ff4 fs6 fc0 sc0 ls0 ws0">Small<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>section<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>optimized<span class="_ _f"> </span>in<span class="_ _c"> </span>different<span class="_ _f"> </span>w<span class="_ _3"></span>ays<span class="_ _c"> </span><span class="ff1b">3<span class="_ _c"> </span></span>(see<span class="_ _f"> </span>next<span class="_ _c"> </span>slides)</div><div class="t m0 x3e h10 y201 ff1b fs7 fcc sc0 ls0 ws0">1<span class="_ _6"> </span><span class="ffc">Branch<span class="_ _9"> </span>predictor:<span class="_ _20"> </span>How<span class="_ _9"> </span>many<span class="_ _9"> </span>ifs<span class="_ _e"> </span>are<span class="_ _9"> </span>too<span class="_ _9"> </span>many?</span></div><div class="t m0 x3e h10 y202 ff1b fs7 fcc sc0 ls0 ws0">2<span class="_ _6"> </span><span class="ffc">Andrei<span class="_ _9"> </span>Alexandrescu</span></div><div class="t m0 x3e h10 y203 ff1b fs7 fcc sc0 ls0 ws0">3<span class="_ _6"> </span><span class="ffc">Is<span class="_ _9"> </span>this<span class="_ _e"> </span>a<span class="_ _17"> </span>branch?</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">52/84</div><a class="l" href="https://blog.cloudflare.com/branch-predictor/"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:44.868000px;width:223.238000px;height:10.211000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://twitter.com/incomputable/status/1247234209753808897?s=20"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:28.951500px;width:91.432000px;height:8.220000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://bartwronski.com/2021/01/18/is-this-a-branch/"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:10.048500px;width:82.018000px;height:8.219000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf3a" class="pf w0 h0" data-page-no="3a"><div class="pc pc3a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Minimize<span class="_ _17"> </span>Branch<span class="_ _17"> </span>Overhead</div><div class="t m0 xb hb yb1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Branch<span class="_ _8"> </span>p<span class="_ _3"></span>rediction<span class="ff4">:<span class="_ _e"> </span>technique<span class="_ _c"> </span>to<span class="_ _c"> </span>guess<span class="_ _f"> </span>which<span class="_ _c"> </span>wa<span class="_ _3"></span>y<span class="_ _c"> </span>a<span class="_ _f"> </span>branch<span class="_ _c"> </span>tak<span class="_ _3"></span>es.<span class="_ _e"> </span>It<span class="_ _c"> </span>requires</span></span></div><div class="t m0 x6 hb yb2 ff4 fs6 fc0 sc0 ls0 ws0">ha<span class="_ _3"></span>rdwa<span class="_ _3"></span>re<span class="_ _c"> </span>supp<span class="_ _b"></span>ort<span class="_ _c"> </span>and<span class="_ _c"> </span>it<span class="_ _f"> </span>is<span class="_ _c"> </span>generically<span class="_ _c"> </span>based<span class="_ _f"> </span>on<span class="_ _c"> </span>dynamic<span class="_ _f"> </span>history<span class="_ _c"> </span>of<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>executing</div><div class="t m0 xb hb y204 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Branch<span class="_ _8"> </span>p<span class="_ _3"></span>redication<span class="ff4">:<span class="_ _e"> </span>a<span class="_ _c"> </span>conditional<span class="_ _c"> </span>branch<span class="_ _c"> </span>is<span class="_ _c"> </span>substituted<span class="_ _f"> </span>b<span class="_ _3"></span>y<span class="_ _f"> </span>a<span class="_ _c"> </span>sequence<span class="_ _f"> </span>of</span></span></div><div class="t m0 x6 hb y205 ff4 fs6 fc0 sc0 ls0 ws0">instructions<span class="_ _c"> </span>from<span class="_ _c"> </span>b<span class="_ _0"></span>oth<span class="_ _c"> </span>paths<span class="_ _c"> </span>of<span class="_ _c"> </span>the<span class="_ _f"> </span>b<span class="_ _3"></span>ranch.<span class="_ _e"> </span>Only<span class="_ _c"> </span>the<span class="_ _f"> </span>instructions<span class="_ _c"> </span>asso<span class="_ _b"></span>ciated<span class="_ _f"> </span>to<span class="_ _c"> </span>a</div><div class="t m0 x6 hb y206 ffa fs6 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>redicate<span class="_ _17"> </span><span class="ff4">(b<span class="_ _b"></span>o<span class="_ _b"></span>olean<span class="_ _c"> </span>value),<span class="_ _f"> </span>that<span class="_ _c"> </span>represents<span class="_ _c"> </span>the<span class="_ _c"> </span>direction<span class="_ _f"> </span>of<span class="_ _c"> </span>the<span class="_ _f"> </span>b<span class="_ _3"></span>ranch,<span class="_ _f"> </span>a<span class="_ _3"></span>re<span class="_ _f"> </span>actually</span></div><div class="t m0 x6 hb y207 ff4 fs6 fc0 sc0 ls0 ws0">executed</div><div class="t m0 xc hf y208 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_ _8"> </span><span class="ffd fc0">x<span class="_ _17"> </span><span class="fc8">=<span class="_ _17"> </span></span>(condition)<span class="_ _8"> </span><span class="fc8">?<span class="_ _17"> </span></span>A[i]<span class="_ _17"> </span><span class="fc8">:<span class="_ _8"> </span></span>B[i];</span></div><div class="t m0 xc hf y209 ffd fs5 fc0 sc0 ls0 ws0">P<span class="_ _8"> </span><span class="fc8">=<span class="_ _17"> </span></span>(condition)<span class="_ _17"> </span><span class="ffb fc5">//<span class="_ _8"> </span>P:<span class="_ _17"> </span>predicate</span></div><div class="t m0 xc hf y20a ffd fs5 fc0 sc0 ls0 ws0">@P<span class="_ _14"> </span>x<span class="_ _8"> </span><span class="fc8">=<span class="_ _17"> </span></span>A[i];</div><div class="t m0 xc hf y20b ffd fs5 fc0 sc0 ls0 ws0">@<span class="fc8">!</span>P<span class="_ _8"> </span>x<span class="_ _17"> </span><span class="fc8">=<span class="_ _17"> </span></span>B[i];</div><div class="t m0 xb hb y20c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Sp<span class="_ _b"></span>eculative<span class="_ _8"> </span>execution<span class="ff4">:<span class="_ _e"> </span>execute<span class="_ _c"> </span>b<span class="_ _b"></span>oth<span class="_ _c"> </span>sides<span class="_ _f"> </span>of<span class="_ _c"> </span>the<span class="_ _f"> </span>conditional<span class="_ _c"> </span>branch<span class="_ _c"> </span>to<span class="_ _c"> </span>b<span class="_ _b"></span>etter</span></span></div><div class="t m0 x6 hb y20d ff4 fs6 fc0 sc0 ls0 ws0">utilize<span class="_ _c"> </span>the<span class="_ _c"> </span>computer<span class="_ _f"> </span>resources<span class="_ _c"> </span>and<span class="_ _f"> </span>commit<span class="_ _c"> </span>the<span class="_ _f"> </span>results<span class="_ _c"> </span>asso<span class="_ _b"></span>ciated<span class="_ _f"> </span>to<span class="_ _c"> </span>the<span class="_ _f"> </span>branch</div><div class="t m0 x6 hb y20e ff4 fs6 fc0 sc0 ls0 ws0">tak<span class="_ _3"></span>en</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">53/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf3b" class="pf w0 h0" data-page-no="3b"><div class="pc pc3b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _17"> </span>Hoisting</div><div class="t m0 x1 hb y77 ff1 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _8"> </span>Hoisting<span class="ff4">,<span class="_ _c"> </span>also<span class="_ _f"> </span>called<span class="_ _c"> </span><span class="ffa">lo<span class="_ _b"></span>op-invariant<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>motion</span>,<span class="_ _c"> </span>consists<span class="_ _f"> </span>of<span class="_ _c"> </span>moving<span class="_ _f"> </span>statements</span></div><div class="t m0 x1 hb y10c ff4 fs6 fc0 sc0 ls0 ws0">o<span class="_ _3"></span>r<span class="_ _f"> </span>exp<span class="_ _3"></span>ressions<span class="_ _f"> </span>outside<span class="_ _c"> </span>the<span class="_ _f"> </span>b<span class="_ _b"></span>o<span class="_ _b"></span>dy<span class="_ _c"> </span>of<span class="_ _f"> </span>a<span class="_ _c"> </span>lo<span class="_ _0"></span>op<span class="_ _c"> </span><span class="ffa">without<span class="_ _c"> </span>affecting<span class="_ _c"> </span>the<span class="_ _f"> </span>semantics<span class="_ _17"> </span></span>of<span class="_ _f"> </span>the</div><div class="t m0 x1 hb y10d ff4 fs6 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>rogram</div><div class="t m0 x1 hd y20f ffc fs7 fc0 sc0 ls0 ws0">Base<span class="_ _9"> </span>case:</div><div class="t m0 xd hd y210 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span>100</span>;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x6 hd y211 ffc fs7 fc0 sc0 ls0 ws0">a[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>x<span class="_ _e"> </span><span class="fc8">+<span class="_ _9"> </span></span>y;</div><div class="t m0 x3f hd y212 ffc fs7 fc0 sc0 ls0 ws0">Better:</div><div class="t m0 x40 hd y213 ffc fs7 fc0 sc0 ls0 ws0">v<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>x<span class="_ _e"> </span><span class="fc8">+<span class="_ _9"> </span></span>y;</div><div class="t m0 x40 hd y214 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span>100</span>;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x41 hd y215 ffc fs7 fc0 sc0 ls0 ws0">a[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>v;</div><div class="t m0 x1 hb y216 ff4 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _c"> </span>hoisting<span class="_ _f"> </span>is<span class="_ _c"> </span>also<span class="_ _f"> </span>imp<span class="_ _b"></span>o<span class="_ _3"></span>rtant<span class="_ _f"> </span>in<span class="_ _c"> </span>the<span class="_ _f"> </span>evaluation<span class="_ _c"> </span>of<span class="_ _f"> </span>lo<span class="_ _b"></span>op<span class="_ _c"> </span>conditions</div><div class="t m0 x1 hd y217 ffc fs7 fc0 sc0 ls0 ws0">Base<span class="_ _9"> </span>case:</div><div class="t m0 xd hd y218 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>&quot;x&quot;<span class="_ _9"> </span>never<span class="_ _e"> </span>changes</div><div class="t m0 xd hd y219 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>f(x);<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x42 hd y21a ffc fs7 fc0 sc0 ls0 ws0">a[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>y;</div><div class="t m0 x3f hd y217 ffc fs7 fc0 sc0 ls0 ws0">Better:</div><div class="t m0 x40 hd y218 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc0">limit<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>f(x);</span></div><div class="t m0 x40 hd y219 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>limit;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x43 hd y21a ffc fs7 fc0 sc0 ls0 ws0">a[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>y;</div><div class="t m0 x1 hb y21b ff4 fs6 fc0 sc0 ls0 ws0">In<span class="_ _c"> </span>the<span class="_ _c"> </span>wo<span class="_ _3"></span>rst<span class="_ _c"> </span>case,<span class="_ _10"> </span><span class="ff7">f(x)<span class="_ _10"> </span></span>is<span class="_ _f"> </span>evaluated<span class="_ _c"> </span>at<span class="_ _f"> </span>every<span class="_ _c"> </span>iteration<span class="_ _f"> </span>(esp<span class="_ _b"></span>ecially<span class="_ _c"> </span>when<span class="_ _f"> </span>it<span class="_ _c"> </span>b<span class="_ _b"></span>elongs<span class="_ _f"> </span>to</div><div class="t m0 x1 hb y21c ff4 fs6 fc0 sc0 ls0 ws0">another<span class="_ _c"> </span>translation<span class="_ _c"> </span>unit)</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">54/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf3c" class="pf w0 h0" data-page-no="3c"><div class="pc pc3c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _17"> </span>Unrolling<span class="_ _4e"> </span>1/2</div><div class="t m0 x1 hb y77 ff1 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _8"> </span>unrolling<span class="_ _f"> </span><span class="ff4">(o<span class="_ _3"></span>r<span class="_ _f"> </span><span class="ff1">unwinding<span class="_ _b"></span></span>)<span class="_ _c"> </span>is<span class="_ _f"> </span>a<span class="_ _c"> </span>lo<span class="_ _b"></span>op<span class="_ _f"> </span>transfo<span class="_ _3"></span>rmation<span class="_ _f"> </span>technique<span class="_ _c"> </span>which<span class="_ _f"> </span>optimizes</span></div><div class="t m0 x1 hb y10c ff4 fs6 fc0 sc0 ls0 ws0">the<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>b<span class="_ _3"></span>y<span class="_ _f"> </span>removing<span class="_ _c"> </span>(or<span class="_ _c"> </span>reducing)<span class="_ _c"> </span>lo<span class="_ _b"></span>op<span class="_ _f"> </span>iterations</div><div class="t m0 x1 hb y21d ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>optimization<span class="_ _c"> </span>produces<span class="_ _f"> </span>b<span class="_ _b"></span>etter<span class="_ _f"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>at<span class="_ _f"> </span>the<span class="_ _c"> </span>exp<span class="_ _b"></span>ense<span class="_ _f"> </span>of<span class="_ _c"> </span>binary<span class="_ _c"> </span>size</div><div class="t m0 x1 h6 y21e ff4 fs4 fc0 sc0 ls0 ws0">Example:</div><div class="t m0 xd hc y21f ff5 fs4 fc9 sc0 ls0 ws0">for<span class="_ _e"> </span><span class="ff7 fc0">(</span><span class="fc6">int<span class="_ _6"> </span><span class="ff7 fc0">i<span class="_ _6"> </span><span class="fc8">=<span class="_ _e"> </span>0</span>;<span class="_ _6"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _6"> </span></span>N;<span class="_ _e"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x44 hc y220 ff7 fs4 fc0 sc0 ls0 ws0">sum<span class="_ _e"> </span><span class="fc8">+=<span class="_ _6"> </span></span>A[i];</div><div class="t m0 x1 h6 y221 ff4 fs4 fc0 sc0 ls0 ws0">can<span class="_ _d"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>rewritten<span class="_ _d"> </span>as:</div><div class="t m0 xd hf y222 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_ _8"> </span><span class="ffd fc0">(</span><span class="fc6">int<span class="_ _17"> </span><span class="ffd fc0">i<span class="_ _17"> </span><span class="fc8">=<span class="_ _8"> </span>0</span>;<span class="_ _17"> </span>i<span class="_ _17"> </span><span class="fc8">&lt;<span class="_ _8"> </span></span>N;<span class="_ _17"> </span>i<span class="_ _17"> </span><span class="fc8">+=<span class="_ _8"> </span>8</span>)<span class="_ _17"> </span>{</span></span></div><div class="t m0 xf hf y223 ffd fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _17"> </span></span>A[i];</div><div class="t m0 xf hf y224 ffd fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _17"> </span></span>A[i<span class="_ _17"> </span><span class="fc8">+<span class="_ _8"> </span>1</span>];</div><div class="t m0 xf hf y225 ffd fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _17"> </span></span>A[i<span class="_ _17"> </span><span class="fc8">+<span class="_ _8"> </span>2</span>];</div><div class="t m0 xf hf y226 ffd fs5 fc0 sc0 ls0 ws0">sum<span class="_ _8"> </span><span class="fc8">+=<span class="_ _17"> </span></span>A[i<span class="_ _17"> </span><span class="fc8">+<span class="_ _8"> </span>3</span>];</div><div class="t m0 xf hf y227 ffd fs5 fc0 sc0 ls0 ws0">...</div><div class="t m0 xd hf y228 ffd fs5 fc0 sc0 ls0 ws0">}<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>we<span class="_ _8"> </span>suppose<span class="_ _17"> </span>N<span class="_ _8"> </span>is<span class="_ _17"> </span>a<span class="_ _8"> </span>multiple<span class="_ _17"> </span>of<span class="_ _8"> </span>8</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">55/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf3d" class="pf w0 h0" data-page-no="3d"><div class="pc pc3d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _17"> </span>Unrolling<span class="_ _4e"> </span>2/2</div><div class="t m0 x1 hb y77 ff1 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _8"> </span>unrolling<span class="_ _f"> </span>can<span class="_ _8"> </span>make<span class="_ _f"> </span>your<span class="_ _c"> </span>co<span class="_ _0"></span>de<span class="_ _f"> </span>b<span class="_ _b"></span>etter/faster:</div><div class="t m0 x30 hb y229 ff1 fs6 fc0 sc0 ls0 ws0">+<span class="_ _6"> </span><span class="ff4">Imp<span class="_ _3"></span>rove<span class="_ _f"> </span>instruction-level<span class="_ _c"> </span>parallelism<span class="_ _c"> </span>(ILP)</span></div><div class="t m0 x30 hb y22a ff1 fs6 fc0 sc0 ls0 ws0">+<span class="_ _6"> </span><span class="ff4">Allo<span class="_ _3"></span>w<span class="_ _f"> </span>vector<span class="_ _c"> </span>(SIMD)<span class="_ _c"> </span>instructions</span></div><div class="t m0 x30 hb y22b ff1 fs6 fc0 sc0 ls0 ws0">+<span class="_ _6"> </span><span class="ff4">Reduce<span class="_ _c"> </span>control<span class="_ _f"> </span>instructions<span class="_ _c"> </span>and<span class="_ _f"> </span>b<span class="_ _3"></span>ranches</span></div><div class="t m0 x1 hb y22c ff1 fs6 fc0 sc0 ls0 ws0">Lo<span class="_ _b"></span>op<span class="_ _8"> </span>unrolling<span class="_ _f"> </span>can<span class="_ _8"> </span>make<span class="_ _f"> </span>your<span class="_ _c"> </span>co<span class="_ _0"></span>de<span class="_ _f"> </span>w<span class="_ _3"></span>orse/slo<span class="_ _3"></span>w<span class="_ _3"></span>er:</div><div class="t m0 x3e hb y22d ff1 fs6 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span><span class="ff4">Increase<span class="_ _c"> </span>compile-time/binary<span class="_ _c"> </span>size</span></div><div class="t m0 x3e hb y22e ff1 fs6 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span><span class="ff4">Require<span class="_ _c"> </span>more<span class="_ _c"> </span>instruction<span class="_ _c"> </span>deco<span class="_ _b"></span>ding</span></div><div class="t m0 x3e hb y22f ff1 fs6 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span><span class="ff4">Use<span class="_ _c"> </span>more<span class="_ _c"> </span>memo<span class="_ _3"></span>ry<span class="_ _f"> </span>and<span class="_ _c"> </span>instruction<span class="_ _f"> </span>cache</span></div><div class="t m0 x1 hb y230 ff1 fs6 fc0 sc0 ls0 ws0">Unroll<span class="_ _f"> </span>directive<span class="_ _f"> </span><span class="ff4 fs4">The<span class="_ _c"> </span><span class="ff7">Intel</span>,<span class="_ _d"> </span><span class="ff7">IBM</span>,<span class="_ _c"> </span>and<span class="_ _d"> </span><span class="ff7">clang<span class="_ _c"> </span></span>compilers<span class="_ _d"> </span>(but<span class="_ _c"> </span>not<span class="_ _d"> </span><span class="ff7">GCC</span>)<span class="_ _c"> </span>p<span class="_ _3"></span>rovide<span class="_ _c"> </span>the</span></div><div class="t m0 x1 h6 y231 ff4 fs4 fc0 sc0 ls0 ws0">p<span class="_ _3"></span>reprocessing<span class="_ _c"> </span>directive<span class="_ _11"> </span><span class="ff7">#pragma<span class="_ _6"> </span>unroll<span class="_ _11"> </span></span>(to<span class="_ _d"> </span>insert<span class="_ _c"> </span>above<span class="_ _c"> </span>the<span class="_ _d"> </span>lo<span class="_ _b"></span>op)<span class="_ _c"> </span>to<span class="_ _d"> </span>force<span class="_ _d"> </span>lo<span class="_ _b"></span>op<span class="_ _c"> </span>unrolling.</div><div class="t m0 x1 h6 y232 ff4 fs4 fc0 sc0 ls0 ws0">The<span class="_ _d"> </span>compiler<span class="_ _c"> </span>already<span class="_ _d"> </span>applies<span class="_ _c"> </span>the<span class="_ _d"> </span>optimization<span class="_ _c"> </span>in<span class="_ _d"> </span>most<span class="_ _c"> </span>cases</div><div class="t m0 x30 hd y233 ffc fs7 fcc sc0 ls0 ws0">Why<span class="_ _9"> </span>are<span class="_ _9"> </span>unrolled<span class="_ _e"> </span>loops<span class="_ _9"> </span>faster?</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">56/84</div><a class="l" href="https://lemire.me/blog/2019/04/12/why-are-unrolled-loops-faster/"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:7.071000px;width:143.213000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf3e" class="pf w0 h0" data-page-no="3e"><div class="pc pc3e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Branch<span class="_ _17"> </span>Hints<span class="_ _17"> </span>-<span class="_ _17"> </span><span class="ff5">[[likely]]<span class="_ _11"> </span>/<span class="_ _11"> </span>[[unlikely]]</span></div><div class="t m0 x1 hb y234 ff4 fs6 fcd sc0 ls0 ws0">C++20<span class="_ _10"> </span><span class="ff7 fc7">[[likely]]<span class="_ _10"> </span></span><span class="fc0">and<span class="_ _10"> </span><span class="ff7 fc7">[[unlikely]]<span class="_ _10"> </span></span>p<span class="_ _3"></span>rovide<span class="_ _c"> </span>a<span class="_ _f"> </span>hint<span class="_ _c"> </span>to<span class="_ _f"> </span>the<span class="_ _c"> </span>compiler<span class="_ _f"> </span>to<span class="_ _c"> </span>optimize</span></div><div class="t m0 x1 hb y235 ff4 fs6 fc0 sc0 ls0 ws0">a<span class="_ _c"> </span>conditional<span class="_ _c"> </span>statement,<span class="_ _f"> </span>such<span class="_ _c"> </span>as<span class="_ _10"> </span><span class="ff7">while<span class="_ _d"> </span></span>,<span class="_ _10"> </span><span class="ff7">for<span class="_ _25"> </span></span>,<span class="_ _10"> </span><span class="ff7">if</span></div><div class="t m0 xd hd y236 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(i<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _e"> </span>300</span>;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _9"> </span>{</span></div><div class="t m0 x6 hd y237 ffc fs7 fc0 sc0 ls0 ws0">[[unlikely]]<span class="_ _9"> </span><span class="ff5 fc9">if<span class="_ _9"> </span></span>(rand()<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span>10</span>)</div><div class="t m0 x45 hd y238 ff5 fs7 fc9 sc0 ls0 ws0">return<span class="_ _9"> </span><span class="ffc">false<span class="fc0">;</span></span></div><div class="t m0 xd hd y239 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd hd y23a ff5 fs7 fc9 sc0 ls0 ws0">switch<span class="_ _9"> </span><span class="ffc fc0">(value)<span class="_ _9"> </span>{</span></div><div class="t m0 x3e hd y23b ffc fs7 fc0 sc0 ls0 ws0">[[likely]]<span class="_ _13"> </span><span class="ff5 fc9">case<span class="_ _9"> </span><span class="ffe fca">&apos;<span class="ffc">A</span>&apos;</span></span>:<span class="_ _e"> </span><span class="ff5 fc9">return<span class="_ _9"> </span></span><span class="fc8">2</span>;</div><div class="t m0 x3e hd y23c ffc fs7 fc0 sc0 ls0 ws0">[[unlikely]]<span class="_ _9"> </span><span class="ff5 fc9">case<span class="_ _9"> </span><span class="ffe fca">&apos;<span class="ffc">B</span>&apos;</span></span>:<span class="_ _e"> </span><span class="ff5 fc9">return<span class="_ _9"> </span></span><span class="fc8">4</span>;</div><div class="t m0 xd hd y23d ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">57/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf3f" class="pf w0 h0" data-page-no="3f"><div class="pc pc3f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Compiler<span class="_ _17"> </span>Hints<span class="_ _17"> </span>-<span class="_ _17"> </span><span class="ff5">[[assume]]</span></div><div class="t m0 x1 hb y77 ff4 fs6 fcd sc0 ls0 ws0">C++23<span class="_ _c"> </span><span class="fc0">allows<span class="_ _c"> </span>defining<span class="_ _c"> </span>an<span class="_ _c"> </span><span class="ffa">assumption<span class="_ _f"> </span></span>in<span class="_ _f"> </span>the<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>that<span class="_ _c"> </span>is<span class="_ _f"> </span>alwa<span class="_ _3"></span>ys<span class="_ _c"> </span>true</span></div><div class="t m0 xd hd y23e ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc0">x<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>...;</span></div><div class="t m0 xd hd y23f ffc fs7 fc0 sc0 ls0 ws0">[[assume(x<span class="_ _9"> </span><span class="fc8">&gt;<span class="_ _9"> </span>0</span>)]];<span class="_ _e"> </span><span class="ffb fc5">//<span class="_ _9"> </span>the<span class="_ _9"> </span>compiler<span class="_ _e"> </span>assume<span class="_ _9"> </span>that<span class="_ _9"> </span><span class="ff14">&apos;</span>x<span class="ff14">&apos;<span class="_ _9"> </span></span>is<span class="_ _e"> </span>positive</span></div><div class="t m0 xd hd y240 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc0">y<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>x<span class="_ _9"> </span><span class="fc8">/<span class="_ _9"> </span>2</span>;<span class="_ _3c"> </span><span class="ffb fc5">//<span class="_ _9"> </span>the<span class="_ _e"> </span>operation<span class="_ _9"> </span>is<span class="_ _9"> </span>translated<span class="_ _e"> </span>in<span class="_ _9"> </span>a<span class="_ _9"> </span>single<span class="_ _9"> </span>shift<span class="_ _e"> </span>as<span class="_ _9"> </span>for</span></span></div><div class="t m0 x46 hd y241 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>the<span class="_ _9"> </span>unsigned<span class="_ _e"> </span>case</div><div class="t m0 x1 hb y242 ff4 fs6 fc0 sc0 ls0 ws0">Compilers<span class="_ _c"> </span>provide<span class="_ _c"> </span>non-portable<span class="_ _c"> </span>instructions<span class="_ _c"> </span>for<span class="_ _c"> </span>p<span class="_ _3"></span>revious<span class="_ _f"> </span>C++<span class="_ _c"> </span>standards:</div><div class="t m0 x29 hb y243 ff7 fs6 fc0 sc0 ls0 ws0">builtin<span class="_ _8"> </span>assume()<span class="_ _10"> </span><span class="ff4">(</span>clang<span class="ff4">),<span class="_ _39"> </span></span>builtin<span class="_ _8"> </span>unreachable()<span class="_ _10"> </span><span class="ff4">(</span>gcc<span class="ff4">),<span class="_ _39"> </span></span>assume()</div><div class="t m0 x1 hb y244 ff4 fs6 fc0 sc0 ls0 ws0">(<span class="ff7">msvc</span>,<span class="_ _c"> </span><span class="ff7">icc</span>)</div><div class="t m0 x1 hb y245 ff4 fs6 fcd sc0 ls0 ws0">C++23<span class="_ _c"> </span><span class="fc0">also<span class="_ _c"> </span>p<span class="_ _3"></span>rovides<span class="_ _10"> </span><span class="ff7">std::unreachable()<span class="_ _10"> </span></span>(<span class="_ _25"> </span><span class="ff19">&lt;<span class="ff7">utility</span>&gt;<span class="_ _d"> </span></span>)<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _c"> </span>marking<span class="_ _d"> </span>unreachable</span></div><div class="t m0 x1 hb y246 ff4 fs6 fc0 sc0 ls0 ws0">co<span class="_ _b"></span>de</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">58/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf40" class="pf w0 h0" data-page-no="40"><div class="pc pc40 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Recursion<span class="_ _4f"> </span>1/2</div><div class="t m0 x1 hb y247 ff1 fs6 fc0 sc0 ls0 ws0">A<span class="_ _3"></span>void<span class="_ _8"> </span>run-time<span class="_ _8"> </span>recursion<span class="_ _c"> </span><span class="ff4">(very<span class="_ _f"> </span>exp<span class="_ _b"></span>ensive).<span class="_ _e"> </span>Prefer<span class="_ _c"> </span><span class="ffa">iterative<span class="_ _8"> </span></span>algorithms<span class="_ _c"> </span>instead</span></div><div class="t m0 x1 hb y248 ff1 fs6 fc0 sc0 ls0 ws0">Recursion<span class="_ _f"> </span>cost:<span class="_ _e"> </span><span class="ff4">The<span class="_ _c"> </span>program<span class="_ _c"> </span>must<span class="_ _c"> </span>store<span class="_ _c"> </span>all<span class="_ _c"> </span>variables<span class="_ _c"> </span>(snapshot)<span class="_ _c"> </span>at<span class="_ _c"> </span>each<span class="_ _f"> </span>recursion</span></div><div class="t m0 x1 hb y249 ff4 fs6 fc0 sc0 ls0 ws0">iteration<span class="_ _c"> </span>on<span class="_ _c"> </span>the<span class="_ _c"> </span>stack,<span class="_ _c"> </span>and<span class="_ _c"> </span>remove<span class="_ _c"> </span>them<span class="_ _c"> </span>when<span class="_ _c"> </span>the<span class="_ _c"> </span>control<span class="_ _c"> </span>return<span class="_ _c"> </span>to<span class="_ _c"> </span>the<span class="_ _c"> </span>caller<span class="_ _c"> </span>instance</div><div class="t m0 x1 hb y24a ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span><span class="ff1">tail<span class="_ _f"> </span>recursion<span class="_ _c"> </span></span>optimization<span class="_ _c"> </span>avoids<span class="_ _d"> </span>maintaining<span class="_ _c"> </span>caller<span class="_ _c"> </span>stack<span class="_ _c"> </span>and<span class="_ _c"> </span>pass<span class="_ _c"> </span>the<span class="_ _c"> </span>control<span class="_ _c"> </span>to</div><div class="t m0 x1 hb y24b ff4 fs6 fc0 sc0 ls0 ws0">the<span class="_ _c"> </span>next<span class="_ _c"> </span>iteration.<span class="_ _9"> </span>The<span class="_ _c"> </span>optimization<span class="_ _c"> </span>is<span class="_ _c"> </span>p<span class="_ _b"></span>ossible<span class="_ _c"> </span>only<span class="_ _c"> </span>if<span class="_ _c"> </span>all<span class="_ _c"> </span>computation<span class="_ _c"> </span>can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>executed</div><div class="t m0 x1 hb y24c ff4 fs6 fc0 sc0 ls0 ws0">b<span class="_ _b"></span>efo<span class="_ _3"></span>re<span class="_ _f"> </span>the<span class="_ _c"> </span>recursive<span class="_ _f"> </span>call</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">59/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf41" class="pf w0 h0" data-page-no="41"><div class="pc pc41 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Recursion<span class="_ _4f"> </span>2/2</div><div class="t m0 x30 h10 y24d fff fs7 fcc sc0 ls0 ws0">Via<span class="_ _d"> </span><span class="ffc">Twitter<span class="_ _9"> </span>-<span class="_ _9"> </span>Jan<span class="_ _e"> </span>Wildeboer</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">60/84</div><a class="l" href="https://twitter.com/jwildeboer/status/1218865157864067077?s=09"><div class="d m1" style="border-style:none;position:absolute;left:75.870000px;bottom:2.418000px;width:110.261000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf42" class="pf w0 h0" data-page-no="42"><div class="pc pc42 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y13b ff1 fs0 fc0 sc0 ls0 ws0">F<span class="_ _7"></span>unctions</div><a class="l" href="#pf42" data-dest-detail='[66,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:205.878000px;width:110.662000px;height:19.206000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf43" class="pf w0 h0" data-page-no="43"><div class="pc pc43 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _17"> </span>Call<span class="_ _17"> </span>Cost</div><div class="t m0 x1 hb y187 ff1 fs6 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _8"> </span>call<span class="_ _8"> </span>metho<span class="_ _b"></span>ds:</div><div class="t m0 x3b hb y24e ff1 fs6 fc0 sc0 ls0 ws0">Direct<span class="_ _6"> </span><span class="ff4">F<span class="_ _3"></span>unction<span class="_ _f"> </span>address<span class="_ _c"> </span>is<span class="_ _f"> </span>known<span class="_ _c"> </span>at<span class="_ _c"> </span>compile-time</span></div><div class="t m0 x10 hb y24f ff1 fs6 fc0 sc0 ls0 ws0">Indirect<span class="_ _6"> </span><span class="ff4">F<span class="_ _3"></span>unction<span class="_ _f"> </span>address<span class="_ _c"> </span>is<span class="_ _f"> </span>known<span class="_ _c"> </span>only<span class="_ _c"> </span>at<span class="_ _c"> </span>run-time</span></div><div class="t m0 x9 hb y250 ff1 fs6 fc0 sc0 ls0 ws0">Inline<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>function<span class="_ _f"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>is<span class="_ _f"> </span>fused<span class="_ _c"> </span>in<span class="_ _f"> </span>the<span class="_ _c"> </span>caller<span class="_ _f"> </span>co<span class="_ _b"></span>de</span></div><div class="t m0 x1 hb y251 ff1 fs6 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _8"> </span>call<span class="_ _8"> </span>cost:</div><div class="t m0 xb hb y252 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>caller<span class="_ _f"> </span>pushes<span class="_ _c"> </span>the<span class="_ _f"> </span>a<span class="_ _3"></span>rguments<span class="_ _f"> </span>on<span class="_ _c"> </span>the<span class="_ _f"> </span>stack<span class="_ _c"> </span>in<span class="_ _f"> </span>reverse<span class="_ _c"> </span>order</span></div><div class="t m0 xb hb y253 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Jump<span class="_ _c"> </span>to<span class="_ _f"> </span>function<span class="_ _c"> </span>address</span></div><div class="t m0 xb hb y254 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>caller<span class="_ _f"> </span>clea<span class="_ _3"></span>rs<span class="_ _f"> </span>(p<span class="_ _b"></span>op)<span class="_ _c"> </span>the<span class="_ _f"> </span>stack</span></div><div class="t m0 xb hb y255 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>function<span class="_ _f"> </span>pushes<span class="_ _c"> </span>the<span class="_ _f"> </span>return<span class="_ _c"> </span>value<span class="_ _c"> </span>on<span class="_ _f"> </span>the<span class="_ _c"> </span>stack</span></div><div class="t m0 xb hb y256 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Jump<span class="_ _c"> </span>to<span class="_ _f"> </span>the<span class="_ _c"> </span>caller<span class="_ _f"> </span>address</span></div><div class="t m0 x30 hd y257 ffc fs7 fcc sc0 ls0 ws0">The<span class="_ _9"> </span>True<span class="_ _9"> </span>Cost<span class="_ _e"> </span>of<span class="_ _9"> </span>Calls</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">61/84</div><a class="l" href="https://hbfs.wordpress.com/2008/12/30/the-true-cost-of-calls/"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:1.707000px;width:105.554000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf44" class="pf w0 h0" data-page-no="44"><div class="pc pc44 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Argument<span class="_ _17"> </span>P<span class="_ _3"></span>assing<span class="_ _50"> </span>1/3</div><div class="t m0 x47 hb yb1 ff1 fs6 fc0 sc0 ls0 ws0">pass<span class="_ _f"> </span>by-value<span class="_ _6"> </span><span class="ff4">Small<span class="_ _c"> </span>data<span class="_ _c"> </span>types<span class="_ _f"> </span>(<span class="ff10">≤<span class="_ _c"> </span></span>8/16<span class="_ _f"> </span>b<span class="_ _3"></span>ytes)</span></div><div class="t m0 x48 hb yb2 ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>data<span class="_ _c"> </span>are<span class="_ _c"> </span>copied<span class="_ _c"> </span>into<span class="_ _f"> </span>registers,<span class="_ _c"> </span>instead<span class="_ _f"> </span>of<span class="_ _c"> </span>stack</div><div class="t m0 x48 hb y258 ff4 fs6 fc0 sc0 ls0 ws0">It<span class="_ _c"> </span>avoids<span class="_ _c"> </span>aliasing<span class="_ _f"> </span>p<span class="_ _b"></span>erformance<span class="_ _c"> </span>issues</div><div class="t m0 xb hb y259 ff1 fs6 fc0 sc0 ls0 ws0">pass<span class="_ _f"> </span>by-pointer<span class="_ _15"> </span><span class="ff4">Intro<span class="_ _b"></span>duces<span class="_ _c"> </span>one<span class="_ _f"> </span>level<span class="_ _c"> </span>of<span class="_ _f"> </span>indirection</span></div><div class="t m0 x48 hb y25a ff4 fs6 fc0 sc0 ls0 ws0">They<span class="_ _c"> </span>should<span class="_ _c"> </span>b<span class="_ _0"></span>e<span class="_ _c"> </span>used<span class="_ _c"> </span>only<span class="_ _c"> </span>for<span class="_ _c"> </span>ra<span class="_ _3"></span>w<span class="_ _f"> </span>p<span class="_ _b"></span>ointers<span class="_ _c"> </span>(p<span class="_ _b"></span>otentially<span class="_ _f"> </span><span class="ff7">NULL</span>)</div><div class="t m0 x49 hb y25b ff1 fs6 fc0 sc0 ls0 ws0">pass<span class="_ _f"> </span>by-reference<span class="_ _6"> </span><span class="ffa">Ma<span class="_ _3"></span>y<span class="_ _c"> </span>not<span class="_ _9"> </span><span class="ff4">intro<span class="_ _b"></span>duce<span class="_ _f"> </span>one<span class="_ _c"> </span>level<span class="_ _c"> </span>of<span class="_ _f"> </span>indirection<span class="_ _c"> </span>if<span class="_ _f"> </span>related<span class="_ _c"> </span>in<span class="_ _f"> </span>the<span class="_ _c"> </span>same</span></span></div><div class="t m0 x48 hb y25c ff4 fs6 fc0 sc0 ls0 ws0">translation<span class="_ _c"> </span>unit/L<span class="_ _7"></span>TO</div><div class="t m0 x48 hb y25d ff7 fs6 fc0 sc0 ls0 ws0">pass-by-reference<span class="_ _c"> </span><span class="ff4">is<span class="_ _c"> </span>more<span class="_ _c"> </span>efficient<span class="_ _c"> </span>than<span class="_ _f"> </span></span>pass-by-pointer<span class="_ _c"> </span><span class="ff4">as</span></div><div class="t m0 x48 hb y25e ff4 fs6 fc0 sc0 ls0 ws0">it<span class="_ _c"> </span>facilitates<span class="_ _c"> </span>variable<span class="_ _c"> </span>elimination<span class="_ _c"> </span>by<span class="_ _c"> </span>the<span class="_ _c"> </span>compiler,<span class="_ _f"> </span>and<span class="_ _c"> </span>the<span class="_ _c"> </span>function</div><div class="t m0 x48 hb y25f ff4 fs6 fc0 sc0 ls0 ws0">co<span class="_ _b"></span>de<span class="_ _c"> </span>do<span class="_ _b"></span>es<span class="_ _f"> </span>not<span class="_ _c"> </span>require<span class="_ _f"> </span>checking<span class="_ _c"> </span>for<span class="_ _11"> </span><span class="ff7">NULL<span class="_ _10"> </span></span>p<span class="_ _b"></span>ointer</div><div class="t m0 x30 hd y260 ffc fs7 fcc sc0 ls0 ws0">Three<span class="_ _9"> </span>reasons<span class="_ _9"> </span>to<span class="_ _e"> </span>pass<span class="_ _9"> </span>std::string<span class="_ _c"> </span>view<span class="_ _9"> </span>by<span class="_ _9"> </span>value</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">62/84</div><a class="l" href="https://quuxplusone.github.io/blog/2021/11/09/pass-string-view-by-value/"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:2.535000px;width:221.920000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf45" class="pf w0 h0" data-page-no="45"><div class="pc pc45 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Argument<span class="_ _17"> </span>P<span class="_ _3"></span>assing<span class="_ _17"> </span>-<span class="_ _9"> </span>A<span class="_ _3"></span>ctive<span class="_ _17"> </span>Objects<span class="_ _51"> </span>2/3</div><div class="t m0 x1 hb y261 ff4 fs6 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>or<span class="_ _c"> </span><span class="ffa">active<span class="_ _8"> </span></span>objects<span class="_ _f"> </span>with<span class="_ _c"> </span>non-trivial<span class="_ _f"> </span>cop<span class="_ _3"></span>y<span class="_ _f"> </span>constructor<span class="_ _c"> </span>o<span class="_ _3"></span>r<span class="_ _c"> </span>destructor:</div><div class="t m0 x4a hb y262 ff1 fs6 fc0 sc0 ls0 ws0">b<span class="_ _3"></span>y-value<span class="_ _6"> </span><span class="ff4">Could<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>very<span class="_ _f"> </span>exp<span class="_ _b"></span>ensive,<span class="_ _c"> </span>and<span class="_ _f"> </span>hard<span class="_ _c"> </span>to<span class="_ _c"> </span>optimize</span></div><div class="t m0 x4b hb y263 ff1 fs6 fc0 sc0 ls0 ws0">b<span class="_ _3"></span>y-p<span class="_ _b"></span>ointer/reference<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span>pass-by-<span class="_"> </span><span class="ff7">const<span class="_ _d"> </span></span>-p<span class="_ _b"></span>ointer/reference</span></div><div class="t m0 x4c hb y264 ff7 fs6 fc0 sc0 ls0 ws0">const<span class="_ _10"> </span><span class="ff4">function<span class="_ _c"> </span>memb<span class="_ _b"></span>er<span class="_ _c"> </span>overloading<span class="_ _f"> </span>can<span class="_ _c"> </span>also<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>cheap<span class="_ _0"></span>er</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">63/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf46" class="pf w0 h0" data-page-no="46"><div class="pc pc46 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Argument<span class="_ _17"> </span>P<span class="_ _3"></span>assing<span class="_ _17"> </span>-<span class="_ _9"> </span>P<span class="_ _3"></span>assive<span class="_ _17"> </span>Objects<span class="_ _52"> </span>3/3</div><div class="t m0 x1 hb y77 ff4 fs6 fc0 sc0 ls0 ws0">F<span class="_ _3"></span>or<span class="_ _c"> </span><span class="ffa">passive<span class="_ _8"> </span></span>objects<span class="_ _f"> </span>with<span class="_ _c"> </span>trivial<span class="_ _f"> </span>cop<span class="_ _3"></span>y<span class="_ _f"> </span>constructor<span class="_ _c"> </span><span class="ffa">and<span class="_ _17"> </span></span>destructor:</div><div class="t m0 x4d hb y265 ff1 fs6 fc0 sc0 ls0 ws0">b<span class="_ _3"></span>y-value/by-reference<span class="_ _6"> </span><span class="ff4">Most<span class="_ _c"> </span>compilers<span class="_ _c"> </span>optimize<span class="_ _c"> </span></span>pass<span class="_ _8"> </span>by-value<span class="_ _c"> </span><span class="ff4">with<span class="_ _c"> </span></span>pass<span class="_ _8"> </span>b<span class="_ _3"></span>y-reference</div><div class="t m0 x32 hb y266 ff4 fs6 fc0 sc0 ls0 ws0">and<span class="_ _c"> </span><span class="ff1">the<span class="_ _8"> </span>opp<span class="_ _b"></span>osite<span class="_ _8"> </span>case<span class="_ _c"> </span></span>for<span class="_ _c"> </span><span class="ffa">passive<span class="_ _8"> </span></span>data<span class="_ _f"> </span>structures<span class="_ _c"> </span>if<span class="_ _f"> </span>related<span class="_ _c"> </span>to</div><div class="t m0 x32 hb y267 ff4 fs6 fc0 sc0 ls0 ws0">the<span class="_ _c"> </span>same<span class="_ _c"> </span>translation<span class="_ _f"> </span>unit/L<span class="_ _7"></span>TO</div><div class="t m0 x6 hb y268 ff1 fs6 fc0 sc0 ls0 ws0">b<span class="_ _3"></span>y-const-value<span class="_ _6"> </span><span class="ff4">Alwa<span class="_ _3"></span>ys<span class="_ _c"> </span>produce<span class="_ _f"> </span>the<span class="_ _c"> </span>optimal<span class="_ _f"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>if<span class="_ _f"> </span>applied<span class="_ _c"> </span>in<span class="_ _f"> </span>the<span class="_ _c"> </span>same</span></div><div class="t m0 x32 hb y269 ff4 fs6 fc0 sc0 ls0 ws0">translation<span class="_ _c"> </span>unit/L<span class="_ _7"></span>TO.<span class="_ _f"> </span>It<span class="_ _c"> </span>is<span class="_ _f"> </span>converted<span class="_ _c"> </span>to<span class="_ _f"> </span><span class="ff7">pass-by-const<span class="_ _15"> </span>ref<span class="_ _c"> </span></span>if</div><div class="t m0 x32 hb y26a ff4 fs6 fc0 sc0 ls0 ws0">needed</div><div class="t m0 x32 hb y26b ff4 fs6 fc0 sc0 ls0 ws0">In<span class="_ _c"> </span>general,<span class="_ _c"> </span>it<span class="_ _f"> </span>should<span class="_ _c"> </span>b<span class="_ _0"></span>e<span class="_ _c"> </span>avoided<span class="_ _c"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>as<span class="_ _c"> </span>it<span class="_ _f"> </span>do<span class="_ _b"></span>es<span class="_ _c"> </span>not<span class="_ _f"> </span>change<span class="_ _c"> </span>the</div><div class="t m0 x32 hb y26c ff4 fs6 fc0 sc0 ls0 ws0">function<span class="_ _c"> </span>signature</div><div class="t m0 x4a hb y26d ff1 fs6 fc0 sc0 ls0 ws0">b<span class="_ _3"></span>y-value<span class="_ _6"> </span><span class="ff4">Do<span class="_ _b"></span>esnt<span class="_ _f"> </span>alwa<span class="_ _3"></span>ys<span class="_ _c"> </span>produce<span class="_ _c"> </span>the<span class="_ _f"> </span>optimal<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>for<span class="_ _c"> </span>la<span class="_ _3"></span>rge<span class="_ _c"> </span>data</span></div><div class="t m0 x32 hb y26e ff4 fs6 fc0 sc0 ls0 ws0">structures</div><div class="t m0 x4e hb y26f ff1 fs6 fc0 sc0 ls0 ws0">b<span class="_ _3"></span>y-reference<span class="_ _6"> </span><span class="ff4">Could<span class="_ _f"> </span>intro<span class="_ _b"></span>duce<span class="_ _c"> </span>a<span class="_ _f"> </span>level<span class="_ _c"> </span>of<span class="_ _f"> </span>indirection</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">64/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf47" class="pf w0 h0" data-page-no="47"><div class="pc pc47 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _17"> </span>Optimizations</div><div class="t m0 xb hb yb1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffa">Keep<span class="_ _c"> </span>small<span class="_ _f"> </span>the<span class="_ _c"> </span>numb<span class="_ _b"></span>er<span class="_ _f"> </span>of<span class="_ _c"> </span>function<span class="_ _f"> </span>pa<span class="_ _3"></span>rameters<span class="ff4">.<span class="_ _e"> </span>The<span class="_ _c"> </span>parameters<span class="_ _c"> </span>can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>passed<span class="_ _c"> </span>by</span></span></div><div class="t m0 x6 hb yb2 ff4 fs6 fc0 sc0 ls0 ws0">using<span class="_ _c"> </span>the<span class="_ _c"> </span>registers<span class="_ _f"> </span>instead<span class="_ _c"> </span>filling<span class="_ _f"> </span>and<span class="_ _c"> </span>emptying<span class="_ _c"> </span>the<span class="_ _c"> </span>stack</div><div class="t m0 xb hb y270 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Consider<span class="_ _c"> </span><span class="ffa">combining<span class="_ _f"> </span>several<span class="_ _c"> </span>function<span class="_ _f"> </span>pa<span class="_ _3"></span>rameters<span class="_ _9"> </span><span class="ff4">in<span class="_ _c"> </span>a<span class="_ _f"> </span>structure</span></span></span></div><div class="t m0 xb hb y259 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _14"> </span><span class="ff5">const<span class="_ _10"> </span><span class="ff4">mo<span class="_ _b"></span>difier<span class="_ _c"> </span>applied<span class="_ _c"> </span>to<span class="_ _f"> </span>p<span class="_ _b"></span>ointers<span class="_ _f"> </span>and<span class="_ _c"> </span>references<span class="_ _c"> </span><span class="ffa">do<span class="_ _0"></span>es<span class="_ _c"> </span>not<span class="_ _c"> </span>p<span class="_ _3"></span>ro<span class="_ _b"></span>duce<span class="_ _f"> </span>b<span class="_ _b"></span>etter<span class="_ _c"> </span>co<span class="_ _0"></span>de</span></span></span></div><div class="t m0 x6 hb y25a ff4 fs6 fc0 sc0 ls0 ws0">in<span class="_ _c"> </span>most<span class="_ _c"> </span>cases,<span class="_ _f"> </span>but<span class="_ _c"> </span>it<span class="_ _f"> </span>is<span class="_ _c"> </span>useful<span class="_ _f"> </span>for<span class="_ _c"> </span>ensuring<span class="_ _c"> </span>read-only<span class="_ _c"> </span>accesses</div><div class="t m0 x1 hb y271 ff4 fs6 fc0 sc0 ls0 ws0">Some<span class="_ _c"> </span>compilers<span class="_ _c"> </span>provide<span class="_ _c"> </span>additional<span class="_ _c"> </span>attributes<span class="_ _f"> </span>to<span class="_ _c"> </span>optimize<span class="_ _f"> </span>function<span class="_ _c"> </span>calls</div><div class="t m0 xb hb y272 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _53"> </span><span class="ff7">attribute<span class="_ _a"> </span>(pure)<span class="_ _10"> </span><span class="ff4">attribute<span class="_ _c"> </span>(Clang,<span class="_ _f"> </span>GCC)<span class="_ _c"> </span>sp<span class="_ _0"></span>ecifies<span class="_ _c"> </span>that<span class="_ _c"> </span>a<span class="_ _c"> </span>function<span class="_ _c"> </span>has<span class="_ _f"> </span>no</span></span></div><div class="t m0 x6 hb y273 ff4 fs6 fc0 sc0 ls0 ws0">side<span class="_ _c"> </span>effects<span class="_ _c"> </span>on<span class="_ _f"> </span>its<span class="_ _c"> </span>parameters<span class="_ _c"> </span>o<span class="_ _3"></span>r<span class="_ _f"> </span>program<span class="_ _c"> </span>state<span class="_ _c"> </span>(external<span class="_ _c"> </span>global<span class="_ _f"> </span>references)</div><div class="t m0 xb hb y274 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _53"> </span><span class="ff7">attribute<span class="_ _a"> </span>(const)<span class="_ _10"> </span><span class="ff4">attribute<span class="_ _c"> </span>(Clang,<span class="_ _f"> </span>GCC)<span class="_ _c"> </span>sp<span class="_ _0"></span>ecifies<span class="_ _c"> </span>that<span class="_ _c"> </span>a<span class="_ _c"> </span>function<span class="_ _c"> </span>do<span class="_ _0"></span>esnt</span></span></div><div class="t m0 x6 hb y275 ff4 fs6 fc0 sc0 ls0 ws0">dep<span class="_ _b"></span>end<span class="_ _c"> </span>(read)<span class="_ _f"> </span>on<span class="_ _c"> </span>external<span class="_ _f"> </span>global<span class="_ _c"> </span>references</div><div class="t m0 x30 hd y276 ffc fs7 fcc sc0 ls0 ws0">GoTW#81:<span class="_ _20"> </span>Constant<span class="_ _17"> </span>Optimization?</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">65/84</div><a class="l" href="http://www.gotw.ca/gotw/081.htm"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:0.013500px;width:152.628000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf48" class="pf w0 h0" data-page-no="48"><div class="pc pc48 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff5 fs3 fc1 sc0 ls0 ws0">inline<span class="_ _17"> </span><span class="ff1">F<span class="_ _3"></span>unction<span class="_ _17"> </span>Declaration<span class="_ _54"> </span>1/2</span></div><div class="t m0 xd hb y277 ff1 fs6 fc1 sc0 ls0 ws0">inline</div><div class="t m0 x5 hb y278 ff7 fs6 fc7 sc0 ls0 ws0">inline<span class="_ _10"> </span><span class="ff4 fc0">sp<span class="_ _b"></span>ecifier<span class="_ _c"> </span>for<span class="_ _c"> </span>optimization<span class="_ _c"> </span>purp<span class="_ _b"></span>oses<span class="_ _c"> </span>is<span class="_ _f"> </span>just<span class="_ _c"> </span>a<span class="_ _f"> </span>hint<span class="_ _c"> </span>for<span class="_ _c"> </span>the<span class="_ _c"> </span>compiler<span class="_ _f"> </span>that</span></div><div class="t m0 xd hb y279 ff4 fs6 fc0 sc0 ls0 ws0">increases<span class="_ _c"> </span>the<span class="_ _c"> </span>heuristic<span class="_ _f"> </span>threshold<span class="_ _c"> </span>for<span class="_ _c"> </span><span class="ff1">inlining</span>,<span class="_ _f"> </span>namely<span class="_ _c"> </span>copying<span class="_ _c"> </span>the<span class="_ _c"> </span>function<span class="_ _c"> </span>b<span class="_ _0"></span>ody</div><div class="t m0 xd hb y27a ff4 fs6 fc0 sc0 ls0 ws0">where<span class="_ _c"> </span>it<span class="_ _c"> </span>is<span class="_ _f"> </span>called</div><div class="t m0 xd hc y27b ff5 fs4 fc9 sc0 ls0 ws0">inline<span class="_ _e"> </span><span class="fc6">void<span class="_ _6"> </span><span class="ff7 fc7">f<span class="fc0">()<span class="_ _6"> </span>{<span class="_ _e"> </span>...<span class="_ _6"> </span>}</span></span></span></div><div class="t m0 xb hb y27c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">the<span class="_ _c"> </span>compiler<span class="_ _f"> </span>can<span class="_ _c"> </span>ignore<span class="_ _c"> </span>the<span class="_ _c"> </span>hint</span></div><div class="t m0 xb hb y27d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffa">inlined<span class="_ _9"> </span><span class="ff4">functions<span class="_ _c"> </span>increase<span class="_ _f"> </span>the<span class="_ _c"> </span>binary<span class="_ _c"> </span>size<span class="_ _c"> </span>b<span class="_ _b"></span>ecause<span class="_ _f"> </span>they<span class="_ _c"> </span>are<span class="_ _c"> </span>expanded<span class="_ _c"> </span>in-place<span class="_ _c"> </span>for</span></span></div><div class="t m0 x6 hb y27e ff4 fs6 fc0 sc0 ls0 ws0">every<span class="_ _c"> </span>function<span class="_ _c"> </span>call</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">66/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf49" class="pf w0 h0" data-page-no="49"><div class="pc pc49 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff5 fs3 fc1 sc0 ls0 ws0">inline<span class="_ _17"> </span><span class="ff1">F<span class="_ _3"></span>unction<span class="_ _17"> </span>Declaration<span class="_ _54"> </span>2/2</span></div><div class="t m0 x1 hb y172 ff1 fs6 fc0 sc0 ls0 ws0">Compilers<span class="_ _f"> </span>have<span class="_ _8"> </span>different<span class="_ _8"> </span>heuristics<span class="_ _8"> </span>fo<span class="_ _3"></span>r<span class="_ _8"> </span>function<span class="_ _8"> </span>inlining</div><div class="t m0 xb hb y27f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _f"> </span>lines<span class="_ _c"> </span>(even<span class="_ _f"> </span>comments:<span class="_ _e"> </span><span class="ff7">How<span class="_ _6"> </span>new-lines<span class="_ _15"> </span>affect<span class="_ _15"> </span>the<span class="_ _15"> </span>Linux<span class="_ _15"> </span>kernel</span></span></div><div class="t m0 x6 hb y280 ff7 fs6 fc0 sc0 ls0 ws0">performance<span class="ff4">)</span></div><div class="t m0 xb hb y281 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Numb<span class="_ _b"></span>er<span class="_ _c"> </span>of<span class="_ _f"> </span>assembly<span class="_ _c"> </span>instructions</span></div><div class="t m0 xb hb y282 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Inlining<span class="_ _c"> </span>depth<span class="_ _f"> </span>(recursive)</span></div><div class="t m0 x1 hb y283 ff4 fs6 fc0 sc0 ls0 ws0">GCC/Clang<span class="_ _c"> </span>extensions<span class="_ _c"> </span>allow<span class="_ _c"> </span>to<span class="_ _c"> </span><span class="ffa">force<span class="_ _8"> </span></span>inline/non-inline<span class="_ _c"> </span>functions:</div><div class="t m0 x3d hd y284 ffc fs7 fc7 sc0 ls0 ws0">attribute<span class="_ _10"> </span><span class="fc0">((always_inline))<span class="_ _9"> </span><span class="ff5 fc6">void<span class="_ _e"> </span></span>f()<span class="_ _9"> </span>{<span class="_ _9"> </span>...<span class="_ _e"> </span>}</span></div><div class="t m0 x3d hd y285 ffc fs7 fc7 sc0 ls0 ws0">attribute<span class="_ _10"> </span><span class="fc0">((noinline))<span class="_ _36"> </span><span class="ff5 fc6">void<span class="_ _9"> </span></span>f()<span class="_ _9"> </span>{<span class="_ _e"> </span>...<span class="_ _9"> </span>}</span></div><div class="t m0 x2f h10 y286 ff1c fs7 fcc sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffc">An<span class="_ _9"> </span>Inline<span class="_ _e"> </span>Function<span class="_ _17"> </span>is<span class="_ _e"> </span>As<span class="_ _9"> </span>Fast<span class="_ _9"> </span>As<span class="_ _e"> </span>a<span class="_ _9"> </span>Macro</span></div><div class="t m0 x2f h10 y287 ff1c fs7 fcc sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ffc">Inlining<span class="_ _9"> </span>Decisions<span class="_ _e"> </span>in<span class="_ _17"> </span>Visual<span class="_ _e"> </span>Studio</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">67/84</div><a class="l" href="https://nadav.amit.zone/linux/2018/10/10/newline.html"><div class="d m1" style="border-style:none;position:absolute;left:311.479500px;bottom:257.931000px;width:218.540000px;height:12.901000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://nadav.amit.zone/linux/2018/10/10/newline.html"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:234.558000px;width:64.993000px;height:12.902000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://gcc.gnu.org/onlinedocs/gcc/Inline.html"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:29.913000px;width:190.286000px;height:7.372000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://devblogs.microsoft.com/cppblog/inlining-decisions-in-visual-studio/"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:5.031000px;width:166.750000px;height:9.365000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf4a" class="pf w0 h0" data-page-no="4a"><div class="pc pc4a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Inlining<span class="_ _17"> </span>and<span class="_ _17"> </span>Linkage</div><div class="t m0 x1 hb y288 ff4 fs6 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>compiler<span class="_ _c"> </span>can<span class="_ _f"> </span><span class="ffa">inline<span class="_ _17"> </span></span>a<span class="_ _c"> </span>function<span class="_ _f"> </span>only<span class="_ _c"> </span>if<span class="_ _c"> </span>it<span class="_ _f"> </span>is<span class="_ _c"> </span>indep<span class="_ _0"></span>endent<span class="_ _c"> </span>from<span class="_ _c"> </span>external<span class="_ _c"> </span>references</div><div class="t m0 xb hb y289 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _c"> </span>function<span class="_ _f"> </span>with<span class="_ _c"> </span><span class="ffa">internal<span class="_ _f"> </span>linkage<span class="_ _8"> </span></span>is<span class="_ _f"> </span>not<span class="_ _c"> </span>visible<span class="_ _f"> </span>outside<span class="_ _c"> </span>the<span class="_ _f"> </span>current<span class="_ _c"> </span>translation<span class="_ _f"> </span>unit,</span></div><div class="t m0 x6 hb y28a ff4 fs6 fc0 sc0 ls0 ws0">so<span class="_ _c"> </span>it<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span>aggressively<span class="_ _c"> </span><span class="ffa">inlined</span></div><div class="t m0 xb hb y28b ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">On<span class="_ _c"> </span>the<span class="_ _f"> </span>other<span class="_ _c"> </span>hand,<span class="_ _f"> </span><span class="ffa">external<span class="_ _c"> </span>linkage<span class="_ _17"> </span></span>do<span class="_ _b"></span>esnt<span class="_ _c"> </span>prevent<span class="_ _c"> </span>function<span class="_ _c"> </span>inlining<span class="_ _c"> </span>if<span class="_ _f"> </span>the</span></div><div class="t m0 x6 hb y28c ff4 fs6 fc0 sc0 ls0 ws0">function<span class="_ _c"> </span>b<span class="_ _b"></span>o<span class="_ _b"></span>dy<span class="_ _f"> </span>is<span class="_ _c"> </span>visibility<span class="_ _c"> </span>in<span class="_ _c"> </span>a<span class="_ _c"> </span>translation<span class="_ _f"> </span>unit.<span class="_ _e"> </span>In<span class="_ _c"> </span>this<span class="_ _c"> </span>situation,<span class="_ _f"> </span>the<span class="_ _c"> </span>compiler<span class="_ _f"> </span>can</div><div class="t m0 x6 hb y28d ff4 fs6 fc0 sc0 ls0 ws0">duplicate<span class="_ _c"> </span>the<span class="_ _c"> </span>function<span class="_ _f"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>if<span class="_ _c"> </span>it<span class="_ _c"> </span>determines<span class="_ _f"> </span>that<span class="_ _c"> </span>there<span class="_ _f"> </span>are<span class="_ _c"> </span>no<span class="_ _c"> </span>external<span class="_ _c"> </span>references</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">68/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf4b" class="pf w0 h0" data-page-no="4b"><div class="pc pc4b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Symb<span class="_ _b"></span>ol<span class="_ _17"> </span>Visibility</div><div class="t m0 x1 hb y1c6 ff4 fs6 fc0 sc0 ls0 ws0">All<span class="_ _c"> </span>compilers,<span class="_ _c"> </span>except<span class="_ _f"> </span>MSVC,<span class="_ _c"> </span>export<span class="_ _c"> </span>all<span class="_ _c"> </span>function<span class="_ _f"> </span>symb<span class="_ _b"></span>ols<span class="_ _c"> </span><span class="ff10">→<span class="_ _f"> </span></span>slo<span class="_ _3"></span>w,<span class="_ _f"> </span>the<span class="_ _c"> </span>symb<span class="_ _b"></span>ols<span class="_ _f"> </span>can<span class="_ _c"> </span>b<span class="_ _0"></span>e</div><div class="t m0 x1 hb y28e ff4 fs6 fc0 sc0 ls0 ws0">used<span class="_ _c"> </span>in<span class="_ _c"> </span>other<span class="_ _f"> </span>translation<span class="_ _c"> </span>units</div><div class="t m0 x1 hb y28f ff4 fs6 fc0 sc0 ls0 ws0">Alternatives:</div><div class="t m0 xb hb y290 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff7">static<span class="_ _10"> </span></span>functions</span></div><div class="t m0 xb hb y291 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff7">anonymous<span class="_ _15"> </span>namespace<span class="_ _10"> </span></span>(functions<span class="_ _c"> </span>and<span class="_ _c"> </span>classes)</span></div><div class="t m0 xb hb y292 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _c"> </span>GNU<span class="_ _f"> </span>extension<span class="_ _c"> </span>(also<span class="_ _f"> </span><span class="ff7">clang</span>)<span class="_ _39"> </span><span class="ff7">attribute<span class="_ _a"> </span>((visibility(&quot;hidden&quot;)))</span></span></div><div class="t m0 x30 hd y293 ffc fs7 fcc sc0 ls0 ws0">gcc.gnu.org/wiki/Visibility</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">69/84</div><a class="l" href="https://gcc.gnu.org/wiki/Visibility"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:5.193000px;width:129.091000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf4c" class="pf w0 h0" data-page-no="4c"><div class="pc pc4c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>ointers<span class="_ _17"> </span>Aliasing<span class="_ _55"> </span>1/4</div><div class="t m0 x1 hb y294 ff4 fs6 fc0 sc0 ls0 ws0">Consider<span class="_ _c"> </span>the<span class="_ _c"> </span>following<span class="_ _c"> </span>example:</div><div class="t m0 xd hd y295 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>suppose<span class="_ _9"> </span>f()<span class="_ _e"> </span>is<span class="_ _9"> </span>not<span class="_ _9"> </span>inline</div><div class="t m0 xd hd y296 ff5 fs7 fc6 sc0 ls0 ws0">void<span class="_ _9"> </span><span class="ffc fc7">f<span class="fc0">(</span></span>int<span class="ffc fc8">*<span class="_ _9"> </span><span class="fc0">input,<span class="_ _e"> </span></span></span>int<span class="_ _9"> </span><span class="ffc fc0">size,<span class="_ _9"> </span></span>int<span class="ffc fc8">*<span class="_ _e"> </span><span class="fc0">output)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x6 hd y297 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>size;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x16 hd y298 ffc fs7 fc0 sc0 ls0 ws0">output[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>input[i];</div><div class="t m0 xd hd y299 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xb hb y29a ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>compiler<span class="_ _f"> </span>cannot<span class="_ _c"> </span><span class="ffa">unroll<span class="_ _9"> </span></span>the<span class="_ _f"> </span>lo<span class="_ _b"></span>op<span class="_ _c"> </span>(sequential<span class="_ _f"> </span>execution,<span class="_ _c"> </span>no<span class="_ _f"> </span>ILP)<span class="_ _c"> </span>b<span class="_ _b"></span>ecause</span></div><div class="t m0 xc hb y29b ff7 fs6 fc0 sc0 ls0 ws0">output<span class="_ _10"> </span><span class="ff4">and<span class="_ _10"> </span></span>input<span class="_ _10"> </span><span class="ff4">pointers<span class="_ _f"> </span>can<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _f"> </span><span class="ff1">aliased</span>,<span class="_ _c"> </span>e.g.<span class="_ _4"> </span></span>output<span class="_ _15"> </span>=<span class="_ _15"> </span>input<span class="_ _15"> </span>+<span class="_ _15"> </span>1</div><div class="t m0 xb hb y29c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">The<span class="_ _c"> </span>aliasing<span class="_ _c"> </span>problem<span class="_ _c"> </span>is<span class="_ _c"> </span>even<span class="_ _c"> </span>wo<span class="_ _3"></span>rse<span class="_ _c"> </span>for<span class="_ _d"> </span>more<span class="_ _c"> </span>complex<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _c"> </span>and<span class="_ _c"> </span><span class="ffa">inhibits<span class="_ _f"> </span>all<span class="_ _c"> </span>kinds<span class="_ _c"> </span>of</span></span></div><div class="t m0 x6 hb y29d ffa fs6 fc0 sc0 ls0 ws0">optimization<span class="_ _f"> </span><span class="ff4">including<span class="_ _c"> </span>co<span class="_ _b"></span>de<span class="_ _f"> </span>re-ordering,<span class="_ _c"> </span>vecto<span class="_ _3"></span>rization,<span class="_ _c"> </span>common<span class="_ _f"> </span>sub-exp<span class="_ _3"></span>ression</span></div><div class="t m0 x6 hb y29e ff4 fs6 fc0 sc0 ls0 ws0">elimination,<span class="_ _c"> </span>etc.</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">70/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf4d" class="pf w0 h0" data-page-no="4d"><div class="pc pc4d w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>ointers<span class="_ _17"> </span>Aliasing<span class="_ _55"> </span>2/4</div><div class="t m0 x1 hb y187 ff4 fs6 fc0 sc0 ls0 ws0">Most<span class="_ _c"> </span>compilers<span class="_ _c"> </span>(included<span class="_ _f"> </span><span class="ff7">GCC/Clang/MSVC</span>)<span class="_ _c"> </span>provide<span class="_ _c"> </span><span class="ff1">restricted<span class="_ _8"> </span>p<span class="_ _b"></span>ointers</span></div><div class="t m0 x1 hb y188 ff4 fs6 fc0 sc0 ls0 ws0">(<span class="_ _4a"> </span><span class="ff7 fc7">restrict<span class="_ _25"> </span></span>)<span class="_ _f"> </span>so<span class="_ _c"> </span>that<span class="_ _f"> </span>the<span class="_ _c"> </span>programmer<span class="_ _c"> </span>asserts<span class="_ _c"> </span>that<span class="_ _f"> </span>the<span class="_ _c"> </span>p<span class="_ _b"></span>ointers<span class="_ _f"> </span>a<span class="_ _3"></span>re<span class="_ _f"> </span>not<span class="_ _c"> </span>aliased</div><div class="t m0 xd hd y29f ff5 fs7 fc6 sc0 ls0 ws0">void<span class="_ _9"> </span><span class="ffc fc7">f<span class="fc0">(</span></span>int<span class="ffc fc8">*<span class="_ _9"> </span><span class="fc0">__restrict<span class="_ _e"> </span>input,</span></span></div><div class="t m0 x2b hd y2a0 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _56"> </span><span class="ffc fc0">size,</span></div><div class="t m0 x2b hd y2a1 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="ffc fc8">*<span class="_ _9"> </span><span class="fc0">__restrict<span class="_ _9"> </span>output)<span class="_ _e"> </span>{</span></span></div><div class="t m0 x6 hd y2a2 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>size;<span class="_ _9"> </span>i<span class="fc8">++</span>)</span></span></div><div class="t m0 x16 hd y2a3 ffc fs7 fc0 sc0 ls0 ws0">output[i]<span class="_ _9"> </span><span class="fc8">=<span class="_ _9"> </span></span>input[i];</div><div class="t m0 xd hd y2a4 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 hb y2a5 ff4 fs6 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>otential<span class="_ _f"> </span>b<span class="_ _b"></span>enefits:</div><div class="t m0 xb hb y2a6 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Instruction-level<span class="_ _c"> </span>parallelism</span></div><div class="t m0 xb hb y2a7 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Less<span class="_ _c"> </span>instructions<span class="_ _f"> </span>executed</span></div><div class="t m0 xb hb y2a8 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Merge<span class="_ _c"> </span>common<span class="_ _f"> </span>sub-exp<span class="_ _3"></span>ressions</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">71/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf4e" class="pf w0 h0" data-page-no="4e"><div class="pc pc4e w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>ointers<span class="_ _17"> </span>Aliasing<span class="_ _55"> </span>3/4</div><div class="t m0 x1 hb ydd ff1 fs6 fc0 sc0 ls0 ws0">Benchma<span class="_ _3"></span>rking<span class="_ _8"> </span>matrix<span class="_ _8"> </span>multiplication</div><div class="t m0 xd hd y2a9 ff5 fs7 fc6 sc0 ls0 ws0">void<span class="_ _9"> </span><span class="ffc fc7">matrix_mul_v1<span class="fc0">(</span></span><span class="fc9">const<span class="_ _9"> </span></span>int<span class="ffc fc8">*<span class="_ _e"> </span><span class="fc0">A,</span></span></div><div class="t m0 x46 hd y2aa ff5 fs7 fc9 sc0 ls0 ws0">const<span class="_ _9"> </span><span class="fc6">int<span class="ffc fc8">*<span class="_ _9"> </span><span class="fc0">B,</span></span></span></div><div class="t m0 x46 hd y2ab ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _2c"> </span><span class="ffc fc0">N,</span></div><div class="t m0 x46 hd y2ac ff5 fs7 fc6 sc0 ls0 ws0">int<span class="ffc fc8">*<span class="_ _3d"> </span><span class="fc0">C)<span class="_ _9"> </span>{</span></span></div><div class="t m0 xd hd y2ad ff5 fs7 fc6 sc0 ls0 ws0">void<span class="_ _9"> </span><span class="ffc fc7">matrix_mul_v2<span class="fc0">(</span></span><span class="fc9">const<span class="_ _9"> </span></span>int<span class="ffc fc8">*<span class="_ _e"> </span><span class="fc0">__restrict<span class="_ _9"> </span>A,</span></span></div><div class="t m0 x46 hd y2ae ff5 fs7 fc9 sc0 ls0 ws0">const<span class="_ _9"> </span><span class="fc6">int<span class="ffc fc8">*<span class="_ _9"> </span><span class="fc0">__restrict<span class="_ _e"> </span>B,</span></span></span></div><div class="t m0 x46 hd y2af ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _57"> </span><span class="ffc fc0">N,</span></div><div class="t m0 x46 hd y2b0 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="ffc fc8">*<span class="_ _3d"> </span><span class="fc0">__restrict<span class="_ _9"> </span>C)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x4f hd y2b1 ff5 fs7 fc0 sc0 ls0 ws0">Optimization<span class="_ _2c"> </span><span class="ffc">-O1<span class="_ _43"> </span>-O2<span class="_ _43"> </span>-O3</span></div><div class="t m0 x4f h10 y2b2 ffc fs7 fc0 sc0 ls0 ws0">v1<span class="_ _58"> </span><span class="fff">1,030<span class="_ _d"> </span>ms<span class="_ _1a"> </span>777<span class="_ _d"> </span>ms<span class="_ _1a"> </span>777<span class="_ _d"> </span>ms</span></div><div class="t m0 x4f h10 y2b3 ffc fs7 fc0 sc0 ls0 ws0">v2<span class="_ _59"> </span><span class="fff">513<span class="_ _d"> </span>ms<span class="_ _1a"> </span>510<span class="_ _d"> </span>ms<span class="_ _1a"> </span>761<span class="_ _d"> </span>ms</span></div><div class="t m0 x4f h10 y2b4 ffc fs7 fc0 sc0 ls0 ws0">Speedup<span class="_ _5a"> </span><span class="fff">2.0x<span class="_ _5b"> </span>1.5x<span class="_ _26"> </span>1.02x</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">72/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf4f" class="pf w0 h0" data-page-no="4f"><div class="pc pc4f w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">P<span class="_ _3"></span>ointers<span class="_ _17"> </span>Aliasing<span class="_ _55"> </span>4/4</div><div class="t m0 xd hf y2b5 ff5 fs5 fc6 sc0 ls0 ws0">void<span class="_ _8"> </span><span class="ffd fc7">foo<span class="fc0">(std<span class="fc8">::</span>vector<span class="fc8">&lt;</span></span></span>double<span class="ffd fc8">&gt;&amp;<span class="_ _17"> </span><span class="fc0">v,<span class="_ _17"> </span></span></span><span class="fc9">const<span class="_ _8"> </span></span>double<span class="ffd fc8">&amp;<span class="_ _17"> </span><span class="fc0">coeff)<span class="_ _17"> </span>{</span></span></div><div class="t m0 xf hf y2b6 ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_ _8"> </span><span class="ffd fc0">(</span>auto<span class="ffd fc8">&amp;<span class="_ _17"> </span><span class="fc0">item<span class="_ _17"> </span></span>:<span class="_ _8"> </span><span class="fc0">v)<span class="_ _17"> </span>item<span class="_ _17"> </span></span>*=<span class="_ _8"> </span><span class="fc0">std</span>::<span class="fc0">sinh(coeff);</span></span></div><div class="t m0 xd hf y2b7 ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 ha y2b8 ff6 fs5 fc0 sc0 ls0 ws0">vs.</div><div class="t m0 xd hf y2b9 ff5 fs5 fc6 sc0 ls0 ws0">void<span class="_ _8"> </span><span class="ffd fc7">foo<span class="fc0">(std<span class="fc8">::</span>vector<span class="fc8">&lt;</span></span></span>double<span class="ffd fc8">&gt;&amp;<span class="_ _17"> </span><span class="fc0">v,<span class="_ _17"> </span></span></span>double<span class="_ _8"> </span><span class="ffd fc0">coeff)<span class="_ _17"> </span>{</span></div><div class="t m0 xf hf y2ba ff5 fs5 fc9 sc0 ls0 ws0">for<span class="_ _8"> </span><span class="ffd fc0">(</span>auto<span class="ffd fc8">&amp;<span class="_ _17"> </span><span class="fc0">item<span class="_ _17"> </span></span>:<span class="_ _8"> </span><span class="fc0">v)<span class="_ _17"> </span>item<span class="_ _17"> </span></span>*=<span class="_ _8"> </span><span class="fc0">std</span>::<span class="fc0">sinh(coeff);</span></span></div><div class="t m0 xd hf y2bb ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 x30 hd y2bc ffc fs7 fcc sc0 ls0 ws0">Argument<span class="_ _9"> </span>Passing,<span class="_ _9"> </span>Core<span class="_ _e"> </span>Guidelines<span class="_ _9"> </span>and<span class="_ _9"> </span>Aliasing</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">73/84</div><a class="l" href="https://www.youtube.com/watch?v=uylFACqcWYI"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:1.263000px;width:218.531000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf50" class="pf w0 h0" data-page-no="50"><div class="pc pc50 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 ya9 ff1 fs0 fc0 sc0 ls0 ws0">Object-Oriented</div><div class="t m0 x8 h2 yaa ff1 fs0 fc0 sc0 ls0 ws0">Programming</div><a class="l" href="#pf50" data-dest-detail='[80,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:224.427000px;width:241.993000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf50" data-dest-detail='[80,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:172.870500px;width:154.986000px;height:24.025000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf51" class="pf w0 h0" data-page-no="51"><div class="pc pc51 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">V<span class="_ _3"></span>a<span class="_ _3"></span>riable/Object<span class="_ _9"> </span>Scop<span class="_ _b"></span>e</div><div class="t m0 x1 hb y77 ff1 fs6 fc0 sc0 ls0 ws0">Decla<span class="_ _3"></span>re<span class="_ _8"> </span>lo<span class="_ _b"></span>cal<span class="_ _8"> </span>variable<span class="_ _f"> </span>in<span class="_ _f"> </span>the<span class="_ _8"> </span>innermost<span class="_ _8"> </span>scop<span class="_ _b"></span>e</div><div class="t m0 xb hb y2bd ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">the<span class="_ _c"> </span>compiler<span class="_ _f"> </span>can<span class="_ _c"> </span>more<span class="_ _c"> </span>lik<span class="_ _3"></span>ely<span class="_ _f"> </span>fit<span class="_ _c"> </span>them<span class="_ _c"> </span>into<span class="_ _f"> </span>registers<span class="_ _c"> </span>instead<span class="_ _f"> </span>of<span class="_ _c"> </span>stack</span></div><div class="t m0 xb hb y2be ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">it<span class="_ _c"> </span>improves<span class="_ _c"> </span>readabilit<span class="_ _3"></span>y</span></div><div class="t m0 x16 h10 y2bf ff1 fs7 fc0 sc0 ls0 ws0">W<span class="_ _3"></span>rong:</div><div class="t m0 x1a hd y2c0 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc0">i,<span class="_ _9"> </span>x;</span></div><div class="t m0 x1a hd y2c1 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(i<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _9"> </span><span class="fc8">&lt;<span class="_ _e"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _9"> </span>{</span></div><div class="t m0 x50 hd y2c2 ffc fs7 fc0 sc0 ls0 ws0">x<span class="_ _46"> </span><span class="fc8">=<span class="_ _9"> </span></span>value<span class="_ _9"> </span><span class="fc8">*<span class="_ _e"> </span>5</span>;</div><div class="t m0 x50 hd y2c3 ffc fs7 fc0 sc0 ls0 ws0">sum<span class="_ _9"> </span><span class="fc8">+=<span class="_ _9"> </span></span>x;</div><div class="t m0 x1a hd y2c4 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x51 h10 y2c5 ff1 fs7 fc0 sc0 ls0 ws0">Co<span class="_ _3"></span>rrect:</div><div class="t m0 x52 hd y2c6 ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x53 hd y2c7 ff5 fs7 fc6 sc0 ls0 ws0">int<span class="_ _9"> </span><span class="ffc fc0">x<span class="_ _20"> </span><span class="fc8">=<span class="_ _9"> </span></span>value<span class="_ _9"> </span><span class="fc8">*<span class="_ _e"> </span>5</span>;</span></div><div class="t m0 x53 hd y2c8 ffc fs7 fc0 sc0 ls0 ws0">sum<span class="_ _13"> </span><span class="fc8">+=<span class="_ _9"> </span></span>x;</div><div class="t m0 x52 hd y2c9 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 xb hb y2ca ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4 fcd">C++17<span class="_ _c"> </span><span class="fc0">allows<span class="_ _c"> </span>lo<span class="_ _b"></span>cal<span class="_ _c"> </span>variable<span class="_ _c"> </span>initialization<span class="_ _c"> </span>in<span class="_ _10"> </span><span class="ff7">if<span class="_ _10"> </span></span>and<span class="_ _10"> </span><span class="ff7">while<span class="_ _10"> </span></span>statements,<span class="_ _c"> </span>while</span></span></div><div class="t m0 x6 hb y2cb ff4 fs6 fcd sc0 ls0 ws0">C++20<span class="_ _c"> </span><span class="fc0">intro<span class="_ _b"></span>duces<span class="_ _f"> </span>them<span class="_ _c"> </span>for<span class="_ _c"> </span>in<span class="_ _c"> </span><span class="ffa">range-based<span class="_ _c"> </span>lo<span class="_ _b"></span>ops</span></span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">74/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf52" class="pf w0 h0" data-page-no="52"><div class="pc pc52 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">V<span class="_ _3"></span>a<span class="_ _3"></span>riable/Object<span class="_ _9"> </span>Scop<span class="_ _b"></span>e</div><div class="t m0 x1 hb y2cc ff1 fs6 fc0 sc0 ls0 ws0">Exception!<span class="_ _e"> </span><span class="ff4">Built-in<span class="_ _c"> </span>t<span class="_ _3"></span>yp<span class="_ _b"></span>e<span class="_ _f"> </span>va<span class="_ _3"></span>riables<span class="_ _f"> </span>and<span class="_ _c"> </span>passive<span class="_ _f"> </span>structures<span class="_ _c"> </span>should<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>placed<span class="_ _f"> </span>in<span class="_ _c"> </span>the</span></div><div class="t m0 x1 hb y2cd ff4 fs6 fc0 sc0 ls0 ws0">innermost<span class="_ _c"> </span>lo<span class="_ _b"></span>op,<span class="_ _f"> </span>while<span class="_ _c"> </span>objects<span class="_ _f"> </span>with<span class="_ _c"> </span>constructors<span class="_ _c"> </span>should<span class="_ _c"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>placed<span class="_ _f"> </span>outside<span class="_ _c"> </span>lo<span class="_ _b"></span>ops</div><div class="t m0 x54 hd y2ce ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x55 hd y2cf ffc fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>string<span class="_ _9"> </span>str(<span class="fca">&quot;prefix_&quot;</span>);</div><div class="t m0 x55 hd y2d0 ffc fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>cout<span class="_ _9"> </span><span class="fc8">&lt;&lt;<span class="_ _9"> </span></span>str<span class="_ _e"> </span><span class="fc8">+<span class="_ _9"> </span></span>value[i];</div><div class="t m0 x54 hd y2d1 ffc fs7 fc0 sc0 ls0 ws0">}<span class="_ _9"> </span><span class="ffb fc5">//<span class="_ _9"> </span>str<span class="_ _e"> </span>call<span class="_ _9"> </span>CTOR/DTOR<span class="_ _9"> </span>N<span class="_ _e"> </span>times</span></div><div class="t m0 x52 hd y2ce ffc fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>string<span class="_ _9"> </span>str(<span class="fca">&quot;prefix_&quot;</span>);</div><div class="t m0 x52 hd y2cf ff5 fs7 fc9 sc0 ls0 ws0">for<span class="_ _9"> </span><span class="ffc fc0">(</span><span class="fc6">int<span class="_ _9"> </span><span class="ffc fc0">i<span class="_ _e"> </span><span class="fc8">=<span class="_ _9"> </span>0</span>;<span class="_ _9"> </span>i<span class="_ _e"> </span><span class="fc8">&lt;<span class="_ _9"> </span></span>N;<span class="_ _9"> </span>i<span class="fc8">++</span>)<span class="_ _9"> </span>{</span></span></div><div class="t m0 x53 hd y2d0 ffc fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>cout<span class="_ _9"> </span><span class="fc8">&lt;&lt;<span class="_ _9"> </span></span>str<span class="_ _e"> </span><span class="fc8">+<span class="_ _9"> </span></span>value[i];</div><div class="t m0 x52 hd y2d1 ffc fs7 fc0 sc0 ls0 ws0">}</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">75/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf53" class="pf w0 h0" data-page-no="53"><div class="pc pc53 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Object<span class="_ _17"> </span>Optimizations</div><div class="t m0 xb hb y97 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">direct<span class="_ _8"> </span>initialization<span class="_ _c"> </span></span>and<span class="_ _c"> </span><span class="ffa">full<span class="_ _f"> </span>object<span class="_ _c"> </span>constructor<span class="_ _9"> </span></span>instead<span class="_ _f"> </span>of<span class="_ _c"> </span>tw<span class="_ _3"></span>o-step</span></div><div class="t m0 x6 hb y2d2 ff4 fs6 fc0 sc0 ls0 ws0">initialization<span class="_ _c"> </span>(also<span class="_ _c"> </span>for<span class="_ _c"> </span>variables)</div><div class="t m0 xb hb y2d3 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _f"> </span><span class="ff1">move<span class="_ _8"> </span>semantic<span class="_ _c"> </span></span>instead<span class="_ _c"> </span>of<span class="_ _f"> </span><span class="ffa">copy<span class="_ _c"> </span>constructo<span class="_ _3"></span>r<span class="ff4">.<span class="_ _e"> </span>Ma<span class="_ _3"></span>rk<span class="_ _c"> </span><span class="ffa">copy<span class="_ _c"> </span>constructo<span class="_ _3"></span>r<span class="_ _e"> </span><span class="ff4">as</span></span></span></span></span></div><div class="t m0 xc hb y2d4 ff7 fs6 fc0 sc0 ls0 ws0">=delete<span class="_ _10"> </span><span class="ff4">(sometimes<span class="_ _c"> </span>it<span class="_ _c"> </span>is<span class="_ _f"> </span>hard<span class="_ _c"> </span>to<span class="_ _c"> </span>see,<span class="_ _c"> </span>e.g.<span class="_ _e"> </span>implicit)</span></div><div class="t m0 xb hb y2d5 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff5">static<span class="_ _10"> </span></span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>all<span class="_ _c"> </span>memb<span class="_ _b"></span>ers<span class="_ _f"> </span>that<span class="_ _c"> </span>do<span class="_ _f"> </span>not<span class="_ _c"> </span>use<span class="_ _f"> </span>instance<span class="_ _c"> </span>memb<span class="_ _b"></span>er<span class="_ _f"> </span>(avoid<span class="_ _c"> </span>passing</span></div><div class="t m0 xc hb y2d6 ff7 fs6 fc0 sc0 ls0 ws0">this<span class="_ _10"> </span><span class="ff4">p<span class="_ _b"></span>ointer)</span></div><div class="t m0 xb hb y2d7 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">If<span class="_ _c"> </span>the<span class="_ _f"> </span>object<span class="_ _c"> </span>semantic<span class="_ _f"> </span>is<span class="_ _c"> </span><span class="ffa">trivially<span class="_ _c"> </span>copy<span class="_ _3"></span>able<span class="ff4">,<span class="_ _c"> </span>ensure<span class="_ _f"> </span><span class="ff1">defaulted<span class="_ _10"> </span><span class="ff7">=<span class="_ _15"> </span>default</span></span></span></span></span></div><div class="t m0 x6 hb y2d8 ffa fs6 fc0 sc0 ls0 ws0">default/cop<span class="_ _3"></span>y<span class="_ _f"> </span>constructo<span class="_ _3"></span>rs<span class="_ _9"> </span><span class="ff4">and<span class="_ _c"> </span></span>assignment<span class="_ _f"> </span>op<span class="_ _b"></span>erators<span class="_ _17"> </span><span class="ff4">to<span class="_ _c"> </span>enable<span class="_ _f"> </span>vecto<span class="_ _3"></span>rization</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">76/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf54" class="pf w0 h0" data-page-no="54"><div class="pc pc54 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Object<span class="_ _17"> </span>Dynamic<span class="_ _17"> </span>Behavior<span class="_ _8"> </span>Optimizations</div><div class="t m0 xb hb y43 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff1">Virtual<span class="_ _8"> </span>calls<span class="_ _c"> </span><span class="ff4">are<span class="_ _c"> </span>slo<span class="_ _3"></span>wer<span class="_ _c"> </span>than<span class="_ _c"> </span>standard<span class="_ _c"> </span>functions</span></span></div><div class="t m0 x56 hb y2d9 ff4 fs6 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span>Virtual<span class="_ _c"> </span>calls<span class="_ _f"> </span>p<span class="_ _3"></span>revent<span class="_ _f"> </span>any<span class="_ _c"> </span>kind<span class="_ _f"> </span>of<span class="_ _c"> </span>optimizations<span class="_ _f"> </span>as<span class="_ _c"> </span>function<span class="_ _f"> </span>lo<span class="_ _b"></span>okup<span class="_ _c"> </span>is<span class="_ _f"> </span>at</div><div class="t m0 x1a hb y2da ff4 fs6 fc0 sc0 ls0 ws0">runtime<span class="_ _c"> </span>(lo<span class="_ _b"></span>op<span class="_ _f"> </span>transfo<span class="_ _3"></span>rmation,<span class="_ _f"> </span>vectorization,<span class="_ _c"> </span>etc.)</div><div class="t m0 x56 hb y2db ff4 fs6 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span>Virtual<span class="_ _c"> </span>call<span class="_ _f"> </span>overhead<span class="_ _c"> </span>is<span class="_ _f"> </span>up<span class="_ _c"> </span>to<span class="_ _f"> </span>20%-50%<span class="_ _c"> </span>for<span class="_ _c"> </span>function<span class="_ _c"> </span>that<span class="_ _c"> </span>can<span class="_ _f"> </span>b<span class="_ _b"></span>e<span class="_ _c"> </span>inlined</div><div class="t m0 xb hb y2dc ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Ma<span class="_ _3"></span>rk<span class="_ _10"> </span><span class="ff7">final<span class="_ _10"> </span></span>all<span class="_ _10"> </span><span class="ff7">virtual<span class="_ _10"> </span></span>functions<span class="_ _c"> </span>that<span class="_ _f"> </span>are<span class="_ _c"> </span>not<span class="_ _c"> </span>overridden</span></div><div class="t m0 xb hb y2dd ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _3"></span>void<span class="_ _f"> </span>dynamic<span class="_ _c"> </span>op<span class="_ _b"></span>erations<span class="_ _f"> </span><span class="ff5">dynamic<span class="_ _8"> </span>cast</span></span></div><div class="t m0 x3e h10 y2de fff fs7 fcc sc0 ls0 ws0">-<span class="_ _6"> </span><span class="ffc">The<span class="_ _9"> </span>Hidden<span class="_ _e"> </span>Performance<span class="_ _17"> </span>Price<span class="_ _e"> </span>of<span class="_ _9"> </span>Virtual<span class="_ _9"> </span>Functions</span></div><div class="t m0 x3e h10 y2df fff fs7 fcc sc0 ls0 ws0">-<span class="_ _6"> </span><span class="ffc">Investigating<span class="_ _9"> </span>the<span class="_ _e"> </span>Performance<span class="_ _17"> </span>Overhead<span class="_ _e"> </span>of<span class="_ _9"> </span>C++<span class="_ _9"> </span>Exceptions</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">77/84</div><a class="l" href="https://raw.githubusercontent.com/CppCon/CppCon2022/main/Presentations/CppCon-The-Hidden-Performance-Price-of-Virtual-Functions.pdf"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:34.416000px;width:232.653000px;height:7.373000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://pspdfkit.com/blog/2020/performance-overhead-of-exceptions-in-cpp/"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:9.534000px;width:265.604000px;height:9.366000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf55" class="pf w0 h0" data-page-no="55"><div class="pc pc55 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Object<span class="_ _17"> </span>Op<span class="_ _b"></span>eration<span class="_ _17"> </span>Optimizations</div><div class="t m0 xb hb y2e0 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Minimize<span class="_ _c"> </span>multiple<span class="_ _10"> </span><span class="ff5">+<span class="_ _10"> </span></span>op<span class="_ _b"></span>erations<span class="_ _c"> </span>b<span class="_ _0"></span>et<span class="_ _3"></span>w<span class="_ _3"></span>een<span class="_ _c"> </span>objects<span class="_ _f"> </span>to<span class="_ _c"> </span>avoid<span class="_ _f"> </span>temp<span class="_ _b"></span>ora<span class="_ _3"></span>ry<span class="_ _c"> </span>storage</span></div><div class="t m0 xb hb y2e1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff5">x<span class="_ _15"> </span>+=<span class="_ _15"> </span>obj<span class="_ _25"> </span></span>,<span class="_ _f"> </span>instead<span class="_ _c"> </span>of<span class="_ _10"> </span><span class="ff7">x<span class="_ _15"> </span>=<span class="_ _15"> </span>x<span class="_ _15"> </span>+<span class="_ _15"> </span>obj<span class="_ _10"> </span><span class="ff10">→<span class="_ _c"> </span></span></span>avoid<span class="_ _f"> </span>the<span class="_ _c"> </span>object<span class="_ _f"> </span>cop<span class="_ _3"></span>y</span></div><div class="t m0 xb hb y2e2 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff5">++obj<span class="_ _25"> </span></span>/<span class="_ _d"> </span><span class="ff5">--obj<span class="_ _10"> </span></span>(return<span class="_ _10"> </span><span class="ff7">&amp;obj<span class="_ _25"> </span></span>),<span class="_ _f"> </span>instead<span class="_ _c"> </span>of<span class="_ _10"> </span><span class="ff7">obj++<span class="_ _d"> </span></span>,<span class="_ _d"> </span><span class="ff7">obj--<span class="_ _10"> </span></span>(cop<span class="_ _3"></span>y<span class="_ _c"> </span>and</span></div><div class="t m0 x6 hb y2e3 ff4 fs6 fc0 sc0 ls0 ws0">return<span class="_ _c"> </span>old<span class="_ _10"> </span><span class="ff7">obj<span class="_ _d"> </span></span>)</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">78/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf56" class="pf w0 h0" data-page-no="56"><div class="pc pc56 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Object<span class="_ _17"> </span>Implicit<span class="_ _17"> </span>Conversion</div><div class="t m0 xd hf y2e4 ff5 fs5 fc9 sc0 ls0 ws0">struct<span class="_ _8"> </span><span class="fc7">A<span class="_ _17"> </span><span class="ffd fc0">{<span class="_ _1c"> </span><span class="ffb fc5">//<span class="_ _8"> </span>big<span class="_ _17"> </span>object</span></span></span></div><div class="t m0 xf hf y2e5 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_ _8"> </span><span class="ffd fc0">array[<span class="fc8">10000</span>];</span></div><div class="t m0 xd hf y2e6 ffd fs5 fc0 sc0 ls0 ws0">};</div><div class="t m0 xd hf y2e7 ff5 fs5 fc9 sc0 ls0 ws0">struct<span class="_ _8"> </span><span class="fc7">B<span class="_ _17"> </span><span class="ffd fc0">{</span></span></div><div class="t m0 xf hf y2e8 ff5 fs5 fc6 sc0 ls0 ws0">int<span class="_ _8"> </span><span class="ffd fc0">array[<span class="fc8">10000</span>];</span></div><div class="t m0 xf hf y2e9 ffd fs5 fc0 sc0 ls0 ws0">B()<span class="_ _8"> </span><span class="fc8">=<span class="_ _17"> </span><span class="ff5 fc9">default</span></span>;</div><div class="t m0 xf hf y2ea ffd fs5 fc0 sc0 ls0 ws0">B(<span class="ff5 fc9">const<span class="_ _8"> </span></span>A<span class="fc8">&amp;<span class="_ _17"> </span></span>a)<span class="_ _17"> </span>{<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>user-defined<span class="_ _8"> </span>constructor</span></div><div class="t m0 x15 hf y2eb ffd fs5 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>copy(a.array,<span class="_ _8"> </span>a.array<span class="_ _17"> </span><span class="fc8">+<span class="_ _17"> </span>10000</span>,<span class="_ _8"> </span>array);</div><div class="t m0 xf hf y2ec ffd fs5 fc0 sc0 ls0 ws0">}</div><div class="t m0 xd hf y2ed ffd fs5 fc0 sc0 ls0 ws0">};</div><div class="t m0 xd hf y2ee ffb fs5 fc5 sc0 ls0 ws0">//----------------------------------------------------------------------</div><div class="t m0 xd hf y2ef ff5 fs5 fc6 sc0 ls0 ws0">void<span class="_ _8"> </span><span class="ffd fc7">f<span class="fc0">(</span></span><span class="fc9">const<span class="_ _17"> </span><span class="ffd fc0">B<span class="fc8">&amp;<span class="_ _17"> </span></span>b)<span class="_ _8"> </span>{}</span></span></div><div class="t m0 xd hf y2f0 ffd fs5 fc0 sc0 ls0 ws0">A<span class="_ _8"> </span>a;</div><div class="t m0 xd hf y2f1 ffd fs5 fc0 sc0 ls0 ws0">B<span class="_ _8"> </span>b;</div><div class="t m0 xd hf y2f2 ffd fs5 fc0 sc0 ls0 ws0">f(b);<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span>no<span class="_ _8"> </span>cost</span></div><div class="t m0 xd hf y2f3 ffd fs5 fc0 sc0 ls0 ws0">f(a);<span class="_ _8"> </span><span class="ffb fc5">//<span class="_ _17"> </span><span class="fc3">very<span class="_ _8"> </span>costly!!<span class="_ _17"> </span></span>implicit<span class="_ _8"> </span>conversion</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">79/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf57" class="pf w0 h0" data-page-no="57"><div class="pc pc57 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h2 y2f4 ff5 fs0 fc0 sc0 ls0 ws0">Std<span class="_ _1"> </span><span class="ff1">Lib<span class="_ _7"></span>ra<span class="_ _3"></span>ry<span class="_ _1"> </span>and</span></div><div class="t m0 x8 h2 y13b ff1 fs0 fc0 sc0 ls0 ws0">Other<span class="_ _1"> </span>Language</div><div class="t m0 x8 h2 y2f5 ff1 fs0 fc0 sc0 ls0 ws0">Asp<span class="_ _0"></span>ects</div><a class="l" href="#pf57" data-dest-detail='[87,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:250.204500px;width:241.993000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf57" data-dest-detail='[87,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:198.648000px;width:241.993000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf57" data-dest-detail='[87,"XYZ",27.346,256.118,null]'><div class="d m1" style="border-style:none;position:absolute;left:158.662500px;bottom:147.091500px;width:90.543000px;height:24.026000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf58" class="pf w0 h0" data-page-no="58"><div class="pc pc58 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">F<span class="_ _3"></span>rom<span class="_ _17"> </span>C<span class="_ _17"> </span>to<span class="_ _9"> </span>C++</div><div class="t m0 xb hb y2f6 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _3"></span>void<span class="_ _f"> </span>old<span class="_ _c"> </span><span class="ff7">C<span class="_ _f"> </span></span>libra<span class="_ _3"></span>ry<span class="_ _c"> </span>routines<span class="_ _c"> </span>such<span class="_ _f"> </span>as<span class="_ _10"> </span><span class="ff7">qsort<span class="_ _25"> </span></span>,<span class="_ _10"> </span><span class="ff7">bsearch<span class="_ _d"> </span></span>,<span class="_ _c"> </span>etc.<span class="_ _e"> </span>Prefer<span class="_ _10"> </span><span class="ff5">std::sort<span class="_ _25"> </span></span>,</span></div><div class="t m0 xc hb y2f7 ff5 fs6 fc0 sc0 ls0 ws0">std::binary<span class="_ _8"> </span>search<span class="_ _10"> </span><span class="ff4">instead</span></div><div class="t m0 x56 hb y159 ff4 fs6 fc0 sc0 ls0 ws0">-<span class="_ _14"> </span><span class="ff7">std::sort<span class="_ _10"> </span></span>is<span class="_ _c"> </span>based<span class="_ _c"> </span>on<span class="_ _f"> </span>a<span class="_ _c"> </span>hybrid<span class="_ _c"> </span>so<span class="_ _3"></span>rting<span class="_ _f"> </span>algorithm.<span class="_ _9"> </span>Quick-so<span class="_ _3"></span>rt<span class="_ _f"> </span>/<span class="_ _c"> </span>head-sort</div><div class="t m0 x1a hb y2f8 ff4 fs6 fc0 sc0 ls0 ws0">(introso<span class="_ _3"></span>rt),<span class="_ _c"> </span>merge-sort<span class="_ _d"> </span>/<span class="_ _c"> </span>insertion,<span class="_ _c"> </span>etc.<span class="_ _9"> </span>dep<span class="_ _b"></span>ending<span class="_ _c"> </span>on<span class="_ _c"> </span>the<span class="_ _d"> </span><span class="ff7">std<span class="_ _c"> </span></span>implementation</div><div class="t m0 x56 hb y2f9 ff4 fs6 fc0 sc0 ls0 ws0">-<span class="_ _6"> </span>Prefer<span class="_ _10"> </span><span class="ff7">std::find()<span class="_ _10"> </span></span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>small<span class="_ _c"> </span>arra<span class="_ _3"></span>y<span class="_ _7"></span>,<span class="_ _10"> </span><span class="ff7 fs4">std::lower<span class="_ _f"> </span>bound<span class="_ _25"> </span><span class="ff4">,</span></span></div><div class="t m0 x19 hb y2fa ff7 fs4 fc0 sc0 ls0 ws0">std::upper<span class="_ _f"> </span>bound<span class="_ _25"> </span><span class="ff4">,<span class="_ _10"> </span></span>std::binary<span class="_ _c"> </span>search<span class="_ _10"> </span><span class="ff4 fs6">for<span class="_ _c"> </span>la<span class="_ _3"></span>rge<span class="_ _c"> </span>sorted<span class="_ _c"> </span>a<span class="_ _3"></span>rray</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">80/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf59" class="pf w0 h0" data-page-no="59"><div class="pc pc59 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">F<span class="_ _3"></span>unction<span class="_ _17"> </span>Optimizations</div><div class="t m0 xb hb y13c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _14"> </span><span class="ff5">std::fill<span class="_ _10"> </span><span class="ff4">applies<span class="_ _10"> </span><span class="ff7">memset<span class="_ _10"> </span></span>and<span class="_ _10"> </span></span>std::copy<span class="_ _11"> </span><span class="ff4">applies<span class="_ _10"> </span><span class="ff7">memcpy<span class="_ _10"> </span></span>if<span class="_ _f"> </span>the</span></span></div><div class="t m0 x6 hb y2fb ff4 fs6 fc0 sc0 ls0 ws0">input/output<span class="_ _c"> </span>are<span class="_ _c"> </span>continuous<span class="_ _c"> </span>in<span class="_ _c"> </span>memory</div><div class="t m0 xb hb y2fc ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _c"> </span>the<span class="_ _f"> </span>same<span class="_ _c"> </span>type<span class="_ _f"> </span>fo<span class="_ _3"></span>r<span class="_ _f"> </span>initialization<span class="_ _c"> </span>in<span class="_ _f"> </span>functions<span class="_ _c"> </span>like<span class="_ _11"> </span><span class="ff7">std::accumulate()<span class="_ _d"> </span></span>,</span></div><div class="t m0 xc h11 y2fd ff7 fs6 fc0 sc0 ls0 ws0">std::fill</div><div class="t m0 xc hd y2fe ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_ _9"> </span><span class="ffc fc0">array<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span></span>new<span class="_ _9"> </span><span class="fc6">int<span class="ffc fc0">[size];</span></span></div><div class="t m0 xc hd y2ff ffc fs7 fc0 sc0 ls0 ws0">...</div><div class="t m0 xc hd y300 ff5 fs7 fc9 sc0 ls0 ws0">auto<span class="_ _9"> </span><span class="ffc fc0">sum<span class="_ _9"> </span><span class="fc8">=<span class="_ _e"> </span></span>std<span class="fc8">::</span>accumulate(array,<span class="_ _9"> </span>array<span class="_ _9"> </span><span class="fc8">+<span class="_ _e"> </span></span>size,<span class="_ _9"> </span><span class="fc8">0u</span>);</span></div><div class="t m0 xc hd y301 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>0u<span class="_ _9"> </span>!=<span class="_ _e"> </span>0<span class="_ _9"> </span><span class="ff17">→<span class="_ _9"> </span></span>conversion<span class="_ _e"> </span>at<span class="_ _9"> </span>each<span class="_ _9"> </span>step</div><div class="t m0 xc hd y302 ffc fs7 fc0 sc0 ls0 ws0">std<span class="fc8">::</span>fill(array,<span class="_ _9"> </span>array<span class="_ _9"> </span><span class="fc8">+<span class="_ _e"> </span></span>size,<span class="_ _9"> </span><span class="fc8">0u</span>);</div><div class="t m0 xc hd y303 ffb fs7 fc5 sc0 ls0 ws0">//<span class="_ _9"> </span>it<span class="_ _9"> </span>is<span class="_ _e"> </span>not<span class="_ _9"> </span>translated<span class="_ _9"> </span>into<span class="_ _e"> </span><span class="ff15">memset</span></div><div class="t m0 x30 hd y304 ffc fs7 fcc sc0 ls0 ws0">The<span class="_ _9"> </span>Hunt<span class="_ _9"> </span>for<span class="_ _e"> </span>the<span class="_ _9"> </span>Fastest<span class="_ _9"> </span>Zero</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">81/84</div><a class="l" href="https://travisdowns.github.io/blog/2020/01/20/zero.html"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:8.152500px;width:138.506000px;height:13.445000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf5a" class="pf w0 h0" data-page-no="5a"><div class="pc pc5a w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Containers</div><div class="t m0 xb hb yb1 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff5">std<span class="_ _10"> </span></span>container<span class="_ _c"> </span>memb<span class="_ _b"></span>er<span class="_ _c"> </span>functions<span class="_ _f"> </span>(e.g.<span class="_ _4"> </span><span class="ff7">obj.find()<span class="_ _d"> </span></span>)<span class="_ _c"> </span>instead<span class="_ _c"> </span>of<span class="_ _f"> </span>external</span></div><div class="t m0 x6 hb y305 ff4 fs6 fc0 sc0 ls0 ws0">ones<span class="_ _c"> </span>(e.g.<span class="_ _4"> </span><span class="ff7">std::find()<span class="_ _d"> </span></span>).<span class="_ _e"> </span><span class="fs4">Example:<span class="_ _5c"> </span><span class="ff7">std::set<span class="_ _11"> </span><span class="ffa">O<span class="_ _0"></span></span></span>(<span class="ffa">log<span class="_ _0"></span></span>(<span class="ffa">n</span>))<span class="_ _c"> </span>vs.<span class="_ _17"> </span><span class="ffa">O<span class="_ _0"></span></span>(<span class="ffa">n</span>)</span></div><div class="t m0 xb hb y306 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Be<span class="_ _c"> </span>aw<span class="_ _3"></span>a<span class="_ _3"></span>re<span class="_ _f"> </span>of<span class="_ _c"> </span>container<span class="_ _f"> </span>p<span class="_ _3"></span>rop<span class="_ _0"></span>erties,<span class="_ _c"> </span>e.g.<span class="_ _3a"> </span><span class="ff7 fs4">vector.push<span class="_ _f"> </span>vector(v)<span class="_ _d"> </span></span>,<span class="_ _c"> </span>instead<span class="_ _f"> </span>of</span></div><div class="t m0 xc hb y307 ff7 fs4 fc0 sc0 ls0 ws0">vector.insert(vector.begin(),<span class="_ _e"> </span>value)<span class="_ _10"> </span><span class="ff10 fs6">→<span class="_ _f"> </span><span class="ff4">entire<span class="_ _c"> </span>copy<span class="_ _c"> </span>of<span class="_ _c"> </span>all<span class="_ _c"> </span>vector<span class="_ _c"> </span>elements</span></span></div><div class="t m0 xb hb y308 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Set<span class="_ _10"> </span><span class="ff5">std::vector<span class="_ _10"> </span></span>size<span class="_ _c"> </span>during<span class="_ _c"> </span>the<span class="_ _f"> </span>object<span class="_ _c"> </span>construction<span class="_ _f"> </span>(or<span class="_ _c"> </span>use<span class="_ _c"> </span>the<span class="_ _10"> </span><span class="ff7">reserve()</span></span></div><div class="t m0 x6 hb y309 ff4 fs6 fc0 sc0 ls0 ws0">metho<span class="_ _b"></span>d)<span class="_ _c"> </span>if<span class="_ _c"> </span>the<span class="_ _c"> </span>numb<span class="_ _0"></span>er<span class="_ _d"> </span>of<span class="_ _f"> </span>elements<span class="_ _c"> </span>to<span class="_ _c"> </span>insert<span class="_ _c"> </span>is<span class="_ _f"> </span>known<span class="_ _d"> </span>in<span class="_ _f"> </span>advance<span class="_ _c"> </span><span class="ff10">→<span class="_ _c"> </span></span>every<span class="_ _c"> </span>implicit</div><div class="t m0 x6 hb y30a ff4 fs6 fc0 sc0 ls0 ws0">resize<span class="_ _c"> </span>is<span class="_ _c"> </span>equivalent<span class="_ _f"> </span>to<span class="_ _c"> </span>a<span class="_ _f"> </span>copy<span class="_ _c"> </span>of<span class="_ _c"> </span>all<span class="_ _c"> </span>vector<span class="_ _c"> </span>elements</div><div class="t m0 xb hb y30b ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Consider<span class="_ _c"> </span><span class="ffa">unordered<span class="_ _17"> </span></span>containers<span class="_ _f"> </span>instead<span class="_ _c"> </span>of<span class="_ _f"> </span>the<span class="_ _c"> </span>standard<span class="_ _c"> </span>one,<span class="_ _c"> </span>e.g.<span class="_ _4"> </span><span class="ff7">unorder<span class="_ _8"> </span>map</span></span></div><div class="t m0 x6 hb y30c ff4 fs6 fc0 sc0 ls0 ws0">vs.<span class="_ _4"> </span><span class="ff7">map</span></div><div class="t m0 xb hb y30d ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff5">std::array<span class="_ _10"> </span></span>instead<span class="_ _c"> </span>of<span class="_ _c"> </span>dynamic<span class="_ _f"> </span>heap<span class="_ _c"> </span>allo<span class="_ _b"></span>cation</span></div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">82/84</div></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf5b" class="pf w0 h0" data-page-no="5b"><div class="pc pc5b w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Critics<span class="_ _17"> </span>to<span class="_ _17"> </span>Standard<span class="_ _8"> </span>T<span class="_ _7"></span>emplate<span class="_ _17"> </span>Lib<span class="_ _3"></span>rary<span class="_ _8"> </span>(STL)</div><div class="t m0 xb hb y13c ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Platfo<span class="_ _3"></span>rm/Compiler-dep<span class="_ _b"></span>endent<span class="_ _f"> </span>implementation</span></div><div class="t m0 xb hb y2d9 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Execution<span class="_ _c"> </span>order<span class="_ _c"> </span>and<span class="_ _c"> </span>results<span class="_ _c"> </span>across<span class="_ _f"> </span>platforms</span></div><div class="t m0 xb hb y30e ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Debugging<span class="_ _c"> </span>is<span class="_ _f"> </span>ha<span class="_ _3"></span>rd</span></div><div class="t m0 xb hb y30f ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Complex<span class="_ _c"> </span>interaction<span class="_ _f"> </span>with<span class="_ _c"> </span>custom<span class="_ _f"> </span>memo<span class="_ _3"></span>ry<span class="_ _f"> </span>allo<span class="_ _b"></span>cators</span></div><div class="t m0 xb hb y310 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Erro<span class="_ _3"></span>r<span class="_ _f"> </span>handling<span class="_ _c"> </span>based<span class="_ _f"> </span>on<span class="_ _c"> </span>exceptions<span class="_ _f"> </span>is<span class="_ _c"> </span>non-transparent</span></div><div class="t m0 xb hb y311 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Bina<span class="_ _3"></span>ry<span class="_ _f"> </span>bloat</span></div><div class="t m0 xb hb y142 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Compile<span class="_ _c"> </span>time<span class="_ _f"> </span>(see<span class="_ _c"> </span><span class="ff7">C++<span class="_ _15"> </span>Compile<span class="_ _15"> </span>Health<span class="_ _15"> </span>Watchdog</span>,<span class="_ _c"> </span>and<span class="_ _f"> </span><span class="ff7">STL<span class="_ _15"> </span>Explorer</span>)</span></div><div class="t m0 x30 hd y312 ffc fs7 fcc sc0 ls0 ws0">STL<span class="_ _9"> </span>isnt<span class="_ _9"> </span>for<span class="_ _e"> </span>*anyone*</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">83/84</div><a class="l" href="https://artificial-mind.net/projects/compile-health/"><div class="d m1" style="border-style:none;position:absolute;left:202.572000px;bottom:59.587500px;width:156.628000px;height:12.901000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://s9w.github.io/stl_explorer/explorer.html"><div class="d m1" style="border-style:none;position:absolute;left:474.753000px;bottom:59.587500px;width:70.720000px;height:12.901000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="https://twitter.com/m_ninepoints/status/1497768472184430600"><div class="d m1" style="border-style:none;position:absolute;left:52.083000px;bottom:2.808000px;width:105.554000px;height:13.444000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
<div id="pf5c" class="pf w0 h0" data-page-no="5c"><div class="pc pc5c w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x4 h7 y7 ff1 fs3 fc1 sc0 ls0 ws0">Other<span class="_ _17"> </span>Language<span class="_ _17"> </span>Asp<span class="_ _b"></span>ects</div><div class="t m0 xb hb y313 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Prefer<span class="_ _10"> </span><span class="ff5">lambda<span class="_ _10"> </span></span>exp<span class="_ _3"></span>ression<span class="_ _f"> </span>(o<span class="_ _3"></span>r<span class="_ _10"> </span><span class="ff7">function<span class="_ _15"> </span>object<span class="_ _d"> </span></span>)<span class="_ _c"> </span>instead<span class="_ _c"> </span>of<span class="_ _10"> </span><span class="ff7">std::function</span></span></div><div class="t m0 x6 hb y314 ff4 fs6 fc0 sc0 ls0 ws0">o<span class="_ _3"></span>r<span class="_ _f"> </span>function<span class="_ _c"> </span>p<span class="_ _b"></span>ointers</div><div class="t m0 xb hb y315 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">A<span class="_ _3"></span>void<span class="_ _f"> </span>dynamic<span class="_ _c"> </span>op<span class="_ _b"></span>erations:<span class="_ _e"> </span><span class="ff1">exceptions<span class="_ _c"> </span></span>(and<span class="_ _f"> </span>use<span class="_ _10"> </span><span class="ff7">noexcept<span class="_ _d"> </span></span>),<span class="_ _c"> </span><span class="ff1">sma<span class="_ _3"></span>rt<span class="_ _8"> </span>p<span class="_ _b"></span>ointer</span></span></div><div class="t m0 x6 hb y316 ff4 fs6 fc0 sc0 ls0 ws0">(e.g.<span class="_ _4"> </span><span class="ff7">std::unique<span class="_ _8"> </span>ptr<span class="_ _d"> </span></span>)</div><div class="t m0 xb hb y317 ff8 fs6 fc0 sc0 ls0 ws0">•<span class="_ _6"> </span><span class="ff4">Use<span class="_ _10"> </span><span class="ff5">noexcept<span class="_ _10"> </span></span>deco<span class="_ _3"></span>rator<span class="_ _c"> </span><span class="ff10">→<span class="_ _c"> </span></span>program<span class="_ _c"> </span>is<span class="_ _c"> </span>ab<span class="_ _b"></span>orted<span class="_ _c"> </span>if<span class="_ _c"> </span>an<span class="_ _c"> </span>error<span class="_ _c"> </span>occurred<span class="_ _f"> </span>instead<span class="_ _c"> </span>of</span></div><div class="t m0 x6 hb y318 ff4 fs6 fc0 sc0 ls0 ws0">raising<span class="_ _c"> </span>an<span class="_ _c"> </span>exception.<span class="_ _e"> </span>see</div><div class="t m0 x6 hc y319 ff7 fs4 fc0 sc0 ls0 ws0">Bitcoin:<span class="_ _2"> </span>9%<span class="_ _6"> </span>less<span class="_ _6"> </span>memory:<span class="_ _2"> </span>make<span class="_ _6"> </span>SaltedOutpointHasher<span class="_ _e"> </span>noexcept</div><div class="t m0 x13 ha y12 ff6 fs5 fc0 sc0 ls0 ws0">84/84</div><a class="l" href="https://github.com/bitcoin/bitcoin/pull/16957"><div class="d m1" style="border-style:none;position:absolute;left:73.752000px;bottom:72.445500px;width:321.046000px;height:11.125000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.500000,0.000000,0.000000,1.500000,0.000000,0.000000]}'></div></div>
</div>
<div class="loading-indicator">
<img alt="" src=""/>
</div>
</body>
</html>