Modern C++
Programming

1. INTRODUCTION

Federico Busato
2023-12-21

Table of Contents

A Little History of C/C++4 Programming Language
Areas of Application and Popularity

C++ Philosophy

A C++ Weaknesses

H Books and References

@ The Course

1/59

About Motivation

“When recruiting research assistants, | look at grades as the last indi-
cator. | find that imagination, ambition, initiative, curiosity, drive,
are far better predictors of someone who will do useful work with me. Of
course, these characteristics are themselves correlated with high grades,
but there is something to be said about a student who decides that a
given course is a waste of time and that he works on a side project in-
stead.

Breakthroughs don't happen in regular scheduled classes, they happen
in side projects. We want people who complete the work they were as-
signed, but we also need people who can reflect critically on what
is genuinely important”

Daniel Lemire, Prof. at the University of Quebec
2/59

About Motivation

Academic excellence is not a strong predictor
of career excellence

“Across industries, research shows that the correlation between grades
and job performance is modest in the first year after college and trivial
within a handful of years...

Academic grades rarely assess qualities like creativity, leadership and team-
work skills, or social, emotional and political intelligence. Yes, straight-A
students master cramming information and regurgitating it on exams.
But career success is rarely about finding the right solution to a
problem — it’s more about finding the right problem to solve...”

3/59

About Motivation

“Getting straight A’s requires conformity. Having an influential
career demands originality.

This might explain why Steve Jobs finished high school with a 2.65
G.PA., JK. Rowling graduated from the University of Exeter with
roughly a C average, and the Rev. Dr. Martin Luther King Jr. got only
one A in his four years at Morehouse

If your goal is to graduate without a blemish on your transcript, you
end up taking easier classes and staying within your comfort zone. If
you're willing to tolerate the occasional B... You gain experience coping
with failures and setbacks, which builds resilience”

4/59

About Motivation

“Straight-A students also miss out socially. More time studying in
the library means less time to start lifelong friendships, join new clubs or
volunteer...Looking back, | don’t wish my grades had been higher. If |
could do it over again, 1I'd study less”

Adam Grant, the New York Times

5/59
www.nytimes.com/2018/12/08/opinion/college-gpa-career-success.html /

https://www.nytimes.com/2018/12/08/opinion/college-gpa-career-success.html

About Motivation

“Got a 2.4 GPA my first semester in college. Thought maybe | wasn't
cut out for engineering. Today I've landing two spacecraft on Mars, and
designing one for the moon.

STEM is hard for everyone. Grades ultimately aren’t what matters.
Curiosity and persistence matter”

Ben Cichy, Chief Software Engineer,
NASA Mars Science Laboratory

https://twitter.com/bencichy/status/11977528029293649927s=20 6/59

https://twitter.com/bencichy/status/1197752802929364992?s=20

About Programming

“And programming computers was so fascinating. You create your
own little universe, and then it does what you tell it to do”

Vint Cerf, TCP/IP co-inventor and Turing Award

“Most good programmers do programming not because they expect to
get paid or get adulation by the public, but because it is fun to program”

Linus Torvalds, principal developer of the Linux kernel

“You might not think that programmers are artists, but programming
is an extremely creative profession. It's logic-based creativity”

John Romero, co-founder of id Software
7/59

About Programming 2/2

Creativity Programming is extremely creative. The ability to perceive the problem in
a novel ways, provide new and original solutions. Creativity allows

recognizing and generating alternatives

Form of Art Art is the expression of human creative skills. Every programmer has his
own style. Codes and algorithms show elegance and beauty in the same
way as painting or music

Learn Programming gives the opportunity to learn new things every day,
improve own skills and knowledge

Challenge Programming is a challenge. A challenge against yourself, the problem,

and the environment
8/59

Knowledge-Experience Relation

What | think | know What | actually kno

Knowledge
Junior
level
Senior

Mi

W

Seniority 9/59

A Little History of
C/C++
Programming
Language

The Assembly Programming Language

A long time ago, in a galaxy far,

far away....there was Assembly

Extremely simple instructions

Requires lots of code to do simple tasks
Can express anything your computer can do
Hard to read, write

...redundant, boring programming, bugs pro-
liferation

main:
.Lfunc_begin0:
push rbp
.Lefi0:
.Lefil:
mov rbp, rsp
.Lefil:
sub rsp, 16
movabs rdi, .L.str
.LtmpO:
mov al, O
call printf
XOr ecx, ecx
mov dword ptr [rbp - 4], eax
mov eax, ecx
add rsp, 16
pop rbp
ret
.Ltmp1:
.Lfunc_end0:
.L.str:
.asciz "Hello World\n"

10/59

A Little History of C 1/3

In the 1969 Dennis M. Ritchie and Ken Thompson (AT&T, Bell Labs) worked on
developing an operating system for a large computer that could be used by a thousand

users. The new operating system was called UNIX

The whole system was still written in assembly code. Besides assembler and Fortran,
UNIX also had an interpreter for the programming language B. A high-level language
like B made it possible to write many pages of code task in just a few lines of code. In

this way the code could be produced much faster than in assembly

A drawback of the B language was that it did not know data-types (everything was

expressed in machine words). Another functionality that the B language did not provide
was the use of “structures”. The lack of these things formed the reason for Dennis
M. Ritchie to develop the programming language C. In 1988 they delivered the final
standard definition ANSI C 11/59

A Little History of C

Dennis M. Ritchie and Ken Thompson

#include "stdio.h"

int main() {
printf ("Hello World\n");
} 12/59

A Little History of C

Areas of Application:
= UNIX operating system

= Computer games

= Due to their power and ease of use, C were used in the programming of the

special effects for Star Wars

13/59

Star Wars - The Empire Strikes Back

A Little History of C++ 1/3

The C+4+4 programming language (originally named “C with Classes”) was devised
by Bjarne Stroustrup also an employee from Bell Labs (AT&T). Stroustrup started
working on C with Classes in 1979. (The ++ is C language operator)

The first commercial release of the C++ language was in October 1985

14/59

A Little History of C++

Domain-specific
abstraction

Fortran

Simula

Cobol % Java —

Direct mapping to
hardware

f

Assembler —— > BCPL —C

The roots of C++

15/59
“The Evolution of C++Past, Present, and Future", B. Stroustrup, CppConl16 /

A Little History of C++

1989 1990 1991 1992 1993 1994 1995 1996 1997

C++98

2002 2003 2004 2005 2006 2007 2008 2009 2010

C++0x/11
Decimal TR (not merged)
\
2011 2012 2013 2014 2015 2016 2017 2018 2019
A Feb Ot Apr Sep BBl n Nov May Ot Mar Jun Nov [BB Jul Nov Mar Jun Nov Feb Jul Nov [l
1S - trunk
i
| Fiesystem o Networking _] Reflection
TSes - feature = -
branches for Lib Fundamentals 1 Lib Fundamentals 2y Lib Fundamentals 3

separate release

& then merge Parallelism 1
Tk Memory (not tomenge)

Parallelism 2

2020 2021 2022 2023 2024 2025 2026 2027 2028
Jun Nov Feb i Ot Feb Jul Nov [Jun Nov May Ot Mar un Nov [Jul Nov Mar n Nov feb Jul Nov JEEH

Fundamentals 3
TeMemory2

Concurrency 2

16,59

About Evolution

“If you're teaching today what you were teaching five

years ago, either the field is dead or you are”
Noam Chomsky

Areas of Application
and Popularity

Most Popular Programming Languages

(IEEE Spectrum - 2022)

Rank Language Tvpe Score
- Pythonv ® 0 @& 1000
n Javav ® 0 O 95.4
n Cv 0 @ & 94.7
n CH+v 0 Q0 ® 92.4
H JavaScriptv (-] 88.1
n ce ® 0 O & 824

Rv J 81.7

Gov @ J s

18/59
Interactive: The Top Programming Languages 2022

https://spectrum.ieee.org/top-programming-languages/

Most Popular Programming Languages (TIOBE - December. 2022)

Programming Language Ratings Change
(ad Python 16.66% +3.76%
G Cc 16.56% +4.77%
@ CH 11.94% +4.21%
i Java 11.82% +1.70%
@ C# 4.92% -1.48%
@ Visual Basic 3.94% -1.46%

JS JavaScript 319% +0.90%

www.tiobe.com/tiobe-index/ 19/59

https://www.tiobe.com/tiobe-index/

Most Popular Programming Languages (Redmonk - June, 2022)

Popularity Rank on Stack Overflow (by # of Tags)

RedMonk Q322 Programming Language Rankings

Ruby
Mok e \EA . TypeScript
sual Basic Visual Basic
Matiab fuefSRU —
Kotif"®
Dart
Go
Assembly

GCC Machine Description Rust

Sass
ua
Arduino Clojure
CoigEusion
amL
E1iang Cofleescript™1
ActionScript ane Elixir
olsL Scheme
Tel
- Processing OCemi
VHDL omng
Racket VLG Solidity
i
Mathematica Pt
PR%hhacs Lisp
FreeMarker Coq SystemVeriog
)
Pascal
— iy oo
Hagmaltalk B
tack gitgake
- ObjectiygsGit
ica Gherkin
PostScript Vaia
Stylus. o Nix
PureScript Y
GDSeript
Reasongalierina
Lean Hack e
ST ShaderLab
Vim script
Starlar
o SaF Rich Text Format Roff

Popularity Rank on GitHub (by # of Projects)

redmonk . com

20/59

https://redmonk.com/sogrady/2021/08/05/language-rankings-6-21/

Why C++ is so Popular?

There may be more than 200 billion lines
of C/C++ code globally

» Performance is the defining aspect of C++. No other programming
language provides the performance-critical facilities of C++

= Provide the programmer control over every aspect of performance

= Leave no room for a lower level language

Total number of lines of all code in use? 21/59

https://skeptics.stackexchange.com/questions/5114/did-cobol-have-250-billion-lines-of-code-and-1-million-programmers-as-late-as-2

Why C++ is so Popular? 2/2

» Ubiquity. C++ can run from a low-power embedded device to large-scale
supercomputers

= Multi-Paradigm. Allow writing efficient code without losing high-level
abstraction

= Allow writing low-level code. Drivers, kernels, assembly (asm), etc.

» Ecosystem. Many support tools such as debuggers, memory checkers,
coverage, static analysis, profiling, etc.

= Maturity. C+—+ has a 40 years history. Many software problems have been
already addressed and developing practices have been investigated 22/59

Areas of Application

= Operating systems: Windows, Android, OS X, Linux

= Compilers: LLVM, Swift compiler

= Artificial Intelligence: TensorFlow, Caffe, Microsoft Cognitive Toolkit
= Image Editing: Adobe Premier, Photoshop, lllustrator

= Web browser: Firefox, Chrome, etc. + WebAssembly

= High-Performance Computing: drug developing and testing, large scale climate
models, physic simulations

= Embedded systems: loT, network devices (e.g. GSM), automotive

= Google and Microsoft use C++ for web indexing 23/59

Areas of Application

= Scientific Computing: CERN/NASA*, SETI@home, Folding@home
= Database: MySQL, ScyllaDB
= Video Games: Unreal Engine, Unity

= Entertainment: Movie rendering (see Interstellar black hole rendering),
virtual reality

= Finance: electronic trading systems (Goldman, JPMorgan, Deutsche Bank)**

. and many more

* The flight code of the NASA Mars drone for the Perseverance Mission, as well as the Webb

telescope software, are mostly written in C++ github.com/nasa/fprime, James Webb Space

Telescope’s Full Deployment 24/59

https://twitter.com/thePiggsBoson/status/1502135238079627270
https://github.com/nasa/fprime
https://www.youtube.com/watch?v=hET2MS1tIjA&t=1900s
https://www.youtube.com/watch?v=hET2MS1tIjA&t=1900s
https://www.efinancialcareers.com/news/2021/07/modern-c-finance-jobs

Why C++ is so Important?

The End of Historical Performance Scaling

10’

10°

10°

10*

10°

_’ Transistors
(thousands)

: Single-thread
. Performance
(SpeciNT)

Typical Power
(Watts)

© Number of
Cores

/ ‘

i i i i i i i i
1975 1980 1985 1990 1995 2000 2005 2010 2015

Performance limitations influence algorithm design

. . 25/59
and research directions /

An Important Example... (Al Evolution)

Petaflop/s-day (Training)

10,000

1,000

100

=)

o

001

.0001

00001

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

AlexNet
eDropout

2013

e AlphaGo Zero
e AlphaZero

o Neural Machine Translation
e Neural Architecture Search

«Xception ® T17 Dota 1v1

VGG e DeepSpeech2

©Sed2Seq e ResNets
Seq2Seq

e GoogleNet
® Visualizing and Understanding Conv Nets

*DQN

2014 2015 2016 2017 2018 2019

Year 26/59

Performance

Execution Time (S)

A N 0 W
o © © o
© © o o

500
400

N W
o O
o o

100

N-BODY SIMULATION
PROGRAMMING LANGUAGES PERFORMANCE COMPARISON

780
660
360
300
8.23 21.47 21.96 221 26.61
C++ GO SWIFT JAVA Node.js PHP Ruby Perl Python3

Programming Language

27/59

Performance

Matrix Multiply Speedup Over Native Python
62,806

100,000
6,727 4,»/"’/’,’

10,000
366

1,000 /
100 //jzf””’
10
1//,;”//,
1
+ SIMD

Python o] + parallel + memory
optimization instructions

Speedup

loops

28/59

"A New Golden Age for Computer Architecture”, J. L. Heneessey, D. A. Patterson, 2019

Performance

Hello World
Language Execution Time
C (on my machine) 0.7 ms
C 2 ms
Go 4 ms
Crystal 8 ms
Shell 10 ms
Python 78 ms
Node 110 ms
Ruby 150 ms
jRuby 1.4 s

Time to "hello world" on my machine

29/59

https://twitter.com/samsaffron/status/1227755695749001216?s=09

Performance/Expressiveness Trade-off

L2 8

fo ¥
4

. Wl

Mandelbrot Static Instructions per Line

1,000,000

100,000

10,000
1,000

100

. I
1 — Lne |
C

Assembly C++ Java IS Python 30/59

INSTRUCTIONS PER LINE

Memory Usage

300000
250000 4 m Alignment]
m N2 -

0 200000 -
e
£
>
2 150000
£
[
= 100000 -

50000 -

0 LM—V& ;

C Ct+ C# Java Perl Python
Language

Memory usage comparison of the
Neighbor-Joining and global alignment programs

A comparison of common programming languages used in bioinformatics (BMC
" 31/59
Informatic)

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-82
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-82

Energy Efficiency

Energy Time
(c)C 1.00 (©C 1.00
(c) Rust 1.03 (c) Rust 1.04
(c) C++ 1.34 (c) C++ 1.56
(c) Ada 1.70 (c) Ada 1.85
(v) Java 1.98 (v) Java 1.89
(c) Pascal 2.14 (c) Chapel 2.14
(c) Chapel 2.18 (c) Go 2.83
(v) Lisp 2.27 (c) Pascal 3.02
(c) Ocaml 2.40 (c) Ocaml 3.09
(c) Fortran 2.52 (v) C# 3.14
(c) Swift 2.79 (v) Lisp 3.40
(c) Haskell 3.10 (c) Haskell 3.55
(v) C# 3.14 (c) Swift 4.20
(i) Hack 24.02 (i) PHP 27.64
(i) PHP 29.30 (v) Erlang 36.71
(v) Erlang 42.23 (i) Jruby 43.44
(i) Lua 45.98 (i) TypeScript | 46.20
(i) Jruby 46.54 (i) Ruby 59.34
(i) Ruby 69.91 (i) Perl 65.79
(i) Python 75.88 (i) Python 71.90
(i) Perl 79.58 (i) Lua 82.91

Energy Efficiency across Programming Languages

32/59

http://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf

CO0? Production

L ebython
10° E
5 F
ﬁ | cuda _sirfgle-core
3 2 L
= 10 = .]a’gdaj.-"
C =
=] -
el -
o
a B .nun}béi
o 10 S FORTRANg gsiift
&) - "c‘.'++
- cuda ml‘iiﬁ-core
100 ||I || ||||||I L1 ||||||] L1 ||||||l L1

10-1 109 10! 102
Time to solution [day]

The Ecological Impact of High-performance Computing in Astrophysics, Nature SR/

https://www.nature.com/articles/s41550-020-1208-y

C++ Philosophy

C++ Philosophy - Performance

Do not sacrifice performance except as a last resort

Zero Overhead Principle (zero-cost abstraction)

“it basically says if you have an abstraction it should not
cost anything compared to write the equivalent code at lower

level”
“so | have say a matrix multiply it should be written in a

such a way that you could not drop to the C level of abstrac-
tion and use arrays and pointers and such and run faster”

Bjarne Stroustrup34/59

C++ Philosophy - Type Safety

Enforce safety at compile time whenever possible

Statically Typed Language

“The C++ compiler provides type safety and catches
many bugs at compile time instead of run time (a critical
consideration for many commercial applications.)”

www.python.org/doc/FAQ.html

» The type annotation makes the code more readable

= Promote compiler optimizations and runtime efficiency

= Allow users to define their own type system 35/59

http://www.python.org/doc/FAQ.html

C++ Philosophy

» Programming model: compartmentalization, only add
features if they solve an actual problem, and allow full control

» Predictable runtime (under constraints): no garbage

collector, no dynamic type system — real-time systems

» Low resources: low memory and energy consumption —

restricted hardware platforms
» Well suited for static analysis — safety critical software

» Portability — Modern C++ standards are highly portable 36/59

Who is C++ for?

“C++ is for people who want to use hardware very well
and manage the complexity of doing that through abstrac-
tion”

Bjarne Stroustrup

“a language like C++ is not for everybody. It is gener-
ated via sharp and effective tool for professional basically and
definitely for people who aim at some kind of precision”

Bjarne Stroustrup

37/59

Suggested Introduction Video

Stroustrup 4

Artificial
Intelligence
Lex Fridman

» > o) 000/1:47:12

38/59

https://www.youtube.com/watch?v=uTxRF5ag27A

C++ Weaknesses

Why C++ is so Difficult?

. and why teaching C++ as first programming language is a bad idea?
C++ is the hardest language from students to master

= More languages in one
- Standard C/C++ programming
- Preprocessor
- Object-Oriented features

- Templates and Meta-Programming
= Huge set of features
= Worry about memory management

= [ow-level implementation details: pointer arithmetics, structure, padding,
undefined behavior, etc.

= Frustrating: compiler/runtime errors (e.g. seg. fault) 39/59

Why C++ is so Difficult?

“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do, it blows your whole leg off”

Bjarne Stroustrup, Creator of the C++ language

“The problem with using C++-...is that there's already a strong ten-
dency in the language to require you to know everything before you can
do anything”

Larry Wall, Creator of the Perl language

“Despite having 20 years of experience with C++-, when | compile a
non-trivial chunk of code for the first time without any error or warning,
I am suspicious. It is not, usually, a good sign”

Daniel Lemire, Prof. at the University of Quebec 40/59

C++ Weaknesses

Backward-compatibility

“Dangerous defaults and constructs, often originating from C, cannot be removed

or altered”

“Despite the hard work of the committee, newer features sometimes have flaws
that only became obvious after extensive user experience, which cannot then be
fixed"

“C++ practice has put an ever-increasing cognitive burden on the developer for
what | feel has been very little gain in productivity or expressiveness and at a huge cost
to code clarity”

41/59

C++ Weaknesses

C++ critics and replacements:

= Epochs: a backward-compatible language evolution mechanism
= Goals and priorities for C++

= Carbon Language

= Circle C++ Compiler

= Cppfront: Can C++ be 10x simpler & safer ... 7

42/59

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1881r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2137r0.html
https://github.com/carbon-language/carbon-lang
https://www.circle-lang.org/
https://github.com/hsutter/cppfront

C++ Alternatives: Rust

Rust (1.0, 2015) has been Stack Overflow's most loved language for eight years in a
row. Rust focuses on performance and zero-abstraction overhead as C+—+. It is
designed to prevent many vulnerabilities that affect C++, especially memory bugs,
enforcing constraints at compile type. In addition, it promotes cross-platform

compatibility

“first-time contributors to Rust projects are about 70 times less likely to

introduce vulnerabilities than first-time contributors to C++ projects”
Tracey et al. 1

L Grading on a Curve: How Rust can Facilitate New Contributors while Decreasing

Vulnerabilities 43/50
CISA, NSA: The Case for Memory Safe Roadmap

https://cypherpunks.ca/~iang/pubs/gradingcurve-secdev23.pdf
https://cypherpunks.ca/~iang/pubs/gradingcurve-secdev23.pdf
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf

C++ Alternatives: Zig

Zig (2016) is a minimal open-source programming language that can be intended as
replacement of C. Zig supports compile time generics, reflection and evaluation,
cross-compiling, and manual memory management. It is made to be fully interoperable

with C and also includes a C/C++ compiler.

Zig Programming Language 44/59

https://ziglang.org/

Why Switching to a New Language is Hard?

= No perfect language. There are always newer 'shining’ languages
= Alignment. Force all developers to switch to the new language

= Interoperability. Hundreds of billion lines of existing code. Must interoperate
with C and C++ code imposing serious design constraints

= Ecosystem. Lack of tools and libraries developed in the last four decades

= Time and Cost. Converting a codebase of 10 million lines: 500 developers, 5
years, $1,400,000,000!

! Bjarne Stroustrup: Delivering Safe C++ 45/59

https://github.com/CppCon/CppCon2023/blob/main/Presentations/Plenary_Delivering_Safe_Cpp.pdf

Language Complexity

Every second spent trying to understand the
language is one not spent understanding the
problem

46/59

Books and
References

Suggested Books

BJARNE STROUSTRUP

THE CREATOR OF C++

PROGRAMMING

Principles and Practice Using C++

SECOND EDITION

Programming and Principles
using C++ (2nd)
B. Stroustrup, 2014

Professional

Ct+t

Professional C++ (5th)
S. J. Kleper, N. A. Solter, 2021

ABSOLUTE C++

SIXTH EDITION

Walter Savitch

Absolute C++ (6th)
W. Savitch, 2015

47/59

Advanced Books

O'REILLY"

Effective .,
Modern C+

Scott Meyers

Effective Modern C4++
S. Meyer, 2014

48/59

Software Design Principles

Clean Code

A Handbook of Agile Software Craftsmanship

——

Clean Code: A Handbook of Agile Clean Architecture
Software Craftsmanship Robert C. Martin, 2017
Robert C. Martin, 2008

49/59

Software Design Principles

OREILLY
Software
Engineering at

Google

Lessons Learned
from Programming
Over Time

Code
Simplicity

A Curated by Titds Winters,
Tom Manshreck & Hyrum Wright
O'REILLY"

Code Simplicity A Philosophy of Software Software Engineering at
M. Kanat-Alexander, 2012 Design (2nd) Google: Lessons Learned from
J. Ousterhout, 2021 Programming over Time

T. Winters, 2020

(download 1link) 50,59

https://abseil.io/resources/swe-book

References

(Un)official C++ reference:*

= en.cppreference.com

Tutorials:

= www.learncpp.com
= www.tutorialspoint.com/cplusplus
= en.wikibooks.org/wiki/C++

= yet another insignificant...programming notes

Other resources:

= stackoverflow.com/questions/tagged/c++

* The full C++ standard draft can be found at eel.is/c++draft/full

Don't open it! it is a html web page of 32 MB! /)

https://en.cppreference.com/w/
www.learncpp.com
www.tutorialspoint.com/cplusplus
https://en.wikibooks.org/wiki/C%2B%2B_Programming
https://www3.ntu.edu.sg/home/ehchua/programming/index.html
https://stackoverflow.com/questions/tagged/c%2b%2b
https://eel.is/c++draft/full

References

News:

= isocpp.org (Standard C++ Foundation)
= cpp.libhunt.com/newsletter/archive
= www.meetingcpp.com/blog/blogroll/

Main conferences:

= www.meetingcpp.con (slides)
= cppcon.org (slides)

= isocpp.com conference list

Coding exercises and other resources:

= www.hackerrank.com/domains/cpp

= leetcode.com/problemset/algorithms

= open.kattis.com

= cpppatterns.com 52/59

https://isocpp.org/
https://cpp.libhunt.com/newsletter/archive
www.meetingcpp.com/blog/blogroll/
www.meetingcpp.com
https://meetingcpp.com/mcpp/slides/
https://cppcon.org
https://github.com/CppCon
https://isocpp.org/wiki/faq/conferences-worldwide
www.hackerrank.com/domains/cpp
https://leetcode.com/problemset/algorithms/
https://open.kattis.com/
https://cpppatterns.com/

The Course

The Course

Days1-10

Teach yourself variables, con-
stants, arrays, strings, expres-
sions, statements, functions,...

S

Days 11-21

Teach yourself program flow,

pointers, references, classes,

objects, inheritance, polymor-
phism,

Y

Days 22 - 697

Do a lot of recreational program-
ming. Have fun hacking but re-
member to learn from your mis-

Days 698 - 3648

Interact with other programmers.
Work on programming projects
together. Learn from them.

Days 3649 - 7781
Teach yourself advanced theoret-
ical physics and formulate a con-
sistent theory of quantum grav-

ity.

Days 7782 - 14611
Teach yourself biochemistry,
molecular biology, genetics,...

Day 14611
Use knowledge of biology to
make an age-reversing potion.

Day 14611

Use knowledge of physics to
build flux capacitor and go back
in time to day 21.

Day 21
Replace younger self.

8 v -

/

As far as | know, this
is the easiest way to

"Teach Yourself C++ in 21 Days".

Don’t forget: The right name of the course should be
“Introduction to Modern C++ Programming”

For many topics in the course, there are more than one book devoted to present the
concepts in detail

54/59

The primary goal of the course is to drive who has previous experience with
C/C++ and object-oriented programming to a proficiency level of (C++)

programming
= Proficiency: know what you are doing and the related implications
= Understand what problems/issues address a given language feature
= Learn engineering practices (e.g. code conventions, tools) and hardware/software
techniques (e.g. semantic, optimizations) that are not strictly related to C++

What the course is not:

= A theoretical course on programming
= A high-level concept description

What the course is:

= A practical course, prefer examples instead of long descriptions
on a 55/59
= A “quite” advanced C++ programming language course /

Organization:

22 lectures
~1,500 slides
C++03 / C++11 / C++14 / C++17 / C++20 / (C++23)

Roadmap:

Review C concepts in C++ (built-in types, memory management, preprocessing,
etc.)

Introduce object-oriented and template concepts

Present how to organize the code and the main conventions

C+-+ tool goals and usage (debugger, static analysis, etc.)

56,/59

Slide Legend

* Advanced Concepts. In general, they are not fundamental. They can be
related to very specific aspects of the language or provide a deeper
exploration of C++ features.

A beginner reader should skip these sections/slides

~> See next. C++ concepts are closely linked, and it is almost impossible to
find a way to explain them without referring to future topics. These slides
should be revisited after reading the suggested topic

this is a code section

This is a language keyword/token and not a program symbol (variable,
functions, etc.). Future references could use a standard code section for better
readability 57/59

Who | Am

Federico Busato, Ph.D.
= Senior Software Engineer at Nvidia,
CUDA Mathematical Libraries

= Lead engineer of the Sparse Linear Algebra group

= Research/Work interests:

Linear Algebra

Graph Algorithms

Parallel/High-Performance Computing

Y Follow @fedebusato

Code Optimization

NOT a C++ expert/“guru”, still learning
58,/59

https://twitter.com/fedebusato

A Little Bit about My Work

Our projects:

cuSPARSE GPU-accelerated sparse linear algebra library (matrix-matrix
multiplication, triangular solver, etc.), part of the CUDA Toolkit (8M
downloads every year)

cuSPARSELt Specialized library for sparse matrix-matrix multiplication that exploits the
most advanced GPU features such as Sparse Tensor Cores

NVPL Sparse CPU-accelerated (ARM) sparse linear algebra library

Top500 HPCG NVIDIA Supercomputing benchmark that performs a fixed number of
multigrid preconditioned (using a symmetric Gauss-Seidel smoother)
conjugate gradient (PCG) iterations 59/59

https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparselt/
https://docs.nvidia.com/nvpl/_static/sparse/index.html
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-benchmarks

’ﬁ 1E
stand iy 47

Whabl‘ﬂmot creab%;i #
: &

i f
. **" 1P ! . § e

“The only way to learn a new pro-
gramming language is by writing pro-
grams in it”

Dennis Ritchie

Creator of the C programming language

Modern C++
Programming

2. BAsic CONCEPTS I

FUNDAMENTAL TYPES AND OPERATORS

Federico Busato
2023-12-21

Table of Contents

Preparation
m What compiler should | use?
m What editor/IDE compiler should | use?

m How to compile?

Hello World
m |/O Stream

1/42

Table of Contents

Fundamental Types Overview
m Arithmetic Types
m Arithmetic Types - Suffix and Prefix
m Non-Standard Arithmetic Types
m void Type

m nullptr

2/42

Table of Contents

A Conversion Rules
H auto Declaration

@ C++ Operators
m Operators Precedence
m Prefix/Postfix Increment/Decrement Semantic
m Assignment, Compound, and Comma Operators
m Spaceship Operator <=> *

m Safe Comparison Operators ¥

3/42

Preparation

What Compiler Should | Use?

Most popular compilers:
= Microsoft Visual Code (MSVC) is the compiler offered by Microsoft
= The GNU Compiler Collection (GCC) contains the most popular C++ Linux

compiler

= Clang is a C++ compiler based on LLVM Infrastructure available for
Linux/Windows/Apple (default) platforms

Suggested compiler on Linux for beginner: Clang

= Comparable performance with GCC/MSVC and low memory usage
= Expressive diagnostics (examples and propose corrections)
= Strict C++ compliance. GCC/MSVC compatibility (inverse direction is not ensured)

= Includes very useful tools: memory sanitizer, static code analyzer, automatic formatting,
linter, etc. 4/42

Install the Compiler on Linux

Install the last gcc/g++ (v11) (v12 on Ubuntu 22.04)

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt update
sudo apt install gcc-12 g++-12

©H H L B

gcc-12 --version

Install the last clang/clang++ (v17)

bash -c "$(wget -0 - https://apt.llvm.org/llvm.sh)"
wget https://apt.llvm.org/llvm.sh

chmod +x 1llvm.sh

sudo ./llvm.sh 17

clang++ --version

#H H L B &P

5/42

Install the Compiler on Windows

Microsoft Visual Studio

s Direct Installer: Visual Studio Community 2022

Clang on Windows
Two ways:

= Windows Subsystem for Linux (WSL)
= Run — optionalfeatures
= Select Windows Subsystem for Linux, Hyper-V,
Virtual Machine Platform
= Run — ms-windows-store: — Search and install Ubuntu 22.04 LTS
= Clang + MSVC Build Tools
= Download Build Tools per Visual Studio
s Install Desktop development with C++ 6/42

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&channel=Release&version=VS2022&source=VSLandingPage&cid=2030&passive=false
https://aka.ms/vs/17/release/vs_BuildTools.exe

What Editor/IDE Compiler Should | Use?

Popular C++ IDE (Integrated Development Environment):

= Microsoft Visual Studio (MSVC) (link). Most popular IDE for Windows
= Clion (link). (free for student). Powerful IDE with a lot of options

= QT-Creator (link). Fast (written in C++), simple

= XCode. Default on Mac OS

= Cevelop (Eclipse) (link)

Standalone GUI-based coding editors:

= Microsoft Visual Studio Code (VSCode) (link)
= Sublime (link)
= Lapce (link)

7/42

https://visualstudio.microsoft.com/it/vs/features/cplusplus/
www.cevelop.com
https://code.visualstudio.com/
www.sublimetext.com
https://lapce.dev/

What Editor/IDE Compiler Should | Use?

Standalone text-based coding editors (powerful, but needs expertise):
= Vim
= Emacs
= NeoVim (link)
= Helix (link)

Not suggested: Notepad, Gedit, and other similar editors (lack of support for
programming)

8/42

https://neovim.io/
https://helix-editor.com/

What Editor/IDE Compiler Should | Use? 3/3

Visual Studio Code
Visual Studio
IntelliJ
Notepad++

Vim

Android Studio
PyCharm
Sublime Text
Eclipse
IPython/Jupyter
Xcode

Atom

StackOverflow Developer Survey 2022

https://survey.stackoverflow.co/2022/#section-most-popular-technologies-integrated-development-environment

How to Compile?

Compile C++11, C++14, C++17, C++20 programs:

g++ -std=c++11 <program.cpp> -o program
g++ -std=c++14 <program.cpp> -o program
g++ -std=c++17 <program.cpp> -o program
g++ -std=c++20 <program.cpp> -o program

Any C++ standard is backward compatible

C++ is also backward compatible with C (even for very old code) except if it contains
C++ keywords (new, template, class, typename, etc.)

We can potentially compile a pure C program in C++20

10/42

C++ Standard

. C++11 C++14 C++17 C++20
Compiler]] }]

Core Library Core Library Core Library Core Library
g+ 4.8.1 5.1 5.1 5.1 7.1 9.0 11+ 11+
clang++ 33 33 3.4 o3 5.0 11.0 16+ 16+
MSVC 19.0 19.0 19.10 19.0 19.15 19.15 19.29+ 19.29

en.cppreference.com/w/cpp/compiler_support LUE

https://en.cppreference.com/w/cpp/compiler_support

C++ Standard

Meeting C++ Community Survey
Results for 2020 - Which C++ Standards do you currently use in your projects? (n=1030)

c++98 c++03 c++11 c++14 c++17 c++20

12/42

Hello World

Hello World

C code with printf :

#include <stdio.h>

int main() {
printf ("Hello World!\n");

printf
prints on standard output

C++4 code with streams :

#include <iostream>

int main() {
std::cout << "Hello World!\n";

cout
represents the standard output stream

13/42

Hello World

The previous example can be written with the global std namespace:

#include <iostream>
using namespace std;

int main() {
cout << "Hello World!'\n";

Note: For sake of space and for improving the readability, we intentionally omit the
std namespace in most slides

14/42

1/O Stream (std:cout)

std::cout is an example of output stream. Data is redirected to a destination, in
this case the destination is the standard output

C:
#include <stdio.h>
int main() {
int a = 4;
double b = 3.0;
char c[] = "hello";
printf ("%d %f %s\n", a, b, c);
}
CH++:

#include <iostream>
int main() {

int a = 4;

double b = 3.0;

char c[] = "hello";

std::cout << a << " " << b << " " << ¢ << "\n"; 15/42

1/O Stream (Why should we prefer 1/0 stream?) 2/3

= Type-safe: The type of object provided to the | /O stream is known statically by the
compiler. In contrast, printf uses % fields to figure out the types dynamically

= Less error prone: With |/O Stream, there are no redundant % tokens that have to
be consistent with the actual objects passed to 1/O stream. Removing redundancy
removes a class of errors

= Extensible: The C++ /O Stream mechanism allows new user-defined types to be
passed to |/O stream without breaking existing code

= Comparable performance: If used correctly may be faster than C 1/O (printf ,

scanf , etc.) .

16/42

I/O Stream (Common C errors)

= Forget the number of parameters:

printf ("long phrase %d long phrase %d", 3);

= Use the wrong format:
int a = 3;
...many lines of code...
printf (" %f", a);

= The %c conversion specifier does not automatically skip any leading white space:
scanf ("%d", &varl);
scanf (" %c", &var2);

17/42

std: :print

C++-23 introduces an improved version of printf function std::print based on
formatter strings that provides all benefits of C++ stream and is less verbose

#include <print>

int main() {
std::print ("Hello World! {}, {}, {}\n", 3, 411, "aa");
// print "Hello World! 3 4 aa"

This will be the default way to print when the C++23 standard is widely adopted

18/42

Fundamental Types
Overview

Arithmetic Types - Integral

Fixed width types

Native Type Bytes Range pE——

bool 1 true, false

char | 1 implementation defined

signed char 1 -128 to 127 int8_t
unsigned char 1 0 to 255 uint8_t
short 2 -2'% to 211 intl6_t
unsigned short 2 0 to 2'°-1 uintl6_t
int 4 -2% 10 2311 int32_t
unsigned int 4 0 to 2%%-1 uint32_t
long int 4/8 int32_t/int64_t
long unsigned int 4/8" uint32_t/uint64_t
long long int 8 2283 10 2%3-1 int64_t
long long unsigned int 8 0 to 2%-1 uint64_t

19/42
* 4 bytes on Windows64 systems, signed/unsigned, two-complement from C+4+11 /

Arithmetic Types - Floating-Point

Fixed width types

Native Type |IEEE Bytes Range C++423 <stdfloat>
(bfloat16) N 2 +1.18 x 1078 to +3.4 x 1038 std::bfloat16_t
(float16) Y 2 0.00006 to 65,536 std::float16_t
float Y 4 +1.18 x 107%® to +3.4 x 10*3® std::float32_t
double Y 8 £2.23x10 % to 1.8 x 10M% std::float64_t

20/42

Arithmetic Types - Short Name

Signed Type short name
signed char /
signed short int short
signed int int
signed long int long
signed long long int long long
Unsigned Type short name
unsigned char /

unsigned short int
unsigned int

unsigned long int
unsigned long long int

unsigned short
unsigned
unsigned long

unsigned long long

21/42

Arithmetic Types - Suffix (Literals)

Type SUFFIX Example Notes
int / 2
unsigned int u, U 3u
long int 1L 8L
long unsigned ul, UL 2ul
long long int 11, LL 411
long long unsigned int ull, ULL TULL
float f,F 3.0f only decimal numbers
double 3.0 only decimal numbers
C++423 Type SUFFIX Example Notes
std::bfloatl6_t bf16, BF16 3.0bf16 only decimal numbers
std::floatl6_t f16, F16 3.0f16 only decimal numbers
std::float32_t £32, F32 3.0£32 only decimal numbers
std::float64_t 64, F64 3.0f64 only decimal numbers
std::float128_t £128, F128 3.0£128 only decimal numbers

22/42

Arithmetic Types - Prefix (Literals)

Representation PREFIX Example
Binary C++14 Ob 0b010101
Octal 0 0307
Hexadecimal 0x or 0X 0xFFAO010

C++14 also allows digit separators for improving the readability 1'000'000

23/42

Other Arithmetic Types

= C++ also provides long double (no IEEE-754) of size 8/12/16 bytes
depending on the implementation

= Reduced precision floating-point supports before C++23:
- Some compilers provide support for half (16-bit floating-point) (GCC for ARM: __fp16 ,
LLVM compiler: half)

- Some modern CPUs and GPUs provide half instructions

- Software support: OpenGL, Photoshop, Lightroom, half.sourceforge.net

= C++ does not provide 128-bit integers even if some architectures support it.
clang and gcc allow 128-bit integers as compiler extension (__int128)

24/42

http://half.sourceforge.net/

void is an incomplete type (not defined) without a value

= void indicates also a function with no return type or no parameters
e.g. void £() , f(void)

= In C sizeof(void) == 1 (GCC), while in C++ sizeof(void) does not
compile!!

int main() {
// sizeof(void); // compile error
3

25/42

nullptr Keyword

C++411 introduces the new keyword nullptr to represent a null pointer (0x0) and
replacing the NULL macro

int* pl = NULL; // ok, equal to int* pl = 01

int* p2 = nullptr; // ok, nullptr %s a pointer not a number
int nl = NULL; // ok, we are assigning O to nl

// int n2 = nullptr; // compile error we are assigning

// a null pointer to an integer variable

// int* p2 = true ? 0 : nullptr; // compile error
// incompatible types

Remember: nullptr is not a pointer, but an object of type nullptr_t — safer

26/42

Fundamental Types Summary

The fundamental types, also called primitive or built-in, are organized into three

main categories:

= Integers
= Floating-points
= void, nullptr

Any other entity in C++ is
= an alias to the correct type depending to the context and the architectures

= a composition of builtin types: struct/class, array, union

en.cppreference.com/w/cpp/language/types

en.cppreference.com/w/cpp/types/integer 27/42

http://en.cppreference.com/w/cpp/language/types
http://en.cppreference.com/w/cpp/types/integer

C++ Types Summary

[Fundamental] [Reference] [Functions] [Objects J

X
v v D v
class, .
L Scalar S Array union

Pointer-to-

Arithmetic member

Floating-point Integral
28/42

Conversion Rules

Conversion Rules

Implicit type conversion rules, applied in order, before any operation:

&: any operation (*, +, /, -, %, etc.)

(A) Floating point promotion
floating type ® integer_type — floating type

(B) Implicit integer promotion
small_integral_type := any signed/unsigned integral type smaller than int
small_integral type ® small_integral type — int

(C) Size promotion
small _type ® large type — large_type

(D) Sign promotion
signed_type ® unsigned_type — unsigned_type 29/42

Examples and Common Errors

float f = 1.0f;
unsigned u = 2;
int i=3;
short s = 4;

5

uint8_t ¢ ; // unsigned char

f *x u; // float X unsigned — float: 2.0f
s *x c; // short X unsigned char — int: 20
u * i; // unsigned X int — unsigned: 6u

+ch // unsigned char — int: 5

Integers are not floating points!
int b=17;
float a = b / 2; // a = 3 not 3.5!!

int =b 2.0;) =3 t 3.5!!
in c / // again c no s

Implicit Promotion

Integral data types smaller than 32-bit are implicitly promoted to int , independently
if they are signed or unsigned

= Unary +, -, ~ and Binary +, -, &, etc. promotion:

char a = 48; // 0!
cout << a; // print '0'
cout << +a; // print '48'

cout << (a + 0); // print '48'
uint8_t al = 255;

uint8_t bl = 255;
cout << (al + bl); // print '510' (no overflow)

31/42

auto Declaration

auto Keyword 1/3

C++11 The auto keyword specifies that the type of the variable will be automatically
deduced by the compiler (from its initializer)

auto a = 1 + 2; // 1 is int, 2 4is int, 1 + 2 is int!

// =-> 'a' s "4nt"

auto b =1 + 2.0; // 1 is int, 2.0 is double. 1 + 2.0 is double
// => 'b' is "double"

auto can be very useful for maintainability and for hiding complex type definitions

for (auto i = k; i < size; i++)

On the other hand, it may make the code less readable if excessively used because of
type hiding

Example: auto x = 0; in general makes no sense (x is int)
32/42

auto Keyword - Functions *

In C++11/C++14, auto (as well as decltype) can be used to define function
output types

auto g(int x) -> int { return x * 2; } // C++11
// "> int" 4s the deduction type
// a better way to express it is:

auto g2(int x) -> decltype(x * 2) { return x * 2; } // C++11

auto h(int x) { return x * 2; } // C++14

int x = g(3); // C++11

33/42

auto Keyword - Functions *

In C++420, auto can be also used to define function input

void f(auto x) {}

// equivalent to templates but less expensive at compile-time

£(3); // 'z’ is int
£(3.0); // 'z' is double

34/42

C++ Operators

Operators Overview 1/3

Precedence Operator Description Associativity
1 at+ a-- Suffix/postfix increment and decrement Left-to-right
5 +a -a ++a --a Plus-/mlnu-s, -Preflx increment/decrement, Right-to-left

! not ~ Logical/Bitwise Not
3 axb a/b alkb Multiplication, division, and remainder Left-to-right
4 atb a-b Addition and subtraction Left-to-right
5 <L > Bitwise left shift and right shift Left-to-right
6 < <= > >= Relational operators Left-to-right
7 == I= Equality operators Left-to-right
8 & Bitwise AND Left-to-right
9 - Bitwise XOR Left-to-right
10 | Bitwise OR Left-to-right
11 && and Logical AND Left-to-right
12 || or Logical OR Left-to-right
+= -= %= [= =
13 Compound Right-to-left

K= >>= &= "= |= 35/42

Operators Precedence

= Unary operators have higher precedence than binary operators

= Standard math operators (+, *, etc.) have higher precedence than

comparison, bitwise, and logic operators

= Comparison operators have higher precedence than bitwise and logic operators

= Bitwise operators have higher precedence than logic operators

= Compound assignment operators +=, -=, *x=, /= Y=, 6 "= I= &=,
>>=, <<= have lower priority

= The comma operator has the lowest precedence (see next slides)

36/42
en.cppreference.com/w/cpp/language/operator_precedence /

https://en.cppreference.com/w/cpp/language/operator_precedence

Operators Precedence

Examples:

a+ b x 4; // a + (b * 4)
a*b/chd; // ((a *b) /c)Jd
a+b< 3> 4; // (a +b) < (3 >>4)
a & b && c || 4; // (a && b && c) || d

a and b and c or d; // (a && b && c) || d

alb&clle&d, // ((a] (b&c) || (e & d)

Important: sometimes parenthesis can make an expression verbose... but they can
help! 37/42

Prefix/Postfix Increment Semantic

Prefix Increment/Decrement ++i , --i

(1) Update the value
(2) Return the new (updated) value

Postfix Increment/Decrement i++, i-—-

(1) Save the old value (temporary)
(2) Update the value
(3) Return the old (original) value

Prefix /Postfix increment/decrement semantic applies not only to built-in types but

also to objects
38/42

Operation Ordering Undefined Behavior *

Expressions with undefined (implementation-defined) behavior:

int i = O;

il = Al GF 28 // until C++11: undefined behavior
// since C++11: 4 = 3

i=0;

i = i++ + 2; // until C++17: undefined behavior

// since C++17: o = 3

f(i=2,1i=1); // until C++17: undefined behavior
// since C++17: ¢ = 2

= 0;

ali]l = i++; // until C++17: undefined behavior
// since C++17: a[1] = 1

f(++i, ++i); // undefined behavior

i = ++i + i++; // undefined behavior

39/42

Assignment, Compound, and Comma Operators

Assignment and compound assignment operators have right-to-left associativity

and their expressions return the assigned value

int y = 2;
int x =y = 3; // y=3, then z=3
// the same of © = (y = 3)

if (x = 4) // assign z=4 and evaluate to true

The comma operator* has left-to-right associativity. It evaluates the left expression,

discards its result, and returns the right expression

int a =5, b = 7;

int x = (3, 4); // discards 3, then z=/
int y = 0;
int z;

zZ =7y, X; // z=y (0), then returns z (4) 40/42

Spaceship Operator <=> *

C+-+20 provides the three-way comparison operator <=>, also called spaceship
operator, which allows comparing two objects in a similar way of strcmp . The
operator returns an object that can be directly compared with a positive, 0, or negative

integer value

(3 <=> 5) == 0; // false
('a' <=> 'a') == 0; // true

(3 <=> 5) < 0; // true
(7 <=> 5) < 0; // false

The semantic of the spaceship operator can be extended to any object (see next

lectures) and can greatly simplify the comparison operators overloading

41/42

Safe Comparison Operators *

C++4-20 introduces a set of functions <utility> to safely compare integers of

different types (signed, unsigned)

bool cmp_equal(T1 a, T2 b)

bool cmp_not_equal(Tl a, T2 b)

bool cmp_less(T1 a, T2 b)

bool cmp_greater(T1 a, T2 b)

bool cmp_less_equal(T1 a, T2 b)

bool cmp_greater_equal(T1l a, T2 b)

example:

#include <utelity>

unsigned a = 4;

int bES=8=31

bool vl = (a > b); // false!!!, see next slides
bool v2 = std::cmp_greater(a, b); // true

42/42

How to compare signed and unsigned integers in C++207

https://www.sandordargo.com/blog/2023/10/11/cpp20-intcmp-utilities

Modern C++
Programming

3. Basic CONCEPTS I1

INTEGRAL AND FLOATING-POINT TYPES

Federico Busato
2023-12-21

Table of Contents

Integral Data Types
m Fixed Width Integers
m size_t and ptrdiff_t
m Signed/Unsigned Integer Characteristics
m Promotion, Truncation

m Undefined Behavior

1/69

Table of Contents

Floating-point Types and Arithmetic
m |[EEE Floating-point Standard and Other Representations

m Normal/Denormal Values

Infinity

Not a Number (NaN)

Machine Epsilon

Units at the Last Place (ULP)
m Cheatsheet

m Summary

m Arithmetic Properties

m Detect Floating-point Errors * 2/69

Table of Contents

Floating-point Issues
m Catastrophic Cancellation

m Floating-point Comparison

3/69

Integral Data Types

A Firmware Bug

“Certain SSDs have a firmware bug causing them to irrecoverably fail after
exactly 32,768 hours of operation. SSDs that were put into service at the

same time will fail simultaneously, so RAID won't help”

HPE SAS Solid State Drives - Critical Firmware Upgrade

4/69

Via twitter.com/martinkl/status/12022358775204823067s=19

https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00092491en_us
https://twitter.com/martinkl/status/1202235877520482306?s=19

Overflow Implementations

i Google Al Blog

The latest news from Google Al

Extra, Extra - Read All About It: Nearly All Binary Searches and

Mergesorts are Broken
Friday, June 2, 2006

Posted by Joshua Bloch, Software Engineer

Note: Computing the average in the right way is not trivial, see On finding the average

of two unsigned integers without overflow

related operations: ceiling division, rounding division

5/69
ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Potentially Catastrophic Failure

51 days = 51-24-60 - 60 - 1000 = 4 406 400 000 ms

Boeing 787s must be turned off and on every 51 days to prevent ‘misleading data’ 6/60
being shown to pilots /

https://www.theregister.co.uk/2020/04/02/boeing_787_power_cycle_51_days_stale_data/
https://www.theregister.co.uk/2020/04/02/boeing_787_power_cycle_51_days_stale_data/

C++ Data Model

Model/Bits (01 short int long long long pointer
ILP32 Windows/Unix 32-b 16 32 32 64 32
LLP64 Windows 64-bit 16 32 32 64 64
LP64 Linux 64-bit 16 32 64 64 64

char is always 1 byte

LP32 Windows 16-bit APIs (no more used)

7/69
C++ Fundamental types

https://en.cppreference.com/w/cpp/language/types

Fixed Width Integers

int*_t <cstdint>

C+-+ provides fixed width integer types.

They have the same size on any architecture:

int8_t, uint8_t

intl6_t, uintl6_t
int32_t, uint32_t
intb4_t, uintb4_t

Good practice: Prefer fixed-width integers instead of native types. int and
unsigned can be directly used as they are widely accepted by C++ data models

8/69

Fixed Width Integers

int*_t types are not “real” types, they are merely typedefs to appropriate
fundamental types

C++ standard does not ensure a one-to-one mapping:
= There are five distinct fundamental types (char , short, int, long,

long long)

= There are four int*_t overloads (int8_t, int16_t, int32_t, and
int64.t)

9/69
ithare.com/c-on-using-int_t-as-overload-and-template-parameters /

http://ithare.com/c-on-using-int_t-as-overload-and-template-parameters/

Fixed Width Integers

Warning: 1/O Stream interprets uint8_t and int8.t as char and not as integer
values

int8_t var;

cin >> var; // read '2'

cout << var; // print '2'

int a = var * 2;

cout << a; // print '100' !!

10/69

size t and ptrdiff t

size_t ptrdiff t <cstddef>

size_ t and ptrdiff t are aliases data types capable of storing the biggest

representable value on the current architecture

size_t is an unsigned integer type (of at least 16-bit)

ptrdiff t is the signed version of size t commonly used for computing
pointer differences

size_t is the return type of sizeof () and commonly used to represent size

measures

size t / ptrdiff t are 4 bytes on 32-bit architectures, and 8 bytes on 64-bit
architectures

C++23 adds uz / UZ literals for size t, and z /Z for ptrdiff t 11/69

Signed/Unsigned Integer Characteristics

Signed and Unsigned integers use the same hardware for their operations, but they
have very different semantic

Basic csoncepts:

Overflow The result of an arithmetic operation exceeds the word length, namely
the positive/negative largest values

Wraparound The result of an arithmetic operation is reduced modulo 2V where N is
the number of bits of the word

12/69

Signed Integer

= Represent positive, negative, and zero values (Z)
Represent the human intuition of numbers

i More negative values (23! — 1) than positive (23! — 2)

Even multiply, division, and modulo by -1 can fail

i Overflow/underflow semantic — undefined behavior

Possible behavior: overflow: (23! — 1) + 1 — min

underflow: —23! — 1 — max

1 Bit-wise operations are implementation-defined

e.g. signed shift — undefined behavior

= Properties: commutative, reflexive, not associative (overflow/underflow)
13/69

Unsigned Integer

Represent only non-negative values (N)

Discontinuity in 0, 232 — 1

Wraparound semantic — well-defined (modulo 23?)

(S

¥ Bit-wise operations are well-defined

Properties: commutative, reflexive, associative

14/69

When Use Signed/Unsigned Integer?

Google Style Guide

Because of historical accident, the C++ standard also uses unsigned integers to
represent the size of containers - many members of the standards body believe this
to be a mistake, but it is effectively impossible to fix at this point

Solution: use int64_t

max value: 23 — 1 = 9 223,372,036,854,775,807 or
9 quintillion (9 billion of billion),
about 292 years in nanoseconds,
9 million terabytes

15/69

When Use Signed/Unsigned Integer?

When use signed integer?
= if it can be mixed with negative values, e.g. subtracting byte sizes
= prefer expressing non-negative values with signed integer and assertions

= optimization purposes, e.g. exploit undefined behavior in loops

When use unsigned integer?
= if the quantity can never be mixed with negative values (?)
= bitmask values
= optimization purposes, e.g. division, modulo

= safety-critical system, signed integer overflow could be “non-deterministic”

Subscripts and sizes should be signed, Bjarne Stroustrup
Don’t add to the signed/unsigned mess, Bjarne Stroustrup 16/69
Integer Type Selection in C++: in Safe, Secure and Correct Code, Robert C. Seacord

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1428r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1491r0.pdf
https://github.com/boostcon/cppnow_presentations_2023/blob/main/cppnow_slides/Integer_type_selection.pdf

Arithmetic Type Limits

Query properties of arithmetic types in C++11:

#include <limits>

std: :numeric_limits<int>::max(); gy 20—
std: :numeric_limits<uint16_t>::max(); // 65,535

std: :numeric_limits<int>::min(); sy =2%

std: :numeric_limits<unsigned>::min(); // 0

* this syntax will be explained in the next lectures

17/69

Promotion and Truncation

Promotion to a larger type keeps the sign

intl6_t x = -1;
int y = x; // sign extend
cout << y; // print -1

Truncation to a smaller type is implemented as a modulo operation with respect to

the number of bits of the smaller type

int x = 6b537; // 2716 + 1

intl6_t y = x; // x) 2°16

cout << y; // print 1

int z = 32769; // 2715 + 1 (does mot fit in a int16_t)
intl6_t w = z; // (int16_t) (xz 7 2716 = 32769)

cout << w; // print -32767

18/69

Mixing Signed/Unsigned Errors

unsigned a = 10; // array is small
int b= -1;
array[10ull + a * b] = 0; // ?

B Segmentation fault!

int f(int a, unsigned b, int* array) { // array is small
if (a > b)
return arrayla - bl; // 2
return 0O;

}

B Segmentation fault for a < 0!

// v.size() return unsigned
for (size_t i = 0; i < v.size() - 1; i++)
array[i] = 3; // 2

B Segmentation fault for v.size() == 0! 19/69

Mixing Signed/Unsigned Errors A 2/2

Easy case:
unsigned x = 32; // © can be also a pointer
x +=2u-4; //2u -4 =2+ (232 - 4)
/7 =232 - 2
// (32 + (2732 - 2)) [2°32
cout << x; // print 30 (as exzpected)

What about the following code?

uint64_t x = 32; // x can be also a pointer
X += 2u - 4;
cout << x;

20/69

Undefined Behavior

More negative values than positive

int x = std::numeric_limits<int>::max() * -1; // (2731 -1) * -1
cout << x; // -2°31 +1 ok

int y = std::numeric_limits<int>::min() * -1; // -2°31 * -1
cout << y; // hard to see in complexr exzamples // 2°31 overflow!!

A pratical example:

void f(int* ptr, int pos) {

pos++;
if (pos < 0)
return; // <-- the compiler assumes that
ptrlpos] = 0; // signed overflow never happen
I V4 and Temoves the if statement
int main() { // compiled with optimizations
int tmp[10]; // leads to segmentation faults

f(tmp, INT_MAX); 21/69

Undefined Behavior

Initialize an integer with a value larger then its range is undefined behavior
int z = 3000000000; // undefined behavior!!

Bitwise operations on signed integer types is undefined behavior

int y = 1 << 12; // undefined behavior!!

Shift larger than #bits of the data type is undefined behavior even for unsigned

unsigned y = 1lu << 32u; // undefined behavior!!

Undefined behavior in implicit conversion

uint16_t a = 65535; // OzFFFF
uint16_t b = 65535; // OxFFFF expected: 4'294'836'225
cout << (a * b); // print '-131071' undefined behavior!! (int overflow)

The Usual Arithmetic Confusions 22)1E8)

https://shafik.github.io/c++/2021/12/30/usual_arithmetic_confusions.html

Undefined Behavior

Even worse example:

#include <iostream>

int main() {
for (int i = 0; i < 4; ++i)
std::cout << i * 1000000000 << std::endl;
}
// with optimizations, it is an infinite loop
// —=> 1000000000 * i > INT_MAX
// undefined behavior!!

// the compiler translates the multiplication constant into an addition

23/69
Why does this loop produce undefined behavior?

https://stackoverflow.com/questions/24296571/why-does-this-loop-produce-warning-iteration-3u-invokes-undefined-behavior-an/24297811#24297811

Undefined Behavior A 4/4

Is the following loop safe?

void f(int size) {

for (int i = 1; i < size; i += 2)

= What happens if size is equal to INT MAX ?

How to make the previous loop safe?

i >= 0 && i < size is not the solution because of undefined behavior of
signed overflow

Can we generalize the solution when the increment is i += step ?

24/69

Overflow / Underflow

Detecting wraparound for unsigned integral types is not trivial

// some ezamples
bool is_add_overflow(unsigned a, unsigned b) {
return (a + b) < a || (a + b) < b;

bool is_mul_overflow(unsigned a, unsigned b) {
unsigned x = a * b;
return a != 0 && (x / a) !'= b;

Detecting overflow/underflow for signed integral types is even harder and must be

checked before performing the operation

25/69

Floating-point Types
and Arithmetic

IEEE Floating-Point Standard

IEEE754 is the technical standard for floating-point arithmetic

The standard defines the binary format, operations behavior, rounding rules, exception
handling, etc.
First Release : 1985

Second Release : 2008. Add 16-bit, 128-bit, 256-bit floating-point types
Third Release : 2019. Specify min/max behavior

see The IEEE Standard 754: One for the History Books

IEEE764 technical document:
754-2019 - IEEE Standard for Floating-Point Arithmetic

In general, C/C++ adopts IEEE754 floating-point standard:

en.cppreference.com/w/cpp/types/numeric_limits/is_iec559
26/69

https://www.computer.org/csdl/magazine/co/2019/12/08909942/1f8KFWxbTCU
https://ieeexplore.ieee.org/document/8766229
https://en.cppreference.com/w/cpp/types/numeric_limits/is_iec559

32/64-bit Floating-Point

= |[EEE764 Single-precision (32-bit) float

Sign Exponent (or base) Mantissa (or significant)
1-bit 8-bit 23-bit

= |[EEE764 Double-precision (64-bit) double

Sign Exponent (or base) Mantissa (or significant)
1-bit 11-bit 52-bit

27/69

128/256-bit Floating-Point

= |[EEE764 Quad-Precision (128-bit) std::float128 C++23

Sign Exponent (or base) Mantissa (or significant)
1-bit 15-bit 112-bit

= |[EEE764 Octuple-Precision (256-bit) (not standardized in C++)

Sign Exponent (or base) Mantissa (or significant)
1-bit 19-bit 236-bit

28/69

16-bit Floating-Point

= IEEE754 16-bit Floating-point (std: :binary16) C++23 — GPU, Arm7
Sign Exponent Mantissa

1-bit 5-bit 10-bit

= Google 16-bit Floating-point (std::bfloat16) C++23 — TPU, GPU, Arm8

Sign Exponent Mantissa
1-bit 8-bit 7-bit

29/69
half-precision-arithmetic-fpl6-versus-bfloatl16

https://nickhigham.wordpress.com/2018/12/03/half-precision-arithmetic-fp16-versus-bfloat16/

8-bit Floating-Point (Non-Standardized in C++ /IEEE)

= E4M3
Sign Exponent Mantissa
1-bit 4-bit 3-bit

= EBM2
Sign Exponent Mantissa
1-bit 5-bit 2-bit

= Floating Point Formats for Machine Learning, /EEE draft

. 30/69
= FP8 Formats for Deep Learning, Intel, Nvidia, Arm /

https://github.com/P3109/Public/blob/main/Shared%20Reports/P3109%20WG%20Interim%20report.pdf
https://arxiv.org/pdf/2209.05433.pdf

Other Real Value Representations (Non-standardized in C++/IEEE) 1/2

= TensorFloat-32 (TF32) Specialized floating-point format for deep learning
applications

= Posit (John Gustafson, 2017), also called unum Il (universal number), represents
floating-point values with variable-width of exponent and mantissa.
It is implemented in experimental platforms

= NVIDIA Hopper Architecture In-Depth
= Beating Floating Point at its Own Game: Posit Arithmetic
= Posits, a New Kind of Number, Improves the Math of AI

31/69
= Comparing posit and IEEE-754 hardware cost /

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf
https://spectrum.ieee.org/floating-point-numbers-posits-processor
https://hal.archives-ouvertes.fr/hal-03195756v3/document

Other Real Value Representations (Non-standardized in C++/IEEE) 2/2

= Microscaling Formats (MX) Specification for low-precision floating-point
formats defined by AMD, Arm, Intel, Meta, Microsoft, NVIDIA, and Qualcomm.
It includes FP8, FP6, FP4, (MX)INT8

= Fixed-point representation has a fixed number of digits after the radix point
(decimal point). The gaps between adjacent numbers are always equal. The range
of their values is significantly limited compared to floating-point numbers.
It is widely used on embedded systems

32/69
= OCP Microscaling Formats (MX) Specification /

https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf

Floating-point Representation

Floating-point number:

= Radix (or base):

= Precision (or digits): p

= Exponent (magnitude): e
= Mantissa: M

n= M xp¢ — |EEE754: 1.M x 2¢
~—
p

float f1 = 1.3f; // 1.3

float f£2 = 1.1e2f; // 1.1-10?

float £3 = 3.7E4f; // 3.7-10*

float f4 = .3f; // 0.3

double d1 = 1.3; // without "f"

double d2 = 5E3; // 5-10° 33/69

Floating-point Representation

In IEEE754 floating point numbers, the exponent value is offset from the actual value

by the exponent bias

= The exponent is stored as an unsigned value suitable for comparison

= Floating point values are lexicographic ordered

= For a single-precision number, the exponent is stored in the range [1,254] (0 and 255
have special meanings), and is biased by subtracting 127 to get an exponent value in the
range [—126, +127]

0 10000111 11000000000000000000000

normal

+ 20135-127) — 28 #+2 =05+025=0.75"— 175

+1.75 % 28 = 448.0 34/69

Floating-point - Normal/Denormal

Normal number

A normal number is a floating point value that can be represented with at least one

bit set in the exponent or the mantissa has all Os

Denormal number
Denormal (or subnormal) numbers fill the underflow gap around zero in
floating-point arithmetic. Any non-zero number with magnitude smaller than the

smallest normal number is denormal

A denormal number is a floating point value that can be represented with all Os in

the exponent, but the mantissa is non-zero

35/69

Floating-point - Normal/Denormal

Why denormal numbers make sense: (J normal numbers)

00000001 00001000 00010000 00011001
10000000 oooa@A 00001 1 00001 111 i 00010001 00011000 l
——o—e - oo eoeeses o o ¢ & o o o o
ﬁ o S 7‘ N\ A4 4 4 4
1 aoos s 1 8 1 9 I
128 128 128 128 64 64 32 32 16 16

The problem: distance values from zero (J denormal numbers)

00000000 00000001 00001000 00010000 00011001
or 10000000 ()000%11 OOOOQ*I l ()()()JO()()I O(H)lll()ﬂ() l
AN X 41 A 4
Oor 18 L3 17781 9 1
-0 64 64 64 64 32 32 16 16
negative denormalized P osi(i‘ve
normalized numben_‘ normalized
numbers

numbers

36/69
Floating-point representation, by Carl Burch

http://www.cburch.com/books/float/index.html

Infinity 1/2

In the IEEE754 standard, inf (infinity value) is a numeric data type value that

exceeds the maximum (or minimum) representable value

Operations generating inf :

= +00-F00

= +oo0-+finite value

= finite value op finite_value > max_value
= non-NaN / £+0

There is a single representation for +inf and -inf

Comparison: (inf == finite value) — false

(£inf == 4inf) — true
37/69

Infinity

cout << 0 / 0; // undefined behavior
cout << 0.0 / 0.0; // print "nan"
cout << 5.0 / 0.0; // print "inf"
cout << -5.0 / 0.0; // print "-inf"

auto inf = std::numeric_limits<float>::infinity;

cout << (-0.0 == 0.0); // true, 0 ==

cout << ((5.0f / inf) == ((-5.0f / inf)); // true, 0 == 0

cout << (10e40f) == (10e40f + 9999999.0f); // true, inf == inf
cout << (10e40) == (10e40f + 9999999.0f); // false, 10e40 != inf

38/69

Not a Number (NaN)

In the IEEE754 standard, NaN (not a number) is a numeric data type value

representing an undefined or unrepresentable value

Operations generating NaN :

= Operations with a NaN as at least one operand
= +00-Foo, 000

= 0/0,00/00

= /X, log(x) for x < 0

= sin"!(x),cos7}(x) for x < —1or x > 1

There are many representations for NalN (e.g. 224 — 2 for £loat)

Comparison: (NaN == x) — false, for every x
(NaN == NaN) — false 39/60

Machine Epsilon

Machine epsilon

Machine epsilon & (or machine accuracy) is defined to be the smallest number that
can be added to 1.0 to give a number other than one

IEEE 754 Single precision : € = 2723 ~ 1.19209 * 10~
IEEE 754 Double precision : € = 2752 ~ 2.22045 x 1071°

40/69

Units at the Last Place (ULP)

ULP
Units at the Last Place is the gap between consecutive floating-point numbers

ULP(p,e) = ge—(P=1) — pe—(p-1)

Example:
=10, p=3
7 = 3.1415926... — x = 3.14 x 10°
ULP(3,0) = 1072 = 0.01

Relation with €:

» ¢ = ULP(p,0)
s ULP, =€+« ﬂe(x)
41/69

Floating-Point Representation of a Real Number

The machine floating-point representation fl(x) of a real number x is expressed a