Modern C++ Programming

3. Basic Concepts II

INTEGRAL AND FLOATING-POINT TYPES

Federico Busato

Table of Contents

Integral Data Types

- Fixed Width Integers
- size_t
- ptrdiff_t *
- uintptr_t *
- Arithmetic Operation Semantics
- Promotion, Truncation
- Undefined Behavior
- Saturation Arithmetic ★

Table of Contents

Ploating-point Types and Arithmetic

- IEEE Floating-point Standard and Other Representations
- Normal/Denormal Values
- Infinity (∞)
- Not a Number (NaN)
- Machine Epsilon
- Units at the Last Place (ULP)
- Cheatsheet
- Limits and Useful Functions

Table of Contents

- Arithmetic Properties
- Special Values Behavior
- Floating-Point Undefined Behavior
- Detect Floating-point Errors ★

3 Floating-point Issues

- Catastrophic Cancellation
- Floating-point Comparison

Integral Data Types

A Firmware Bug

"Certain SSDs have a firmware bug causing them to irrecoverably fail after exactly 32,768 hours of operation. SSDs that were put into service at the same time will fail simultaneously, so RAID won't help"

HPE SAS Solid State Drives - Critical Firmware Upgrade

Overflow Implementations

The latest news from Google AI

Extra, Extra - Read All About It: Nearly All Binary Searches and Mergesorts are Broken

Friday, June 2, 2006

Posted by Joshua Bloch, Software Engineer

Note: Computing the average in the right way is not trivial, see On finding the average of two unsigned integers without overflow

related operations: ceiling division, rounding division

Potentially Catastrophic Failure

 $51 \ days = 51 \cdot 24 \cdot 60 \cdot 60 \cdot 1000 = 4406400000 \ ms$

Boeing 787s must be turned off and on every 51 days to prevent 'misleading data' being shown to pilots

C++ Data Model

	Number of Bits					
C++ Data Model	os Os	short	int	long	long long	pointer
ILP32	Windows/Unix 32-b	16	32	32	64	32
LLP64	Windows 64-bit	16	32	32	64	64
LP64	Linux 64-bit	16	32	64	64	64

char is always 1 byte

LP32: Windows 16-bit APIs (no more used)

$int*_t < cstdint>$

C++11 provides fixed width integer types.

They have the same size on any architecture:

int8_t, uint8_t
int16_t, uint16_t
int32_t, uint32_t
int64_t, uint64_t

Good practice: Prefer fixed-width integers instead of native types. int and unsigned can be directly used as they are widely accepted by C++ data models

int*_t types are not "real" types, they are merely typedefs to appropriate
fundamental types

C++ standard does not ensure a one-to-one mapping:

- There are five distinct fundamental types (char, short, int, long, long long)
- There are four int*_t overloads (int8_t, int16_t, int32_t, and int64_t)

ithare.com/c-on-using-int_t-as-overload-and-template-parameters

 $\underline{\text{Warning: I/O Stream interprets uint8_t and int8_t as char and not as integer values}$

```
int8_t var;
cin >> var; // read '2'
cout << var; // print '2'
int a = var * 2;
cout << a; // print '100' !!</pre>
```

size_t <cstddef>

size_t $rac{d}{r}$ is an *alias* data type capable of storing the biggest representable value on the current architecture

- size_t is an unsigned integer type (of at least 16-bit)
- size_t is the return type of sizeof() and commonly used to represent size measures
- size_t is 4 bytes on 32-bit architectures, and 8 bytes on 64-bit architectures
- C++23 adds uz / UZ literals for size_t, e.g. 5uz

 $| exttt{ptrdiff}_{ exttt{-}} exttt{t}$

ptrdiff_t <cstddef>

ptrdiff_t & is an aliases data type used to store the results of the difference between pointers or iterators

- ptrdiff_t is the <u>signed</u> version of <u>size_t</u> commonly used for computing pointer differences
- ptrdiff_t are 4 bytes on 32-bit architectures, and 8 bytes on 64-bit architectures
- C++23 adds z/Z for $ptrdiff_t$, e.g. 5z

uintptr_t *

uintptr_t <cstdint>

- uintptr_t is an unsigned type
- sizeof(uintptr_t) == sizeof(void*)
- uintptr_t is an optional type of the standard and compilers may not provide it

Arithmetic Operation Semantics

Overflow The result of an arithmetic operation exceeds the word length, namely the largest positive/negative values

Wraparound The result of an arithmetic operation is reduced modulo 2^N where N is the number of bits of the word

Saturation The result of an arithmetic operation is constrained within a fixed range defined by a minimum and maximum value. If the result of an operation exceeds this range, it is "clamped" to the boundary value

Signed/Unsigned Integer Characteristics

Without undefined behavior, *signed* and *unsigned* integers use the same exact hardware, and they are equivalent at binary level thanks to the two-complement representation

However, **signed** and **unsigned** integers have <u>different semantics</u> in C++. The compiler can exploit undefined behavior to optimize the code even if such operations are well-defined at hardware level

Signed Integer

- lacktriangle Represent positive, negative, and zero values (\mathbb{Z})
- Properties: Commutative, reflexive, not associative (overflow/underflow)
- ☑ Represent the human intuition of numbers
- ✓ All bitwise operations are <u>well-defined</u>, except shift

Signed Integer - Problems

- More negative values $(2^{31} 1)$ than positive $(2^{31} 2)$ Even multiply, division, and modulo by -1 can fail, e.g. INT_MIN * −1
- △ Overflow/underflow semantic \rightarrow undefined behavior Possible behavior: overflow: $(2^{31}-1)+1 \rightarrow min$, underflow: $-2^{31}-1 \rightarrow max$
- lack Shift could lead to undefined behavior $x \ll y$
 - undefined behavior if y is larger than the number of bits of x
 - implementation-defined if x is negative (until C++20)
 - undefined behavior if y is negative

Unsigned Integer

- lacktriangle Represent only non-negative values (\mathbb{N})
- Properties: commutative, reflexive, associative
- \blacksquare Discontinuity in 0, $2^{32} 1$
- ightharpoonup Wraparound semantic ightharpoonup well-defined (modulo 2^{32})
- ☑ Bit-wise operations are well-defined, except shift
- lack Shift could lead to undefined behavior $x \ll y$
 - ullet undefined behavior if y is larger than the number of bits of x

Google Style Guide

Because of historical accident, the C++ standard also uses unsigned integers to represent the size of containers - many members of the standards body believe this to be a mistake, but it is effectively impossible to fix at this point

Solution: use int64_t

 $\mbox{max value:} \ 2^{63} - 1 = 9,223,372,036,854,775,807 \ \mbox{or}$

9 quintillion (9 billion of billion), about 292 years in nanoseconds,

9 million terabytes

When Use Signed/Unsigned Integer?

When use signed integer?

- if it can be mixed with negative values, e.g. subtracting byte sizes
- prefer expressing non-negative values with signed integer and assertions
- optimization purposes, e.g. exploit undefined behavior for overflow or in loops

When use unsigned integer?

- if the quantity can never be mixed with negative values (?)
- bitmask values
- optimization purposes, e.g. division, modulo
- safety-critical system, signed integer overflow could be "non-deterministic"

Arithmetic Type Limits

Query properties of arithmetic types in C++11:

* this syntax will be explained in the next lectures

Promotion and Truncation

Promotion to a larger type keeps the sign

```
int16_t x = -1;
int     y = x; // sign extend
cout << y;     // print -1</pre>
```

Truncation to a smaller type is implemented as a modulo operation with respect to the number of bits of the smaller type

```
unsigned a = 10;  // array is small
int    b = -1;
array[10ull + a * b] = 0; // ?

Segmentation fault!

int f(int a, unsigned b, int* array) { // array is small
    if (a > b)
        return array[a - b]; // ?
```

```
Segmentation fault for a < 0!</p>
```

return 0;

```
// v.size() return unsigned
for (size_t i = 0; i < v.size() - 1; i++)
    array[i] = 3; // ?</pre>
```

Segmentation fault for v.size() == 0!

Easy case:

What about the following code?

```
uint64_t x = 32;  // x can be also a pointer
x += 2u - 4;
cout << x;</pre>
```

Chandler Carruth, CppCon 2016

A real-world case:

```
// allocate a zero rtx vector of N elements
// sizeof(struct rtvec def) == 16
// sizeof(rtunion) == 8
rtvec rtvec alloca(int n) {
    rtvec rt;
    int i;
    rt = (rtvec)obstack alloc(
        rtl_obstack,
        sizeof(struct rtvec_def) + ((n - 1) * sizeof(rtunion)));
// ...
    return rt;
```

The C++ standard does not prescribe any specific behavior (undefined behavior) for several integer/unsigned arithmetic operations

Signed integer overflow/underflow

```
int x = std::numeric_limits<int>::max() + 20;
```

More negative values than positive

27/83

Initialize an integer with a value larger than its range is undefined behavior

```
int z = 3000000000; // undefined behavior!!
```

 Bitwise operations on signed integer types with negative value is undefined behavior

```
int y = -1 << 12;  // undefined behavior!!, until C++20
int z = 1 << -12;  // undefined behavior!!</pre>
```

• Shift larger than #bits of the data type is undefined behavior even for unsigned unsigned v = 1u << 32u; // undefined behavior!!

Undefined behavior in implicit conversion

```
#include <cliimits>
#include <cstdio>
void f(int* ptr, int pos) {
   pos++;
   if (pos < 0) // <-- the compiler could assume that signed overflow never
       return; // happen and "simplify" the condition to check
   ptr[pos] = 0;
int main() {
                // the code compiled with optimizations, e.g. -03
   int* tmp = new int[10]; // leads to segmentation faults with clang, while
   f(tmp, INT MAX); // it terminates correctly with qcc
   printf("%d\n", tmp[0]);
```

s/open.c of the Linux kernel

src/backend/utils/adt/int8.c of PostgreSQL

Even worse example:

```
#include <iostream>
int main() {
    for (int i = 0; i < 4; ++i)
        std::cout << i * 1000000000 << std::endl:
// with optimizations, it is an infinite loop
// --> 1000000000 * i > INT MAX
// undefined behavior!!
// the compiler translates the multiplication constant into an addition
```

Is the following loop safe?

- What happens if size is equal to INT_MAX?
- How to make the previous loop safe?
- i >= 0 && i < size is not the solution because of undefined behavior of signed overflow
- Can we generalize the solution when the increment is i += step?

Overflow / Underflow

Detecting wraparound for unsigned integral types is **not trivial**

```
// some examples
bool is_add_overflow(unsigned a, unsigned b) {
    return (a + b) < a || (a + b) < b;
}
bool is_mul_overflow(unsigned a, unsigned b) {
    unsigned x = a * b;
    return a != 0 && (x / a) != b;
}</pre>
```

Detecting overflow/underflow for <u>signed integral</u> types is even harder and must be checked before performing the operation

Saturation Arithmetic ★

C++26 adds four main functions to perform **saturation arithmetic** with integer types in the <numeric> library. In other words, the undefined behavior or the wrap-around behavior for overflow/underflow is replaced by **saturation** values, namely the *minimum* or *maximum* values of the operands

- T add_sat(T x, T y)
- T sub_sat(T x, T y)
- T mul_sat(T x, T y)
- T div_sat(T x, T y)
- R saturate_cast<R>(T x)

Floating-point Types

and Arithmetic

IEEE Floating-Point Standard

IEEE754 is the technical standard for floating-point arithmetic

The standard defines the binary format, operations behavior, rounding rules, exception handling, etc.

First Release: 1985

Second Release: 2008. Add 16-bit, 128-bit, 256-bit floating-point types

Third Release: 2019. Specify min/max behavior

see The IEEE Standard 754: One for the History Books

IEEE754 technical document:

754-2019 - IEEE Standard for Floating-Point Arithmetic

In general, C/C++ adopts IEEE754 floating-point standard:

en.cppreference.com/w/cpp/types/numeric_limits/is_iec559

32/64-bit Floating-Point

• IEEE754 Single-precision (32-bit) float

Sign 1-bit

Exponent (or base)
8-bit

Mantissa (or significant) 23-bit

■ IEEE754 Double-precision (64-bit) double

Sign

1-bit

Exponent (or base)
11-bit

Mantissa (or significant) 52-bit

128/256-bit Floating-Point

■ IEEE754 Quad-Precision (128-bit) std::float128_t C++23

Sign 1-bit

Exponent (or base)
15-bit

Mantissa (or significant) 112-bit

■ **IEEE754 Octuple-Precision** (256-bit) (not standardized in C++)

Sign

1-bit

Exponent (or base)

Mantissa (or significant) 236-bit

16-bit Floating-Point

■ **IEEE754 16-bit Floating-point** (std::binary16_t) C++23 → GPU, Arm7

Sign Exponent Mantissa
1-bit 5-bit 10-bit

■ Google 16-bit Floating-point ($std::bfloat16_t$) C++23 \rightarrow TPU, GPU, Arm8

Sign Exponent Mantissa
1-bit 8-bit 7-bit

8-bit Floating-Point (Non-Standardized in C++/IEEE)

■ E4M3

■ E5M2

- Floating Point Formats for Machine Learning, IEEE draft
- FP8 Formats for Deep Learning, Intel, Nvidia, Arm

Other Real Value Representations (Non-standardized in C++/IEEE)

- TensorFloat-32 (TF32) Specialized floating-point format for deep learning applications
- Posit (John Gustafson, 2017), also called unum III (universal number), represents floating-point values with variable-width of exponent and mantissa.
 It is implemented in experimental platforms

- NVIDIA Hopper Architecture In-Depth
- Beating Floating Point at its Own Game: Posit Arithmetic
- Posits, a New Kind of Number, Improves the Math of AI
- Comparing posit and IEEE-754 hardware cost

• Microscaling Formats (MX) Specification for low-precision floating-point formats defined by AMD, Arm, Intel, Meta, Microsoft, NVIDIA, and Qualcomm. It includes FP8, FP6, FP4, (MX)INT8

• **Fixed-point** representation has a fixed number of digits after the radix point (decimal point). The gaps between adjacent numbers are always equal. The range of their values is significantly limited compared to floating-point numbers. It is widely used on embedded systems

Floating-point number:

- Radix (or base): β
- Precision (or digits): p
- Exponent (magnitude): e
- Mantissa: M

$$n = \underbrace{M}_{p} \times \beta^{e} \rightarrow IEEE754: 1.M \times 2^{e}$$

```
float f1 = 1.3f; // 1.3

float f2 = 1.1e2f; // 1.1 · 10^2

float f3 = 3.7E4f; // 3.7 · 10^4

float f4 = .3f; // 0.3

double d1 = 1.3; // without "f"

double d2 = 5E3; // 5 · 10^3
```

Exponent Bias

In IEEE754 floating point numbers, the exponent value is offset from the actual value by the **exponent bias**

- The exponent is stored as an unsigned value suitable for comparison
- Floating point values are lexicographic ordered
- For a single-precision number, the exponent is stored in the range [1,254] (0 and 255 have special meanings), and is <u>biased</u> by subtracting 127 to get an exponent value in the range [-126, +127]

0 10000111
+
$$2^{(135-127)} = 2^8$$

$$\begin{array}{c} 1100000000000000000000000\\ \frac{1}{2^1} + \frac{1}{2^2} = 0.5 + 0.25 = 0.75 \stackrel{\textit{normal}}{\rightarrow} 1.75 \end{array}$$

$$+1.75*2^8 = 448.0$$

Normal number

A **normal** number is a floating point value that can be represented with *at least one* bit set in the exponent or the mantissa has all 0s

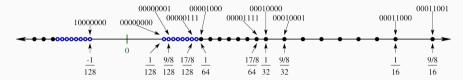
Denormal number

Denormal (or subnormal) numbers fill the underflow gap around zero in floating-point arithmetic. Any non-zero number with magnitude smaller than the smallest normal number is denormal

A **denormal** number is a floating point value that can be represented with *all 0s in the exponent*, but the mantissa is non-zero

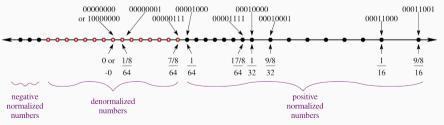
Why denormal numbers make sense:

 $(\downarrow normal numbers)$



The problem: distance values from zero

(↓ denormal numbers)



Infinity

In the IEEE754 standard, inf (infinity value) is a numeric data type value that exceeds the maximum (or minimum) representable value

Operations generating inf:

- $\pm \infty \cdot \pm \infty$
- $\pm \infty \cdot \pm$ finite_value
- finite_value op finite_value > max_value
- finite value $/\pm 0$

There is a single representation for +inf and -inf

Comparison: (inf == finite_value)
$$\rightarrow$$
 false $(\pm \inf$ == $\pm \inf$) \rightarrow true

NaN

In the IEEE754 standard, NaN (not a number) is a numeric data type value representing an undefined or non-representable value

Floating-point operations generating NaN:

- Operations with a NaN as at least one operand
- \bullet $\pm\infty\cdot\mp\infty$, $0\cdot\infty$
- $0/0, \infty/\infty$
- \sqrt{x} , $\log(x)$ for x < 0
- $\sin^{-1}(x), \cos^{-1}(x)$ for x < -1 or x > 1

Comparison: (NaN == x)
$$\rightarrow$$
 false, for every x (NaN == NaN) \rightarrow false

quiet_NaN

There are many representations for NaN (e.g. $2^{24} - 2$ for float)

The specific (bitwise) \mathtt{NaN} value returned by an operation is implementation/compiler specific

Machine Epsilon

Machine epsilon

Machine epsilon ε (or *machine accuracy*) is defined to be the smallest number that can be added to 1.0 to give a number other than one

IEEE 754 Single precision : $\varepsilon = 2^{-23} \approx 1.19209*10^{-7}$

IEEE 754 Double precision : $\varepsilon = 2^{-52} \approx 2.22045*10^{-16}$

Units at the Last Place (ULP)

ULP

Units at the Last Place is the gap between consecutive floating-point numbers

$$ULP(p, e) = \beta^{e-(p-1)} \to 2^{e-(p-1)}$$

Example:

$$\beta = 10, \ p = 3$$

 $\pi = 3.1415926... \rightarrow x = 3.14 \times 10^{0}$
 $ULP(3,0) = 10^{-2} = 0.01$

Relation with ε :

- $\varepsilon = ULP(p,0)$
- $ULP_x = \varepsilon * \beta^{e(x)}$

Floating-Point Representation of a Real Number

The machine <u>floating-point representation</u> **fl(**x**)** of a *real number* x is expressed as $fl(x) = x(1 + \delta)$, where δ is a small constant

The approximation of a *real number* x has the following properties:

Absolute Error:
$$|fl(x) - x| \le \frac{1}{2} \cdot ULP_x$$

Relative Error:
$$\left| \frac{fl(x) - x}{x} \right| \leq \frac{1}{2} \cdot \varepsilon$$

Floating-point - Cheatsheet

• NaN (mantissa \neq 0)

• ± infinity

- * 11111111

1111111111111111111111111

- * 11111111
 - Lowest/Largest ($\pm 3.40282 * 10^{+38}$)
 - 1) (| 1 17540 | 10-38)
 - Minimum (normal) ($\pm 1.17549 * 10^{-38}$)
- Denormal number $(< 2^{-126})$ (minimum: $1.4 * 10^{-45}$)
 - * 0000000 *****
 - <u>±</u>0

- *
- 00000000

	E4M3	E5M2	float16_t
Exponent	4 [0*-14] (no inf)	5-bit [0*-30]	
Bias	7	15	
Mantissa	4-bit	2-bit	10-bit
$Largest\ (\pm)$	1.75 * 2 ⁸ 448	$1.75 * 2^{15}$ $57,344$	2 ¹⁶ 65, 536
Smallest (\pm)	2^{-6} 0.015625	2 ⁻¹⁴ 0.00006	
Smallest Denormal	2^{-9} 0.001953125	2^{-16} $1.5258 * 10^{-5}$	2^{-24} $6.0 \cdot 10^{-8}$
Epsilon	2 ⁻⁴ 0.0625	2^{-2} 0.25	2^{-10} 0.00098

	bfloat16_t	float	double
Exponent	8-bit [0*-254]		11-bit [0*-2046]
Bias	127		1023
Mantissa	7-bit	23-bit	52-bit
Largest (\pm)	$2^{128} \\ 3.4 \cdot 10^{38}$		$2^{1024} \\ 1.8 \cdot 10^{308}$
Smallest (\pm)	2^{-126} $1.2 \cdot 10^{-38}$		2^{-1022} $2.2 \cdot 10^{-308}$
Smallest Denormal	/	2^{-149} $1.4 \cdot 10^{-45}$	2^{-1074} $4.9 \cdot 10^{-324}$
Epsilon	2^{-7} 0.0078	$2^{-23} \\ 1.2 \cdot 10^{-7}$	2^{-52} $2.2 \cdot 10^{-16}$

Floating-point - Limits

```
#include <liimits>
// T: float or double
std::numeric limits<T>::max(); // largest value
std::numeric_limits<T>::lowest(); // lowest value (C++11)
std::numeric limits<T>::min(): // smallest value
std::numeric_limits<T>::denorm_min() // smallest (denormal) value
std::numeric_limits<T>::epsilon(); // epsilon value
std::numeric limits<T>::infinity() // infinity
std::numeric_limits<T>::quiet_NaN() // NaN
```

Floating-point - Useful Functions

```
#include <cmath> // C++11
bool std::isnan(T value) // check if value is NaN
bool std::isinf(T value) // check if value is \pm infinity
bool std::isfinite(T value) // check if value is not NaN
                            // and not \pm infinity
bool std::isnormal(T value): // check if value is Normal
    std::ldexp(T x, p) // exponent shift x * 2^p
Τ
    std::ilogb(T value) // extracts the exponent of value
int
```

Floating-point operations are written

- ⊕ addition
- ⊖ subtraction
- ⊗ multiplication
- ⊘ division

$$\odot \in \{\oplus,\ominus,\otimes,\oslash\}$$

 $op \in \{+, -, *, /\}$ denotes exact precision operations

- (P1) In general, a op $b \neq a \odot b$
- (P2) Not Reflexive $a \neq a$
 - Reflexive without NaN
 - (P3) Not Commutative $a \odot b \neq b \odot a$
 - Commutative without NaN (NaN ≠ NaN)
 - (P4) In general, Not Associative $(a \odot b) \odot c \neq a \odot (b \odot c)$
 - even excluding NaN and inf in intermediate computations
 - (P5) In general, **Not Distributive** $(a \oplus b) \otimes c \neq (a \otimes c) \oplus (b \otimes c)$
 - even excluding NaN and inf in intermediate computations

(P6) Identity on operations is not ensured

- $(a \ominus b) \oplus b \neq a$
- $(a \oslash b) \otimes b \neq a$

(P7) Overflow/Underflow Floating-point has <u>"saturation"</u> values inf, -inf

as opposite to integer arithmetic with wrap-around behavior

Special Values Behavior

Zero behavior

- $a \oslash 0 = \inf$, $a \in \{finite 0\}$ [IEEE-764], undefined behavior in C++
- $0 \oslash 0$, inf $\oslash 0$ = NaN [IEEE-764], undefined behavior in C++
- $0 \otimes \inf = \text{NaN}$
- +0 = -0 but they have a different binary representation

Inf behavior

- inf \odot $a = \inf$, $a \in \{finite 0\}$
- $\inf \oplus \otimes \inf = \inf$
- $\inf \ominus \oslash \inf = NaN$
- \pm inf \odot \mp inf = NaN
- \pm inf = \pm inf

NaN behavior

- NaN \odot a = NaN
- NaN $\neq a$

Floating-Point Undefined Behavior

Division by zero

```
e.g., 10^8/0.0
```

Conversion to a narrower floating-point type:

```
e.g., 0.1 double \rightarrow float
```

Conversion from floating-point to integer:

```
e.g., 10^8 float \rightarrow int
```

Operations on signaling NaNs: Arithmetic operations that cause an "invalid operation" exception to be signaled

```
e.g., inf - inf
```

• Incorrectly assuming IEEE-754 compliance for all platforms:

```
e.g., Some embedded Linux distribution on ARM
```

C++11 allows determining if a floating-point exceptional condition has occurred by using floating-point exception facilities provided in <cfenv>

```
#include <cfenv>
// MACRO
FE DIVBYZERO // division by zero
FE_INEXACT // rounding error
FE_INVALID // invalid operation, i.e. NaN
FE_OVERFLOW // overflow (reach saturation value +inf)
FE_UNDERFLOW // underflow (reach saturation value -inf)
FE ALL EXCEPT // all exceptions
// functions
std::feclearexcept(FE ALL EXCEPT); // clear exception status
std::fetestexcept(<macro>);  // returns a value != 0 if an
                                  // exception has been detected
```

Detect Floating-point Errors *

```
#include <cfenv> // floating point exceptions
#include <iostream>
#pragma STDC FENV ACCESS ON // tell the compiler to manipulate the floating-point
                          // environment (not supported by all compilers)
                          // qcc: yes, clanq: no
int main() {
   std::feclearexcept(FE_ALL_EXCEPT); // clear
   auto x = 1.0 / 0.0; // all compilers
   std::cout << (bool) std::fetestexcept(FE_DIVBYZERO); // print true
   std::feclearexcept(FE_ALL_EXCEPT); // clear
   auto x2 = 0.0 / 0.0; // all compilers
   std::cout << (bool) std::fetestexcept(FE_INVALID); // print true
   std::feclearexcept(FE_ALL_EXCEPT); // clear
   auto x4 = 1e38f * 10; // acc: ok
   std::cout << std::fetestexcept(FE OVERFLOW); // print true</pre>
```

Floating-point Issues

Ariene 5: data conversion from 64-bit floating point value to 16-bit signed integer \rightarrow \$137 million

Patriot Missile: small chopping error at each operation, 100 hours activity \rightarrow 28 deaths

Integer type is more accurate than floating type for large numbers

float numbers are different from double numbers

```
cout << (1.1 != 1.1f); // print true !!!
```

The floating point precision is finite!

Floating point arithmetic is not associative

```
cout << 0.1 + (0.2 + 0.3) == (0.1 + 0.2) + 0.3; // print false
```

IEEE754 Floating-point computation guarantees to produce **deterministic** output, namely the exact bitwise value for each run, <u>if and only if</u> the **order of the operations** is always the same

ightarrow same result on any machine and for all runs

"Using a double-precision floating-point value, we can represent easily the number of atoms in the universe.

If your software ever produces a number so large that it will not fit in a double-precision floating-point value, chances are good that you have a bug"

Daniel Lemire, Prof. at the University of Quebec

"NASA uses just 15 digits of π to calculate interplanetary travel. With 40 digits, you could calculate the circumference of a circle the size of the visible universe with an accuracy that would fall by less than the diameter of a single hydrogen atom"

Latest in space, Twitter

70/83

Floating-point Algorithms

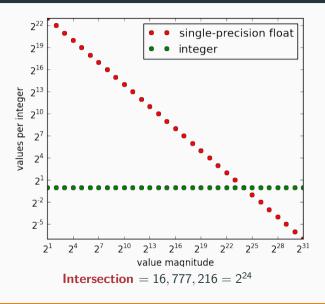
- addition algorithm (simplified):
- (1) Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger exponent
- (2) Add the mantissa
- (3) Normalize the sum if needed (shift right/left the exponent by 1)
- multiplication algorithm (simplified):
- (1) Multiplication of mantissas. The number of bits of the result is twice the size of the operands (46+2 bits, with +2 for implicit normalization)
- (2) Normalize the product if needed (shift right/left the exponent by 1)
- (3) Addition of the exponents
- fused multiply-add (fma):
 - Recent architectures (also GPUs) provide fma to compute addition and multiplication in a single instruction (performed by the compiler in most cases)
 - The rounding error of fma(x, y, z) is less than $(x \otimes y) \oplus z$

Catastrophic Cancellation

Catastrophic cancellation (or *loss of significance*) refers to loss of relevant information in a floating-point computation that cannot be revered

Two cases:

- (C1) $\mathbf{a} \pm \mathbf{b}$, where $\mathbf{a} \gg \mathbf{b}$ or $\mathbf{b} \gg \mathbf{a}$. The value (or part of the value) of the smaller number is lost
- (C2) $\mathbf{a} \mathbf{b}$, where \mathbf{a}, \mathbf{b} are approximation of exact values and $\mathbf{a} \approx \mathbf{b}$, namely a loss of precision in both \mathbf{a} and \mathbf{b} . $\mathbf{a} \mathbf{b}$ cancels most of the relevant part of the result because $\mathbf{a} \approx \mathbf{b}$. It implies a *small absolute error* but a *large relative error*



How many iterations performs the following code?

```
while (x > 0)

x = x - y;
```

How many iterations?

```
float: x = 10,000,000 y = 1 -> 10,000,000

float: x = 30,000,000 y = 1 -> does not terminate

float: x = 200,000 y = 0.001 -> does not terminate

bfloat: x = 256 y = 1 -> does not terminate !!
```

Floating-point increment

```
float x = 0.0f;
for (int i = 0; i < 20000000; i++)
x += 1.0f;</pre>
```

What is the value of x at the end of the loop?

Ceiling division $\left[\frac{a}{b}\right]$

```
// std::ceil((float) 101 / 2.0f) -> 50.5f -> 51
float x = std::ceil((float) 20000001 / 2.0f);
```

What is the value of x?

Let's solve a quadratic equation:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

```
x² + 5000x + 0.25

(-5000 + std::sqrt(5000.0f * 5000.0f - 4.0f * 1.0f * 0.25f)) / 2 // x2

(-5000 + std::sqrt(25000000.0f - 1.0f)) / 2 // catastrophic cancellation (C1)
(-5000 + std::sqrt(25000000.0f)) / 2
(-5000 + 5000) / 2 = 0 // catastrophic cancellation (C2)
// correct result: 0.00005!!
```

relative error:
$$\frac{|0 - 0.00005|}{0.00005} = 100\%$$

The problem

```
cout << (0.11f + 0.11f < 0.22f); // print true!!
cout << (0.1f + 0.1f > 0.2f); // print true!!
```

Do not use absolute error margins!!

```
bool areFloatNearlyEqual(float a, float b) {
   if (std::abs(a - b) < epsilon); // epsilon is fixed by the user
      return true;
   return false;
}</pre>
```

Problems:

- Fixed epsilon "looks small" but it could be too large when the numbers being compared are very small
- If the compared numbers are very large, the epsilon could end up being smaller than the smallest rounding error, so that the comparison always returns false

Solution: Use relative error $\frac{|a-b|}{b} < \varepsilon$

```
bool areFloatNearlyEqual(float a, float b) {
   if (std::abs(a - b) / b < epsilon); // epsilon is fixed
      return true;
   return false;
}</pre>
```

Problems:

- a=0, b=0 The division is evaluated as 0.0/0.0 and the whole if statement is (nan < espilon) which always returns false
- b=0 The division is evaluated as abs(a)/0.0 and the whole if statement is (+inf < espilon) which always returns false
- a and b very small. The result should be true but the division by b may produces wrong results
- It is not commutative. We always divide by b

```
Possible solution: \frac{|a-b|}{\max(|a|,|b|)} < \varepsilon
```

```
bool areFloatNearlyEqual(float a, float b) {
    constexpr float normal min = std::numeric limits<float>::min();
    constexpr float relative error = <user defined>
    if (!std::isfinite(a) || !isfinite(b)) // a = \pm \infty, NaN or b = \pm \infty, NaN
        return false:
    float diff = std::abs(a - b):
    // if "a" and "b" are near to zero, the relative error is less effective
    if (diff <= normal_min) // or also: user_epsilon * normal_min</pre>
        return true:
    float abs_a = std::abs(a);
    float abs_b = std::abs(b);
    return (diff / std::max(abs_a, abs_b)) <= relative_error;</pre>
```

Minimize Error Propagation - Summary

- Prefer multiplication/division rather than addition/subtraction
- Try to reorganize the computation to keep near numbers with the same scale (e.g. sorting numbers)
- Consider putting a zero very small number (under a threshold). Common application: iterative algorithms
- Scale by a power of two is safe
- Switch to log scale. Multiplication becomes Add, and Division becomes Subtraction
- Use a compensation algorithm like Kahan summation, Dekker's FastTwoSum, Rump's AccSum

References

Suggest readings:

- What Every Computer Scientist Should Know About Floating-Point Arithmetic
- Do Developers Understand IEEE Floating Point?
- Yet another floating point tutorial
- Unavoidable Errors in Computing

Floating-point Comparison readings:

- lacktriangle The Floating-Point Guide Comparison
- Comparing Floating Point Numbers, 2012 Edition
- Some comments on approximately equal FP comparisons
- Comparing Floating-Point Numbers Is Tricky

Floating point tools:

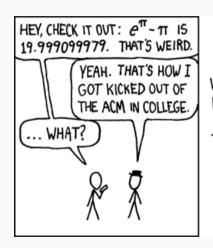
- IEEE754 visualization/converter
- Find and fix floating-point problems

System/360 Model 44



Ken Shirriff: Want to adjust your computer's floating point precision by turning a knob? You could do that on the System/360 Model 44

On Floating-Point



DURING A COMPETITION, I TOLD THE PROGRAMMERS ON OUR TEAM THAT e^{π} - π WAS A STANDARD TEST OF FLOATING-POINT HANDLERS -- IT WOULD COME OUT TO 20 UNLESS THEY HAD ROUNDING ERRORS.

