Modern C++
Programming

12. C++ ECOSYSTEM

Federico Busato

University of Verona, Dept. of Computer Science
2020, v3.06

Table of Context

Execution Debugging
m Assertion
m Execution Debugging (gdb)
Memory Debugging
m valgrind
Sanitizers
m Address Sanitizer
m Leak Sanitizer
m Memory Sanitizers

m Undefined Behavior Sanitizer
A Debugging Summary

1/74

Table of Context

Code Checking and Analysis
m Compiler Warnings

m Static Analyzers

[@ Code Testing
m Unit Test
m Code Coverage

m Fuzz Testing

Code Quality

m clang-tidy

2/74

Table of Context

H CMake

m ctest

EF Code Documentation

m doxygen

it Code Statistics

m Count Lines of Code

m Cyclomatic Complexity Analyzer

3/74

Table of Context

Other Tools
m Code Formatting - clang-format
m Compiler Explorer
m Code Transformation - CppInsights
m Code Autocompletion - TabNine, Kite
m Local Code Search - ripgrep
m Code Search Engine - searchcode, grep.app
m Code Exploration - SourceTrail

m Code Benchmarking - Quick-Bench

4/74

Execution
Debugging

Is this a bug?

for (int i = 0; 1 <= (2732) - 1; i++) {

from: John Regehr (on Twitter) 5/74

Error Handing

Error/Exception indicates “exceptional” conditions (invalid user

input, missing files, etc.)

= Exceptions are more robust but slower and requires more resources.
They also involve code bloat

= Error are fast but difficult to handle in complex programs

= |t is a run-time event that can happen in the public program
(“release” mode)

An assertion is a statement to detect a violated assumption. An
assertion represents an invariant in the code

It can happen both a run-time and compile-time event that should
never happen in the public program

6/74

Assertion

#include <cassert> // <-— needed

int sqrt(int value) {
int ret = sqrt_internal(value);
assert(ret >= 0 && (ret == || ret == || ret < value));

return ret;

Assertions may slow down the execution. They can be disable by
define the NDEBUG macro

#define NDEBUG // or with the flag "-DNDEBUG"

7/74

Execution Debugging (gdb)

How to compile and run for debugging:

g++ -g [-ggdb3] <program.cpp> -o program
gdb [--args] ./program <args...>

-g Enable debugging
- stores the symbol table information in the executable
(mapping between assembly and source code lines)
- for some compilers, it may disable certain optimizations
- slow down the compilation phase

-ggdb3 Produces debugging information specifically intended for gdb
- the last number produces extra debugging information, for
example: including macro definitions
- in general, it is not portable across different compiler

supported by gcc, clan
(supp Y g g) e

gdb - Breakpoints/Watchpoints

Command Abbr. Description
breakpoint <file>:<line> b insert a breakpoint in a specific line
. . insert a breakpoint in a specific
breakpoint <function_-name> b .
function
. . " insert a breakpoint with a
breakpoint <ref> if <condition> b .
conditional statement
delete d delete all breakpoints or watchpoints

delete <breakpoint_number>
clear [function-name/line_number]

enable/disable <breakpoint_number>

watch <expression>

delete a specific breakpoint
delete a specific breakpoint
enable/disable a specific breakpoint

stop execution when the value of
expression changes (variable,
comparison, etc.)

9/74

gdb - Control Flow

Command Abbr. Description
run [args] r run the program
continue c continue the execution
finish £ continue until the end of the current function
step s execute next line of code (follow function calls)
next n execute next line of code

. . continue until reach line number,
until <program_point> .
function name, address, etc.

CTRL+C stop the execution (not quit)

quit q exit

10/74

gdb - Stack and Info

Command Abbr. Description
list 1 print code
list <function or #start,#end> 1 print function/range code
up u move up in the call stack
down d move down in the call stack
backtrace bt prints stack backtrace (call stack)
backtrace <full> bt print values of local variables
help [<command>] h show help about command

show information about program

info <args/breakpoints/ arguments/breakpoints/watchpoints/
watchpoints/registers/local> registers/local variables

11/74

Command Abbr. Description
print <variable> P print variable
print/h <variable> p/h print variable in hex
print/nb <variable> p/nb print variable in binary (n bytes)
print/w <address> p/w print address in binary

p /s <char array/address>
p *array_var@n
p (int[4])<address>

p *(charx*)&<std::string>

print char array
print n array elements
print four elements of type int

print std: :string

12/74

gdb - Disassemble

Command

Description

disasseble <function_name>

disasseble <0xStart,0xEnd addr>
nexti <variable>

stepi <variable>

x/nfu <address>

disassemble a specified function
disassemble function range

execute next line of code (follow
function calls)

execute next line of code

examine address
n number of elements,
f format (d: int, f: float, etc.),
u data size (b: byte, w: word, etc.)

13/74

gdb - Notes

The debugger automatically stops when:
= breakpoint (by using the debugger)
= assertion fail
= segmentation fault

= trigger software breakpoint (e.g. SIGTRAP on Linux)
github.com/scottt/debugbreak

Full story: www.yolinux.com/TUTORIALS/GDB-Commands.html
(it also contains a script to de-referencing STL Containers)

gdb reference card V5 link

14/74

https://github.com/scottt/debugbreak
www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/gdb-refcard.pdf

Memory Debugging

Memory Vulnerabilities

“70% of all the vulnerabilities in Microsoft
products are memory safety issues”

Matt Miller, Microsoft Security Engineer

“Chrome: 70% of all security bugs are
memory safety issues”

Chromium Security Report

Microsoft: 70% of all security bugs are memory safety issues

Chrome: 707 of all security bugs are memory safety issues 15/74

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/

Memory Vulnerabilities

Terms like buffer overflow, race condition, page fault, null pointer,
stack exhaustion, heap exhaustion/corruption, use-after-free, or
double free — all describe memory safety vulnerabilities

Solutions:

= Run-time check
= Static analysis

= Avoid unsafe language constructs

16/74

valgrind

&\ valgrind is a tool suite to automatically detect many

memory management and threading bugs

How to install the last version:

€ PH B P hH BH &P

wget ftp://sourceware.org/pub/valgrind/valgrind-3.15.0.tar.bz2
tar xf valgrind-3.15.0.tar.bz2

cd valgrind-3.15.0

./configure --enable-1lto

make -j 12

sudo make install

sudo apt install libc6-dbg

17/74

http://valgrind.org

valgrind

Basic usage:

= compile with -g

= §$ valgrind ./program <args...>

Output example 1:

==60127==
==60127==
==60127==
==60127==
==60127==
==60127==
==60127==

Invalid read of size 4 !lout-of-bound access
at 0x100000D9E: f(int) (test01.C:86)
by 0x100000C22: main (test01.C:40)
Address 0x10042c148 is O bytes after a block of size 40 alloc'd
at 0x1000161EF: malloc (vg_replace_malloc.c:236)
by 0x100000C88: f(int) (test01.C:75)
by 0x100000C22: main (test01.C:40)

18/74

valgrind

Output

example 2:

! 'memory leak

==19182==
==19182==
==19182==
==19182==

==60127==
==60127==
==60127==
==60127==
==60127==
==60127==
==60127==
==60127==
==60127==
==60127==

40 bytes in 1 blocks are definitely lost in loss record 1 of 1
at Ox1B8FF5CD: malloc (vg_replace_malloc.c:130)
by 0x8048385: f (a.c:5)
by 0x80483AB: main (a.c:11)

HEAP SUMMARY:
in use at exit: 4,184 bytes in 2 blocks
total heap usage: 3 allocs, 1 frees, 4,224 bytes allocated

LEAK SUMMARY:
definitely lost: 128 bytes in 1 blocks ! 'memory leak
indirectly lost: O bytes in O blocks
possibly lost: O bytes in O blocks
still reachable: 4,184 bytes in 2 blocks !!not deallocated
suppressed: O bytes in O blocks

19/74

valgrind

Advanced flags:

= —-leak-check=full print details for each “definitely lost”
or “possibly lost” block, including where it was allocated

= --show-leak-kinds=all to combine with ——leak-check=full.
Print all leak kinds

= --track-fds=yes list open file descriptors on exit (not closed)

= -—-track-origins=yes tracks the origin of uninitialized values
(very slow execution)

valgrind --leak-check=full --show-leak-kinds=all

--track-fds=yes --track-origins=yes ./program <args...>

Track stack usage:

valgrind --tool=drd --show-stack-usage=yes ./program <args...> 20/74

Sanitizers

Address Sanitizer

Sanitizers are compiler-based instrumentation components to
perform dynamic analysis

Sanitizer are used during development and testing to discover and
diagnose memory misuse bugs and potentially dangerous undefined

behavior

Sanitizer are implemented in Clang (from 3.1), gcc (from 4.8) and
Xcode

Project using Sanitizers:

= Chromium
= Firefox
= Linux kernel

= Android
21/74

Address Sanitizer

Address Sanitizer is a memory error detector

heap/stack/global out-of-bounds

memory leaks

use-after-free, use-after-return, use-after-scope
double-free, invalid free

initialization order bugs

etc.

Similar to valgrind but faster (2X slowdown)

clang++ -01 -g -fsanitize=address -fno-omit-frame-pointer <program>

-01
g

disable inlining
generate symbol table

Website:

clang.llvm.org/docs/AddressSanitizer.html

github.com/google/sanitizers/wiki/AddressSanitizer
gec.gnu.org/onlinedocs/gec/Instrumentation-Options.html

22/74

https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Leak Sanitizer

LeakSanitizer is a run-time memory leak detector

= integrated into AddressSanitizer, can be used as standalone tool
* almost no performance overhead until the very end of the process

g++ -01 -g -fsanitize=address -fno-omit-frame-pointer <program>

clang++ -01 -g -fsanitize=leak -fno-omit-frame-pointer <program>

Website:
clang.llvm.org/docs/LeakSanitizer.html
github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 23/74

https://clang.llvm.org/docs/LeakSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Memory Sanitizers

Memory Sanitizer is detector of uninitialized reads

= stack/heap-allocated memory read before it is written
* Similar to valgrind but faster (3X slowdown)

clang++ -01 -g -fsanitize=memory -fno-omit-frame-pointer <program>

-fsanitize-memory-track-origins=2

track origins of uninitialized values

Note: not compatible with Address Sanitizer

Website:
clang.llvm.org/docs/MemorySanitizer.html
github.com/google/sanitizers/wiki/MemorySanitizer

gcc.gnu.org/onlinedocs/gecc/Instrumentation-Options.html 24/74

https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Undefined Behavior Sanitizer

UndefinedBehaviorSanitizer is a undefined behavior detector

= signed integer overflow, floating-point types overflow, enumerated
not in range

= out-of-bounds array indexing, misaligned address

= divide by zero

= etc.

Not included in valgrind

clang++ -01 -g -fsanitize=undefined -fno-omit-frame-pointer <program>

-fsanitize=integer Checks for undefined or suspicious integer behavior
(e.g. unsigned integer overflow)
-fsanitize=nullability Checks passing null as a function parameter, assigning
null to an lvalue, and returning null from a function

Website:

clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 25/74

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Debugging Summary

How to Debug Common Errors

Segmentation fault
= gdb
= valgrind
= Segmentation fault when just entered in a function —

stack overflow

Double free or corruption
= gdb

= valgrind

Infinite execution
= gdb + (CTRL + C)

Incorrect results
= valgrind + assertion + gdb + UndefinedBehaviorSanitizer

26/74

Demangling

Name mangling is a technique used to solve various problems

caused by the need to resolve unique names

Transforming C++ ABI (Application binary interface) identifiers
into the original source identifiers is called demangling

Example (linking error):
_ZNSt13basic_filebufIcStlichar_traitsIcEED1Ev

After demangling:

std: :basic_filebuf<char, std::char_traits<char> >::~basic_filebuf ()

How to demangle:

= make |& c++filt | grep -P ' .x(7=))"'

= Online Demangler: https://demangler.com 27/74

https://demangler.com

Code Checking and
Analysis

Compiler Warnings

Enable specific warnings:

g++ -W<warning> <args...>

Disable specific warnings:

g++ -Wno-<warning> <args...>

Common warning flags to minimize accidental mismatches:

-Wall Enables many standard warnings (~50 warnings)

-Wextra Enables some extra warning flags that are not enabled by
-Wall (~15 warnings)

-Wpedantic Issue all the warnings demanded by strict ISO C/C++

Enable ALL warnings (only clang) -Weverything
28/74

GCC Warnings

Additional GCC warning flags (> 5.0):

-Wcast-align -Wold-style-cast
-Wcast-qual -Wpragmas
-Wconversion -Wredundant-decls
-Wfloat-conversion -Wshadow

-Wsign-conversion -Wsign-promox*
-Wdate-time -Wstrict-aliasing
-Wdouble-promotion -Wstrict-overflow=1 # 5
-Weffc++ -Wswitch-bool

-Wdelete-non-virtual-dtor # -Wswitch-default
-Wnon-virtual-dtor # -Wswitch-enum
-Wformat-signedness -Wtrampolines
-Winvalid-pch -Wunused-macros
-Wlogical-op -Wuseless-cast
-Wmissing-declarations -Wvla
-Wmissing-include-dirs -Wformat=2

-Wodr -Wno-long-long

29/74

Static Analyzers - clang static analyzer

‘\)) The Clang Static Analyzer is a source code analysis
2" tool that finds bugs in C/C++ programs at compile-time

It find bugs by reasoning about the semantics of code (may

produce false positives)

Example:

void test() {
int i, a[10];
int x = alil; // warning: array subscript is undefined

}

How to use:
scan-build make

scan-build is included in the LLVM suite
30/74

https://clang-analyzer.llvm.org

Static Analyzers - cppcheck

cppcheck provides code analysis to detect bugs, undefined
behavior and dangerous coding construct. The goal is to detect
only real errors in the code (i.e. have very few false positives)

cppcheck --enable=warning,performance,style,portability,information,error
<src_file/directory>

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=0ON .

cppcheck --enable=<enable_flags> --project=compile_commands.json

31/74

http://cppcheck.sourceforge.net/

Static Analyzers - PVS-Studio, FBInfer

(%E PVS-Studio is a high-quality proprietary (free for open
@g) source prOJects) static code analyzer supporting C, C++

Customers: IBM, Intel, Adobe, Microsoft, Nvidia, Bosh, ldGames,

EpicGames, etc.

FBInfer is a static analysis tool (also available online)
to checks for null pointer deferencing, memory leak,

coding conventions, unavailable APls, etc.

Customers: Amazon AWS, Facebook/Ocolus, Instagram, Whatapp,
Mozilla, Spotify, Uber, Sky, etc.

32/74

http://fbinfer.com

Static Analyzers - DeepCode, SonarSource

deepCode is an Al-powered code review system, with
“>O0DE machine learning systems trained on billions of lines
of code from open-source projects

Available for Visual Studio Code, Sublime, IntelliJ IDEA, and Atom

SonarSource is a static analyzer which inspects

-\\\ source code for bugs, code smells, and security vul-

nerabilities for multiple languages (C++, Java, etc.)

SonarLint plugin is available for Visual Code, Visual Studio Code,
Eclipse, and IntelliJ IDEA

33/74

https://www.deepcode.ai/
https://www.sonarsource.com/
https://www.sonarlint.org/

Code Testing

Code Testing

Bugs
found

Time spent testing software

from: Kat Maddox (on Twitter) 34/74

Unit testing involves breaking your program into pieces, and
subjecting each piece to a series of tests

Unit Testing Benefits:
= Increases confidence in changing/ maintaining code
= The cost of fixing a defect detected during unit testing is
lesser in comparison to that of defects detected at higher levels
= Debugging is easy. When a test fails, only the latest changes
need to be debugged

C++4 Unit testing frameworks:

= catch

= doctest

= Google Test

= CppUnit

= Boost.Test 35/74

catch

Catch2 is a multi-paradigm test framework for C+—+

Catch?2 features
= Header only and no external dependencies
= Assertion macro
= Floating point tolerance comparisons
Basic usage:

= Create the test program
= Run the test

$./test_program [<TestName>]

Other commands:
github.com/catchorg/Catch2

36/74

https://catch-lib.net
https://github.com/catchorg/Catch2/blob/master/docs/command-line.md

#define CATCH_CONFIG_MAIN // This tells Catch to provide a main()
#include "catch.hpp" // only do this in one cpp file

unsigned int Factorial(unsigned int number) {
return number <= 1 7 number : Factorial(number - 1) * number;

float floatComputation() { ... }

"Test description and tag name"
TEST_CASE("Factorials are computed", "[Factoriall") {
REQUIRE(Factorial(l) == 1);
REQUIRE(Factorial(2) == 2);
REQUIRE(Factorial(3) == 6);
REQUIRE(Factorial(10) == 3628800);

TEST_CASE("floatCmp computed", "[floatComputation]") {
REQUIRE(floatComputation() == Approx(2.1));

37/74

Code Coverage

Code coverage is a measure used to describe the degree to which
the source code of a program is executed when a particular test

suite runs

gcov is a tool you can use in conjunction with GCC to test code
coverage in programs

lcov is a graphical front-end for gcov. It collects gcov data for
multiple source files and creates HTML pages containing the

source code annotated with coverage information

Step for code coverage:

= compile with --coverage flag (objects + linking)
= run the test

= visualize the results with gcov or 1cov
38/74

Code Coverage

program.cpp:
#include <iostream>

#include <string>

int main(int argc, char* argv[]) {
int value = std::stoi(argv[1]);
if (value % 3 == 0)
std::cout << "first\n";
if (value % 2 == 0)

std::cout << "second\n";

$gcc --std=c++11 --coverage program.cpp -0 program

$./program 9

first

$gcov program.cpp

File 'program.cpp'

Lines executed:85.71% of 7

Creating 'program.cpp.gcov'

$lcov --capture --directory . --output-file coverage.info

$genhtml coverage.info --output-directory out 39/74

Code Coverage

program.cpp.gcov:

:int main(int argc, char* argv[]) {
int value = std::stoi(argv[i]);
if (value % 3 == 0)

std::cout << "first\n";
if (value % 2 == 0)
9: std::cout << "second\n";

0:}

R e e e

#HRRH

4
5
6
7
8
4: 1

lcov output:

Current view: top level - P P Hit Total Coverage
Test: coverage.info Lines: 6 7 85.7 %
Date: 2018-02-09 Functions: 3 3 100.0 %
| Filename | Line Coverage
program. cpp —— 85.7 % 6/7 100.0 % 3/3
Current view: top level - ove - program.cpp (source / functions) Hit Total Coverage
Test: coverage.info Lines: 6 7 85.7 %
Date: 2018-02-09 Functions: 3 3 100.0 %

Line data Source code
: #include <iostream>

: #include <string>

: int main(int arge, char* argv[]) {
- int value = std::stoi(argv[1]); // convert to int

if (value % 2

°)
@i stdiicout < "second”;

Boovaunswnr

n

40/74

Coverage-Guided Fuzz Testing

A fuzzer is a specialized tool that tracks which areas of the code
are reached, and generates mutations on the corpus of input data
in order to maximize the code coverage

LibFuzzer is the library provided by LLVM and feeds fuzzed
inputs to the library via a specific fuzzing entrypoint

The fuzz target function accepts an array of bytes and does something
interesting with these bytes using the APl under test:

extern "C" int LLVMFuzzerTestOneInput(const uint8_t* Data,
size_t Size) {
DoSomethingInterestingWithMyAPI(Data, Size);

return O;

41/74

https://llvm.org/docs/LibFuzzer.html

Code Quality

Linters - clang-tidy 1/2

lint: The term was derived from the name of the undesirable bits
of fiber

clang-tidy provides an extensible framework for diagnosing and
fixing typical programming errors, like style violations, interface
misuse, or bugs that can be deduced via static analysis

$cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=0N .
$clang-tidy -p .

clang-tidy searches the configuration file .clang-tidy file
located in the closest parent directory of the input file

clang-tidy is included in the LLVM suite

42/74

https://clang.llvm.org/extra/clang-tidy

Linters - clang-tidy

Coding Guidelines:

CERT Secure Coding Guidelines]

= C++ Core Guidelines "

= High Integrity C++ Coding .
Standard .
Supported Code Conventions: .
= Fuchsia .

= Google .

= LLVM .

.clang-tidy

Bug Related:

Android related
Boost library related
Misc

Modernize
Performance
Readability
clang-analyzer checks

bugprone code constructors

Checks: 'android-*,boost-*,bugprone-*,cert-*,cppcoreguidelines—*,

clang-analyzer-*,fuchsia-*,google-*,hicpp-*,llvm-*,misc—*,modernize-*,

performance-*,readability—*'

43/74

CMake

CMake Overview

CMake is an open-source, cross-platform family of tools
designed to build, test and package software

CMake is used to control the software compilation process using
simple platform and compiler independent configuration files, and
generate native Makefile/Ninjia and workspaces that can be

used in the compiler environment of your choice

CMake features:
= Turing complete language
= Multi-platform (Windows, Linux, etc.)
= Open-Source
= Generate: makefiles, ninja, etc.

= Supported by many IDE: Visual Studio, Eclipse, etc.

44/74

https://cmake.org

CMake - References

= 19 reasons why CMake is actually awesome
= An Introduction to Modern CMake

= Effective Modern CMake

= Awesome CMake

» Useful Variables

45/74

https://kubasejdak.com/19-reasons-why-cmake-is-actually-awesome
https://cliutils.gitlab.io/modern-cmake/
https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1
https://github.com/onqtam/awesome-cmake
https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/Useful-Variables

CMake - Example 1

CMakeLists.txt minimal example:

project(my_project) # project name

add_executable(program program.cpp) # compile command

$ cmake . # CMakeLists.txt directory
$ make

makefile automatically generated
Scanning dependencies of target program

[100%] Building CXX object CMakeFiles/out_program.dir/program.cpp.o
Linking CXX executable program

[100%] Built target program

4674

CMake - Example 2

project(my_project) # project name

cmake_minimum_required(VERSION 3.15) # minimum version

set (CMAKE_CXX_STANDARD 14) # force C++14
set (CMAKE_CXX_STANDARD_REQUIRED ON)
set (CMAKE_CXX_EXTENSIONS OFF)

add_executable (program)

indicate include directory
target_include_directories(program
PUBLIC "${PROJECT_SOURCE_DIR}/include")

find all .cpp file in src/ directory

file (GLOB_RECURSE SRCS ${PROJECT_SOURCE_DIR}/src/*.cpp)

compile all *.cpp file

target_sources(program PRIVATE ${SRCS}) 47/74

CMake - Example 3

project (my_project) # project name
cmake_minimum_required (VERSION 3.15) # minimum version

add_executable (program)
if (CMAKE_BUILD_TYPE STREQUAL "Debug") # "Debug" mode

target_compile_options(program "-g")
target_compile_options(program "-01")

if (CMAKE_COMPILER_IS_GNUCXX) # if compiler is gcc
target_compile_options(program "-ggdb3")
endif ()

elseif (CMAKE_BUILD_TYPE STREQUAL "Release") # "Release" mode
target_compile_options(program "-02")
endif ()

target_sources(program PRIVATE program.cpp)

$ cmake -DCMAKE_BUILD_TYPE=Debug .

48/74

CMake - Example 4

project(my_project) # project name

cmake_minimum_required (VERSION 3.15) # minimum version

add_custom_target (rm # makefile target name
COMMAND rm -rf *.o # real command
COMMENT "Clear build directory")

add_executable (program)
find_package(Boost 1.36.0 REQUIRED) # compile only if Boost library
is found

if (Boost_FOUND)

target_include_directories("${PROJECT_SOURCE_DIR}/include"
PUBLIC ${Boost_INCLUDE_DIRS})

else()
message (FATAL_ERROR "Boost Lib not found")

endif ()

target_sources(program PRIVATE program.cpp)

$ cmake
$ make rm 49/74

CMake - Notes

Generate JSON compilation database (compile_commands.json)

It contains the exact compiler calls for each file (used by other
tools)

project (my_project) # project name
cmake_minimum_required (VERSION 3.15) # minimum version

set (CMAKE_EXPORT_COMPILE_COMMANDS ON) # <--

add_executable (program)

target_sources(program PRIVATE program.cpp)
Change the compiler:

CC=gcc CXX=g++ cmake

50,74

CTest is a testing tool (integrated in CMake) that can be used to

automate updating, configuring, building, testing, performing
memory checking, performing coverage

project (my_project)
cmake_minimum_required (VERSION 3.5)

add_executable(program program.cpp)
enable_testing()

add_test (NAME Test1 # check if "program" returns 0
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/build
COMMAND ./program <args>) # command can be anything

add_test (NAME Test2 # check if "program" print "Correct”
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/build
COMMAND ./program <args>)

set_tests_properties(Test2
PROPERTIES PASS_REGULAR_EXPRESSION "Correct") 51/74

Basic usage (call ctest):

$make test # rTun all tests

ctest usage:

$ctest -R Python # run all tests that contains 'Python' string
$ctest -E Iron # run all tests that not contain 'Iron' string
$ctest -1 3,5 # run tests from 3 to 5

Each ctest command can be combined with other tools (e.g.
valgrind)

52/74

Code
Documentation

doxygen

Doxygen is the de facto standard tool for generating
documentation from annotated C+- sources

Doxygen usage
= comment the code with /// or /** comment */
= generate doxygen base configuration file

$doxygen -g

= modify the configuration file doxygen.cfg
= generate the documentation

$doxygen <config_file>

An alternative in early development stage is clang-doc 53/74

https://clang.llvm.org/extra/clang-doc.html

doxygen

Latex
MathJax

Markdown Qe
References
HTML
LATEX/PDF
Commented
Source Code |:\,>
Doxygen RTE
Configuration
CHM

54/74

doxygen

Doxygen provides support for:

= Latex/MathJax Insert latex math $<code>$

= Markdown (Markdown Cheatsheet link) Italic text
x<code>* , bold text **<code>** , table, list, etc.

= Automatic cross references Between functions, variables,

etc.

= Specific highlight Code ~<code>" , parameter

Oparam <param>

55/74

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

doxygen - Guidelines

Doxygen guidelines:

Include in every file copyright, author, date, version
Comment namespaces and classes
Comment template parameters

Distinguish input and output parameters

Call/Hierarchy graph can be useful in large projects
(should include graphviz)

HAVE DQOT = YES

GRAPHICAL _HIERARCHY = YES

CALL_GRAPH = YES

CALLER GRAPH = YES

1#OS++ Doxygen style guide link

56,74

https://micro-os-plus.github.io/develop/doxygen-style-guide/

doxygen - Example

J** J**
* @copyright MyProject * @brief "What the function does?"
* license BSD3, Apache, MIT, etc. * @detatils "Some additional details”,
* Qauthor MySelf * Latexz/MathJaz: $\sqrt a$
* Quersion v3.14159265359 * @tparam T Type of input and output
* @date March, 2018 * @param[in] input Input array
* @file * @param[out] output Output array
*/ * @return “true” if correct,
* ‘false® otherwise
/// @brief Namespace brief * @remark it is *useful* if ...
77/ description * Quarning the behavior is **undefined** if
namespace my_namespace { * OGp input is ‘nullptr’
* @see related_function

/// @brief "Class brief description” */
/// @tparam R "Class template for" template<typename T>
template<typename R> bool my_function(const T* input, T* output);
class A {
/// @brief

void related_function;
57/74

doxygen - Call Graph

Resource

ExternalResource

| Plane4F | ‘ Point3F |
mPlanes !
1 I
1
,
I
]
itis !
I{nFmslum ‘:‘::;2:;2" mAxis
| 1 !
\ L
\ [Fomior | [atar | [Touure |
7 \ y
’ i/ 3

J;mArray ” mChildren

\
~

Vector< SceneMNode * >

\

SceneObject

I ’
\ anotation » mTransform

InternalResource

IndexBuffer

‘
' mShaderResource

\

Shader

\

\
\ !
GLTexture \IB ; VB ShaderProgram
A} ! ’
\ i e -
‘mlexture - program -~
- -

PlainTextResource

mPixelShader
CENEIETIED || § \rnVerlexShader

ImageResource

i
!

0
/' mimage
/

I
’
’
s

58/74

Doxygen Alternatives

M.CSS
Doxypress
clang-doc

Sphinx

standardese
HDoc

Adobe Hyde

Doxygen C++ theme
Doxygen fork
LLVM too

Clear, Functional C++ Documentation with

Sphinx + Breathe + Doxygen + CMake

The nextgen Doxygen for C++ (experimental)
The modern documentation tool for C++ (alpha)
Utility to facilitate documenting C++

50/74

https://mcss.mosra.cz/documentation/doxygen/
https://www.copperspice.com/documentation-doxypress.html
https://clang.llvm.org/extra/clang-doc.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#cpp-domain
https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/
https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/
https://github.com/standardese/standardese
https://hdoc.io/
https://github.com/adobe/hyde

Writing Good Documentation

Teaching the art of great documentation, by Google

60/74

https://developers.googleblog.com/2020/07/teaching-art-of-great-documentation.html

Code Statistics

Count Lines of Code - cloc

cloc counts blank lines, comment lines, and physical lines of

source code in many programming languages

$cloc my_project/
4076 text files.
3883 unique files.

1521 files ignored.

http://cloc.sourceforge.net v 1.50 T=12.0 s (209.2 files/s, 70472.1 lines/s)

Language files blank comment code
C 135 18718 22862 140483
C/C++ Header 147 7650 12093 44042
Bourne Shell 116 3402 5789 36882

Features: filter by-file/language, SQL database, archive support,
line count diff, etc. 61/74

https://github.com/AlDanial/cloc

Cyclomatic Complexity Analyzer - 1yzard

Lizard is an extensible Cyclomatic Complexity Analyzer for many

programming languages including C/C+-+

Cyclomatic Complexity: is a software metric used to indicate the

complexity of a program. It is a quantitative measure of the number of

linearly independent paths through a program source code

$lizard my_project/

NLOC CCN token param function@line@file

10
6
24

2 29 2 start_new_player@26@./html_game.c
1 3 0 set_shutdown_f1ag@449@. /httpd.c
3 61 1 server_main@454@. /httpd.c

CCN: cyclomatic complexity (should not exceed a threshold)

NLOC: lines of code without comments

token: Number of conditional statements 62/74
param: Parameter count of functions

https://github.com/terryyin/lizard

Cyclomatic Complexity Analyzer - 1yzard

A=0
A>10 €
B>C
Cc=C-1 A=A-1
! \/
end for end if
print A A++

CCN = 3 63/74

Cyclomatic Complexity Analyzer - 1yzard

CC Risk Evaluation

1-10 a simple program, without much risk
11-20 more complex, moderate risk

21-50 complex, high risk

> 50 untestable program, very high risk

CC Guidelines

1-5 The routine is probably fine
6-10 Start to think about ways to simplify the routine
> 10 Break part of the routine

Risk: Lizard: 15, OCLint: 10

References:

www.microsoftpressstore.com/store/code-complete-9780735619678 64,74
blog.feabhas.com/2018/07/code-quality-cyclomatic-complexity

www.microsoftpressstore.com/store/code-complete-9780735619678
https://blog.feabhas.com/2018/07/code-quality-cyclomatic-complexity/

Other Tools

Code Formatting - clang-format

clang-format is a tool to automatically format C/C++ code
(and other languages)

$ clang-format <file/directory>

clang-format searches the configuration file .clang-format file

located in the closest parent directory of the input file

clang-format example:

IndentWidth: 4

UseTab: Never
BreakBeforeBraces: Linux
ColumnLimit: 80
SortIncludes: true

65/74

clang.llvm.org/docs/ClangFormat.html

Compiler Explorer (assembly and execution)

Compiler Explorer is an interactive tool that lets you type

source code and see assembly output, control flow graph,

optimization hint, etc.

x86-64 clang 5.0.0 v

Av 11010
C++source #1 X method(int, int): # @method(int, int)
push rbp
mov rbp, rsp
mov dword ptr [rbp - 4], edi
mov dword ptr [rbp - 8], esi

1
A~ M Save/Load + Add new..v 2
3
4
5
6 mov esi, dword ptr [rbp - 4]
7
8
9
-]

#include <algorithm>

int method(int a, int b) {

add esi, dword ptr [rbp - 8
return a + b; ’ per [rtp !

mov eax, esi

}

pop rbp

oV b w N R

1

Key feature: support multiple architectures and compilers
66,74

https://godbolt.org

Code Transformation - CppInsights

CppInsights See what your compiler does behind the scenes

£ SIS s | s

Source: Insight:
#include <cstdio> #include <cstdio>
#include <vector> #include <vector>
int main() int main()
{ {
const char arr[10]{2,4,6,8}; const char arr[18]{2,4,6,8};
for(const char& c : arr) {
{ auto®& __rangel = arr;
printf(“"c=%c\n", c); const char * __beginl = _ rangel;
} const char * __endl = __rangel + 161;
¥
for(; __beginl != __endl; ++_ beginl)
{
const char & ¢ = *__begini;
printf("c=%c\n", static_cast<int>(c));
¥
}
¥

67/74

https://cppinsights.io/

Code Autocompletion - TabNine

TabNine uses deep learning to provide code completion

Features:
= Support all languages
= C+4+ semantic completion is available through clangd
= Project indexing
= Recognize common language patterns
= Use even the documentation to infer this function name, return
type, and arguments

Available for Visual Studio Code, IntelliJ, Sublime, Atom, and Vim

0s
sys

def main(di y):
line_count - {}
filename os. listdir(directory):
os.path.splitext(filename)
line_count:

line_count [ext]
line open(os.path.join(directory, filename)):
Line_count [ext] +
line_count[ext] += 1
line_count [ext 68/74

line_count [ext] +=

line_count [ext].append(

https://tabnine.com/

Code Autocompletion - Kite

Kite adds Al powered code completions to your code editor
Support 13 languages

Available for Visual Studio Code, IntelliJ, Sublime, Atom, Vim, -+
others

os
sys

def count_py_files_in_repos(di
os.path.exists(os.path.joil rname, '.git')):
count = @

root, dirs, files os.walk(dirname):

co len([f f files f.endswith('.py')])
(*{} has {} Python files'.)

format(dirname, count

format(..)

format (<name>)

69/74

https://www.kite.com/

Local Code Search - ripgrep

Ripgrep is a code-searching-oriented tool for regex pattern

Features:
= Default recursively searches
= Skip .gitignore patterns, binary and hidden files/directories
= Windows, Linux, Mac OS support
= Up to 100x faster than GNU grep

[andrew@Cheetah rust] rg -i rustacean
src/doc/book/nightly-rust.md
92:[Mibbit][mibbit]. Click that link, and you'll be chatting with other Rustaceans

src/doc/book/glossary.md
3:Not every Rustacean has a background in systems programming, ner in computer

src/doc/book/getting-started.md
176:Rustaceans (a silly nickname we call ourselves) who can help us out. Other great
376:Cargo is Rust’s build system and package manager, and Rustaceans use Cargo to

src/doc/book/guessing-game.md
444:it really easy to re-use libraries, and so Rustaceans tend to write smaller

CONTRIBUTING.md

322:* [rustaceans.org][ro] is helpful, but mostly dedicated to IRC
333:[ro]: http://waww.rustaceans.org/

[andrew@Cheetah rust] []

70/74

https://github.com/BurntSushi/ripgrep

Code Search Engine - searchcode

Searchcode is a free source code search engine

Features:
= Search over 20 billion lines of code from 7,000,000 projects
= Search sources: github, bitbucket, gitlab, google code,

sourceforge, etc.

-
search

Search over 20 billion lines of code from 7,000,000 projects

7 A

71/74

https://searchcode.com/

Code Search Engine - grep.app

grep.app searches across a half million GitHub repos

Il grep.app

Search across a half million git repos

| | Case sensitive Regular expression Whole words

72/74

https://grep.app/

Code Exploration - SourceTrail

Sourcetrail is an interactive code explorer that simplifies
navigation in complex source code

Field 13
return truej
@ pusLic ¥
i 35 | void TicTacToe::fN0) {
36 field_.Show();
SameInRow 37
TicTacToe 5 HakeMove 29 A
>~ 39
40 for (dint 4 = @; i< 9; i+) {
@ pusuc 41 Player& player = *players_[playerIndex];
&, int 42
43 field_. Move(player. (field_),
main 44 field_. O3
A PRIVATE AL & 45
46 if (field_.SameInRow(player.getToken()
— @ pusLic a1 i out(player. 0);
48 t (" won!\n\n");
field_ Turn 49 return;
s getToken se }
51
gethame 52 playerIndex = (playerIndex + 1) % 23
53 1}
54
¥ stringout 55 ior: ("Game ends in draw!\n\n");
56 | }
\y void

void TicTacToe::R (O &

73/74

Code Benchmarking - Quick-Bench

Quick-benchmark is a micro benchmarking tool intended to

quickly and simply compare the performances of two or more code
snippets. The benchmark runs on a pool of AWS machines

compiler = clang-3.8 ~ std = c++17 + optim= 03« STL = libstdc++(GNU) ~

® Run Benchmark [GRSEIG] disassembly Clear cached results

StringCopy

ratio (CPU time / Noop time)
Lower is faster

74/74

= Show Noop bar

http://quick-bench.com

	Execution Debugging
	Assertion
	Execution Debugging (gdb)

	Memory Debugging
	valgrind

	Sanitizers
	Address Sanitizer
	Leak Sanitizer
	Memory Sanitizers
	Undefined Behavior Sanitizer

	Debugging Summary
	Code Checking and Analysis
	Compiler Warnings
	Static Analyzers

	Code Testing
	Unit Test
	Code Coverage
	Fuzz Testing

	Code Quality
	clang-tidy

	CMake
	ctest

	Code Documentation
	doxygen

	Code Statistics
	Count Lines of Code
	Cyclomatic Complexity Analyzer

	Other Tools
	Code Formatting - clang-format
	Compiler Explorer
	Code Transformation - CppInsights
	Code Autocompletion - TabNine, Kite
	Local Code Search - ripgrep
	Code Search Engine - searchcode, grep.app
	Code Exploration - SourceTrail
	Code Benchmarking - Quick-Bench

