Modern C++
Programming

13. CoDE CONVENTIONS

Federico Busato
2023-12-21

Table of Contents

C++4 Project Organization
m Project Directories
m Project Files
m “Common” Project Organization Notes

m Alternative - “Canonical” Project Organization

Coding Styles and Conventions
m Coding Styles

#include

1/82

Table of Contents

B Macro and Preprocessing

H namespace
[@ Variables and Arithmetic Types
Functions

H Structs and Classes

2/82

Table of Contents

El Control Flow

il Modern C++ Features
Maintainability

i Naming

iE Readability and Formatting

il Code Documentation

3/82

C++ Project
Organization

“Common” Project Organization

Project
Root = = —

bin build doc
- submodules - third_party - data

- test - examples - utils
include src
5] 5]
==. |LICENSE ==. | README.md
Q CMakelLists.txt Q Doxyfile | Q .gitignore
Q .clang-tidy Q .clang-format 4/82

Project Directories

Fundamental directories
include Project public header files
src Project source files and private headers

test (or tests) Source files for testing the project

Empty directories
bin Output executables
build All intermediate files

doc (or docs) Project documentation

5/82

Project Directories

Optional directories

submodules Project submodules

third party (less often deps/external/extern) dependencies or external
libraries

data (or extras) Files used by the executables or for testing
examples Source files for showing project features
utils (or tools, or script) Scripts and utilities related to the project

cmake CMake submodules (.cmake)

6/82

Project Files

LICENSE Describes how this project can be used and distributed
README.md General information about the project in Markdown format *
CMakeLists.txt Describes how to compile the project

Doxyfile Configuration file used by doxygen to generate the documentation (see
next lecture)

others .gitignore, .clang-format, .clang-tidy, etc.

* Markdown is a language with a syntax corresponding to a subset of HTML tags

github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet 7/82

github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Readme and License

README.md

= README template:

- Embedded Artistry README Template
- Your Project is Great, So Let’s Make Your README Great Too

LICENSE

= Choose an open source license:

choosealicense.com

= License guidelines:

Why your academic code needs a software license

8/82

https://embeddedartistry.com/blog/2017/11/30/embedded-artistry-readme-template
https://embeddedartistry.com/blog/2017/11/27/your-project-is-great-so-lets-make-your-readme-great-too/
https://choosealicense.com/
https://bastian.rieck.me/blog/posts/2020/licence/

File extensions

Common C++ file extensions:

= header .h .hh .hpp .hxx

= header implementation .i.h .i.hpp -inl.h .inl.hpp
(1) separate implementation from interface for inline functions and templates

(2) keep implementation “inline” in the header file

= source/implementation .c .cc .cpp .cxx

Common conventions:
= .h .c .cc GOOGLE
= .hh .cc

= .hpp .cpp
= _hxx .cxX 9/82

Common Rules

The file should have the same name of the class/namespace that they
implement

= class MyClass
my_class.hpp (MyClass.hpp)
my_class.i.hpp (MyClass.i.hpp)
my class.cpp (MyClass.cpp)

* namespace my np
my_np.hpp (MyNP.hpp)
my np.i.hpp (MyNP.i.hpp)
my np.cpp (MyNP.cpp)

10/82

“Common” Project Organization Notes

= Public header(s) in include/

= source files, private headers, header implementations in src/ directory

= The main file (if present) can be placed in src/ and called main.cpp

= Code tests, unit and functional (see C++ Ecosystem I slides), can be
placed in test/, or unit tests can appear in the same directory of the
component under test with the same filename and include .test suffix,
e.g. my_file.test.cpp

11/82

“Common” Project Organization Example

<project_name>

include/ README.md

L public_header.hpp CMakeLists.txt

src/ Doxyfile
private_header.hpp LICENSE
templ _class.hpp build/ (empty)
templ_class.i.hpp bin/ (empty)
(template/inline functions) doc/ (empty)
templ_class.cpp test/
(specialization) tmytest .hpp
subdir/ my_test.cpp

Lmy,flle .Cpp 12/82

“Common” Project Organization - Improvements

The “common” project organization can be <project_name>

improved by adding the name of the project include/

as subdirectory of include/ and src/ L <project_name>/

L public_header.hpp

This is particularly useful when the project src/
is used as submodule (part of a larger

. .) L< roject_name>/
project) or imported as an external library Pl

Lprivate,file.hpp
The includes now look like:

#include <my_project/public_header.hpp>

13/82

Alternative - “Canonical” Project Organization 1/2

Header and source files (or module interface and implementation files) are next

to each other (no include/ and src/ split)

Headers are included with <> and contain the project directory prefix, for
example, <hello/hello.hpp> (no need of "" syntax)

Header and source file extensions are .hpp / .cpp (.mpp for module
interfaces). No special characters other than _ and - in file names with . only
used for extensions

A source file that implements a module’s unit tests should be placed next to that
module’s files and be called with the module’s name plus the .test second-level

extension

A project’s functional /integration tests should go into the tests/ subdirectory 14/82

Alternative - “Canonical” Project Organization

<project_name> (v1)

| _<project_name>/
public_header.hpp
private_header.hpp
my_file.cpp
my_file.mpp
my_file.test.cpp

| tests/
lg,my,functional,test.cpp
| build/

| doc/

<project name> (v2)
| _<project_name>/
kpublicheader.hpp
private/
private_header.hpp
my_internal file.cpp
my_internal_file.test.cpp
| tests/
Jg,my,functional,test.cpp
| build/
| doc/

15/82

References

= Kick-start your C++! A template for modern C++ projects
= The Pitchfork Layout

= Canonical Project Structure

16/82

https://github.com/TheLartians/ModernCppStarter
https://api.csswg.org/bikeshed/?force=1&url=https://raw.githubusercontent.com/vector-of-bool/pitchfork/develop/data/spec.bs
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1204r0.html

Coding Styles and
Conventions

“one thing people should remember is
there is what you can do in a language and
what you should do”

Bjarne Stroustrup

17/82

Most important rule:
BE CONSISTENT!!

“The best code explains itself”
GOOGLE

18/82

“80% of the lifetime cost of a piece of

software goes to maintenance”

Unreal Engine

19/82

>
=
®
s
C
()
°
S)
O

“The worst thing that can happen to a code base is size”

Steve Yegge

LAST PUSH

ILL JUST CHECK
YOUR CODE QUALITY

WELCOME TO
PURGATORY

ALLOW ME

20/82

MONKEYUSER. COM

Bad Code

How my code looks like for other people?

WHAT 1S ALL

His
e THIS CRAP?

STRUCTURE HERE 7

THIS 516N DOESN'T
HELP ME MUucH.

/
@ f“”’ii@

WHAT A HORRIBLY DESIGNED
STREET, MOST INEFFICIENT.

- — 5
=l

;e =

_

<B4

GoOD GoD! WHAT THE HELL
DOES THIS CONTRAPTION Do?

abstrusegoose.com/432

21/82

https://abstrusegoose.com/432

Coding Styles 1/3

Coding styles are common guidelines to improve the readability, maintainability,
prevent common errors, and make the code more uniform

» LLVM Coding Standards 11vm.org/docs/CodingStandards.html
= Google C++ Style Guide google.github.io/styleguide/cppguide.html

= Webkit Coding Style
webkit.org/code-style-guidelines

= Mozilla Coding Style

firefox-source-docs.mozilla.org

22/82

https://llvm.org/docs/CodingStandards.html
https://google.github.io/styleguide/cppguide.html
https://webkit.org/code-style-guidelines/
https://firefox-source-docs.mozilla.org/code-quality/coding-style/index.html

Coding Styles

s Chromium Coding Style
chromium.googlesource.com

ct+-dos—-and-donts.md

= Unreal Engine - Coding Standard
docs.unrealengine.com/en-us/Programming

» nOS++
micro-os-plus.github.io/develop/coding-style

micro-os-plus.github.io/develop/naming-conventions

= High Integrity C++ Coding Standard

WWW . perforce . COIII/I‘eSO'LlI'CGS

» CERT C++ Secure Coding

wiki.sei.cmu.edu 23/82

https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://micro-os-plus.github.io/develop/coding-style/
https://micro-os-plus.github.io/develop/naming-conventions/
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682&src=spaceshortcut

Coding Styles

More educational-oriented guidelines

» C++ Guidelines
isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Critical system coding standards

= Misra - Coding Standard

Www.misra.org.uk

= Autosar - Coding Standard

www.misra.org.uk

= Joint Strike Fighter Air Vehicle
www.perforce.com/blog/qac/jsf-coding-standard-cpp 24/82

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.misra.org.uk/
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.perforce.com/blog/qac/jsf-coding-standard-cpp

% — Important!
Highlight potential code issues such as bugs, inefficiency, and can compromise
readability. Should not be ignored

* — Useful
It is not fundamental but it emphasizes good practices and can help to prevent

bugs. Should be followed if possible

= — Minor / Obvious
Style choice or not very common issue

25/82

#include

F#include

% Every include must be self-contained

- include every header you need directly
- do not rely on recursive #include
- the project must compile with any include order

LLVM, GOOGLE, UNREAL, OS++, CORE

* Include as less as possible, especially in header files

- do not include unneeded headers
- minimize dependencies
- minimize code in headers (e.g. use forward declarations)

LLVM, GooGLE, CHROMIUM, UNREAL, Hic, nOS++

26/82

#include 2/5

Order of #include LLVM, WEBKIT, CORE
(1) Main module/interface header, if exists (it is only one)
= space
(2) Local project includes (in lexicographic order)
= space
(3) System includes (in lexicographic order)

Note: (2) and (3) can be swapped GOOGLE
System includes are self-contained, local includes might not

27/82

#include 3/5

Project includes LLVM, GoocGLe, WEBKIT, Hic, CORE

* Use "" syntax

* Should be absolute paths from the project include root
€.g. #include "directoryl/header.hpp"

System includes LLVM, GoocGLE, WEBKIT, HIC

* Use <> syntax
€.g. #include <iostream>

28/82

F#include

% Always use an include guard

= macro include guard vs. #pragma once
- Use macro include guard if portability is a very strong requirement
LLVM, GOOGLE, CHROMIUM, CORE
- #pragma once otherwise WEBKIT, UNREAL

= #include preprocessor should be placed immediately after the header comment
and include guard LLVM

Forward declarations vs. #includes

= Prefer forward declaration: reduce compile time, less dependency CHROMIUM

= Prefer #include : safer GOOGLE29/82

F#include

* Use C++ headers instead of C headers:
<cassert> instead of <assert.h>
<cmath> instead of <math.h>, etc.

= Report at least one function used for each include

<iostream>

#include

#include

#1include

#1include
#1include

#1include

"my_class.hpp"

"my_dir/my_headerA.hpp"

"

"my_dir/my_headerB. hpp

<cmath>
<tostream>

<vector>

// std::cout,

std::cin

// MyClass

[blank line]

// npA::ClassA, npB::f2(0)
// np::g()

[blank line]

// std::fabs()

// std::cout

// std::vector

30/82

Macro and
Preprocessing

Macro and Preprocessing 1/4

% Avoid defining macros, especially in headers GOOCLE

- Do not use macro for enumerators, constants, and functions
WEBKIT, GOOGLE

% Use a prefix for all macros related to the project MYPROJECT_MACRO
GOOGLE, UNREAL

% #undef macros wherever possible GOOCLE

- Even in the source files if unity build is used (merging multiple source files to
improve compile time)

31/82

Macro and Preprocessing

% Always use curly brackets for multi-line macro

#define MACRO \
{ \
\
\

linel;
line2;
}
% Always put macros after #include statements Hic

= Put macros outside namespaces as they don't have a scope

32/82

Macro and Preprocessing - Style

= Close #endif with the respective condition of the first #if

#4f defined (MACRO)

#endif // defined(MACRO)

= The hash mark that starts a preprocessor directive should always be at the
beginning of the line GOOCLE

#4f defined (MACRO)
define MACRO2
#endif

33/82

Macro and Preprocessing - Style

= Place the \ rightmost for multi-line macro

#define MACRO2 \

macro_def. ..

» Prefer #if defined(MACRO) instead of #ifdef MACRO
Improve readability, help grep-like utils, and it is uniform with multiple conditions

#41f define(MACRO1) && defined(MACRO2)

34/82

namespace

Namespace

% Avoid using namespace -directives at global scope
LLVM, GoocGLeE, WEBKIT, UNREAL, HiC, nOS++

* Limit using namespace -directives at local scope and prefer explicit
namespace specification GoOOGLE, WEBKIT, UNREAL

% Always place code in a namespace to avoid global namespace pollution
GoocGLE, WEBKIT

35/82

Namespace- Anonymous 2/3

* Avoid anonymous namespaces in headers GOOCGLE, CERT

= anonymous namespace Vvs. static
- Prefer anonymous namespaces instead of static variables/functions
GOOGLE, CORE

- Use anonymous namespaces only for inline class declaration, static otherwise
LLVM, STATIC

* Anonymous namespaces and source files:
Items local to a source file (e.g. .cpp) file should be wrapped in an anonymous
namespace. While some such items are already file-scope by default in C++, not all are;
also, shared objects on Linux builds export all symbols, so anonymous namespaces (which
restrict these symbols to the compilation unit) improve function call cost and reduce the
size of entry point tables CHroMIUM, CORE, Hic

36/82

Namespace - Style 3/3

= The content of namespaces is not indented LLVM, GooGLE, WEBKIT

namespace ns {

void £(O) {}

= Close namespace declarations LLVM, GOOGLE

} // namespace <namespace_tidentifier>

} // namespace (for anonymous namespaces)

37/82

Variables and
Arithmetic Types

Variable

% Place a variables in the narrowest scope possible, and always initialize
variables in the declaration
GOOCGLE, Isocprp, MoziLLA, Hic, muOS, CERT

* Avoid static (non-const) global variables LLVM, GooGLE, CoRrg, Hic

= Use assignment syntax = when performing “simple” initialization CHROMIUM

38/82

Arithmetic Types

% Use fixed-width integer type (e.g. int64 t, int8. t, etc.)
Exception: int GOOGLE, int/unsigned UNREAL

* size t vs. int64_t
- Use size_t for object and allocation sizes, object counts, array and pointer offsets,
vector indices, and so on. (integer overflow behavior for signed types is undefined)

CHROMIUM
- Use int64_t instead of size_t for object counts and loop indices GOOCLE

= Use brace initialization to convert constant arithmetic types
(narrowing) e.g. int64_t{MyConstant} GOOGLE

* Use true, false for boolean variables instead numeric values 0, 1 WEBKIT
39/82

Arithmetic Types 3/3

% Do not shift < signed operands Hic, Coreg, pOS

% Do not directly compare floating point ==, <, etc. Hic

% Use signed types for arithmetic CORE
Style:

= Use floating-point literals to highlight floating-point data types, e.g. 30.0f
WEBKIT (opposite)

= Avoid redundant type, e.g. unsigned int, signed int WEBKIT

40/82

Functions

Functions 1/3

* Limit overloaded functions. Prefer default arguments GOOGLE, CORE

* Split up large functions into logical sub-functions for improving readability and
compile time UNREAL, GOOGLE, CORE

= Use inline only for small functions (e.g. < 10 lines) GOOGLE, Hic

% Never return pointers for new objects. Use std::unique ptr instead
CHROMIUM, CORE

int* £f() { return new int[10]; } // wrong!!
std: :unique_ptr<int> f() { return new int[10]; } // correct

41/82

Functions - Parameters 2/3

% Prefer pass by-reference instead by-value except for raw arrays and built-in
types WEBKIT

* Pass function arguments by const pointer or reference if those arguments
are not intended to be modified by the function UNREAL

* Do not pass by-const-value for built-in types, especially in the declaration
(same signature of by-value)

* Prefer returning values rather than output parameters GOOCLE

* Do not declare functions with an excessive number of parameters. Use a

wrapper structure instead Hic, COR,E42/82

Functions - Style

= Prefer enum to bool on function parameters

= All parameters should be aligned if they do not fit in a single line (especially in the
declaration) GOOGLE

void f(int a,
const int* b);

= Parameter names should be the same for declaration and definition CLANG-TIDY
= Do not use inline when declaring a function (only in the definition) LLVM

= Do not separate declaration and definition for template and inline functions

GOOGLE
43/82

Structs and Classes

Structs and Classes 1/3

* Use a struct only for passive objects that carry data; everything else is a

class GOOGLE
% Objects are fully initialized by constructor call GooGLE, WEBKIT, CORE
* Prefer in-class initializers to member initializers CORE
* Initialize member variables in the order of member declaration CORE, Hic

Use delegating constructors to represent common actions for all constructors of a

class CORE
44/82

Structs and Classes 2/3

* Do not define implicit conversions. Use the explicit keyword for conversion
operators and constructors GOOGLE, CORE

* Prefer = default constructors over user-defined / implicit default

constructors MoziLLa, CHROMIUM, CORE, HIC
* Use = delete for mark deleted functions CORE, HIC
= Mark destructor and move constructor noexcept CORE

45/82

Structs and Classes

= Use braced initializer lists for aggregate types A{1, 2} LLVM, GOOGLE

= Do not use braced initializer lists {} for constructors (at least for containers, e.g.
std::vector). It can be confused with std::initializer list LLVM

= Prefer braced initializer lists {} for constructors to clearly distinguish from
function calls and avoid implicit narrowing conversion

46/82

Inheritance 1/2

% Avoid virtual method calls in constructors GOOGLE, CORE, CERT

% Default arguments are allowed only on non-virtual functions
GooGLE, CORE, Hic

*

A class with a virtual function should have a virtual or protected destructor
(e.g. interfaces and abstract classes) CORE

Does not use virtual with final/override (implicit)

see A hole in Clang’s -Wsuggest-override 47/82

https://quuxplusone.github.io/blog/2021/02/19/virtual-final-silences-override-warning/

Inheritance

% Multiple inheritance and virtual inheritance are discouraged
GOOGLE, CHROMIUM

* Prefer composition over inheritance GOOCLE

* A polymorphic class should suppress copying CORE

48/82

Structs and Classes - Style 1/3

% Declare class data members in special way*. Examples:

- Trailing underscore (e.g. member _var_) GOOGLE, pOS, CHROMIUM
- Leading underscore (e.g. _member_var) NET
- Public members (e.g. m_member_var) WEBKIT

PERSONAL COMMENT: Prefer _member _var as | read left-to-right and is less invasive

= Class inheritance declarations order:
public, protected, private GOOGLE, pOS

= First data members, then function members

= If possible, avoid this-> keyword

* |t helps to keep track of class variables and local function variables 49/82
* The first character is helpful in filtering through the list of available variables

Structs and Classes - Style

struct A { // passive data structure
int 28
float y;

};

class B {
public:
BO;

void public_function();

protected:
int _a; // in general, it is not public in derived classes

void _protected_function(); // "protected_function()" is mot wrong
// it may be public in derived classes

private:
int _5%4
float _y;
void _private_function();
P 50/82

Ie

Structs and Classes - Style

= In the constructor, each member should be indented on a separate line, e.g.
WEBKIT, MOZILLA
A::A(int x1, int y1, int z1) :
x{x1},

yi{y1l},
z{z1} {

51/82

Control Flow

Control Flow 1/6

% Avoid redundant control flow (see next slide)
- Do not use else after a return / break
LLVM, MoziLLAa, CHROMIUM, WEBKIT

- Avoid return true/return false pattern

- Merge multiple conditional statements

* Prefer switch to multiple if -statement CORE
* Avoid goto 1OS, CORE
= Avoid do-while loop CORE
= Do not use default labels in fully covered switches over enumerations LLVM

52/82

Control Flow - if/else

if (condition) { // wrong!!
< codel >
return;
¥
else // <-- redundant
< code2 >
Vi = S
if (condition) { // Corret
< codel >
return;

¥
< code2 >

if (condition) // wrong!!
return true;

else
return false;

return condition; // Corret 53/82

Control Flow - Loops

» Use early exits (continue , break , return) to simplify the code LLVM
for (<condition1>) { // wrong!!
if (<condition2>)

for (<condition1>) { // Correct
if (!<condition2>)

continue;

}

= Turn predicate loops into predicate functions LLVM
bool var = ...;
for (<loop_conditionl>) { // should be an exzternal
if (<condition2>) { // function
VT
break;

} 54/82

Control Flow - Comparison 4/6

% Tests for null/non-null, and zero/non-zero should all be done with
equality comparisons CoORE, WEBKIT
(opposite) MOZILLA

if (!ptr) // wrong!! if (ptr == nullptr) // correct
return; return;

if (!count) // wrong!! if (count == 0) // correct
return; return;

% Prefer (ptr == nullptr) and x > 0 over (nullptr == ptr) and 0 < x
CHROMIUM

= Do not compare to true/false, e.g. if (x == true)
55/82

Control Flow 5/6

% Do not mix signed and unsigned types Hic

*

Prefer signed integer for loop indices (better 64-bit) CORE

Prefer empty() method over size() to check if a container has no items
MoziLLA

Ensure that all statements are reachable Hic

*

Avoid RTTI (dynamic_cast) or exceptions if possible

LLVM, GOOGLE, MOZILLA
56,82

Control Flow - Style

% The if and else keywords belong on separate lines

if (cl) <statementl>; else <statement2> // wrong!!

GOOGLE, WEBKIT
* Multi-lines statements and complex conditions require curly braces GOOGLE

if (c1 && ... &&
c2 && ...) { // correct
<statement>

= Curly braces are not required for single-line statements (but allowed)

(for, while, if) GoOGLE, WEBKIT
if (c1) { // not mandatory

<statement>
}

57/82

Modern C++
Features

Modern C++4 Features

Use modern C++ features wherever possible

* static_cast reinterpret_cast instead of old style cast (type)
GoocLE, pOS, Hic

* Do not define implicit conversions. Use the explicit keyword for conversion
operators and constructors GOOGLE, pOS

58/82

Modern C++ Features - C++11/14/17 2/4

% Use constexpr instead of macro GoOGLE, WEBKIT

% Use using instead typedef

% Prefer enum class instead of plain enum UNREAL, pOS
% static_assert compile-time assertion UNREAL, Hic
% lambda expression UNREAL
% move semantic UNREAL

% nullptr instead of 0 or NULL
LLVM, GOOGLE, UNREAL, WEBKIT, MoziLLA, Hic, pOSsg/s2

Modern C++ Features - C++11/14/17 3/4

% Use range-based for loops whatever possible
LLVM, WEBKIT, UNREAL, CORE

% Use auto to avoid type names that are noisy, obvious, or unimportant
auto array = new int[10];
auto var = static_cast<int>(var); LLVM, GOOGLE

lambdas, iterators, template expressions UNREAL (only)

* Use [[deprecated]] / [[noreturn]] / [[nodiscard]] to indicate
deprecated functions / that do not return / result should not be discarded

Hic

= Avoid throw() expression. Use noexcept instead
60/82

Modern C+4+ Features for Classes 4/4

% Always use override/final function member keyword
WEBKIT, MoziLLA, UNREAL, CHROMIUM, Hic

* Use braced direct-list-initialization or copy-initialization for setting default
data member value. Avoid initialization in constructors if possible UNREAL

struct A {
int x = 3; // copy-initialization

int x { 3 }; // direct-list-initialization (best option)
g

* Use

default constructors

* Use delete to mark deleted functions

Prefer uniform initialization when it cannot be confused with
std::initializer list CHROMIUMS61/82

Maintainability

Maintainability

% Avoid complicated template programming

GOOCLE
* Write self-documenting code
eg. (x+y-1) /y — ceildiv(x, y) UNREAL
* Use symbolic names instead of literal values in code Hic

double areal = 3.14 * radius * radius; // wrong!!

constexpr auto Pi = 3.14; // correct

double area2 = Pi * radius * radius;

62/82

Maintainability 2/3

% Do not use reinterpret_cast or union for type punning CoRE, Hic
% Enforce const-correctness UNREAL

= but don’t const all the things
= Pass by- const value: almost useless (copy), ABI break
= const return: useless (copy)
= const data member: disable assignment and copy constructor
= const local variables: verbose, rarely effective

% Do not overload operators with special semantics &&, Hic

% Use assert to document preconditions and assumptions LLVM

63/82
Don’t const all the things

https://quuxplusone.github.io/blog/2022/01/23/dont-const-all-the-things/

Maintainability 3/3

* Address compiler warnings. Compiler warning messages mean something is
wrong UNREAL

* Ensure ISO C++ compliant code and avoid non-standard extension,
deprecated features, or asm declarations, e.g. register , __attribute . HiC

* Prefer sizeof(variable/value) instead of sizeof (type) GOOGLE

* Prefer core-language features over library facilities, e.g. char vs. std::byte

64/82
Prefer core-language features over library facilities /

https://quuxplusone.github.io/blog/2022/10/16/prefer-core-over-library/

Naming

“Beyond basic mathematical aptitude, the difference be-
tween good programmers and great programmers is verbal
ability”

Marissa Mayer

65,/82

Naming Conventions for Variables

% Use full words, except in the rare case where an abbreviation would be more

canonical and easier to understand, e.g. tmp WEBKIT

* Avoid short and very long names. Remember that the average word length in
English is 4.8

* The length of a variable should be proportional to the size of the scope that
contains it. For example, i is fine within a loop scope.

66,82

Naming Conventions for Variables

% Do not use reserved names CERT

- double underscore followed by any character __var
- single underscore followed by uppercase _VAR

= Use common loop variable names

- i, j, k, 1 used in order

- it for iterators

67/82

Naming Conventions for Functions

* Should be descriptive verb (as they represent actions) WEBKIT

* Functions that return boolean values should start with boolean verbs, like
is, has, should, does 1OS

Use set prefix for modifier methods WEBKIT

Do not use get for observer methods (const) without parameters, e.g.
size () WEBKIT

68,/82

Style Conventions

Camel style Uppercase first word letter (sometimes called Pascal style or Capital case)
(less readable, shorter names)

CamelStyle

Snake style Lower case words separated by single underscore (good readability, longer
names)

snake_style

Macro style Upper case words separated by single underscore (sometimes called
Screaming style) (best readability, longer names)

MACRO_STYLE

69,/82

Entity Names

1/2

Variable Variable names should be nouns

Constant

Enum

Camel style e.g. MyVar
Snake style e.g. my_var

Camel style + k prefix,
e.g. kConstantVar

Macro style e.g. CONSTANT_VAR

Camel style + k

e.g. enum MyEnum { kEnumVarl, kEnumVar2 }
Camel style

e.g. enum MyEnum { EnumVarl, EnumVar2 }

LLVM, UNREAL
GOOCGLE, STD, 1OS

GOOGLE, M0OzILLA

WEBKIT, OPENSTACK

GOOGLE

LLVM, WEBKIT

70/82

Entity Names 2/2

Namespace = Snake style, e.g. my namespace GooGLE, LLVM, STD

= Camel style, e.g. MyNamespace WEBKIT

Typename Should be nouns
= Camel style (including classes, structs, enums, typedefs, etc.)

e.g. HelloWorldClass LLVM, GooGLE, WEBKIT

= Snake style 1OS (class), STD

Macro Macro style, e.g. MY_MACRO GOOGLE, STD, LLVM
File = Snake style (my_file) GOOGLE

= Camel style (MyFile), could lead Windows/Linux conflicts LLVM

71/82

Function Names

= Lowercase Camel style, e.g. myFunc () LLVM

= Uppercase Camel style for standard functions
e.g. MyFunc() GOOGLE, MozILLA, UNREAL

= Snake style for cheap functions, e.g. my_func() GOOGLE, STD

PERSONAL COMMENT: Macro style needs to be used only for macros to avoid subtle bugs. | adopt
snake style for almost everything as it has the best readability. On the other hand, | don’t want to

confuse typenames and variables, so | use camel style for the former ones. Finally, | also use camel
style for compile-time constants as they are very relevant in my work and | need to identify what is

evaluated at compile-time easily

72/82

Readability and
Formatting

Basics

Write all code in English, comments included

Limit line length (width) to be at most 80 characters long (or 100, or 120) —
help code view on a terminal LLVM, GOOGLE, MoziLrLa, uOS
PERSONAL COMMENT: | was tempted several times to use a line length > 80 to reduce the

number of lines, and therefore improve the readability. Many of my colleagues use split-screens or

even the notebook during travels. A small line length is a good compromise for everyone.

Do not write excessive long file

> 500 is too long

> 5,000 is too long

> 10,000 is too long

73/82
Is the 80 character limit still relevant in times of widescreen monitors? /

https://softwareengineering.stackexchange.com/questions/604/is-the-80-character-limit-still-relevant-in-times-of-widescreen-monitors
https://lkml.org/lkml/2020/5/29/1038

Spacing 1/2

% Use always the same indentation style

- tab — 2 spaces GOOGLE, MoziLLA, Hic, pOS

- tab — 4 spaces LLVM, WEeBKIT, Hic, nOS

- (actual) tab = 4 spaces UNREAL
PERSONAL COMMENT: | worked on projects with both two and four-space tabs. | observed less

bugs due to indentation and better readability with four-space tabs. 'Actual tabs' breaks the line
length convention and can introduce tabs in the middle of the code, producing a very different

formatting from the original one

% Separate commands, operators, etc., by a space LLVM, GooGLE, WEBKIT

if (axb<10&&c) // wrong!!
if (a * ¢ < 10 & c) // correct

74/82

* Prefer consecutive alignment

int varl B o500

long long int longvar2 = ...
= Minimize the number of empty rows

= Do not use more than one empty line

What is your threshold for a long source file?

GOOGLE

75/82

https://twitter.com/lefticus/status/1352320798506160129

Formatting

* Use always the same style for braces
= Same line, aka Kernigham & Ritchie WEBKIT (func. only), MoziLLA
= Its own line, aka Allman UNREAL, WEBKIT (function)
MoziLLA (class)

int main() { int main()
code {
} code
}
PERSONAL COMMENT: C+-+ is a very verbose language. “Same line” convention helps to keep the

code more compact, improving the readability

76/82

Formatting

= Declaration of pointer/reference variables or arguments may be placed with the
asterisk/ampersand adjacent to either the type or to the variable name for all
symbols in the same way GOOCLE
= char* c; WEBKIT, MoziLLA, CHROMIUM, UNREAL
= char *c;

= char * c;

= The same concept applies to const

= const int*x West notation
= int const* East notation

77/82

Reduce Code Verbosity

= Use the short name version of build-in types, e.g.
unsigned instead of unsigned int
long long instead of long long int

= Don’t const all the things. Avoid Pass by- const , const return, const
data member, const local variables

= Use same line braces for functions and structures

= Minimize the number of empty rows

78/82

https://quuxplusone.github.io/blog/2022/01/23/dont-const-all-the-things/

Other Issues

* Use the same line ending (e.g. '\n') for all files MoziLLA, CHROMIUM
* Do not use UTF characters* for portability, prefer ASCII

* If UTF is needed, prefer UTF-8 encoding for portability CHROMIUM
= Declare each identifier on a separate line in a separate declaration Hic, MISRA
= Never put trailing white space or tabs at the end of a line GOOGLE, MOZILLA
= Only one space between statement and comment WEBKIT

= Close files with a blank line MoziLLA, UNREAL

* Trojan Source attack for introducing invisible vulnerabilities T

https://pvs-studio.com/en/blog/posts/cpp/0933/

Code
Documentation

Code Documentation 1/3

* Any file start with a license LLVM, UNREAL

* Each file should include

- @author name, surname, affiliation, email
- @date e.g. year and month
- @file the purpose of the file

in both header and source files

= Document each entity (functions, classes, namespaces, definitions, etc.) and only
in the declarations, e.g. header files

80/82

Code Documentation

= The first sentence (beginning with @brief) is used as an abstract

= Document the input/output parameters @param[in] , @param[out] ,

@param[in,out] , return value @return , and template paramenters @tparam
= Document ranges, impossible values, status/return values meaning UNREAL
= Use always the same style of comment
= Use anchors for indicating special issues: TODO, FIXME, BUG, etc.

WEBKIT, CHROMIUM

81/82

Code Documentation

= Be aware of the comment style, e.g.
- Multiple lines
/*%
* commentl
* comment2

*/
- single line

/// comment

s Prefer // comment instead of /* */ — allow string-search tools like grep to

identify valid code lines Hic, pOS

= 0S++ Doxygen style guide link

= Teaching the art of great documentation, by Google 82/82

https://micro-os-plus.github.io/develop/doxygen-style-guide/
https://developers.googleblog.com/2020/07/teaching-art-of-great-documentation.html

	C++ Project Organization
	Project Directories
	Project Files
	``Common'' Project Organization Notes
	Alternative - ``Canonical'' Project Organization

	Coding Styles and Conventions
	Coding Styles

	#include
	Macro and Preprocessing
	namespace
	Variables and Arithmetic Types
	Functions
	Structs and Classes
	Control Flow
	Modern C++ Features
	Maintainability
	Naming
	Readability and Formatting
	Code Documentation

