Modern C++

Programming

7. OBJECT-ORIENTED
PROGRAMMING 1

Crass CONCEPTS

Federico Busato

2023-12-21

Table of Contents

C++ Classes

m RAIl Idiom

Class Hierarchy

Access specifiers
m Inheritance Access Specifiers

® When Use public/protected/private/ for Data Members?

1/65

Table of Contents

A Class Constructor
m Default Constructor
m Class Initialization
m Uniform Initialization for Objects
m Delegate Constructor
m explicit Keyword

m [[nodiscard]] and Classes

2/65

Table of Contents

H Copy Constructor
@ Class Destructor

Defaulted Constructors, Destructor, and Operators
(=default)

3/65

Table of Contents

B Class Keywords
m this
m static
m const
m mutable
m using
m friend

m delete

4/65

C++ Classes

C++ Classes

C/C++ Structure

A structure (struct) is a collection of variables of the same or different data types
under a single name

C++ Class

A class (class) extends the concept of structure to hold functions as members

struct vs. class

Structures and classes are semantically equivalent.

= struct represents passive objects, namely the physical state (set of data)

= class represents active objects, namely the logical state (data abstraction)

5/65

Class Members - Data and Function Members

Data Member

Data within a class are called data members or class fields

Function Member

Functions within a class are called function members or methods

6/65

RAIIl Idiom - Resource Acquisition is Initialization

Holding a resource is a class invariant, and is tied to object
lifetime

RAII Idiom consists in three steps:

= Encapsulate a resource into a class (constructor)
= Use the resource via a local instance of the class

= The resource is automatically released when the object gets out of scope
(destructor)

Implication 1: C++ programming language does not require the garbage collector!!
Implication 2 :The programmer has the responsibility to manage the resources

7/65

struct/class Declaration and Definition

struct declaration and definition

struct A; // struct declaration
struct A { // struct definition
int x; // data member

void £(); // function member

3

class declaration and definition

class A; // class declaration
class A { // class definition
int x; // data member

void £(); // function member
g 8/65

struct/class Function Declaration and Definition

struct A {
void g(); // function member declaration
void £() { // function member declaration

cout << "f"; // inline definition

X

;

void A::g() { // function member definition
cout << "g"; // out-of-line definition

I

9/65

struct/class Members

struct B {
void g() { cout << "g"; } // function member

Irg
struct A {
int x; // data member
B b; // data member
void £() { cout << "f"; } // function member
I3
A a;
a.x;
a.f();
a.b.g();

10/65

Class Hierarchy

Class Hierarchy 1/3

Child/Derived Class or Subclass

A new class that inheriting variables and functions from another class is called a
derived or child class

Parent/Base Class

The closest class providing variables and functions of a derived class is called parent
or base class

Extend a base class refers to creating a new class which retains characteristics of the
base class and on top it can add (and never remove) its own members

Syntax:

class DerivedClass : [<inheritance attribute>] BaseClass {

11/65

Class Hierarchy

struct A { // base class

int value = 3;

void g0 {}
};

struct B : A { // B is a derived class of A (B extends 4)
int data = 4; // B inherits from A

int £() { return data; }
g

A a;
B b;
a.value;

b.gO; 12/65

Class Hierarchy

struct A {};
struct B : A {};

void f(A a) {3} // copy
void g(B b) {} // copy

void f_ref(A& a) {} // the same for A*
void g_ref(B& b) {} // the same for B*

A a;

B b;

£(a); // ok, also f(b), f_ref(a), g_ref(b)

g(b); // ok, also g_ref(b), but not g(a), g_ref(a)

A al = b; // ok, also A& a2 =D

// B bl = a; // compile error
13/65

Access specifiers

Access specifiers 1/2

The access specifiers define the visibility of inherited members of the subsequent base

class. The keywords public, private, and protected specify the sections of
visibility
The goal of the access specifiers is to prevent a direct access to the internal

representation of the class for avoiding wrong usage and potential inconsistency
(access control)

= public: No restriction (function members, derived classes, outside the class)
= protected: Function members and derived classes access

» private: Function members only access (internal)

struct has default public members

class has default private members 14/65

Access specifiers

struct Al {

int value; // public (by default)
protected:

void £1() {} // protected
private:

void £2(0) {} // private

Irg
class A2 {

int data; // private (by default)
g

struct B : Al {

void h1() { £10); } // ok, "f1" is visible in B
// woid h2() { f20; } // compile error "f2" is private in Al
};

Al a;
a.value; // ok
// a.f1() // compile error protected

// a.f2(0) // compile error private 15/65

Inheritance Access Specifiers 1/3

The access specifiers are also used for defining how the visibility is propagated from
the base class to a specific derived class in the inheritance

Member
declarati Inheritance Derived classes
eclaration
public public
protected — public — protected
private \
public protected
protected — protected — protected
private \
public private
protected = private = private
private \

16/65

Inheritance Access Specifiers

struct A {
int varl; // public
protected:

int var2; // protected
};

struct B : protected A {
int var3; // public
};

B b;

// b.varl; // compile error, varl is protected in B
// b.var2; // compile error, var2 is protected in B
b.var3; // ok, war3 is public in B

17/65

Inheritance Access Specifiers

class A {
public:
int varl;
protected:
int var2;
k5
class Bl : A {}; // private inheritance

class B2 : public A {}; // public inheritance

Bl bi;
// bl.varl; // compile error, varl is private in Bl
// bl.var2; // compile error, var2 is private in Bl

B2 b2;

18/65
b2.varil; // ok, warl is public in B2 /

When Use public/protected/private/ for Data Members?

When use protected/private data members:

= They are not part of the interface, namely the logical state of the object (not
useful for the user)

= They must preserve the const correctness (e.g. for pointer), see Advanced
Concepts I
When use public data members:

= They can potentially change any time

= const correctness is preserved for values and references, as opposite to pointers.
Data members should be preferred to member functions in this case

19/65

Class Constructor

Class Constructor

Constructor [ctor]

A constructor is a special member function of a class that is executed when a new
instance of that class is created

Goals: initialization and resource acquisition
Syntax: T(...) same named of the class and no return type

= A constructor is supposed to initialize all data members
= We can define multiple constructors with different signatures

= Any constructor can be constexpr

20/65

Default Constructor

Default Constructor

The default constructor T() is a constructor with no argument

Every class has always either an implicit or explicit default constructor

struct A {

AQ {} // explicit default constructor

A(int) {} // user-defined (non-default) constructor
Irg

struct A {

int x = 3; // implicit default constructor
};
A a{}; // ok

= An implicit default constructor is constexpr 21/65

Default Constructor Examples

struct A {

AQ { cout << "A"; } // default constructor
};
A ai; // call the default constructor
// A a20); // interpreted as a function declaration!!
A a3{}; // ok, call the default constructor

// direct-list initialization (C++11)

A array[3]; // print "AAA"

Ax ptr = new A[4]; // print "AAAA"

22/65

Deleted Default Constructor

The implicit default constructor of a class is marked as deleted if (simplified):

= |t has any user-defined constructor
struct A {
A(int x) {}
g
// A a; // compile error

= It has a non-static member/base class of reference/const type

struct NoDefault { // deleted default constructor
int& X;
const int y;

Irg

23/65

Deleted Default Constructor

= It has a non-static member/base class which has a deleted (or inaccessible)
default constructor

struct A {

NoDefault var; // deleted default constructor
5
struct B : NoDefault {}; // deleted default constructor

= It has a non-static member/base class with a deleted or inaccessible destructor

struct A {
private:

~A0 {3
I

24/65

Initializer List

The Initializer list is used for initializing the data members of a class or explicitly call

the base class constructor before entering the constructor body

(Not to be confused with std::initializer list)

struct A {

int x, y;

A(int x1) : x(x1) {3 // ": x(x1)" is the Initializer list

A(int x1, int y1)
x{x1},
yiy1} {*

// direct initialization syntax

/7 " x{x1}, y{y1}"
// is the Initializer list
// direct-list initialization syntaz

// (C++11)

25/65

In-Class Member Initializer

C++11 In-class non-static data members initialization (NSDMI) allows to initialize
the data members where they are declared. A user-defined constructor can be used to
override the their default values

struct A {

int bd

0; // in-class member initializer

const char* str = nullptr; // in-class member initializer

AQ {} // "z" and "str" are well-defined if
// the default constructor is called

A(const char* strl) : str{stri} {}
g

26/65

Data Member Initialization

const and reference data members must be initialized by using the initialization list

or by using in-class brace-or-equal-initializer syntax (C+-+11)

struct A {
int X;
const char y; // must be initialized
int& %5 // must be initialized
int& v = x; // equal-initializer (C++11)

const int w{4}; // brace initializer (C++11)

AO : x(3), y('a"), z(x) {2

27/65

Initialization Order

Class members initialization follows the order of declarations and not the order in the

initialization list

struct ArrayWrapper {
int* array;

int size;

ArrayWrapper (int user_size)
size{user_size},

array{new int[sizel} {}

// wrongl!l: "size" is still undefined

I3

ArrayWrapper a(10);

cout << a.arrayl[4]l; // segmentation fault

28/65

Uniform Initialization for Objects

Uniform Initialization (C++11)

Uniform Initialization {}, also called list-initialization, is a way to fully initialize any

object independently from its data type

= Minimizing Redundant Typenames
- In function arguments
- In function returns

= Solving the “Most Vexing Parse” problem
- Constructor interpreted as function prototype

mbevin.wordpress.com/2012/11/16/uniform-initialization 29/65

http://mbevin.wordpress.com/2012/11/16/uniform-initialization/

Minimizing Redundant Typenames

C++03

C++11

struct Point {

int x, y;

Point (int x1, int y1) : x(x1), y(y1) {}
Fg

Point add(Point a, Point b) {

return Point(a.x + b.x, a.y + b.y);
}
Point ¢ = add(Point(1, 2), Point(3, 4));

Point add(Point a, Point b) {

return { a.x + b.x, a.y + b.y }; // here
}
auto ¢ = add({1, 2}, {3, 4}); // here

30/65

“Most Vexing Parse” problem

struct A {
A(int) {3}
g

struct B {

// A a(1); // compile error It works in a function scope
A a{2}; // ok, call the constructor

};

31/65

“Most Vexing Parse” problem *

struct A {};

struct B {
B(A a) {}
void £() {}
Py

B b(AQ)); // "b" is interpreted as function declaration

// with a single argument A (*)() (func. pointer)
/7 b.fO // compile error "Most Vexing Parse' problem

// solved with B b{ A{} };

32/65

Constructors and Inheritance

Class constructors are never inherited

A Derived class must call implicitly or explicitly a Base constructor before the current

class constructor

Class constructors are called in order from the top Base class to the most
Derived class (C++ objects are constructed like onions)

struct A {
AQ { cout << "A" };

};

struct Bl : A { // call "AQO" implicitly
int y = 3; // then, "y = 3"

};

struct B2 : A { // call "AQ" ezplicitly
B2() : A { cout << "B"; }

};

Bl bl; // print "A"

B2 b2; // print "A", then print "B" 33/65

Delegate Constructor

The problem:

Most constructors usually perform identical initialization steps before executing

individual operations

C++11 A delegate constructor calls another constructor of the same class to reduce

the repetitive code by adding a function that does all of the initialization steps

struct A {

int a;

float b;

bool c;

// standard constructor:

A(int al, float bl, bool c1) : a(al), b(bl), c(cl) {
// do a lot of work

A(int al, float bl) : A(al, bl, false) {} // delegate construtor
A(float bil) : AC100, b1, false) {} // delegate construtor 34/65

explicit Keyword

The explicit keyword specifies that a constructor or conversion operator (C++11)

does not allow implicit conversions or copy-initialization from single arguments or
braced initializers

The problem:
struct MyString {
MyString(int n); // (1) allocate n bytes for the string
MyString(const char *p); // (21) initializes starting from a raw string
15
MyString string = 'a'; // call (1), implicit conversion!!

explicit cannot be applied to copy/move-constructors

Most C++ constructors should be explicit 35/65

https://quuxplusone.github.io/blog/2023/04/08/most-ctors-should-be-explicit/

explicit Keyword

struct A {
AO {}
A(int) {}
A(int, int) {}
Irg
void f(const A&) {}

A a1l = {}; // ok

A a2(2); // ok

A a3 = 1; // ok (implicit)

A a4{4, 5%}; // ok. Selected A(int, int)

A a5 = {4, 5}; // ok. Selected A(int, int)
f{H); // ok
£(1); // ok
f({1}); // ok

struct B {

explicit BO) {}
explicit B(int) {}
explicit B(int, int) {}

Ig

void f(const B&) {}

// B bl = {};

B b2(2);

// B b3 = 1;

B b4{4, 5};

// B b5 = {4, 5};
B b6 = (B) 1;

// FHR);

/7 f(1);

// FH1F);
£f(B{1});

// error implicit conversion
// ok

// error implicit conversion
// ok. Selected B(int, int)
// error implicit conversion
// OK: ezplicit cast

// error implicit conversion
// error implicit conversion

// error implicit conversion
// ok 36/65

[[nodiscard]] and Classes

C++417 allows to set [[nodiscard]] for the entire class/struct

[[nodiscard]] struct A {};
A £ { return A{}; }

auto x = £(0); // ok
£0O; // compiler warning

C++20 allows to set [[nodiscard]] for constructors

struct A {

[[nodiscard]l] AQ) {3} // C++20 also allows [[nodiscard]] with a Teason
I3
void f(A {})

A a{}; // ok
£f(A{}); // ok

A{}; // compiler warning 37/65

Copy Constructor

Copy Constructor

Copy Constructor

A copy constructor T(const T&) creates a new object as a deep copy of an

existing object

struct A {
AQ) {3 // default comstructor
A(int) {} // non-default constructor

A(const A&%) {} // copy constructor

= Every class always defines an implicit or explicit copy constructor

= Even the copy constructor implicitly calls the default Base class constructor

= Even the copy constructor is considered a non-default constructor 38/65

Copy Constructor Example

struct Array {
int size;

int* array;

Array(int sizel) : size{sizel} {
array = new int[size];
}
// copy constructor, ": size{obj.size}" initializer list
Array(const Array& obj) : size{obj.size} {
array = new int[size];
for (int i = 0; i < size; i++)

array[i] = obj.array[i];

s
Array x{100}; // do something with z.array ...

Array y{x}; // call "Array::Array(const Array&)" 30/65

Copy Constructor Usage

The copy constructor is used to:

= |nitialize one object from another one having the same type
- Direct constructor
- Assignment operator

al;
a2(al); // Direct copy initialization
a3{al}; // Direct copy initialization

a4 = al; // Copy initialization
ab

-

{al}; // Copy list initialization

= Copy an object which is passed by-value as input parameter of a function
void f(A a);

= Copy an object which is returned as result from a function*

Af it A(3); * RVO timizatt
() { return A(3); } // * see optimization 40/65

Copy Constructor Usage Examples

struct A {
AO {3
A(const A% obj) { cout << "copy"; }

»g

void £(A a) {} // pass by-value

A g1(A% a) { return a; }

A g20) { return AQ; }

A a;

Ab = a; // copy constructor (assignment) "copy"
A c(b); // copy comnstructor (direct) "copy"
f(b); // copy constructor (argument) "copy"
gl(a); // copy constructor (return value) "copy"

A d=g20; // * see RVO optimization (Advanced Concepts I) 41/65

Pass by-value and Copy Constructor

struct A {
AO {3
A(const A% obj) { cout << "expensive copy"; }

Ig

struct B : A {

BO {}
B(const B& obj) { cout << "cheap copy"; }

¥3

void £1(B b) {}
void f2(A a) {}

B bil;
£1(bl); // cheap copy

£2(b1); // expensive copy!! It calls A(const A&) implicitly 42/65

Deleted Copy Constructor

The implicit copy constructor of a class is marked as deleted if (simplified):

= It has a non-static member/base class of reference/const type

struct NonDefault { int& x; }; // deleted copy constructor

= It has a non-static member/base class which has a deleted (or inaccessible) copy

constructor

struct B { // deleted copy constructor
NonDefault a;
}
struct B : NonDefault {}; // delete copy constructor

= It has a non-static member/base class with a deleted or inaccessible destructor

= The class has the move constructor (next lectures)
43/65

Class Destructor

Class Destructor

Destructor [dtor]
A destructor is a special member function that is executed whenever an object is

out-of-scope or whenever the delete/delete[] expression is applied to a pointer
of that class

Goals: resources releasing
Syntax: ~T() same name of the class and no return type

= Any object has exactly one destructor, which is always implictly or explicitly

declared

s C++20 The destructor can be constexpr

44/65

Class Destructor

struct Array {

int* array;

Array() { // constructor
array = new int[10];

~Array() { // destructor
delete[] array;

};
int main() {
Array a; // call the constructor
for (int i = 0; i < 5; i++)
Array b; // call 5 times the constructor + destructor

} // call the destructor of "a"
45/65

Class Destructor - Order of Calls

Class destructor is never inherited. Base class destructor is invoked after the

current class destructor

Class destructors are called in reverse order. From the most Derived to the top
Base class

struct A {
~A() { cout << "A"; }
g
struct B {
~B() { cout << "B"; }
g
struct C : A {
B b; // call ~B()
~C() { cout << "C"; }
g
int main() {
C b; // print "C", then "B", then "A" 46/65

Defaulted
Constructors,
Destructor, and
Operators
(=default)

Defaulted Constructors, Destructor, and Operators (=default)

C++11 The compiler can automatically generate

» default/copy/move constructors
A() = default
A(const A&) = default
A(A&&) = default
= destructor
~A() = default
= copy/move assignment operators A& operator=(const A&) = default
A% operator=(A&&) = default
= spaceship operator
auto operator<=>(const A&) const = default

= default implies constexpr , but not noexcept or explicit
47/65

Defaulted Constructors, Destructor, and Operators (=default) 1/3

When the compiler-generated constructors, destructors, and operators are useful:

= Change the visibility of non-user provided constructors and assignment operators

(public, protected, private)

= Make visible the declarations of such members

The defaulted default constructor has a similar effect as a user-defined constructor
with empty body and empty initializer list

When the compiler-generated constructor is useful:
= Any user-provided constructor disables implicitly-generated default constructor
= Force the default values for the class data members

48/65

Defaulted Constructors, Destructor, and Operators (=default)

struct A {
A(int v1) {} // delete implicitly-defined default ctor because

// a user-provided constructor is defined

A() = default; // now, A has the default constructor
I8

struct B {
protected:

B() = default; // now %t s protected
I3

struct C {
int x;
/7 CcO {} // 'z' is undefined
C() = default; // 'z' is zero
¥ 49/65

Class Keywords

this Keyword

Every object has access to its own address through the pointer this

Explicit usage is not mandatory (and not suggested)

this is necessary when:
= The name of a local variable is equal to some member name

= Return reference to the calling object

struct A {
int x;
void f(int x) {
this->x = x; // without "this" has no effect
}
const A% g() {
return *this;
}
}; 50/65

static Keyword

static Keyword

The keyword static declares members (fields or methods) that are not bound to
class instances. A static member is shared by all objects of the class

struct A {
int x;

int £() { return x; }

static int g() { return 3; } // g() cannot access 'z' as it is associated with
s // class instances
A a{4};
a.f(); // call the class instance method
A::g(0); // call the static class method
a.g(); // as an alternative, a class instance can access static class members

// (less common) 51/65

static Keyword - Constant Members

struct A {
static const int an=N4 // C++03
static constexpr float b = 4.2f; // better, C++11
// static const float c = 4.2f; // only GNU eztension (GCC)

static constexpr int f() { return 1; } // ok, C++11

// static const int g { return 1; F} // 'const' refers to the return type
};

52/65

static Keyword - Mutable Members

Non- const static data members cannot be directly initialized inline (see
Translation Units lecture)...before C++17

struct A {
// static int a = 4; // compiler error
static int a; // ok, declaration only

static inline int b = 4; // ok from C++17

static int f() { return 2; }
static int g(); // ok, declaration only

g

int A::a = 4; // ok, undefined reference without this definition
int A::g() { return 3; } // ok, undefined reference without this definition

53/65

static Keyword - Example

struct A {

static int x; // declaration
static int f() { return x; }
static int& g() { return x; }

s
int A::x = 3; // definition

o e e e e e o e
A::f(Q); // return 3

A x4+

A::f(Q); // return 4

A::g() =7;

A::fQ); // return 7

54/65

static Keyword - Member Visibility

= A static member function can only access static class members

= A non- static member function can access static class members

struct A {
int x = 3;
static inline int y = 4;
int £1() { return
// static int f20) { return
int gl() { return

static int g2() { return

struct B {

X;

¥
Y

R SN

// ok
// compiler error, 'z' is not wvisible
// ok
// ok

int h() { return y + g20; } // ok
Y; // 'z', '"f10O', '9g1()' are nmot visible within 'B’

55/65

const Keyword 1/3

Const member functions

Const member functions (inspectors or observers) are functions marked with

const that are not allowed to change the object logical state

The compiler prevents from inadvertently mutating/changing the data members of
observer functions — All data members are marked const within an observer
method, including the this pointer

= The physical state can still be modified, see mutable member functions ~~

= Member functions without a const suffix are called non-const member functions
or mutators/modifiers

56,65

const Keyword

struct A {
int x = 3;

int* p;

int get() comnst {
/)= 2 // compile error class variables cannot be modified
// p = nullptr; // compile error class variables cannot be modified
plo]l = 3; // ok, p s 'int* const' -> 4its content s
// not protected

return x;

g

A common case where const member functions are useful is to enforce const correctness when

accessing pointers, see Advanced Concepts I, Const Correctness
57/65

const Keyword - const Overloading

The const keyword is part of the functions signature. Therefore a class can
implement two similar methods, one which is called when the object is const , and
one that is not

class A {
int x = 3;
public:
int& get1() { return x; } // read and write
int getl() comnst { return x; } // read only
int& get2() { return x; } // read and write
g
A al;
cout << al.getl(); // ok
cout << al.get2(); // ok
al.get1() = 4; // ok
const A a2;
cout << a2.get1(); // ok
// cout << a2.get2(); // compile error "a2" is const 58/65

//a2.get1() = 5; // compile error only "get1() const" is avatilable

mutable Keyword

mutable data members of const class instances are modifiable. They should be

part of the object physical state, but not of the logical state

= |t is particularly useful if most of the members should be constant but a few need to be
modified
= Conceptually, mutable members should not change anything that can be retrieved from

the class interface

struct A {
int X = 3;
mutable int y = 5;
g
const A a;

// a.x = 3; // compiler error const
a.y = 5; // ok
59/65

using Keyword for type declaration

The using keyword is used to declare a type alias tied to a specific class

struct A {
using type = int;

I3

3; // "typename" keyword is needed when we refer to types

typename A::type x
struct B : A {};

typename B::type 4; // B can use "type" as it %s public in A

el
]

60,/65

using Keyword for Inheritance

The using keyword can be also used to change the inheritance attribute of member

data or functions

struct A {
protected:
int x = 3;

3

struct B : A {
public:
using A::x;

I8

B b;
b.x = 3; // ok, "b.z" is public

61/65

friend Keyword

friend Class

A friend class can access the private and protected members of the class in

which it is declared as a friend

Friendship properties:

= Not Symmetric: if class A is a friend of class B, class B is not automatically a
friend of class A

= Not Transitive: if class A is a friend of class B, and class B is a friend of class C,
class A is not automatically a friend of class C

= Not Inherited: if class Base is a friend of class X, subclass Derived is not
automatically a friend of class X; and if class X is a friend of class Base, class X is

not automatically a friend of subclass Derived
62/65

friend Keyword

class B; // class declaration
class A {
friend class B;
int x; // private
I5
class B {
int £(A a) { return a.x; } // ok, B is friend of A
I5

class C : B {
// int f(A a) { return a.z; } // compile error not inherited
15

63/65

friend Keyword

friend Method

A non-member function can access the private and protected members of a class

if it is declared a friend of that class

class A {
int x = 3; // private

friend int f(A a); // friendship declaration, no implementation

F3

//'f' is not a member function of any class
int £(A a) {

return a.x; // A is friend of f(4)
}

friend methods are commonly used for implementing the stream operator operator<< 64/65

delete Keyword

delete Keyword (C++11)

The delete keyword explicitly marks a member function as deleted and any use

results in a compiler error. When it is applied to copy/move constructor or
assignment, it prevents the compiler from implicitly generating these functions

The default copy/move functions for a class can produce unexpected results. The
keyword delete prevents these errors
struct A {

AQ) default;
A(const A&) = delete; // e.g. deleted because unsafe or expensive

15
void £(A a) {} // implicit call to copy constructor

A a;
// fla); // compile error marked as deleted 65/65

	C++ Classes
	RAII Idiom

	Class Hierarchy
	Access specifiers
	Inheritance Access Specifiers
	When Use public/protected/private/ for Data Members?

	Class Constructor
	Default Constructor
	Class Initialization
	Uniform Initialization for Objects
	Delegate Constructor
	explicit Keyword
	[[nodiscard]] and Classes

	Copy Constructor
	Class Destructor
	Defaulted Constructors, Destructor, and Operators (=default)
	Class Keywords
	this
	static
	const
	mutable
	using
	friend
	delete

