Modern C++
Programming

2. BAsic CONCEPTS I

FUNDAMENTAL TYPES AND OPERATORS

Federico Busato
2023-12-21

Table of Contents

Preparation
m What compiler should | use?
m What editor/IDE compiler should | use?

m How to compile?

Hello World
m |/O Stream

1/42

Table of Contents

Fundamental Types Overview
m Arithmetic Types
m Arithmetic Types - Suffix and Prefix
m Non-Standard Arithmetic Types
m void Type

m nullptr

2/42

Table of Contents

A Conversion Rules
H auto Declaration

@ C++ Operators
m Operators Precedence
m Prefix/Postfix Increment/Decrement Semantic
m Assignment, Compound, and Comma Operators
m Spaceship Operator <=> *

m Safe Comparison Operators *

3/42

Preparation

What Compiler Should | Use?

Most popular compilers:
= Microsoft Visual Code (MSVC) is the compiler offered by Microsoft
= The GNU Compiler Collection (GCC) contains the most popular C++ Linux

compiler

= Clang is a C++ compiler based on LLVM Infrastructure available for
Linux/Windows/Apple (default) platforms

Suggested compiler on Linux for beginner: Clang

= Comparable performance with GCC/MSVC and low memory usage
= Expressive diagnostics (examples and propose corrections)
= Strict C++ compliance. GCC/MSVC compatibility (inverse direction is not ensured)

= Includes very useful tools: memory sanitizer, static code analyzer, automatic formatting,
linter, etc. 4/42

Install the Compiler on Linux

Install the last gcc/g++ (v11) (v12 on Ubuntu 22.04)

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt update
sudo apt install gcc-12 g++-12

€N H &©L B

gcc-12 --version

Install the last clang/clang++ (v17)

bash -c "$(wget -0 - https://apt.llvm.org/llvm.sh)"
wget https://apt.llvm.org/llvm.sh

chmod +x 1llvm.sh

sudo ./llvm.sh 17

clang++ --version

#H H L B &P

5/42

Install the Compiler on Windows

Microsoft Visual Studio

s Direct Installer: Visual Studio Community 2022

Clang on Windows
Two ways:

= Windows Subsystem for Linux (WSL)
= Run — optionalfeatures
= Select Windows Subsystem for Linux, Hyper-V,
Virtual Machine Platform
= Run — ms-windows-store: — Search and install Ubuntu 22.04 LTS
= Clang + MSVC Build Tools
= Download Build Tools per Visual Studio
s Install Desktop development with C++ 6/42

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&channel=Release&version=VS2022&source=VSLandingPage&cid=2030&passive=false
https://aka.ms/vs/17/release/vs_BuildTools.exe

What Editor/IDE Compiler Should | Use?

Popular C++ IDE (Integrated Development Environment):

= Microsoft Visual Studio (MSVC) (link). Most popular IDE for Windows
= Clion (link). (free for student). Powerful IDE with a lot of options

= QT-Creator (link). Fast (written in C++), simple

= XCode. Default on Mac OS

= Cevelop (Eclipse) (link)

Standalone GUI-based coding editors:

= Microsoft Visual Studio Code (VSCode) (link)
= Sublime (link)
= Lapce (link)

7/42

https://visualstudio.microsoft.com/it/vs/features/cplusplus/
www.cevelop.com
https://code.visualstudio.com/
www.sublimetext.com
https://lapce.dev/

What Editor/IDE Compiler Should | Use?

Standalone text-based coding editors (powerful, but needs expertise):
= Vim
= Emacs
= NeoVim (link)
= Helix (link)

Not suggested: Notepad, Gedit, and other similar editors (lack of support for
programming)

8/42

https://neovim.io/
https://helix-editor.com/

What Editor/IDE Compiler Should | Use? 3/3

Visual Studio Code
Visual Studio
IntelliJ
Notepad++

Vim

Android Studio
PyCharm
Sublime Text
Eclipse
IPython/Jupyter
Xcode

Atom

StackOverflow Developer Survey 2022

https://survey.stackoverflow.co/2022/#section-most-popular-technologies-integrated-development-environment

How to Compile?

Compile C++11, C++14, C++17, C++20 programs:

g++ -std=c++11 <program.cpp> -o program
g++ -std=c++14 <program.cpp> -o program
g++ -std=c++17 <program.cpp> -o program
g++ -std=c++20 <program.cpp> -o program

Any C++ standard is backward compatible

C++ is also backward compatible with C (even for very old code) except if it contains
C++ keywords (new, template, class, typename, etc.)

We can potentially compile a pure C program in C++20

10/42

C++ Standard

. C++11 C++14 C++17 C++20
Compiler]] })

Core Library Core Library Core Library Core Library
g+ 4.8.1 5.1 5.1 5.1 7.1 9.0 11+ 11+
clang++ 33 33 3.4 o3 5.0 11.0 16+ 16+
MSVC 19.0 19.0 19.10 19.0 19.15 19.15 19.29+ 19.29

en.cppreference.com/w/cpp/compiler_support

11/42

https://en.cppreference.com/w/cpp/compiler_support

C++ Standard

Meeting C++ Community Survey
Results for 2020 - Which C++ Standards do you currently use in your projects? (n=1030)

400

c++98 c++03 c++11 c++14 c++17 c++20

12/42

Hello World

Hello World

C code with printf :

#include <stdio.h>

int main() {
printf ("Hello World!\n");

printf
prints on standard output

C++4 code with streams :

#include <iostream>

int main() {
std::cout << "Hello World!\n";

cout
represents the standard output stream

13/42

Hello World

The previous example can be written with the global std namespace:

#include <iostream>
using namespace std;

int main() {
cout << "Hello World!'\n";

Note: For sake of space and for improving the readability, we intentionally omit the
std namespace in most slides

14/42

1/O Stream (std:cout)

std::cout is an example of output stream. Data is redirected to a destination, in
this case the destination is the standard output

C:
#include <stdio.h>
int main() {
int a = 4;
double b = 3.0;
char c[] = "hello";
printf ("%d %f %s\n", a, b, c);
}
C++:

#include <iostream>
int main() {

int a = 4;

double b = 3.0;

char c¢[] = "hello";

std::cout << a << " " << b << " " <K< ¢ << "\n"; 15/42

1/O Stream (Why should we prefer 1/0 stream?) 2/3

= Type-safe: The type of object provided to the | /O stream is known statically by the
compiler. In contrast, printf uses % fields to figure out the types dynamically

= Less error prone: With |/O Stream, there are no redundant % tokens that have to
be consistent with the actual objects passed to 1/O stream. Removing redundancy
removes a class of errors

= Extensible: The C++ /O Stream mechanism allows new user-defined types to be
passed to |/O stream without breaking existing code

= Comparable performance: If used correctly may be faster than C 1/O (printf ,

scanf , etc.) .

16/42

I/O Stream (Common C errors)

= Forget the number of parameters:

printf ("long phrase %d long phrase %d", 3);

= Use the wrong format:
int a = 3;
...many lines of code...
printf (" %f", a);

= The %c conversion specifier does not automatically skip any leading white space:
scanf ("%d", &varl);
scanf (" %c", &var2);

17/42

std: :print

C++23 introduces an improved version of printf function std::print based on
formatter strings that provides all benefits of C++ stream and is less verbose

#include <print>

int main() {
std::print ("Hello World! {}, {}, {}\n", 3, 411, "aa");
// print "Hello World! 3 4 aa"

This will be the default way to print when the C++23 standard is widely adopted

18/42

Fundamental Types
Overview

Arithmetic Types - Integral

Fixed width types

Native Type Bytes Range pE——

bool 1 true, false

char | 1 implementation defined

signed char 1 -128 to 127 int8_t
unsigned char 1 0 to 255 uint8_t
short 2 -2'% to 21-1 intl6._t
unsigned short 2 0 to 2'%-1 uintl6_t
int 4 -2% 10 2911 int32_t
unsigned int 4 0 to 2%%-1 uint32_t
long int 4/8 int32_t/int64_t
long unsigned int 4/8* uint32_t/uint64_t
long long int 8 =283 10 2%-1 int64_t
long long unsigned int 8 0 to 2%-1 uint64_t

19/42
* 4 bytes on Windows64 systems, signed/unsigned, two-complement from C+4+11 /

Arithmetic Types - Floating-Point

Fixed width types

Native Type |IEEE Bytes Range C4+423 <stdfloat>
(bfloat16) N 2 +1.18 x 107 to +3.4 x 10*3® std::bfloat16_t
(float16) Y 2 0.00006 to 65,536 std::float16_t
float Y 4 +1.18 x 107%® to +£3.4 x 10*3® std::float32_t
double Y 8 4223 x107% to 1.8 x 1013 std::float64_t

20/42

Arithmetic Types - Short Name

Signed Type short name
signed char /
signed short int short
signed int int
signed long int long
signed long long int long long
Unsigned Type short name
unsigned char /

unsigned short int
unsigned int

unsigned long int
unsigned long long int

unsigned short
unsigned
unsigned long

unsigned long long

21/42

Arithmetic Types - Suffix (Literals)

Type SUFFIX Example Notes
int / 2
unsigned int u, U 3u
long int 1L 8L
long unsigned ul, UL 2ul
long long int 11, LL 411
long long unsigned int ull, ULL TULL
float f,F 3.0f only decimal numbers
double 3.0 only decimal numbers
C++423 Type SUFFIX Example Notes
std::bfloatl6_t bf16, BF16 3.0bf16 only decimal numbers
std::floatl6_t f16, F16 3.0f16 only decimal numbers
std::float32_t £32, F32 3.0£32 only decimal numbers
std::float64_t 64, F64 3.0f64 only decimal numbers
std::float128_t £128, F128 3.0£128 only decimal numbers

22/42

Arithmetic Types - Prefix (Literals)

Representation PREFIX Example
Binary C++14 Ob 0b010101
Octal 0 0307
Hexadecimal 0x or 0X 0xFFAO010

C++14 also allows digit separators for improving the readability 1'000'000

23/42

Other Arithmetic Types

= C++ also provides long double (no IEEE-754) of size 8/12/16 bytes
depending on the implementation

= Reduced precision floating-point supports before C++23:
- Some compilers provide support for half (16-bit floating-point) (GCC for ARM: __fp16 ,
LLVM compiler: half)

- Some modern CPUs and GPUs provide half instructions

- Software support: OpenGL, Photoshop, Lightroom, half.sourceforge.net

= C++ does not provide 128-bit integers even if some architectures support it.
clang and gcc allow 128-bit integers as compiler extension (__int128)

24/42

http://half.sourceforge.net/

void is an incomplete type (not defined) without a value

= void indicates also a function with no return type or no parameters
e.g. void £() , f(void)

= In C sizeof(void) == 1 (GCC), while in C++ sizeof(void) does not
compile!!

int main() {
// sizeof(void); // compile error
}

25/42

nullptr Keyword

C++411 introduces the new keyword nullptr to represent a null pointer (0x0) and
replacing the NULL macro

int* pl = NULL; // ok, equal to int* pl = 01

int* p2 = nullptr; // ok, nullptr %s a pointer not a number
int nl = NULL; // ok, we are assigning O to nl

// int n2 = nullptr; // compile error we are assigning

// a null pointer to an integer variable

// int* p2 = true ? 0 : nullptr; // compile error
// incompatible types

Remember: nullptr is not a pointer, but an object of type nullptr_t — safer

26/42

Fundamental Types Summary

The fundamental types, also called primitive or built-in, are organized into three

main categories:

= Integers
= Floating-points
= void, nullptr

Any other entity in C++ is
= an alias to the correct type depending to the context and the architectures

= a composition of builtin types: struct/class, array, union

en.cppreference.com/w/cpp/language/types

en.cppreference.com/w/cpp/types/integer 27/42

http://en.cppreference.com/w/cpp/language/types
http://en.cppreference.com/w/cpp/types/integer

C++ Types Summary

[Fundamental] [Reference] [Functions J [Objects J

X
v v v v
class, .
L Scalar i —- Array union

Pointer-to-

Arithmetic member

Floating-point Integral
28/42

Conversion Rules

Conversion Rules

Implicit type conversion rules, applied in order, before any operation:

®: any operation (*, +, /, -, %, etc.)

(A) Floating point promotion
floating type ® integer_type — floating type

(B) Implicit integer promotion
small_integral_type := any signed/unsigned integral type smaller than int
small_integral type ® small_integral type — int

(C) Size promotion
small _type ® large type — large_type

(D) Sign promotion
signed_type ® unsigned_type — unsigned_type 29/42

Examples and Common Errors

float f = 1.0f;
unsigned u = 2;
int i=3;
short s = 4;

uint8_t c = 5; // unsigned char

f *x u; // float X unsigned — float: 2.0f
s * c; // short X unsigned char — int: 20
u * i; // unsigned X int — unsigned: 6u

HS3 // unsigned char — int: 5

Integers are not floating points!
int b=17;
float a = b / 2; // a = 3 not 3.5!!

int =b 2.0;) =3 t 3.5!!
in c / // again c no s

Implicit Promotion

Integral data types smaller than 32-bit are implicitly promoted to int , independently
if they are signed or unsigned

= Unary +, -, ~ and Binary +, -, &, etc. promotion:

char a = 48; // 0!
cout << a; // print '0'
cout << +a; // print '48'

cout << (a + 0); // print '48'
uint8_t al = 255;

uint8_t bl = 255;
cout << (al + bl); // print '510' (no overflow)

31/42

auto Declaration

auto Keyword 1/3

C++11 The auto keyword specifies that the type of the variable will be automatically
deduced by the compiler (from its initializer)

auto a = 1 + 2; // 1 is int, 2 is int, 1 + 2 is int!

// =-> 'a' s "int"

auto b =1 + 2.0; // 1 4s int, 2.0 is double. 1 + 2.0 is double
// -=> 'b' is "double"

auto can be very useful for maintainability and for hiding complex type definitions

for (auto i = k; i < size; i++)

On the other hand, it may make the code less readable if excessively used because of
type hiding

Example: auto x = 0; in general makes no sense (x is int)
32/42

auto Keyword - Functions *

In C++11/C++14, auto (as well as decltype) can be used to define function
output types

auto g(int x) -> int { return x * 2; } // C++11
// "> int" 4s the deduction type
// a better way to express it is:

auto g2(int x) -> decltype(x * 2) { return x * 2; } // C++11

auto h(int x) { return x * 2; } // C++14

int x = g(3); // C++11

33/42

auto Keyword - Functions *

In C++420, auto can be also used to define function input

void f(auto x) {}

// equivalent to templates but less expensive at compile-time

£(3); // 'z’ is int
£(3.0); // 'z' is double

34/42

C++ Operators

Operators Overview 1/3

Precedence Operator Description Associativity
1 at+ a-- Suffix/postfix increment and decrement Left-to-right
5 +a -a ++a --a Plus-/mlnu-s, -Preflx increment/decrement, Right-to-left

! not ~ Logical/Bitwise Not
3 axb a/b alkb Multiplication, division, and remainder Left-to-right
4 atb a-b Addition and subtraction Left-to-right
5 < > Bitwise left shift and right shift Left-to-right
6 < <= > >= Relational operators Left-to-right
7 == I= Equality operators Left-to-right
8 & Bitwise AND Left-to-right
9 - Bitwise XOR Left-to-right
10 | Bitwise OR Left-to-right
11 && and Logical AND Left-to-right
12 || or Logical OR Left-to-right
t= -= %= [= =
13 Compound Right-to-left

K= >>= &= "= |= 35/42

Operators Precedence

= Unary operators have higher precedence than binary operators

= Standard math operators (+, *, etc.) have higher precedence than

comparison, bitwise, and logic operators

= Comparison operators have higher precedence than bitwise and logic operators

= Bitwise operators have higher precedence than logic operators

= Compound assignment operators +=, -=, *x=, /=, J=,6 "= I= &=,
>>=, <<= have lower priority

= The comma operator has the lowest precedence (see next slides)

36/42
en.cppreference.com/w/cpp/language/operator_precedence /

https://en.cppreference.com/w/cpp/language/operator_precedence

Operators Precedence

Examples:

a+b x 4; // a + (b * 4)
axb/clhd; // ((a *b) /c) [d
a+b< 3> 4; // (a +b) < (3 >>4)
a & b && c || 4; // (a && b && c) || d

a and b and c or d; // (a && b && c) || d

al|lb&clle&kd; // ((al] (b&c) [l (e&& d)

Important: sometimes parenthesis can make an expression verbose... but they can
help! 37/42

Prefix/Postfix Increment Semantic

Prefix Increment/Decrement ++i, --i

(1) Update the value
(2) Return the new (updated) value

Postfix Increment/Decrement i++, i--

(1) Save the old value (temporary)
(2) Update the value
(3) Return the old (original) value

Prefix/Postfix increment/decrement semantic applies not only to built-in types but

also to objects
38/42

Operation Ordering Undefined Behavior *

Expressions with undefined (implementation-defined) behavior:

int i = 0;

il S AL Gr 28 // until C++11: undefined behavior
// since C++11: 4 = 3

i=0;

i = i++ + 2; // until C++17: undefined behavior

// since C++17: i = 3

f(1=2,1i=1); // until C++17: undefined behavior
// since C++17: 4 = 2

= 0;

ali]l = i++; // until C++17: undefined behavior
// since C++17: al[l1] = 1

f(++i, ++i); // undefined behavior

i = 441+ it+; // undefined behavior

39/42

Assignment, Compound, and Comma Operators

Assignment and compound assignment operators have right-to-left associativity
and their expressions return the assigned value

int y = 2;
int x =y = 3; // y=3, then z=3
// the same of © = (y = 3)

if (x = 4) // assign z=4 and evaluate to true

The comma operator* has left-to-right associativity. It evaluates the left expression,

discards its result, and returns the right expression

int a =5, b = 7;

int x = (3, 4); // discards 3, then z=/
int y = 0;
int z;

z =7y, X; // z=y (0), then returns z (4) 40/42

Spaceship Operator <=> *

C+-+20 provides the three-way comparison operator <=>, also called spaceship
operator, which allows comparing two objects in a similar way of strcmp . The
operator returns an object that can be directly compared with a positive, 0, or negative

integer value

(3 <=> 5) == 0; // false
('a' <=> 'a') == 0; // true

(3 <=> 5) < 0; // true
(7 <=> 5) < 0; // false

The semantic of the spaceship operator can be extended to any object (see next
lectures) and can greatly simplify the comparison operators overloading

41/42

Safe Comparison Operators *

C++-20 introduces a set of functions <utility> to safely compare integers of

different types (signed, unsigned)

bool cmp_equal(T1 a, T2 b)

bool cmp_not_equal(Tl a, T2 b)

bool cmp_less(T1 a, T2 b)

bool cmp_greater(T1 a, T2 b)

bool cmp_less_equal(T1 a, T2 b)

bool cmp_greater_equal(T1l a, T2 b)

example:

#include <utelity>

unsigned a = 4;

int b = -3;

bool vl = (a > b); // false!!!, see next slides
bool v2 = std::cmp_greater(a, b); // true

42/42

How to compare signed and unsigned integers in C++207

https://www.sandordargo.com/blog/2023/10/11/cpp20-intcmp-utilities

	Preparation
	What compiler should I use?
	What editor/IDE compiler should I use?
	How to compile?

	Hello World
	I/O Stream

	Fundamental Types Overview
	Arithmetic Types
	Arithmetic Types - Suffix and Prefix
	Non-Standard Arithmetic Types
	void Type
	nullptr

	Conversion Rules
	auto Declaration
	C++ Operators
	Operators Precedence
	Prefix/Postfix Increment/Decrement Semantic
	Assignment, Compound, and Comma Operators
	Spaceship Operator <=>
	Safe Comparison Operators

