Modern C++
Programming

1. INTRODUCTION

Federico Busato
2023-12-21

Table of Contents

A Little History of C/C++ Programming Language
Areas of Application and Popularity

C++ Philosophy

A C++ Weaknesses

H Books and References

@ The Course

1/59

About Motivation

“When recruiting research assistants, | look at grades as the last indi-
cator. | find that imagination, ambition, initiative, curiosity, drive,
are far better predictors of someone who will do useful work with me. Of
course, these characteristics are themselves correlated with high grades,
but there is something to be said about a student who decides that a
given course is a waste of time and that he works on a side project in-
stead.

Breakthroughs don't happen in regular scheduled classes, they happen
in side projects. We want people who complete the work they were as-
signed, but we also need people who can reflect critically on what
is genuinely important”

Daniel Lemire, Prof. at the University of Quebec
2/59

About Motivation

Academic excellence is not a strong predictor
of career excellence

“Across industries, research shows that the correlation between grades
and job performance is modest in the first year after college and trivial
within a handful of years...

Academic grades rarely assess qualities like creativity, leadership and team-
work skills, or social, emotional and political intelligence. Yes, straight-A
students master cramming information and regurgitating it on exams.
But career success is rarely about finding the right solution to a
problem — it’s more about finding the right problem to solve...”

3/59

About Motivation

“Getting straight A’s requires conformity. Having an influential
career demands originality.

This might explain why Steve Jobs finished high school with a 2.65
G.PA., JK. Rowling graduated from the University of Exeter with
roughly a C average, and the Rev. Dr. Martin Luther King Jr. got only
one A in his four years at Morehouse

If your goal is to graduate without a blemish on your transcript, you
end up taking easier classes and staying within your comfort zone. If
you're willing to tolerate the occasional B... You gain experience coping
with failures and setbacks, which builds resilience”

4/59

About Motivation

“Straight-A students also miss out socially. More time studying in
the library means less time to start lifelong friendships, join new clubs or
volunteer...Looking back, | don’t wish my grades had been higher. If |
could do it over again, I'd study less”

Adam Grant, the New York Times

5/59
www.nytimes.com/2018/12/08/opinion/college-gpa-career-success.html /

https://www.nytimes.com/2018/12/08/opinion/college-gpa-career-success.html

About Motivation

“Got a 2.4 GPA my first semester in college. Thought maybe | wasn't
cut out for engineering. Today I've landing two spacecraft on Mars, and
designing one for the moon.

STEM is hard for everyone. Grades ultimately aren’t what matters.
Curiosity and persistence matter”

Ben Cichy, Chief Software Engineer,
NASA Mars Science Laboratory

https://twitter.com/bencichy/status/11977528029293649927s=20 6/59

https://twitter.com/bencichy/status/1197752802929364992?s=20

About Programming

“And programming computers was so fascinating. You create your
own little universe, and then it does what you tell it to do”

Vint Cerf, TCP/IP co-inventor and Turing Award

“Most good programmers do programming not because they expect to
get paid or get adulation by the public, but because it is fun to program”

Linus Torvalds, principal developer of the Linux kernel

“You might not think that programmers are artists, but programming
is an extremely creative profession. It's logic-based creativity”

John Romero, co-founder of id Software
7/59

About Programming 2/2

Creativity Programming is extremely creative. The ability to perceive the problem in
a novel ways, provide new and original solutions. Creativity allows

recognizing and generating alternatives

Form of Art Art is the expression of human creative skills. Every programmer has his
own style. Codes and algorithms show elegance and beauty in the same
way as painting or music

Learn Programming gives the opportunity to learn new things every day,
improve own skills and knowledge

Challenge Programming is a challenge. A challenge against yourself, the problem,

and the environment
8/59

Knowledge-Experience Relation

What | think | know What | actually know

™
Humility threshold
& i
3 ©
@ 15 -
| © P o
2| - =
=
N
7

Seniority 9/59

A Little History of
C/C++
Programming
Language

The Assembly Programming Language

A long time ago, in a galaxy far,

far away....there was Assembly

Extremely simple instructions

Requires lots of code to do simple tasks
Can express anything your computer can do
Hard to read, write

...redundant, boring programming, bugs pro-
liferation

main:
.Lfunc_begin0:
push rbp
.Lefi0:
.Lefil:
mov rbp, rsp
.Lefil:
sub rsp, 16
movabs rdi, .L.str
.LtmpO:
mov al, O
call printf
XOr ecx, ecx
mov dword ptr [rbp - 4], eax
mov eax, ecx
add rsp, 16
pop rbp
ret
.Ltmp1:
.Lfunc_end0:
.L.str:
.asciz "Hello World\n"

10/59

A Little History of C 1/3

In the 1969 Dennis M. Ritchie and Ken Thompson (AT&T, Bell Labs) worked on
developing an operating system for a large computer that could be used by a thousand

users. The new operating system was called UNIX

The whole system was still written in assembly code. Besides assembler and Fortran,
UNIX also had an interpreter for the programming language B. A high-level language
like B made it possible to write many pages of code task in just a few lines of code. In

this way the code could be produced much faster than in assembly

A drawback of the B language was that it did not know data-types (everything was

expressed in machine words). Another functionality that the B language did not provide
was the use of “structures”. The lack of these things formed the reason for Dennis
M. Ritchie to develop the programming language C. In 1988 they delivered the final
standard definition ANSI C 11/59

A Little History of C

Dennis M. Ritchie and Ken Thompson

#include "stdio.h"

int main() {
printf ("Hello World\n");
} 12/59

A Little History of C

Areas of Application:
= UNIX operating system

= Computer games

= Due to their power and ease of use, C were used in the programming of the

special effects for Star Wars

13/59

Star Wars - The Empire Strikes Back

A Little History of C++ 1/3

The C+4+4 programming language (originally named “C with Classes™”) was devised
by Bjarne Stroustrup also an employee from Bell Labs (AT&T). Stroustrup started
working on C with Classes in 1979. (The ++ is C language operator)

The first commercial release of the C++ language was in October 1985

14/59

A Little History of C++

Domain-specific
abstraction

Fortran

Cobol Simula |

Direct mapping to
hardware

Assembler —— > BCPL —C

The roots of C++

15/59
“The Evolution of C++Past, Present, and Future", B. Stroustrup, CppConl16 /

A Little History of C++

1989 1990 1991 1992 1993 1994 1995 1996 1997

C++98

2002 2003 2004 2005 2006 2007 2008 2009 2010

C++0x/11
Library TR1 Decimal TR (not merged)
\ Math Special Functions IS

2011 2012 2013 2014 2015 2016 2017 2018 2019
Aug feb O | Apr sep [l Jun Nov May Ot Mar Jun Nov [BB Jul Nov Mar n Nov Feb Jul Nov [fEB

1S - trunk
i Yok
| Fiesstem o Netvworking _ _Jj Reflection
TSes - feature e Y -
branches for Lib Fundamentals 1l Lib Fundamentals 2y Lib Fundamentals 3

separate release ey . ;
Parallelism 1 Parallelism 2
& then merge E
“TxMemory (rttomene)

:

2020 2021 2022 2023 2024 2025 2026 2027 2028
Jn Nov Feb km Ot Feb Jul Nov [Jun Nov May Oct Mar un Nov [Jul Nov Mar n Nov feb Jul Nov [EEH

Fundamentals 3
TeMemory2

Concurrency 2

16/59

About Evolution

“If you're teaching today what you were teaching five

years ago, either the field is dead or you are”
Noam Chomsky

Areas of Application
and Popularity

Most Popular Programming Languages

(IEEE Spectrum - 2022)

Rank Language Tvpe Score
- Pythonv @ Q0 @& 1000
n Javav ® 0 O 95.4
n Cv 0 @ & 94.7
n CH+v 0 Q0 @ 92.4
H JavaScriptv (-] 88.1
n ce ® 0 O & 824

Rv J 81.7

Gov @ J s

18/59
Interactive: The Top Programming Languages 2022

https://spectrum.ieee.org/top-programming-languages/

Most Popular Programming Languages (TIOBE - December. 2022)

Programming Language Ratings Change
ol Python 16.66% +3.76%
G c 16.56% +477%
@ CHt 11.94% +4.21%
i Java 11.82% +1.70%
@ c# 4.92% -1.48%
@ Visual Basic 3.94% 1.46%

JS JavaScript 319% +0.90%

www.tiobe.com/tiobe-index/ 16/59

https://www.tiobe.com/tiobe-index/

Most Popular Programming Languages (Redmonk - June, 2022)

RedMonk Q322 Programming Language Rankings

VBA
sual Basic NET Visual Basic

Matiab

GCC Machine Description Assembly

3 Sass
ki Arduino G
s JgFusion
2 Sy
z aML
3 ActionScript Erlang
® Scheme
H GLsL
S u e ocaml
3 oL Processing o
s Racket =
w SOldty g
5 Mathematica o y
£ PRSvacs Lisp
[FresMarker Coq Systemveriog
4 D
H standépgffizembly .
8 Em
& Hapgmallalk
I obj tack gitgake
2 ectiyfsiita
PostScript s Gherkin
S Cosa Nix
im
. PureScript e
Z Ballerina .
Lean <
Jsonnet ShaderLab
Vim script
Star
0 E Rich Text Format

Popularity Rank on GitHub (by # of Projects)

redmonk . com

CoffeeScript

Ruby
TypeScript

e RSR
Dart Kotif"e!
Go

Rust

Julia

Elixir

HCL

Roff

20/59

https://redmonk.com/sogrady/2021/08/05/language-rankings-6-21/

Why C++ is so Popular?

There may be more than 200 billion lines
of C/C++ code globally

» Performance is the defining aspect of C++. No other programming
language provides the performance-critical facilities of C++

= Provide the programmer control over every aspect of performance

= Leave no room for a lower level language

Total number of lines of all code in use? 21/59

https://skeptics.stackexchange.com/questions/5114/did-cobol-have-250-billion-lines-of-code-and-1-million-programmers-as-late-as-2

Why C++ is so Popular? 2/2

» Ubiquity. C++ can run from a low-power embedded device to large-scale
supercomputers

= Multi-Paradigm. Allow writing efficient code without losing high-level
abstraction

= Allow writing low-level code. Drivers, kernels, assembly (asm), etc.

» Ecosystem. Many support tools such as debuggers, memory checkers,
coverage, static analysis, profiling, etc.

» Maturity. C+—+ has a 40 years history. Many software problems have been

already addressed and developing practices have been investigated 22/59

Areas of Application

= Operating systems: Windows, Android, OS X, Linux

= Compilers: LLVM, Swift compiler

= Artificial Intelligence: TensorFlow, Caffe, Microsoft Cognitive Toolkit
= Image Editing: Adobe Premier, Photoshop, lllustrator

= Web browser: Firefox, Chrome, etc. + WebAssembly

= High-Performance Computing: drug developing and testing, large scale climate
models, physic simulations

= Embedded systems: loT, network devices (e.g. GSM), automotive

= Google and Microsoft use C++ for web indexing 23/59

Areas of Application

= Scientific Computing: CERN/NASA*, SETI@home, Folding@home
= Database: MySQL, ScyllaDB
= Video Games: Unreal Engine, Unity

= Entertainment: Movie rendering (see Interstellar black hole rendering),
virtual reality

= Finance: electronic trading systems (Goldman, JPMorgan, Deutsche Bank)**

. and many more

* The flight code of the NASA Mars drone for the Perseverance Mission, as well as the Webb

telescope software, are mostly written in C++ github.com/nasa/fprime, James Webb Space

Telescope’s Full Deployment 24/59

https://twitter.com/thePiggsBoson/status/1502135238079627270
https://github.com/nasa/fprime
https://www.youtube.com/watch?v=hET2MS1tIjA&t=1900s
https://www.youtube.com/watch?v=hET2MS1tIjA&t=1900s
https://www.efinancialcareers.com/news/2021/07/modern-c-finance-jobs

Why C++ is so Important?

The End of Historical Performance Scaling

10’

10°

10°

10*

3

10

Transistors
(thousands)

. Single-thread
Performance
(SpeciINT)

Typical Power
(Watts)

Number of
Cores

i i i i i i i i
1975 1980 1985 1990 1995 2000 2005 2010 2015

Performance limitations influence algorithm design

. . 25/59
and research directions /

An Important Example... (Al Evolution)

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

10,000
e AlphaGo Zero
1,000
e AlphaZero
100 o Neural Machine Translation
=) e Neural Architecture Search
c
c 10
= « Xception ® TI7 Dota v
=
% 1
° VGG e DeepSpeech2
@ 1 *Seq2Seq e ResNets
5
= T e GoogleNet
©
° e AlexNet ® Visualizing and Understanding Conv Nets
o e Dropout R, omea=T
o4+ — R s b0 -
________ 7 Moore's Law
.0001 —<=---- SRR S
*DQN
00001
2013 2014 2015 2016 2017 2018 2019

Year 26/59

Performance

Execution Time (S)

9200
800
700
600
500
400
300
200
100

N-BODY SIMULATION
PROGRAMMING LANGUAGES PERFORMANCE COMPARISON

780
660
360
300
8.23 21.47 21.96 22.1 26.61
T R— S— | S—| = T T . .]
C++ GO SWIFT JAVA Node.js PHP Ruby Perl Python3

Programming Language

27/59

Performance

Matrix Multiply Speedup Over Native Python
62,806

100,000
6,727 4,»/”/d/”

10,000
366

1,000 /
100 //jzf””’
10
1//,;”//,
1
+ SIMD

Python o] + parallel + memory
loops optimization instructions

Speedup

28/59

"A New Golden Age for Computer Architecture”, J. L. Heneessey, D. A. Patterson, 2019

Performance

Hello World
Language Execution Time
C (on my machine) 0.7 ms
C 2 ms
Go 4 ms
Crystal 8 ms
Shell 10 ms
Python 78 ms
Node 110 ms
Ruby 150 ms
jRuby 1.4 s

Time to "hello world" on my machine

29/59

https://twitter.com/samsaffron/status/1227755695749001216?s=09

Performance/Expressiveness Trade-off

. Yl

Mandelbrot Static Instructions per Line

1,000,000

100,000

10,000
1,000

100

. I
1 — Lne |
C

Assembly C++ Java Iy Python 30/59

INSTRUCTIONS PER LINE

Memory Usage

300000

250000 4 m Alignment

m N2 -

200000
S
£
>
2 150000
£
()
= 100000 {

50000 -

0 LM—V& :

C C++ C# Java Perl Python
Language

Memory usage comparison of the
Neighbor-Joining and global alignment programs

A comparison of common programming languages used in bioinformatics (BMC
Informatic) Silye

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-82
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-82

Energy Efficiency

Energy Time
(c)C 1.00 (©C 1.00
(c) Rust 1.03 (c) Rust 1.04
(c) C++ 1.34 (c) C++ 1.56
(c) Ada 1.70 (c) Ada 1.85
(v) Java 1.98 (v) Java 1.89
(c) Pascal 2.14 (c) Chapel 2.14
(c) Chapel 2.18 (c) Go 2.83
(v) Lisp 2.27 (c) Pascal 3.02
(c) Ocaml 2.40 (c) Ocaml 3.09
(c) Fortran 2.52 (v) C# 3.14
(c) Swift 2.79 (v) Lisp 3.40
(c) Haskell 3.10 (c) Haskell 3.55
(v) C# 3.14 (c) Swift 4.20
(i) Hack 24.02 (i) PHP 27.64
(i) PHP 29.30 (v) Erlang 36.71
(v) Erlang 42.23 (i) Jruby 43.44
(i) Lua 45.98 (i) TypeScript | 46.20
(i) Jruby 46.54 (i) Ruby 59.34
(i) Ruby 69.91 (i) Perl 65.79
(i) Python 75.88 (i) Python 71.90
(i) Perl 79.58 (i) Lua 82.91

Energy Efficiency across Programming Languages

32/59

http://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf

CO0? Production

L ebython
10° E
5 F
ﬁ | cuda _sirfgle-core
g -
3 2 L
B 1 O = MNE ade;,.-"
o —
=] -
el -
o B
a .nun}béi
o 10 S FORTRANg gsiift
&) - "c‘.'++
- cuda 1]1,11'1'&1—001‘(3
100 ||I || ||||||I L1 ||||||] L1 ||||||l L1

10-1 109 10! 102
Time to solution [day]

The Ecological Impact of High-performance Computing in Astrophysics, Nature SR/

https://www.nature.com/articles/s41550-020-1208-y

C++4 Philosophy

C++ Philosophy - Performance

Do not sacrifice performance except as a last resort

Zero Overhead Principle (zero-cost abstraction)

“it basically says if you have an abstraction it should not
cost anything compared to write the equivalent code at lower

level”
“so | have say a matrix multiply it should be written in a

such a way that you could not drop to the C level of abstrac-
tion and use arrays and pointers and such and run faster”

Bjarne Stroustrup34/59

C++ Philosophy - Type Safety

Enforce safety at compile time whenever possible

Statically Typed Language

“The C++ compiler provides type safety and catches
many bugs at compile time instead of run time (a critical
consideration for many commercial applications.)”

www.python.org/doc/FAQ.html

» The type annotation makes the code more readable

= Promote compiler optimizations and runtime efficiency

= Allow users to define their own type system 35/59

http://www.python.org/doc/FAQ.html

C++ Philosophy

» Programming model: compartmentalization, only add
features if they solve an actual problem, and allow full control

» Predictable runtime (under constraints): no garbage

collector, no dynamic type system — real-time systems

» Low resources: low memory and energy consumption —

restricted hardware platforms
» Well suited for static analysis — safety critical software

» Portability — Modern C++ standards are highly portable 36/59

Who is C++ for?

“C++ is for people who want to use hardware very well
and manage the complexity of doing that through abstrac-
tion”

Bjarne Stroustrup

“a language like C++ is not for everybody. It is gener-
ated via sharp and effective tool for professional basically and
definitely for people who aim at some kind of precision”

Bjarne Stroustrup

37/59

Suggested Introduction Video

Stroustrup

Artificial

Intelligence
Lex Fridman

» >) 000/1:47:12

38/59

https://www.youtube.com/watch?v=uTxRF5ag27A

C++ Weaknesses

Why C++ is so Difficult?

. and why teaching C++ as first programming language is a bad idea?
C++ is the hardest language from students to master

= More languages in one
- Standard C/C++ programming
- Preprocessor
- Object-Oriented features

- Templates and Meta-Programming
= Huge set of features
= Worry about memory management

= [ow-level implementation details: pointer arithmetics, structure, padding,
undefined behavior, etc.

= Frustrating: compiler/runtime errors (e.g. seg. fault) 39/59

Why C++ is so Difficult?

“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do, it blows your whole leg off”

Bjarne Stroustrup, Creator of the C++ language

“The problem with using C++-...is that there's already a strong ten-
dency in the language to require you to know everything before you can
do anything”

Larry Wall, Creator of the Perl language

“Despite having 20 years of experience with C++-, when | compile a
non-trivial chunk of code for the first time without any error or warning,
I am suspicious. It is not, usually, a good sign”

Daniel Lemire, Prof. at the University of Quebec 40/59

C++ Weaknesses

Backward-compatibility

“Dangerous defaults and constructs, often originating from C, cannot be removed

or altered”

“Despite the hard work of the committee, newer features sometimes have flaws
that only became obvious after extensive user experience, which cannot then be
fixed"

“C++ practice has put an ever-increasing cognitive burden on the developer for
what | feel has been very little gain in productivity or expressiveness and at a huge cost
to code clarity”

41/59

C++ Weaknesses

C++ critics and replacements:

= Epochs: a backward-compatible language evolution mechanism
= Goals and priorities for C++

= Carbon Language

= Circle C++ Compiler

= Cppfront: Can C++ be 10x simpler & safer ... 7

42/59

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1881r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2137r0.html
https://github.com/carbon-language/carbon-lang
https://www.circle-lang.org/
https://github.com/hsutter/cppfront

C++ Alternatives: Rust

Rust (1.0, 2015) has been Stack Overflow's most loved language for eight years in a
row. Rust focuses on performance and zero-abstraction overhead as C+—+. It is
designed to prevent many vulnerabilities that affect C++, especially memory bugs,
enforcing constraints at compile type. In addition, it promotes cross-platform

compatibility

“first-time contributors to Rust projects are about 70 times less likely to

introduce vulnerabilities than first-time contributors to C++ projects”
Tracey et al. 1

L Grading on a Curve: How Rust can Facilitate New Contributors while Decreasing

Vulnerabilities 43/50
CISA, NSA: The Case for Memory Safe Roadmap

https://cypherpunks.ca/~iang/pubs/gradingcurve-secdev23.pdf
https://cypherpunks.ca/~iang/pubs/gradingcurve-secdev23.pdf
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf

C++ Alternatives: Zig

Zig (2016) is a minimal open-source programming language that can be intended as
replacement of C. Zig supports compile time generics, reflection and evaluation,
cross-compiling, and manual memory management. It is made to be fully interoperable

with C and also includes a C/C++ compiler.

Zig Programming Language 44/59

https://ziglang.org/

Why Switching to a New Language is Hard?

= No perfect language. There are always newer 'shining’ languages
= Alignment. Force all developers to switch to the new language

= Interoperability. Hundreds of billion lines of existing code. Must interoperate
with C and C++ code imposing serious design constraints

= Ecosystem. Lack of tools and libraries developed in the last four decades

= Time and Cost. Converting a codebase of 10 million lines: 500 developers, 5
years, $1,400,000,000!

! Bjarne Stroustrup: Delivering Safe C++ 45/59

https://github.com/CppCon/CppCon2023/blob/main/Presentations/Plenary_Delivering_Safe_Cpp.pdf

Language Complexity

Every second spent trying to understand the
language is one not spent understanding the
problem

46/59

Books and
References

Suggested Books

BJARNE STROUSTRUP

THE CREATOR OF Ct+

PROGRAMMING

Principles and Practice Using C++

SECOND EDITION

Programming and Principles
using C++ (2nd)
B. Stroustrup, 2014

Professional

Ct+t

Professional C++ (5th)
S. J. Kleper, N. A. Solter, 2021

ne TE O
ABSOLUTE C++
SXTH EDITION

Walter Savitch

Absolute C++ (6th)
W. Savitch, 2015

47/59

Advanced Books

O'REILLY"

Scott Meyers

Effective Modern C4++
S. Meyer, 2014

48/59

Software Design Principles

Clean Code Clean Architecture

A Handbook of Agile Software Craftsmanship

——

Clean Code: A Handbook of Agile Clean Architecture
Software Craftsmanship Robert C. Martin, 2017
Robert C. Martin, 2008

49/59

Software Design Principles

OREILLY
Software
Engineering at

Google

Lessons Learned o
from Programming SRS
Over Time 2

Code
Simplicity

& Curated by Titds Winters,
Tom Manshreck & Hyrum Wright

O'REILLY" Mawx Kenat-Alexcncler
Code Simplicity A Philosophy of Software Software Engineering at
M. Kanat-Alexander, 2012 Design (2nd) Google: Lessons Learned from

J. Ousterhout, 2021 Programming over Time
T. Winters, 2020

(download 1link) 50,59

https://abseil.io/resources/swe-book

References

(Un)official C++ reference:*

= en.cppreference.com

Tutorials:

= www.learncpp.com
= www.tutorialspoint.com/cplusplus
= en.wikibooks.org/wiki/C++

= yet another insignificant...programming notes

Other resources:

= stackoverflow.com/questions/tagged/c++

* The full C++ standard draft can be found at eel.is/c++draft/full

Don't open it! it is a html web page of 32 MB! L)

https://en.cppreference.com/w/
www.learncpp.com
www.tutorialspoint.com/cplusplus
https://en.wikibooks.org/wiki/C%2B%2B_Programming
https://www3.ntu.edu.sg/home/ehchua/programming/index.html
https://stackoverflow.com/questions/tagged/c%2b%2b
https://eel.is/c++draft/full

References

News:

= isocpp.org (Standard C++ Foundation)
= cpp.libhunt.com/newsletter/archive
= www.meetingcpp.com/blog/blogroll/

Main conferences:

= www.meetingcpp.con (slides)
= cppcon.org (slides)

= isocpp.com conference list

Coding exercises and other resources:

= www.hackerrank.com/domains/cpp

= leetcode.com/problemset/algorithms

= open.kattis.com

= cpppatterns.com 52/59

https://isocpp.org/
https://cpp.libhunt.com/newsletter/archive
www.meetingcpp.com/blog/blogroll/
www.meetingcpp.com
https://meetingcpp.com/mcpp/slides/
https://cppcon.org
https://github.com/CppCon
https://isocpp.org/wiki/faq/conferences-worldwide
www.hackerrank.com/domains/cpp
https://leetcode.com/problemset/algorithms/
https://open.kattis.com/
https://cpppatterns.com/

The Course

The Course

Days1-10

Teach yourself variables, con-
stants, arrays, strings, expres-
sions, statements, functions,...

S

Days 11-21

Teach yourself program flow,

pointers, references, classes,

objects, inheritance, polymor-
phism,

Y

Days 22 - 697

Do a lot of recreational program-
ming. Have fun hacking but re-
member to learn from your mis-

Days 698 - 3648

Interact with other programmers.
Work on programming projects
together. Learn from them.

Days 3649 - 7781
Teach yourself advanced theoret-
ical physics and formulate a con-
sistent theory of quantum grav-

ity.

Days 7782 - 14611
Teach yourself biochemistry,
molecular biology, genetics,...

Day 14611
Use knowledge of biology to
make an age-reversing potion.

Day 14611

Use knowledge of physics to
build flux capacitor and go back
in time to day 21.

Day 21
Replace younger self.

55 v -

As far as | know, this
is the easiest way to

"Teach Yourself C++ in 21 Days".

53/59

Don’t forget: The right name of the course should be
“Introduction to Modern C++ Programming”

For many topics in the course, there are more than one book devoted to present the
concepts in detail

54/59

The primary goal of the course is to drive who has previous experience with
C/C++ and object-oriented programming to a proficiency level of (C++)

programming
= Proficiency: know what you are doing and the related implications
= Understand what problems/issues address a given language feature
= Learn engineering practices (e.g. code conventions, tools) and hardware/software
techniques (e.g. semantic, optimizations) that are not strictly related to C++

What the course is not:

= A theoretical course on programming
= A high-level concept description

What the course is:

= A practical course, prefer examples instead of long descriptions
on q 55/59
= A “quite” advanced C++ programming language course /

Organization:

22 lectures
~1,500 slides
C++03 / C++11 / C++14 / C++17 / C++20 / (C++23)

Roadmap:

Review C concepts in C++ (built-in types, memory management, preprocessing,
etc.)

Introduce object-oriented and template concepts

Present how to organize the code and the main conventions

C+-+ tool goals and usage (debugger, static analysis, etc.)

56,/59

Slide Legend

* Advanced Concepts. In general, they are not fundamental. They can be
related to very specific aspects of the language or provide a deeper
exploration of C++ features.

A beginner reader should skip these sections/slides

~> See next. C++ concepts are closely linked, and it is almost impossible to
find a way to explain them without referring to future topics. These slides
should be revisited after reading the suggested topic

this is a code section

This is a language keyword/token and not a program symbol (variable,
functions, etc.). Future references could use a standard code section for better
readability 57/59

Who | Am

Federico Busato, Ph.D.
= Senior Software Engineer at Nvidia,
CUDA Mathematical Libraries

= Lead engineer of the Sparse Linear Algebra group

= Research/Work interests:

Linear Algebra

Graph Algorithms

Parallel/High-Performance Computing

Y Follow @fedebusato

Code Optimization

NOT a C++ expert/“guru”, still learning
58,/59

https://twitter.com/fedebusato

A Little Bit about My Work

Our projects:

cuSPARSE GPU-accelerated sparse linear algebra library (matrix-matrix
multiplication, triangular solver, etc.), part of the CUDA Toolkit (8M
downloads every year)

cuSPARSELt Specialized library for sparse matrix-matrix multiplication that exploits the
most advanced GPU features such as Sparse Tensor Cores

NVPL Sparse CPU-accelerated (ARM) sparse linear algebra library

Top500 HPCG NVIDIA Supercomputing benchmark that performs a fixed number of
multigrid preconditioned (using a symmetric Gauss-Seidel smoother)
conjugate gradient (PCG) iterations 59/59

https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparselt/
https://docs.nvidia.com/nvpl/_static/sparse/index.html
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-benchmarks

“The only way to learn a new pro-
gramming language is by writing pro-
grams in it”

Dennis Ritchie

Creator of the C programming language

	A Little History of C/C++ Programming Language
	Areas of Application and Popularity
	C++ Philosophy
	C++ Weaknesses
	Books and References
	The Course

