
Modern C++
Programming

14. C++ Ecosystem I
Debugging

Federico Busato
2023-12-01

Table of Contents

1 Debugging
2 Assertions
3 Execution Debugging

Breakpoints

Watchpoints / Catchpoints

Control Flow

Stack and Info

Print

Disassemble

1/63

Table of Contents

4 Memory Debugging
valgrind

Stack Protection

5 Sanitizers
Address Sanitizer
Leak Sanitizer
Memory Sanitizers
Undefined Behavior Sanitizer

6 Debugging Summary
2/63

Table of Contents

7 Compiler Warnings

8 Static Analysis

9 Code Testing
Unit Testing
Test-Driven Development (TDD)
Code Coverage
Fuzz Testing

10 Code Quality
clang-tidy

3/63

Feature Complete

4/63

Debugging

Is this a bug?

for (int i = 0; i <= (2ˆ32) - 1; i++) {

“Software developers spend 35-50 percent of their time vali-
dating and debugging software. The cost of debugging, test-
ing, and verification is estimated to account for 50-75 percent
of the total budget of software development projects”

from: John Regehr (on Twitter)
The Debugging Mindset

5/63

https://queue.acm.org/detail.cfm?id=3068754

Errors, Defects, and Failures

• An error is a human mistake. Errors lead to software defects

• A defects is an unexpected behavior of the software (correctness, performance,
etc.). Defects potentially lead to software failures

• A failure is an observable incorrect behavior

6/63

Cost of Software Defects

7/63

Types of Software Defects

Ordered by fix complexity, (time to fix):

(1) Typos, Syntax, Formatting (seconds)

(2) Compilation Warnings/Errors (seconds, minutes)

(3) Logic, Arithmetic, Runtime Errors (minutes, hours, days)

(4) Resource Errors (minutes, hours, days)

(5) Accuracy Errors (hours, days)

(6) Performance Errors (days)

(7) Design Errors (weeks, months)
8/63

Causes of Bugs

• C++ is very error prone language, see 60 terrible tips for a C++
developer

• Human behavior, e.g. copying & pasting code is very common practice and can
introduce subtle bugs → check the code carefully, deep understanding of its
behavior

9/63

https://pvs-studio.com/en/blog/posts/cpp/1053/
https://pvs-studio.com/en/blog/posts/cpp/1053/

Dealing with Software Defects

Software defects can be identifies by:

Dynamic Analysis A mitigation strategy that acts on the runtime state of a program.
Techniques: Print, run-time debugging, sanitizers, fuzzing, unit test support,

performance regression tests
Limitations: Infeasible to cover all program states

Static Analysis A proactive strategy that examines the source code for (potential)
errors.

Techniques: Warnings, static analysis tool, compile-time checks
Limitations: Turing’s undecidability theorem, exponential code paths

How programmers make sure that their software is correct

10/63

https://lemire.me/blog/2022/01/03/how-programmers-make-sure-that-their-software-is-correct/

Program Errors

A program error is a set of conditions that produce an incorrect result or unexpected
behavior, including performance regression, memory consumption, early termination,
etc.

We can distinguish between two kind of errors:

Recoverable Conditions that are not under the control of the program. They
indicates “exceptional” run-time conditions. e.g. file not found, bad
allocation, wrong user input, etc.

Unrecoverable It is a synonym of a bug. The program must terminate. e.g.
out-of-bound, division by zero, etc.

Sometimes a recoverable error is considered unrecoverable if it is extremely rare and
difficult to handle, e.g. bad allocation due to out-of-memory error

11/63

Assertions

Unrecoverable Errors and Assertions

Unrecoverable errors cannot be handled. They should be prevented by using assertion
for ensuring pre-conditions and post-conditions

An assertion is a statement to detect a violated assumption. An assertion represents
an invariant in the code

It can happen both at run-time (assert) and compile-time (static assert).
Run-time assertion failures should never be exposed in the normal program execution
(e.g. release/public)

12/63

Assertion

include <cassert> // <-- needed for "assert"
include <cmath> // std::is_finite
include <type_traits> // std::is_arithmetic_v

template<typename T>
T sqrt(T value) {

static_assert(std::is_arithmetic_v<T>, // precondition
"T must be an arithmetic type");

assert(std::is_finite(value) && value >= 0); // precondition
int ret = ... // sqrt computation
assert(std::is_finite(value) && ret >= 0 && // postcondition

(ret == 0 || ret == 1 || ret < value));
return ret;

}

Assertions may slow down the execution. They can be disable by define the NDEBUG
macro
define NDEBUG // or with the flag "-DNDEBUG" 13/63

Execution
Debugging

Execution Debugging (gdb)

How to compile and run for debugging:

g++ -O0 -g [-g3] <program.cpp> -o program
gdb [--args] ./program <args...>

-O0 Disable any code optimization for helping the debugger. It is implicit for most
compilers

-g Enable debugging
- stores the symbol table information in the executable (mapping between assembly

and source code lines)
- for some compilers, it may disable certain optimizations
- slow down the compilation phase and the execution

-g3 Produces enhanced debugging information, e.g. macro definitions. Available for
most compilers. Suggested instead of -g 14/63

gdb - Breakpoints

Command Abbr. Description

breakpoint <file>:<line> b insert a breakpoint in a specific line

breakpoint <function name> b insert a breakpoint in a specific function

breakpoint <ref > if <condition> b insert a breakpoint with a conditional statement

delete d delete all breakpoints or watchpoints

delete <breakpoint number> d delete a specific breakpoint

clear [function name/line number] delete a specific breakpoint

enable/disable <breakpoint number> enable/disable a specific breakpoint

info breakpoints info b list all active breakpoints

15/63

gdb - Watchpoints / Catchpoints

Command Abbr. Description

watch <expression>
stop execution when the value of expression changes
(variable, comparison, etc.)

rwatch <variable/location> stop execution when variable/location is read

delete <watchpoint number> d delete a specific watchpoint

info watchpoints list all active watchpoints

catch throw stop execution when an exception is thrown

16/63

gdb - Control Flow

Command Abbr. Description

run [args] r run the program

continue c continue the execution

finish f continue until the end of the current function

step s execute next line of code (follow function calls)

next n execute next line of code

until <program point>
continue until reach line number,
function name, address, etc.

CTRL+C stop the execution (not quit)

quit q exit

help [<command>] h show help about command
17/63

gdb - Stack and Info

Command Abbr. Description

list l print code

list <function or #start,#end> l print function/range code

up u move up in the call stack

down d move down in the call stack

backtrace [full] bt prints stack backtrace (call stack) [local vars]

info args print current function arguments

info locals print local variables

info variables print all variables

info <breakpoints/watchpoints/registers>
show information about program
breakpoints/watchpoints/registers

18/63

gdb - Print

Command Abbr. Description

print <variable> p print variable

print/h <variable> p/h print variable in hex

print/nb <variable> p/nb print variable in binary (n bytes)

print/w <address> p/w print address in binary

p /s <char array/address> print char array

p *array var@n print n array elements

p (int[4])<address> print four elements of type int

p *(char**)&<std::string> print std::string

19/63

gdb - Disassemble

Command Description

disasseble <function name> disassemble a specified function

disasseble <0xStart,0xEnd addr> disassemble function range

nexti <variable>
execute next line of code (follow
function calls)

stepi <variable> execute next line of code

x/nfu <address>

examine address
n number of elements,
f format (d: int, f: float, etc.),
u data size (b: byte, w: word, etc.)

20/63

gdb - Notes

The debugger automatically stops when:
• breakpoint (by using the debugger)
• assertion fail
• segmentation fault
• trigger software breakpoint (e.g. SIGTRAP on Linux)

github.com/scottt/debugbreak

Full story: www.yolinux.com/TUTORIALS/GDB-Commands.html (it also contains a
script to de-referencing STL Containers)

gdb reference card V5 link

21/63

https://github.com/scottt/debugbreak
www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/gdb-refcard.pdf

Memory Debugging

Memory Vulnerabilities 1/2

“70% of all the vulnerabilities in Microsoft products are memory safety
issues”

Matt Miller, Microsoft Security Engineer

“Chrome: 70% of all security bugs are memory safety issues”
Chromium Security Report

“you can expect at least 65% of your security vulnerabilities to be
caused by memory unsafety”

What science can tell us about C and C++’s security

Microsoft: 70% of all security bugs are memory safety issues
Chrome: 70% of all security bugs are memory safety issues
What science can tell us about C and C++’s security 22/63

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

Memory Vulnerabilities 2/2

Terms like buffer overflow, race condition, page fault, null pointer, stack exhaustion,
heap exhaustion/corruption, use-after-free, or double free – all describe memory
safety vulnerabilities

Solutions:

• Run-time check
• Static analysis
• Avoid unsafe language constructs

23/63

valgrind 1/9

valgrind is a tool suite to automatically detect many
memory management and threading bugs

How to install the last version:

$ wget ftp://sourceware.org/pub/valgrind/valgrind-3.21.tar.bz2
$ tar xf valgrind-3.21.tar.bz2
$ cd valgrind-3.21
$./configure --enable-lto
$ make -j 12
$ sudo make install
$ sudo apt install libc6-dbg #if needed

some linux distributions provide the package through apt install valgrid , but it could be an old version 24/63

http://valgrind.org

valgrind 2/9

Basic usage:
• compile with -g

• $ valgrind ./program <args...>

Output example 1:
==60127== Invalid read of size 4 !!out-of-bound access
==60127== at 0x100000D9E: f(int) (main.cpp:86)
==60127== by 0x100000C22: main (main.cpp:40)
==60127== Address 0x10042c148 is 0 bytes after a block of size 40 alloc'd
==60127== at 0x1000161EF: malloc (vg_replace_malloc.c:236)
==60127== by 0x100000C88: f(int) (main.cpp:75)
==60127== by 0x100000C22: main (main.cpp:40)

25/63

valgrind 3/9

Output example 2:

!!memory leak
==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==19182== at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130)
==19182== by 0x8048385: f (main.cpp:5)
==19182== by 0x80483AB: main (main.cpp:11)

==60127== HEAP SUMMARY:
==60127== in use at exit: 4,184 bytes in 2 blocks
==60127== total heap usage: 3 allocs, 1 frees, 4,224 bytes allocated
==60127==
==60127== LEAK SUMMARY:
==60127== definitely lost: 128 bytes in 1 blocks !!memory leak
==60127== indirectly lost: 0 bytes in 0 blocks
==60127== possibly lost: 0 bytes in 0 blocks
==60127== still reachable: 4,184 bytes in 2 blocks !!not deallocated
==60127== suppressed: 0 bytes in 0 blocks

26/63

valgrind 4/9

Memory leaks are divided into four categories:

• Definitely lost
• Indirectly lost
• Still reachable
• Possibly lost

When a program terminates, it releases all heap memory allocations. Despite this,
leaving memory leaks is considered a bad practice and makes the program unsafe with
respect to multiple internal iterations of a functionality. If a program has memory leaks
for a single iteration, is it safe for multiple iterations?

A robust program prevents any memory leak even when abnormal conditions occur

27/63

valgrind 5/9

Definitely lost indicates blocks that are not deleted at the end of the program (return
from the main() function). The common case is local variables pointing to newly
allocated heap memory

void f() {
int* y = new int[3]; // 12 bytes definitely lost

}

int main() {
int* x = new int[10]; // 40 bytes definitely lost
f();

}

28/63

valgrind 6/9

Indirectly lost indicates blocks pointed by other heap variables that are not deleted.
The common case is global variables pointing to newly allocated heap memory

struct A {
int* array;

};

int main() {
A* x = new A; // 8 bytes definitely lost
x->array = new int[4]; // 16 bytes indirectly lost

}

29/63

valgrind 7/9

Still reachable indicates blocks that are not deleted but they are still reachable at the
end of the program
int* array;

int main() {
array = new int[3];

}
// 12 bytes still reachable (global static class could delete it)

include <cstdlib>
int main() {

int* array = new int[3];
std::abort(); // early abnormal termination
// 12 bytes still reachable
... // maybe it is delete here

}

30/63

valgrind 8/9

Possibly lost indicates blocks that are still reachable but pointer arithmetic makes the
deletion more complex, or even not possible

include <cstdlib>
int main() {

int* array = new int[3];
array++; // pointer arithmetic
std::abort(); // early abnormal termination
// 12 bytes still reachable
... // maybe it is delete here but you should be able

// to revert pointer arithmetic
}

31/63

valgrind 9/9

Advanced flags:

• --leak-check=full print details for each “definitely lost” or “possibly lost”
block, including where it was allocated

• --show-leak-kinds=all to combine with --leak-check=full. Print all leak kinds

• --track-fds=yes list open file descriptors on exit (not closed)

• --track-origins=yes tracks the origin of uninitialized values (very slow execution)

valgrind --leak-check=full --show-leak-kinds=all
--track-fds=yes --track-origins=yes ./program <args...>

Track stack usage:

valgrind --tool=drd --show-stack-usage=yes ./program <args...>

32/63

Stack Protection - Compile-time 1/3

Stack size check:

• -Wstack-usage=<byte-size> Warn if the stack usage of a function might
exceed byte-size. The computation done to determine the stack usage is
conservative (no VLA)

• -fstack-usage Makes the compiler output stack usage information for the
program, on a per-function basis

• -Wvla Warn if a variable-length array is used in the code

• -Wvla-larger-than=<byte-size> Warn for declarations of variable-length
arrays whose size is either unbounded, or bounded by an argument that allows the
array size to exceed byte-size bytes

Use compiler flags for stack protection in GCC and Clang
33/63

https://developers.redhat.com/articles/2022/06/02/use-compiler-flags-stack-protection-gcc-and-clang#stack_canary

Stack Protection - Run-time 2/3

Adding FORTIFY SOURCE define, the compiler provides buffer overflow checks for the
following functions:

memcpy , mempcpy , memmove , memset , strcpy , stpcpy , strncpy , strcat ,
strncat , sprintf , vsprintf , snprintf , vsnprintf , gets .

Recent compilers (e.g. GCC 12) allow detects buffer overflows with enhanced
coverage, e.g. dynamic pointers, with FORTIFY SOURCE=3 *

*GCC’s new fortification level: The gains and costs

34/63

https://developers.redhat.com/articles/2022/09/17/gccs-new-fortification-level

Stack Protection - Run-time 3/3

include <cstring> // std::memset
include <string> // std::stoi
int main(int argc, char** argv) {

int size = std::stoi(argv[1]);
char buffer[24];
std::memset(buffer, 0xFF, size);

}

$ gcc -O1 -D FORTIFY SOURCE program.cpp -o program
$./program 12 # OK
$./program 32 # Wrong
$ *** buffer overflow detected ***: ./program terminated

35/63

Sanitizers

Address Sanitizer

Sanitizers are compiler-based instrumentation components to perform dynamic
analysis

Sanitizer are used during development and testing to discover and diagnose memory
misuse bugs and potentially dangerous undefined behavior

Sanitizer are implemented in Clang (from 3.1), gcc (from 4.8) and Xcode

Project using Sanitizers:
• Chromium
• Firefox
• Linux kernel
• Android

Memory error checking in C and C++: Comparing Sanitizers and Valgrind 36/63

https://developers.redhat.com/blog/2021/05/05/memory-error-checking-in-c-and-c-comparing-sanitizers-and-valgrind

Address Sanitizer

Address Sanitizer is a memory error detector
• heap/stack/global out-of-bounds
• memory leaks
• use-after-free, use-after-return, use-after-scope
• double-free, invalid free
• initialization order bugs
* Similar to valgrind but faster (50X slowdown)

clang++ -O1 -g -fsanitize=address -fno-omit-frame-pointer <program>

-O1 disable inlining
-g generate symbol table

• clang.llvm.org/docs/AddressSanitizer.html
• github.com/google/sanitizers/wiki/AddressSanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 37/63

https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Leak Sanitizer

LeakSanitizer is a run-time memory leak detector
• integrated into AddressSanitizer, can be used as standalone tool
* almost no performance overhead until the very end of the process

g++ -O1 -g -fsanitize=address -fno-omit-frame-pointer <program>
clang++ -O1 -g -fsanitize=leak -fno-omit-frame-pointer <program>

• clang.llvm.org/docs/LeakSanitizer.html
• github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 38/63

https://clang.llvm.org/docs/LeakSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Memory Sanitizers

Memory Sanitizer is detector of uninitialized reads
• stack/heap-allocated memory read before it is written
* Similar to valgrind but faster (3X slowdown)

clang++ -O1 -g -fsanitize=memory -fno-omit-frame-pointer <program>

-fsanitize-memory-track-origins=2
track origins of uninitialized values

Note: not compatible with Address Sanitizer

• clang.llvm.org/docs/MemorySanitizer.html
• github.com/google/sanitizers/wiki/MemorySanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 39/63

https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Undefined Behavior Sanitizer

UndefinedBehaviorSanitizer is a undefined behavior detector
• signed integer overflow, floating-point types overflow, enumerated not in range
• out-of-bounds array indexing, misaligned address
• divide by zero
• etc.
* Not included in valgrind

clang++ -O1 -g -fsanitize=undefined -fno-omit-frame-pointer <program>

-fsanitize=integer Checks for undefined or suspicious integer behavior (e.g. unsigned integer
overflow)

-fsanitize=nullability Checks passing null as a function parameter, assigning null to an lvalue, and
returning null from a function

• clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 40/63

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Sanitizers vs. Valgrind

Valgrind - A neglected tool from the shadows or a serious debugging tool? 41/63

https://m-peko.github.io/craft-cpp/posts/valgrind-a-neglected-tool-from-the-shadows-or-a-serious-debugging-tool/

Debugging Summary

How to Debug Common Errors

Segmentation fault
• gdb, valgrind, sanitizers

• Segmentation fault when just entered in a function → stack overflow

Double free or corruption
• gdb, valgrind, sanitizers

Infinite execution
• gdb + (CTRL + C)

Incorrect results
• valgrind + assertion + gdb + sanitizers

42/63

Compiler Warnings

Compiler Warnings

Enable specific warnings:

g++ -W<warning> <args...>

Disable specific warnings:

g++ -Wno-<warning> <args...>

Common warning flags to minimize accidental mismatches:
-Wall Enables many standard warnings (∼50 warnings)

-Wextra Enables some extra warning flags that are not enabled by -Wall (∼15 warnings)

-Wpedantic Issue all the warnings demanded by strict ISO C/C++

Enable ALL warnings (only clang) -Weverything
43/63

Static Analysis

Overview

Source level analysis to find issues.
Detect known patterns in source code.
Analysis all possible paths.
Conservative approach to analysis.
Can analyze outside of the execution environment.

• Quickly scan for known patterns
• Improve code quality
• Enhance security
• Ensure compliance
• Increase developer efficiency

44/63

Static Analyzers - clang static analyzer

The Clang Static Analyzer is a source code analysis
tool that finds bugs in C/C++ programs at compile-time

It find bugs by reasoning about the semantics of code (may produce false positives)
Example:
void test() {

int i, a[10];
int x = a[i]; // warning: array subscript is undefined

}

How to use:

scan-build make

scan-build is included in the LLVM suite
45/63

https://clang-analyzer.llvm.org

Static Analyzers - cppcheck

The GCC Static Analyzer can diagnose various kinds of
problems in C/C++ code at compile-time (e.g. double-
free, use-after-free, stdio related, etc) -fanalyzer

cppcheck provides code analysis to detect bugs, undefined behavior and dangerous
coding construct. The goal is to detect only real errors in the code (i.e. have very few
false positives)

cppcheck --enable=warning,performance,style,portability,information,error
<src_file/directory>

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
cppcheck --enable=<enable_flags> --project=compile_commands.json

46/63

https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html
http://cppcheck.sourceforge.net/

Static Analyzers - PVS-Studio, FBInfer

PVS-Studio is a high-quality proprietary (free for open
source projects) static code analyzer supporting C, C++

Customers: IBM, Intel, Adobe, Microsoft, Nvidia, Bosh, IdGames, EpicGames, etc.

FBInfer is a static analysis tool (also available online)
to checks for null pointer dereferencing, memory leak,
coding conventions, unavailable APIs, etc.

Customers: Amazon AWS, Facebook/Ocolus, Instagram, Whatapp, Mozilla, Spotify, Uber,
Sky, etc.

47/63

http://fbinfer.com

Static Analyzers - DeepCode, SonarSource

deepCode is an AI-powered code review system, with
machine learning systems trained on billions of lines
of code from open-source projects

Available for Visual Studio Code, Sublime, IntelliJ IDEA, and Atom

SonarSource is a static analyzer which inspects
source code for bugs, code smells, and security vul-
nerabilities for multiple languages (C++, Java, etc.)

SonarLint plugin is available for Visual Code, Visual Studio Code, Eclipse, and IntelliJ
IDEA

see also A curated list of static analysis tool 48/63

https://www.deepcode.ai/
https://www.sonarsource.com/
https://www.sonarlint.org/
https://github.com/analysis-tools-dev/static-analysis

Code Testing

Code Testing

see Case Study 4: The $440 Million Software Error at Knight Capital

from: Kat Maddox (on Twitter)
49/63

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

Code Testing

Unit Test A unit is the smallest piece of code that can be logically isolated in a
system. Unit test refers to the verification of a unit. It supposes the
full knowledge of the code under testing (white-box testing)
Goals: meet specifications/requirements, fast development/debugging

Functional Test Output validation instead of the internal structure (black-box testing)
Goals: performance, regression (same functionalities of previous
version), stability, security (e.g. sanitizers), composability (e.g.
integration test)

50/63

Unit Testing 1/3

Unit testing involves breaking your program into pieces, and subjecting each piece to
a series of tests

Unit testing should observe the following key features:

• Isolation: Each unit test should be independent and avoid external interference
from other parts of the code

• Automation: Non-user interaction, easy to run, and manage
• Small Scope: Unit tests focus on small portions of code or specific

functionalities, making it easier to identify bugs

Popular C++ Unit testing frameworks:

catch, doctest, Google Test, CppUnit, Boost.Test

51/63

Unit Testing 2/3

52/63

Unit Testing 3/3

JetBrains C++ Developer Ecosystem 2022 53/63

https://www.jetbrains.com/lp/devecosystem-2022/cpp/

Test-Driven Development (TDD)

Unit testing is often associated with the Test-Driven Development (TDD)
methodology. The practice involves the definition of automated functional tests before
implementing the functionality

The process consists of the following steps:

1. Write a test for a new functionality
2. Write the minimal code to pass the test
3. Improve/Refactor the code iterating with the test verification
4. Go to 1.

54/63

Test-Driven Development (TDD) - Main advantages

• Software design. Strong focus on interface definition, expected behavior,
specifications, and requirements before working at lower level

• Maintainability/Debugging Cost Small, incremental changes allow you to catch
bugs as they are introduced. Later refactoring or the introduction of new features
still rely on well-defined tests

• Understandable behavior. New user can learn how the system works and its
properties from the tests

• Increase confidence. Developers are more confident that their code will work as
intended because it has been extensively tested

• Faster development. Incremental changes, high confidence, and automation
make it easy to move through different functionalities or enhance existing ones

55/63

catch 1/2

Catch2 is a multi-paradigm test framework for C++

Catch2 features
• Header only and no external dependencies
• Assertion macro
• Floating point tolerance comparisons

Basic usage:
• Create the test program
• Run the test

$./test_program [<TestName>]

• github.com/catchorg/Catch2
• The Little Things: Testing with Catch2 56/63

https://catch-lib.net
https://github.com/catchorg/Catch2/blob/master/docs/command-line.md
https://codingnest.com/the-little-things-testing-with-catch-2/

catch 2/2

define CATCH_CONFIG_MAIN // This tells Catch to provide a main()
include "catch.hpp" // only do this in one cpp file

unsigned Factorial(unsigned number) {
return number <= 1 ? number : Factorial(number - 1) * number;

}

"Test description and tag name"
TEST_CASE("Factorials are computed", "[Factorial]") {

REQUIRE(Factorial(1) == 1);
REQUIRE(Factorial(2) == 2);
REQUIRE(Factorial(3) == 6);
REQUIRE(Factorial(10) == 3628800);

}

float floatComputation() { ... }

TEST_CASE("floatCmp computed", "[floatComputation]") {
REQUIRE(floatComputation() == Approx(2.1));

}
57/63

Code Coverage 1/3

Code coverage is a measure used to describe the degree to which the source code of
a program is executed when a particular execution/test suite runs

gcov and llvm-profdata/llvm-cov are tools used in conjunction with compiler
instrumentation (gcc, clang) to interpret and visualize the raw code coverage
generated during the execution

gcovr and lcov are utilities for managing gcov/llvm-cov at higher level and
generating code coverage results

Step for code coverage:

• Compile with --coverage flag (objects + linking)
• Run the program / test
• Visualize the results with gcovr, llvm-cov, lcov

58/63

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://llvm.org/docs/CommandGuide/llvm-cov.html
https://gcovr.com/en/stable/index.html
https://github.com/linux-test-project/lcov

Code Coverage 2/3

program.cpp:
include <iostream>
include <string>

int main(int argc, char* argv[]) {
int value = std::stoi(argv[1]);
if (value % 3 == 0)

std::cout << "first\n";
if (value % 2 == 0)

std::cout << "second\n";
}

$ gcc -g --coverage program.cpp -o program
$./program 9
first
$ gcovr -r --html --html-details <path> # generate html
or
$ lcov --coverage --directory . --output-file coverage.info
$ genhtml coverage.info --output-directory <path> # generate html 59/63

Code Coverage 3/3

1: 4:int main(int argc, char* argv[]) {
1: 5: int value = std::stoi(argv[1]);
1: 6: if (value % 3 == 0)
1: 7: std::cout << "first\n";
1: 8: if (value % 2 == 0)

####: 9: std::cout << "second\n";
4: 10:}

60/63

Coverage-Guided Fuzz Testing

A fuzzer is a specialized tool that tracks which areas of the code are reached, and
generates mutations on the corpus of input data in order to maximize the code
coverage

LibFuzzer is the library provided by LLVM and feeds fuzzed inputs to the library via a
specific fuzzing entrypoint

The fuzz target function accepts an array of bytes and does something interesting with these
bytes using the API under test:

extern "C" int LLVMFuzzerTestOneInput(const uint8_t* Data,
size_t Size) {

DoSomethingInterestingWithMyAPI(Data, Size);
return 0;

}

61/63

https://llvm.org/docs/LibFuzzer.html

Code Quality

Linters - clang-tidy 1/2

lint: The term was derived from the name of the undesirable bits of fiber

clang-tidy provides an extensible framework for diagnosing and fixing typical
programming errors, like style violations, interface misuse, or bugs that can be deduced
via static analysis

$ cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
$ clang-tidy -p .

clang-tidy searches the configuration file .clang-tidy file located in the closest
parent directory of the input file

clang-tidy is included in the LLVM suite

62/63

https://clang.llvm.org/extra/clang-tidy

Linters - clang-tidy 2/2

Coding Guidelines:
• CERT Secure Coding Guidelines
• C++ Core Guidelines
• High Integrity C++ Coding Standard

Supported Code Conventions:
• Fuchsia
• Google
• LLVM

Bug Related:
• Android related
• Boost library related
• Misc
• Modernize
• Performance
• Readability
• clang-analyzer checks
• bugprone code constructors

.clang-tidy

Checks: 'android-*,boost-*,bugprone-*,cert-*,cppcoreguidelines-*,
clang-analyzer-*,fuchsia-*,google-*,hicpp-*,llvm-*,misc-*,modernize-*,
performance-*,readability-*' 63/63

	Debugging
	Assertions
	Execution Debugging
	Breakpoints
	Watchpoints / Catchpoints
	Control Flow
	Stack and Info
	Print
	Disassemble

	Memory Debugging
	valgrind
	Stack Protection

	Sanitizers
	Address Sanitizer
	Leak Sanitizer
	Memory Sanitizers
	Undefined Behavior Sanitizer

	Debugging Summary
	Compiler Warnings
	Static Analysis
	Code Testing
	Unit Testing
	Test-Driven Development (TDD)
	Code Coverage
	Fuzz Testing

	Code Quality
	clang-tidy

