
Modern C++
Programming

1. Introduction

Federico Busato

University of Verona, Dept. of Computer Science
2021, v3.08

Table of Context

1 A Little History of C/C++ Programming
Language

2 Areas of Application and Popularity

3 C++ Philosophy

4 Books and References

5 The Course

1/53

About Motivation 1/5

“When recruiting research assistants, I look at grades
as the last indicator. I find that imagination, ambition,
initiative, curiosity, drive, are far better predictors of
someone who will do useful work with me. Of course,
these characteristics are themselves correlated with high
grades, but there is something to be said about a student
who decides that a given course is a waste of time and
that he works on a side project instead.

Breakthroughs don’t happen in regular scheduled
classes, they happen in side projects. We want people who
complete the work they were assigned, but we also need
people who can reflect critically on what is genuinely
important”

Daniel Lemire, Prof. at the University of Quebec 2/53

About Motivation 2/5

Academic excellence is not a strong predictor
of career excellence

“Across industries, research shows that the correlation
between grades and job performance is modest in the first
year after college and trivial within a handful of years...
Academic grades rarely assess qualities like creativity, lead-
ership and teamwork skills, or social, emotional and politi-
cal intelligence. Yes, straight-A students master cramming
information and regurgitating it on exams. But career
success is rarely about finding the right solution to a
problem — it’s more about finding the right problem
to solve...”

3/53

About Motivation 3/5

“Getting straight A’s requires conformity. Having an
influential career demands originality.

This might explain why Steve Jobs finished high
school with a 2.65 G.P.A., J.K. Rowling graduated from
the University of Exeter with roughly a C average, and
the Rev. Dr. Martin Luther King Jr. got only one A in
his four years at Morehouse

If your goal is to graduate without a blemish on your
transcript, you end up taking easier classes and staying
within your comfort zone. If you’re willing to tolerate the
occasional B...You gain experience coping with failures
and setbacks, which builds resilience”

4/53

About Motivation 4/5

“Straight-A students also miss out socially. More time
studying in the library means less time to start lifelong
friendships, join new clubs or volunteer...Looking back, I
don’t wish my grades had been higher. If I could do it over
again, I’d study less”

Adam Grant, the New York Times

www.nytimes.com/2018/12/08/opinion/college-gpa-career-success.html

5/53

https://www.nytimes.com/2018/12/08/opinion/college-gpa-career-success.html

About Motivation 5/5

“Got a 2.4 GPA my first semester in college.
Thought maybe I wasn’t cut out for engineering. To-
day I’ve landing two spacecraft on Mars, and designing
one for the moon.

STEM is hard for everyone. Grades ultimately
aren’t what matters. Curiosity and persistence
matter”

Ben Cichy, Chief Software Engineer,
NASA Mars Science Laboratory

https://twitter.com/bencichy/status/1197752802929364992?s=20 6/53

https://twitter.com/bencichy/status/1197752802929364992?s=20

About Programming 1/2

“And programming computers was so fascinating. You
create your own little universe, and then it does what you
tell it to do”

Vint Cerf, TCP/IP co-inventor and Turing Award

“Most good programmers do programming not because
they expect to get paid or get adulation by the public, but
because it is fun to program”

Linus Torvalds, principal developer of the Linux kernel

“You might not think that programmers are artists,
but programming is an extremely creative profession. It’s
logic-based creativity”

John Romero, co-founder of id Software
7/53

About Programming 2/2

Creativity Programming is extremely creative. The ability to
perceive the problem in a novel ways, provide new and
original solutions. Creativity allows recognizing and
generating alternatives

Form of Art Art is the expression of human creative skills. Every
programmer has his own style. Codes and algorithms
show elegance and beauty in the same way of painting
or music

Learn Programming gives the opportunity to learn new things
everyday, improve own skills and knowledges

Challenge Programming is a challenge. A challenge against
yourself, the problem, and the environment 8/53

Knowledge-Experience Relation

9/53

A Little History of
C/C++
Programming
Language

The Assembly Programming Language

A long time ago, in a galaxy far,
far away....there was Assembly

• Extremely simple instructions
• Requires lots of code to do simple tasks
• Can express anything your computer

can do
• Hard to read, write
• ...redundant, boring programming,

bugs proliferation

main:
.Lfunc_begin0:

push rbp
.Lcfi0:
.Lcfi1:

mov rbp, rsp
.Lcfi2:

sub rsp, 16
movabs rdi, .L.str

.Ltmp0:
mov al, 0
call printf
xor ecx, ecx
mov dword ptr [rbp - 4], eax
mov eax, ecx
add rsp, 16
pop rbp
ret

.Ltmp1:

.Lfunc_end0:

.L.str:

.asciz "Hello World\n"

10/53

A Little History of C 1/3

In the 1969 Dennis M. Ritchie and Ken Thompson (AT&T, Bell Labs)
worked on developing a operating system for a large computer that could
be used by a thousand users. The new operating system was called UNIX

The whole system was still written in assembly code. Besides assembler
and Fortran, UNIX also had an interpreter for the programming language
B. A high-level language like B made it possible to write many pages of
code task in just a few lines of code. In this way the code could be produced
much faster then in assembly

A drawback of the B language was that it did not know data-types. (Ev-
erything was expressed in machine words). Another functionality that the
B language did not provide was the use of “structures”. The lag of these
things formed the reason for Dennis M. Ritchie to develop the program-
ming language C. In 1988 they delivered the final standard definition
ANSI C

11/53

A Little History of C 2/3

Dennis M. Ritchie, and Ken Thompson

#include "stdio.h"

int main() {
printf("Hello World\n");

} 12/53

A Little History of C 3/3

Areas of Application:

• UNIX operating system
• Computer games
• Due to their power and ease of use, C were used in the

programming of the special effects for Star Wars

Star Wars - The Empire Strikes Back

13/53

A Little History of C++ 1/3

The C++ programming language (originally named “C with
Classes”) was devised by Bjarne Stroustrup also an employee from
Bell Labs (AT&T). Stroustrup started working on C with Classes in
1979. (The ++ is C language operator)

The first commercial release of the C++ language was in October
of 1985

Bjarne Stroustrup 14/53

A Little History of C++ 2/3

The roots of C++

From:
“The Evolution of C++Past, Present, and Future”, B. Stroustrup, CppCon16

15/53

A Little History of C++ 3/3

16/53

About Evolution

“If you’re teaching today what you were
teaching five years ago, either the field is dead
or you are”

Noam Chomsky

17/53

Areas of Application
and Popularity

Areas of Application 1/2

• Operating systems: Windows, Android, OS X, Linux

• Artificial Intelligence: TensorFlow, Caffe, Microsoft
Cognitive Toolkit

• Image Editing: Adobe Premier, Photoshop, Illustrator

• Web browser: Firefox, Chrome, etc. + WebAssembly

• High-Performance Computing: drug developing and
testing, large scale climate models, physic simulations

• Embedded systems IoT, network devices (e.g. GSM),
automotive

18/53

Areas of Application 2/2

• Google uses C++ for web indexing

• Scientific computation: Data analysis at CERN/NASA*,
SETI@home, Folding@home

• Database: MySQL, ScyllaDB

• Compilers: LLVM, Swift compiler

• Video Games: Unreal Engine, Unity

• Entertainment: Movie rendering, virtual reality

... and many more

The flight code of the NASA Mars drone for the Perseverance Mission is
mostly written in C++ github.com/nasa/fprime

19/53

https://github.com/nasa/fprime

Most Popular Programming Languages
(IEEE Spectrum - 2020)

Link: Interactive: The Top Programming Languages 2020 20/53

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020

Most Popular Programming Languages (TIOBE - Nov. 2020)

Link: www.tiobe.com/tiobe-index/ 21/53

https://www.tiobe.com/tiobe-index/

Most Popular Programming Languages (Redmonk - Q3, 2020)

Link: redmonk.com 22/53

https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/

Why C++ is so Popular?

• Extreme performance
theoretically enables highest performance

• Allow writing low-level code
drivers, kernels, etc.

• Many support tools
debuggers, memory checkers, coverage, static
analysis, profiling, etc.

23/53

Why C++ is so Important?

The End of Historical Performance Scaling

Performance limitations influence algorithm design and
research directions 24/53

An Important Example... (AI Evolution)

25/53

Performance 1/3

8.23 21.47 21.96 22.1 26.61

300
360

660

780

0

100

200

300

400

500

600

700

800

900

C++ GO SWIFT JAVA Node.js PHP Ruby Perl Python3

Ex
ec

ut
io

n
TI

m
e

(S
)

Programming Language

N-BODY SIMULATION
P R O G R A M M I N G L A N G UA G E S P E R F O R M A N C E C O M PA R I S O N

26/53

Performance 2/3

from ”A New Golden Age for Computer Architecture“, J. L. Heneessey, D. A.
Patterson, 2019 27/53

Performance 3/3

Hello World

Language Execution Time

C (on my machine) 0.7 ms

C 2 ms

Go 4 ms

Crystal 8 ms

Shell 10 ms

Python 78 ms

Node 110 ms

Ruby 150 ms

jRuby 1.4 s

from Time to "hello world" on my machine
28/53

https://twitter.com/samsaffron/status/1227755695749001216?s=09

Performance/Expressiveness Trade-off

1

10

100

1,000

10,000

100,000

1,000,000

Assembly C C++ Java JS Python

IN
ST

RU
CT

IO
N

S
PE

R
LI

N
E

Mandelbrot Static Instructions per Line

29/53

Memory Usage

Memory usage comparison of the
Neighbor-Joining and global alignment programs

A comparison of common programming languages used in
bioinformatics (BMC Informatic)

30/53

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-82
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-82

Energy Efficiency

Energy Efficiency across Programming Languages:
greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf 31/53

http://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf

CO2 Production

The Ecological Impact of High-performance Computing in
Astrophysics - Nature 32/53

https://www.nature.com/articles/s41550-020-1208-y
https://www.nature.com/articles/s41550-020-1208-y

C++ Philosophy

C++ Philosophy 1/4

• Only add features if they solve an actual problem

• Compartmentalization is the key

• Allow the programmer full control if they want it

• Do not sacrifice performance except as a last resort

• Enforce safety at compile time whenever possible

33/53

C++ Philosophy 2/4

Zero Overhead Principle (zero-cost abstraction)

“it basically says if you have an abstraction it
should not cost anything compared to write the equiv-
alent code at lower level”

“so I have say a matrix multiply it should be written
in a such a way that you could not drop to the C level
of abstraction and use arrays and pointers and such
and run faster”

Bjarne Stroustrup

34/53

C++ Philosophy 3/4

Statically Typed Language

“The C++ compiler provides type safety and
catches many bugs at compile time instead of run time
(a critical consideration for many commercial applica-
tions.)”

www.python.org/doc/FAQ.html

• The type annotation makes the code more readable

• Promote compiler optimizations and runtime efficiency

• Allow users to define their own type system
35/53

http://www.python.org/doc/FAQ.html

C++ Philosophy 4/4

Predictable runtime (under constraints): no garbage
collector, no dynamic type system → real-time systems

Low resources: low memory and energy consumption →
restricted hardware platforms

Well suited for static analysis → safety critical software

Portability → Modern C++ standards are highly portable

36/53

Who is C++ for?

“C++ is for people who want to use hardware very
well and manage the complexity of doing that through
abstraction”

Bjarne Stroustrup

“a language like C++ is not for everybody. It is
generated via sharp and effective tool for professional
basically and definitely for people who aim at some
kind of precision”

Bjarne Stroustrup

37/53

Why C++ is so Difficult? 1/2

... and why teaching C++ as first programming language is
a bad idea?

C++ is the hardest language from students to master

• More languages in one
- Standard C/C++ programming
- Object-Oriented features
- Preprocessor
- Templates and Meta-Programming

• Huge set of features

• Worry about memory management

• Low-level implementation details: pointer arithmetics,
structure, padding, undefined behavior, etc.

• Frustrating : compiler/runtime errors (e.g. seg. fault) 38/53

Why C++ is so Difficult? 2/2

“C makes it easy to shoot yourself in the foot; C++ makes it
harder, but when you do it blows your whole leg off”

Bjarne Stroustrup, Creator of the C++ language

“The problem with using C++...is that there’s already a strong
tendency in the language to require you to know everything before
you can do anything”

Larry Wall, Creator of the Perl language

“Despite having 20 years of experience with C++, when I
compile a non trivial chunk of code for the first time without any
error or warning, I am suspicious. It is not, usually, a good sign”

Daniel Lemire, Prof. at the University of Quebec
39/53

Suggested Video

40/53

https://www.youtube.com/watch?v=uTxRF5ag27A

Books and
References

Suggested Books

Programming and
Principles using C++ (2nd)

B. Stroustrup, 2008

Professional C++ (5th)
S. J. Kleper, N. A. Solter,

2021

C++ Primer Plus (6th)
S. Prata, 2011

41/53

Advanced Books + CMake

C++ Templates: The
Complete Guide (2nd)
D. Vandevoorde, N. M.

Josuttis, D. Gregor, 2017

Effective Modern C++
S. Meyer, 2014

Professinal CMake: A
Practical Guide (8th)

C. Scott, 2020

42/53

Optimization Books

Hacker’s Delight (2nd)
H. S. Warren, 2016

Optimized C++
K. Guntheroth, 2014

43/53

Software Design Principles 1/2

Clean Code: A Handbook of Agile
Software Craftsmanship
Robert C. Martin, 2008

Clean Architecture
Robert C. Martin, 2017

44/53

Software Design Principles 2/2

Code Simplicity
M. Kanat-Alexander, 2012

A Philosophy of Software
Design

J. Ousterhout, 2018

Software Engineering at
Google: Lessons Learned
from Programming over

Time
T. Winters, 2020

45/53

References 1/3

(Un)official C++ references:

• en.cppreference.com

• www.cplusplus.com/reference

Tutorials:

• www.learncpp.com

• www.tutorialspoint.com/cplusplus

• en.wikibooks.org/wiki/C++

• yet another insignificant...programming notes

Other resources:

• stackoverflow.com/questions/tagged/c++

46/53

https://en.cppreference.com/w/
www.cplusplus.com/reference
www.learncpp.com
www.tutorialspoint.com/cplusplus
https://en.wikibooks.org/wiki/C%2B%2B_Programming
https://www3.ntu.edu.sg/home/ehchua/programming/index.html
https://stackoverflow.com/questions/tagged/c%2b%2b

References 3/3

News:
• isocpp.org (Standard C++ Foundation)
• cpp.libhunt.com/newsletter/archive
• www.meetingcpp.com/blog/blogroll/

Main conferences:
• www.meetingcpp.com (slides)
• cppcon.org (slides)
• isocpp.com conference list

Coding exercises and other resources:
• www.hackerrank.com/domains/cpp
• leetcode.com/problemset/algorithms
• open.kattis.com
• cpppatterns.com

47/53

https://isocpp.org/
https://cpp.libhunt.com/newsletter/archive
www.meetingcpp.com/blog/blogroll/
www.meetingcpp.com
https://meetingcpp.com/mcpp/slides/
https://cppcon.org
https://github.com/CppCon
https://isocpp.org/wiki/faq/conferences-worldwide
www.hackerrank.com/domains/cpp
https://leetcode.com/problemset/algorithms/
https://open.kattis.com/
https://cpppatterns.com/

The Course

The Course

Don’t forget: The right name of the course should
be “Introduction to Modern C++ Programming”

For many topics in the course, there are more than one book
devoted to presenting the concepts in detail

48/53

The Course

The primary goal of the course is to drive the student, who
has previous experience with C and object-oriented features,
to a proficiency level of C++ programming

Organization:
• 17 lectures
• More than 1,000 slides
• C++03 / C++11 / C++14 / C++17 / (C++20)

Roadmap:
• Review C concepts in C++ (built-in types, memory

management, preprocessing, etc.)
• Introduce object-oriented and template concepts
• Present how to organize the code and the main conventions
• C++ tools usage (debugger, static analysis, etc.)

49/53

What is/What is not

What the course is not:
• A theoretical course on programming
• A high-level concept description

What the course is:
• A practical course
• Prefer examples instead long descriptions
• Present many language features
• A “quite” advanced C++ programming language course

Prerequisites:
• Knowledge of C programming language
• Knowledge of object-oriented programming

50/53

Who I Am

Federico Busato, Ph.D.

• Research/Work interests:

- Parallel/High-Performance Computing
- Graph Algorithms
- Linear Algebra
- Code Optimization

• Current Experience:
Senior Software Engineer at Nvidia
(California, USA) | CUDA Mathematical Libraries

Lead software engineer of the cuSPARSE library
(+ recruiting)
https://docs.nvidia.com/cuda/cusparse/index.html

51/53

https://twitter.com/fedebusato
https://docs.nvidia.com/cuda/cusparse/index.html

A Little Bit about My Work 1/2

The cuSPARSE library contains a set of basic linear
algebra subroutines used for handling sparse matrices
(matrix-matrix multiplication, triangular solver, etc.)
on GPU devices
cuSPARSE is part of the CUDA Toolkit (150M down-
loads every years)

cuSPARSE users:
• Industrial (Google, Facebook, DoE, LLNL, etc.)
• Academic (student/researchers/national laboratories)

cuSPARSE applications:
• High-performance numerical solver
• Physic, Simulation, EDA, CAD, Computer Graphics
• (recently) AI/Deep learning 52/53

A Little Bit about My Work 2/2

The library:

• More than 300,000 lines of code

• Must provide high performance

• Works on main 32/64-bit OS (Windows, Android, Linux, Mac,
etc.)

• Works on main CPU architectures (Intel, AMD, ARM, IBM,
etc.), and compilers

• Works on all GPU architectures

• Comprises host (C/C++), device code (CUDA, C++
extension) + assembly, perl, fortran, makefile, etc.

• Supports half-precision floating point, complex numbers, etc.
53/53

“What I cannot create,
I do not understand”

Richard P.
Feynman

53/53

“The only way to learn a
new programming language
is by writing programs in it”

Dennis Ritchie
Creator of the C programming language

53/53

	A Little History of C/C++ Programming Language
	Areas of Application and Popularity
	C++ Philosophy
	Books and References
	The Course

