Modern C++
Programming

2. Basic CONCEPTS I

Federico Busato

University of Verona, Dept. of Computer Science
2018, v1.0

= Before Start

- What compiler?
- What editor/IDE?
- How to compile?

= Hello World
= 1/O Stream

- cout/cin
- Filestream

(ifstream/ofstream)
= C+4++ Primitive Types
- Built-in types
- size_t, void, auto, nullptr
- Conversion rules

Floating Point

- Floating point representation
- Floating point issues

- Floating point comparison

- Overflow/Underflow

Strongly Typed Enumerators
Math Operators

Statement and Control Flow

- Loop

- Range Loop

- Undefined behavior
- goto

1/48

What C++ compiler should | use?

Popular (free) compilers:
= Microsoft Visual C++4 (MSVC) is the compiler offered by Microsoft
= The GNU Compiler Collection (GCC) contains very popular C++ Linux
compiler
= Clang is a C++ compiler based on LLVM Infrastructure available for
linux/windows/apple (default) platforms

Suggested compiler: Clang

= Faster compiles, low memory use, and in general faster code (compared
to GCC/MSVC). [compiler comparison link]

= Expressive diagnostics (examples and propose corrections)

= Strict C++ compliance. GCC/MSVC compatibility (inverse direction is
not ensured)

= Includes many very useful tools: memory sanitizer, static code analyzed,
automatic formatting, linter (clang-tidy), etc.

= Easy to install: releases.llvm.org
2/48
C++ compiler features support: en.cppreference.com/w/cpp/compiler_support

www.phoronix.com
releases.llvm.org
en.cppreference.com/w/cpp/compiler_support

What editor/IDE compiler should | use?

Popular C++ IDE (Integrated Development Environment) and
editors:

= Microsoft Visual C++

= QT-Creator (link). Fast (written in C++), simple

= Clion (link). (free for student). Most powerful IDE, but may be slow
(written in java) and a lot of options may make it not intuitive

= Atom (link). Standalone editor oriented for programming. A lot of
useful plugins and modular

= Sublime Text editor (link). Standalone editor oriented for program-
ming. Faster than Atom, but less complete

Not suggested:

= Notepad, Gedit, and related editors. Lack of support for pro-

gramming e

www.sublimetext.com

How to compile?

Compile C++ programs:

g++ <program.cpp> -0 program

Compile C4++11 programs:

g++ -std=c++11 <program.cpp> -0 program

- requires g++ version > 4.8.1

- requires clang++ version > 3.3

Compile C++14 programs:

clang++ -std=c++14 <program.cpp> -0 program

- requires g++ version > 5

- requires clang++ version > 3.4

4/48

Hello World

C code with printf: C++ code with streams:
#include <stdio.h> #include <iostream>
int main() { int main() {
printf ("Hello World!\n"); std::cout << "Hello World!\n";
} }
printf prints on standard output cout : represent the standard output stream

5/48

Hello World

The previous example can be written with the global std
namespace:

#include <iostream>

using namespace std;

int main() {

cout << "Hello World!\n";

6/48

/O Stream

1/O Stream (std:cout)

std::cout is an example of output stream. Data is redirected to

a destination, in this case the destination is the standard output

C:

CH++:

#include <stdio.h>

int main() {

int a = 4;
double b = 3.0;
charx ¢ = "hello";

printf ("%d %f %s\n", a, b, c);

#include <iostream>

int main() {

int a = 4;

double b = 3.0;

charx ¢ = "hello";

std::cout << a << " " <K< b << " " << ¢ << "\n";

} 7/48

1/O Stream (Why should we prefer 1/0 stream?) 2/3

» Type-safe: The type of object pass to /O stream is known
statically by the compiler. In contrast, printf uses "%" fields
to figure out the types dynamically

= Less error prone: With |0 Stream, there are no redundant
"%" tokens that have to be consistent with the actual objects
pass to 1/O stream. Removing redundancy removes a class of
errors

= Extensible: The C++ 10 Stream mechanism allows new user-
defined types to be pass to /O stream without breaking existing
code

= Comparable performance: If used correctly may be faster

than C 1/O (printf, scanf, etc)
8/48

I/O Stream (Common C errors)

Forget the number of parameters:

printf ("long phrase %d long phrase 7%d", 3);

Use the wrong format:

int a = 3;
...many lines of code...
printf (" %f", a);

The "%c" conversion specifier does not automatically skip any leading
whitespace:

scanf ("%d", &varil);
scanf (" %c", &var2);

9/48

C++ Primitive Types

Builtin Types (range) 1/9

Type Size (bytes) Range Fixed width types
bool 1 true, false
char | 1 -127 to 127
signed char 1 -128 to 127 int8_t
unsigned char 1 0 to 255 uint8_t
short 2 -2'5 t0 2151 int16.t
unsigned short 2 0 to 2'%-1 uintl6_t
int 4 =231 10 2311 int32_t
unsigned int 4 0 to 2°%-1 uint32_t
long int 4/8*
long unsigned int 4/8"
long long int 8 =25 to 2%-1 int64_t
long long unsigned int 8 0 to 2%-1 uint64_t
+1.18 x 107* to
float (IEEE 754) 4 134 % 10+%8
—308
double (IEEE 754) 8 £223 1077 to

+1.8 x 101308

10/48
* 4 bytes instead 8 bytes in Win64 systems, one-complement

Builtin Types

C++ provides also long double (no IEEE-754) of size 8/12/16.

Signed types:

Signed Type short name
signed int int
signed long int long

signed long long int long long

For other details see:
en.cppreference.com/w/cpp/language/types
en.cppreference.com/w/cpp/types/integer

11/48

en.cppreference.com/w/cpp/language/types
en.cppreference.com/w/cpp/types/integer

Builtin Types 3/9

C++ provides fixed width integer types. They have the same size

on any architecture (#include <cstdint>)

int8_t, uint8_t, intl6_t, uintl6_t, int32_t, uint32_t, intb64_t, uintb4_t

Warning: |/O Stream interprets uint8 t and int8 t as char
and not as integer values

int8_t var;

std::cin >> var; // read '2'

std::cout << var; // print '2'
std::cout << var * 2; // print 100 !!

12/48

Builtin Types

int*_t types are not “real” types, they are merely typedefs to

appropriate fundamental types

C++ standard does not ensure an one-to-one mapping:
= There are five distinct fundamental types (char , short, int,

long, long long)

= There are four int*_ t overloads (int8_t , intl6_t, int32.t,
and int64.t)

#include <cstddef>

void f(int8_t x) {}
void f(int16_t x) {3}
void f(int32_t x) {}
void f(int64_t x) {}

int main() {
int x = 0;
f(x); // compile error!! under 32-bit ARM GCC

} // "int" is not mapped to int*_t type in this (very) particular case 13/48

Builtin Types (suffix and prefi

Builtin types suffix:

Type short name Suffix example
unsigned int unsigned 3u
long int long 1 81
long unsigned long unsigned ul 2ul
long long int long long 11 411
long long unsigned int 1long long unsigned ull Tull
float £ 3.0f
double 3.0

Builtin types representation prefix:

Representation Prefix example

Binary C++14 Ob 0b010101
Octal 0 0308
Hexadecimal Ox or 0X OxFFAO010

14/48

Builtin Types (size_t type) 6/9

size_t is a data type capable of storing the biggest representable

value on the current architecture

= Defined in <cstddef>

= It is an unsigned integer type (of at least 16 bit)

= |In common linux implementations it is 4-byte on 32-bit
architectures and 8-byte on 64-bit architectures

= It is commonly used for array indexing and loop counting

15/48

Builtin Types (void keyword)

Note: void is an incomplete type (not defined) without a values
In C sizeof (void) == 1 (GCC), while in C++ sizeof (void)
does not compile!!

int main() {
// sizeof(void); // compile error!!
}

16/48

Builtin Types (nullptr keyword)

C++11 introduces the new keyword nullptr to represent null

pointers

int* pl = NULL; // ok, equal to int* pl = 0
int* p2 = nullptr; // ok

int nl = NULL; // ok, we are assigning O to nl

// int n2 = nullptr; // error! we are assigning a null pointer
// to an integer variable

// int* p2 = true ? 0 : nullptr; // incompatible types

Remember: nullptr is not a pointer, but an object of type
nullptr_t — safer

17/48

Builtin Types (auto keyword) 9/9

The auto keyword (C+-+11) specifies that the type of the variable
will be automatically deduced by the compiler (from its initializer)

auto a = 1 + 2; // 1 is int, 2 is int, 1 + 2 4is int!
// -> 'a' must be int

auto b =1 + 2.0; // 1 4is int, 2.0 is double. 1 + 2.0 is double
// -> 'b' must be double

auto keyword may be very useful for maintainability.

for (auto i = k; i < size; i++)

On the other hand, it may make the code less readable if
excessively used because of type hiding

18/48

Conversion rules

Implicit type conversion rules (applied in order) :
&: any operations (*, +, /, -, %, etc.)

(a) Floating point promotion
floating type ® integer_type = floating type

(b) Size promotion
small _type ® large type = large_type

(c) Sign promotion
signed_type ® unsigned_type — unsigned_type

19/48

Conversion issues

Common errors:
Integers are not floating points!
int b=7;
float a = b / 2; // a = 3 not 3.5!!
b / 2.0; // again a = 3 not 3.5!!

int a

Implicit conversion can be expensive!

int b = 5;

int a = 3.5 * b; // 3.5 is double --> useless overhead!!

//equal to: int a = (int) (3.5 * (double) b)

Integer type are more accurate than floating types for large numbers!!
cout << 16777217; // print 16777217

cout << (int) 16777217.0f; // print 16777216!!

float numbers are different from double numbers!

cout << (1.1 '= 1.1f); // print true !!! 20/48

Overflow/Underflow

Detect overflow/underflow for floating point types is easy (finf).

Detect overflow/underflow for unsigned integral types is not trivial !!

bool isAddOverflow(unsigned a, unsigned b) {
return (a + b) < a || (a + b) < b;

}

bool isMulOverflow(unsigned a, unsigned b) {
unsigned x = a * b;
return a != 0 & (x / a) !'= b;

Overflow /underflow for signed integral types is not defined !!

#include <limits>

unsigned a = std::numeric_limits<unsigned>::max(); // mazimum value
unsigned b = b + 1; // b =0

int c = std::numeric_limits<int>::max(); // mazimum value

int d=c+1; // d can be any int value!! 21/48

Floating Point

Floating Point

In general, C/C++ adopt IEEE754 floating-point standard.
= Single precision (32-bit) (float)

Sign Exponent (or base) Mantissa (or significant)
1-bit 8-bit 23-bit

= Double precision (64-bit) (double)

Sign Exponent (or base) Mantissa (or significant)
1-bit 11-bit 52-bit

Check if the actual C++11 implementation adopts IEEE754 standard:

#include <limits>

std: :numeric_limits<float>::is_iec559; // should return true

std: :numeric_limits<double>::is_iecb59; // should return true

22/48

Floating point (Exponent Bias)

In IEEE 754 floating point numbers, the exponent value is offset
from the actual value by the exponent bias

= The exponent is stored as an unsigned value suitable for comparison

= Floating point values are lexicographic ordered

= For a single-precision number, the exponent is stored in the range
[1,254] (0 and 255 have special meanings), and is biased by
subtracting 127 to get an exponent value in the range [—126, +127]

= Example
0 10000111 11000000000000000000000
+ o(135-127) _ 98 L4l _0540.25=0.75""3"1.75

+1.75 % 28 = 448.0 23/48

Floating point (normal/denormal)

Normal number

A normal number is a floating point number that can be

represented without leading zeros in its significant

Denormal number

Denormal (or subnormal) numbers fill the underflow gap around
zero in floating-point arithmetic. Any non-zero number with
magnitude smaller than the smallest normal number is subnormal

If the exponent is all Os, but the fraction is non-zero (else it would
be interpreted as zero), then the value is a denormal number

Check if a floating-point number is normal /denormal in C++11:

#include <cmath>

isnormal (T value); // true if normal, false otherwise

Floating point online tool: www.h-schmidt.net/FloatConverter/IEEE754.html 24

www.h-schmidt.net/FloatConverter/IEEE754.html

Floating point (normal/denormal)

Why denormal number make sense:

00000001 00001000 00010000 00011001
100%0000 00000000 \:)0000111 / 0000{1\1 l 00020001 00011000 l
- L 000000008—e—0—0—0—0—e—0 A ——. .
i 0 A\ 74 o i
-L L 9£ 178 L 1781 98 L 918
128 128 128 128 64 64 32 32 16 16

The problem: distance values from zero

00000000 00000001 00001000 00010000 00011001
or 10000000 / 00000111 00001111 l 00010001 00011000
A 7\ AR b
Oor 18 w1 178 1 918 1o
-0 64 64 64 64 32 32 16 16
Hegalte denormalized oSty
normalized normalized
numbers
numbers numbers
25/48

cit: www.toves.org/books/float/

www.toves.org/books/float/

Floating point (special values)

= £ infinity
* 11111111 00000000000000000000000

= NaN (mantissa # 0)

* 11111111 sk s ok ok 3k ok ok ok 3 ok ok 3k ok ok 3k o ok ok 3k ok ok sk K

* 00000000 00000000000000000000000

= Denormal number (< 27126)(minimum: 1.4 x 10~%)

B 00000000 sk ok ok ok o ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok

= Minimum (normal) (£1.17549 % 10~38)
* 00000001 00000000000000000000000

» Lowest/Largest (+3.40282 % 10738)

* 11111110 1111111142142 1111111111
26/48

Floating point issues

The floating point precision is finite!

cout
cout
cout

cout

<< setprecision(20);

<< 3.33333333f; // print 3.333333254!!
<< 3.33333333; // print 3.333333333
<< (0.1 + 0.1 + 0.1 +0.1+0.1+0.1);
// print 0.59999999999999998

Floating point arithmetic is commutative, but not associative
and not reflexive (see NaN) !!

cout << 0.1 + (0.2 + 0.3) == (0.1 + 0.2) + 0.3; // print false

Floating point type has special values:

cout
cout
cout
cout

cout

<<
<<
<<
<<
<<

0/ 0; // undefined behavior

0.0 / 0.0; // print “nan'

5.0 / 0.0; // print “dinf’

-5.0 / 0.0; // print “—inf'

((5.0 / 0.0) == ((5.0 / 0.0) + 9999999.0) // print true 27/48

Floating point granularity

° ® e single-precision float |
2 ° e e integer 1

222 @

values per integer
Ny o NN N
(s} =] = ~ (=] = o
®
®
°
®
°
®
®
1 1 1 1 1 1

]
tn
T
L]
L

21 2‘4 2‘7 2‘10 2]3 215 2.‘19 2‘22 2‘25 228 23]
value magnitude

Intersection ~ 16,777,217 28/48

NaN properties

In the IEEE754 standard, NaN (not a number) is a numeric data
type value representing an undefined or unrepresentable value

Operations generating NaN:

= Operations with a NaN as at least one operand
= +00F 00

= 0-00

= 0/0,00/c0

= x| x<0

= log(x)|x<0

= sin~!(x),cos7I(x) | x < —lorx>1

Comparison: (NaN == x) — false, for every x
(NaN == NaN) — false!! 20/48

Floating Point - Useful Functions

where T is a numeric type C++11

#include <cmath>

bool isnormal(T value); // true if normal, false otherwise

bool isnan(T value) // returns true if value is nan, false otherwise
bool isinf(T value) // returns true if value is Linf, false otherwise

bool isfinite(T value) // returns true if value is not nan or infinite,
// false otherwise

T 1dexp(T x, p) // multiplies a number by 2 raised to a power.

// returns x x 2P
int ilogb(T value) // exztracts exponent of the number

30/48

Floating point comparison

The problem

cout << (0.11f + 0.11f < 0.22f); // print true!!
cout << (0.1f + 0.1f > 0.2f); // print true!!

Do not use absolute error margins!!

bool areFloatNearlyEqual(float a, float b) {
if (std::abs(a - b) < epsilon); // epsilon is fized by the user
return true

return false;

}

Problems:
= Fixed epsilon “looks small” but, it could be too large when the numbers
being compared are very small

= |If the compared numbers are very large, the epsilon could end up being

smaller than the smallest rounding error, so that the comparison always
returns false. 31/48

Floating point comparison

Solution: Use relative error Lbbl <e

bool areFloatNearlyEqual(float a, float b) {
if (std::abs(a - b) / b < epsilon); // epsilon is fized
return true

return false;

Problems:
= a=0, b=0 The division is evaluated as 0.0/0.0 and the whole if
statement is (nan < espilon) which always returns false

= b=0 The division is evaluated as abs(a) /0.0 and the whole if state-
ment is (+inf < espilon) which always returns false
= a and b very small. The result should be true but the division

by b may produces wrong results

= It is not commutative. We always divide by b
32/48

Floating point comparison

|a—b|) o

Possible solution: —F——
— max(|a,|b]

bool areFloatNearlyEqual(float a, float b) {
const float epsilon = <user_defined>
float abs_a = std::abs(a);
float abs_b = std::abs(b);

if (a == b) // a=0,b=0 and a = *oo, b = 00

return true;

float diff = std::abs(a - b);

return (diff / std::max(abs_a, abs_b)) < epsilon; // relative error

References:
[1] floating-point-gui.de/errors/comparison

[2] www.cygnus-software.com/papers/comparingfloats
33/48

floating-point-gui.de/errors/comparison
www.cygnus-software.com/papers/comparingfloats/Comparing%20floating%20point%20numbers.htm

Floating Point (In)Accuracy

Machine epsilon
Machine epsilon ¢ (or machine accuracy) is defined to be the
smallest number that can be added to 1.0 to give a number other

than one.

IEEE 754 Single precision : ¢ = 1.17549435 % 1038

#include <limits>
T std::numeric_limits<T>:: epsilon() // returns the machine epsilon

Truncation error

A number x that is Truncated (or Chopped) at the m*" digit means
that all n — m digits after the n*" digit are removed.

= Machine floating-point representation of x is denoted fl(x)
The relative error as a result of truncation is

fl(x) — x 1
X 2

1
< —¢ fl (X) = X(l +5) o] < 55 34/48

Minimize Error Propagation

Prefer multiplication/division than addition/subtraction
Scale by a power of two is safe

Try to reorganize the computation to keep near numbers
with the same scale (maybe sorting numbers)

Consider to put a zero very small number (under a
threshold). Common application: iterative algorithms

Switch to log scale. Multiplication becomes Add, and
Division becomes Subtraction

Suggest reading:
D. Golberg, "What Every Computer Scientist Should Know About
Floating-Point Arithmetic, 1991, link

35/48

docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Minimize Error Propagation

HEY, CHECK T OUT: @™~17 15 | DURING A COMPETITION, T | THATS
YEAH. THATS HOWI | OUR TEAM THAT o7-7r
GOT KICKED ouT OF | WASA STANDARD TEST OF FLOATING-
THE ACM IN COLLEGE. 4 POINT HANDLERS -- IT WOULD
(OME OUT To 20 UNLESS
THEY HAD ROUNDING ERRORS.

SEETEE

YEAH, THEY DUG THRoUGH
HALF THEIR ALGORITHMS
LOOKING FOR THE BUG
BEFORE THEY FIGURED
IT OUT.

36/48

Enumerators

Enumerated types

Enumerator

An enumerator (enum) is a data type that groups a set of
named integral constants

enum color_t { BLACK, BLUE, GREEN = 2 };

color_t color = BLUE;
cout << (color == BLACK); // print false

The problem:

enum color_t { BLACK, BLUE, GREEN };
enum fruit_t { APPLE, CHERRY };

color_t color = BLUE;
fruit_t fruit = APPLE;
cout << (color == fruit); // gemerally true, but undefined !!
// and, most importantly, does the match between a color and

// a fruit makes any sense? 37/48

Enumerated types (strongly typed)

C++11 introduces the enum class (scoped enum) data type
that are not implicitly convertible to int

Type safe enumerator: enum class
Syntax: <enum class>::<enum value>

enum class color_t { BLACK, BLUE, GREEN = 2 };
enum class fruit_t { APPLE, CHERRY };

color_t color = color_t::BLUE;
fruit_t fruit = fruit_t::APPLE;

// cout << (color == fruit); // compile error!!
/7 we are trying to match colors with fruits
// BUT, they are different things entirely

// int a = color_t::GREEN; // compile error!!

38/48

Enumerated types (tips)

= Strongly typed enumerators can be compared:

enum class Colors { RED = 1, GREEN = 2, BLUE = 3 };
cout << (Colors::RED < Colors::GREEN); // print true

= Strongly typed enumerators do not support other operations:

enum WColors { RED = 1, GREEN = 2, BLUE
enum class SColors { RED = 1, GREEN = 2, BLUE

3 };
8 g

int v = RED + GREEN; // ok
// int v = SColors::RED + SColors::GREEN; // compile error!

= The size of enum class can be set:

#include <cstdint>
enum class Colors : int8_t { RED = 1, GREEN = 2, BLUE = 3 };

39/48

Enumerated types (tips)

= Strongly typed enumerators can be converted:

int a = (int) color_t::GREEN; // ok

= Enum class objects should be always initialized:

enum class SColors { RED = 1, GREEN = 2, BLUE = 3 };

int main() {

SColors my_color; // my_color maybe 0!!

40/48

Math Operators

Math Operators (Precedence)

Precedence Operator Description Associativity
q att aee Suffix/postfix increment and Left-to-right
decrement
; tra —-n Prefix increment and Right-to-left
decrement
o atb a/b alb Multi.plication, division, and Left-to-right
remainder
4 atb a-b Addition and subtraction Left-to-right
5 < > Bitwise left shift and right shift Left-to-right
6 < <= > >= Relational operators Left-to-right
7 == |I= Equality operators Left-to-right
8 & Bitwise AND Left-to-right
9 - Bitwise XOR Left-to-right
10 | Bitwise OR Left-to-right
11 && Logical AND Left-to-right
12 [l Logical OR Left-to-right

41/48

Math Operators (Precedence)

In general:

= Unary operators have higher precedence than binary
operators

= Standard math operators (+, *, etc.) have higher
precedence than comparison, bitwise, and logic operators

= Comparison operators have higher precedence than bitwise

and logic operators

= Bitwise operators have higher precedence than logic operators

Full table

en.cppreference.com/w/cpp/language/operator_precedence

42/48

en.cppreference.com/w/cpp/language/operator_precedence

Math Operators (Precedence)

Examples:

a+ b x 4; // a + (b * 4)
a*xb/chd; // ((a *b) /c)Jad
a+b<3>>4; // (a+b)<(3>4)
a & b&k c |l d; // (a&& b&&c) /] d
alb&clle&d; // ((al (b&c) |l (e&& d)

Important: sometimes parenthesis can make expression worldly...
but they can help!

43/48

Statements and Control
Flow

Statements and Control Flow

= Assignment operations and control flow (special cases):

int a;

int b = a =3; // (a = 3) return value 3

if (b = 4) // it is not an error, but BAD programming
if (<true expression> || array[-1] == 0)

. // no error!! even though index is -1

// left-to-right short-circuiting evaluation

= C++ allows “in loop” definitions:

for (int i = 0, k = 0; i < 10; i++, k += 2)

= Jump statements:
for (int i = 0; i < 10; i++) {
if (<condition>)
break; // exit from the loop
if (<condition>)
continue; // continue with a new iteration

return; // exit from the function 44/48

Statements and Control Flow (Other Syntax)

= Infinite loop:
e (55)

= Range loop: C++11
int values[] = { 3, 2, 1 };

for (int v : values)

cout << v << " "5 // print: 3 2 1
char letters[] = "abcd";
for (auto c : letters)

cout << ¢ << " "5 // print: a b c d

= Ternary operator: <cond> ? <expressionl> : <expression2>
<expressionl> and <expression2> must return a value of the same type
int value = (a ==b) 2 a : (b==c ? b : 3); // nested

45/48

Statements and Control Flow (Undefined Behavior)

Expressions with undefined (implementation-defined) behavior:

int i = 0;

i=++4i + 2; // undefined behavior until C++11,
// otherwise 1 = 3

i=0;

i = i++ + 2; // undefined behavior until C++17,

// modern compilers (clang, gcc): © = 3

f(i =2, i=1); // undefined behavior until C++17

// modern compilers (clang, gcc): i = 2

= 0;
ali] = i++; // undefined behavior until C++17
// modern compilers (clang, gcc): al[1] = 1
f(++i, ++i); // undefined behavior
i = ++i + i++; // undefined behavior

n = ++i + i; // undefined behavior e

Statements and Control Flow (goto)

When it is useful:

bool flag = true;
for (int i = 0; i < N && flag; i++) {
for (int j = 0; j < M && flag; j++) {
if (<condition>)

flag = false;

}

become:

for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
if (<condition>)
goto LABEL;

LABEL: ; // can be also implemented as a function 47/48

Statements and Control Flow (goto)

T COULD RESTRUCTURE
THE PROGRAMTS FLOW
CR USE CNE LITTLE

'GOTO:\ INSTEAD.

ﬁ%

EH, SCREW GQOD PRACTICE.

HOW BAD CAN IT BE?

\ goto main_sub3;

: I? *CONPILE®

48/48

	I/O Stream
	C++ Primitive Types
	Floating Point
	Enumerators
	Math Operators
	Statements and Control Flow

