
Modern C++ Programming
16. Code Optimization I

Federico Busato

University of Verona, Dept. of Computer Science
2021, v3.09

Table of Context

1 General Concepts
Asymptotic Complexity
Optimization Cycle
Ahmdal Law
Throughput, Bandwidth, Latency
Performance Bounds
Arithmetic Intensity
Instruction-Level Parallelism
Little’s Law
Thread-Level Parallelism
Data-Level Parallelism
Roofline Model
Time-Memory Trade-off

1/99

Table of Context

2 I/O Operations
printf

Memory Mapped I/O
Speed Up Raw Data Loading

3 Locality and Memory Access Patterns
Memory Hierarchy
Memory Locality
Internal Structure Alignment
External Structure Alignment

2/99

Table of Context

4 Arithmetic
Data Types
Operations
Conversion
Floating-Point
Compiler Intrinsic Functions
Value in a Range
Lookup Table

5 Control Flow
Loop Hoisting
Loop Unrolling
Branch Hints
Recursion

3/99

Table of Context

6 Functions
Function Call Cost
Argument Passing
Function Optimizations
Function Inlining
Pointers Aliasing

7 C++ Objects
C++ Objects Optimizations

4/99

Preface 1/3

Reasons for optimizing:

• In the first decades, the computer performance was extremely limited. Low-level
optimizations were required to fully exploit the hardware

• Modern systems provide much higher performance, but we cannot more rely on
hardware improvement on short-period

5/99

Preface 2/3

Forget Moore’s Law. Algorithms drive technology forward
“Algorithmic improvements make more efficient use of existing resources and allow

computers to do a task faster, cheaper, or both. Think of how easy the smaller MP3
format made music storage and transfer. That compression was because of an algorithm.”

• Forget Moore’s Law
• What will drive computer performance after Moore’s law?

6/99

https://stackoverflow.blog/2021/03/24/forget-moores-law-algorithms-drive-technology-forward/
https://science.sciencemag.org/content/368/6495/eaam9744

Preface 3/3

from ”Speed is Found in the Minds of People“,
Andrei Alexandrescu, CppCon 2019 7/99

References

• Optimized C++, Kurt Guntheroth

• Awesome C/C++ performance optimization resources, Bartlomiej Filipek

• Optimizing C++, wikibook

• Optimizing software in C++, Agner Fog

• Hacker Delight (2nd), Henry S. Warren

8/99

http://shop.oreilly.com/product/0636920038030.do
https://github.com/fenbf/AwesomePerfCpp
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B
https://www.agner.org/optimize/optimizing_cpp.pdf
https://www.hackersdelight.org/

General Concepts

Asymptotic Complexity 1/2

The asymptotic analysis refers to estimate the execution time or memory usage as
function of the input size (the order of growing)

The asymptotic behavior is opposed to a low-level analysis of the code
(instruction/loop counting/weighting, cache accesses, etc.)

Drawbacks:

• The worst-case is not the average-case

• Asymptotic complexity does not consider small inputs (think to insertion sort)
• The hidden constant can be relevant in practice
• Asymptotic complexity does not consider instructions cost and hardware details

9/99

Asymptotic Complexity 2/2

Be aware that only real-world problems with a small asymptotic complexity or small
size can be solved in a “user” acceptable time

Three examples:

• Sorting : O (n log n), try to sort an array of one billion elements (4GB)

• Diameter of a (sparse) graph: O
(
V 2)

, just for graphs with a few hundred
thousand vertices it becomes impractical without advanced techniques

• Matrix multiplication: O
(
N3)

, even for small sizes N (e.g. 8K, 16K), it requires
special accelerators (e.g. GPU, TPU, etc.) for achieving acceptable performance

10/99

Optimization Cycle 1/3

“If you’re not writing a program, don’t use a programming language”
Leslie Lamport, Turing Award

“Inside every large program is an algorithm trying to get out”
Tony Hoare, Turing Award

“Premature optimization is the root of all evil”
Donald Knuth, Turing Award

“Code for correctness first, then optimize!”

“First solve the problem, then write the code”
11/99

Optimization Cycle 2/3

12/99

Optimization Cycle 3/3

• One of the most important phase of the optimization cycle is the application
profiling for finding regions of code that are critical for performance (hotspot)

• Expensive code region (absolute)
• Code regions executed many times (cumulative)

• Most of the times, there is no the perfect algorithm for all cases (e.g.
insertion, merge, radix sort). Optimizing refers also in finding the correct
heuristics for different program inputs instead of modifying the existing code

13/99

Ahmdal Law 1/2

Ahmdal Law
The Ahmdal law expresses the maximum improvement possible by improving a
particular part of a system

Observation: The performance of any system is constrained by the speed or capacity of
the slowest point

Improvement (S) = 1

(1− P) + P
S

P : portion of the system that can be improved
S : improvement factor

14/99

Ahmdal Law 2/2

note: s is the portion of the system that cannot be improved 15/99

Throughput, Bandwidth, Latency

The throughput is the rate at which operations are performed

Peak throughput:
(CPU speed in Hz) x (number of CPU cores) x
(CPU instruction per cycle) x (number of CPUs per node)

The memory bandwidth is the amount of data that can be loaded from or stored into
a particular memory space

Peak bandwidth:
(Frequency in Hz) x (Bus width in bit / 8) x (Pump rate (memory type multiplier))

The latency is the amount of time needed for an operation to complete
16/99

Performance Bounds 1/2

The performance of a program is bounded by one or more aspects of its computation.
This is also strictly related to the underlying hardware

• Memory-bound. The program spends its time primarily in performing memory
accesses. The progress is limited by the memory bandwidth (sometime
memory-bound also refers to the amount of memory available)

• Compute-bound. The program spends its time primarily in computing arithmetic
instructions. The progress is limited by the speed of the CPU

17/99

Performance Bounds 2/2

• Latency-bound. The program spends its time primarily in waiting the data are
ready (instruction/memory dependencies). The progress is limited by the latency
of the CPU/memory

• I/O Bound. The program spends its time primarily in performing I/O operations
(network, user input, storage, etc.). The progress is limited by the speed of the
I/O subsystem

18/99

Arithmetic Intensity 1/2

Arithmetic Intensity
Arithmetic/Operational Intensity is the ratio of total operations to total data
movement (bytes or words)

The naive matrix multiplication algorithm requires N3 · 2 floating-point operations
(multiplication + addition), while it involves

(
N2 · 4B

)
· 3 data movement

19/99

Arithmetic Intensity 2/2

R = ops
bytes = 2n3

12n2 = n
6

which means that for every byte accessed, the algorithm performs n
6 operations →

compute-bound

N Operations Data Movements Ratio Exec. Time

512 268 · 106 3.1 MB 85 2ms
1024 2.1 · 109 12.6 MB 170 21ms
2048 17.2 · 109 50 MB 341 170ms
4096 137 · 109 201 MB 682 1.3s
8192 1110 · 109 806 MB 1365 11s

16384 8.7 · 1012 3.2 GB 2730 90s

A modern CPU performs 100 GFlops, and has about 50 GB/s memory bandwidth 20/99

Instruction-Level Parallelism (ILP) 1/3

Modern processor architectures are deeply pipelined → superscalar processor
Instruction-Level Parallelism (ILP) is a measure of how many instructions in a
computer program can be executed simultaneously by issuing independent instructions
in sequence (out-of-order)

Instruction pipelining is a technique for implementing ILP within a single processor

21/99

Instruction-Level Parallelism (ILP) 2/3

Microarchitecture Pipeline
stages

Core 14
Bonnell 16
Sandy Bridge 14
Silvermont 14 to 17
Haswell 14
Skylake 14
Kabylake 14

The pipeline efficiency is affected by

• Instruction stalls, e.g. cache miss, an execution unit not available, etc.
• Bad speculation, branch misprediction 22/99

Instruction-Level Parallelism (ILP) 3/3

for (int i = 0; i < N; i++) // with no optimizations, the loop
C[i] = A[i] * B[i]; // is executed in sequence

can be rewritten as:

for (int i = 0; i < N; i += 4) { // four independent
C[i] = A[i] * B[i]; // multiplications
C[i + 1] = A[i + 1] * B[i + 1]; // per iteration
C[i + 2] = A[i + 2] * B[i + 2];
C[i + 3] = A[i + 3] * B[i + 3];

}

23/99

ILP and Little’s Law

The Little’s Law expresses the relation between latency and throughput. The
throughput of a system λ is equal to the number of elements in the system divided by
the average time spent (latency) W for each elements in the system:

L = λW → λ = L
W

• L: average number of customers in a store
• λ: arrival rate (throughput)
• W : average time spent (latency)

24/99

Thread-Level Parallelism

A thread is a single sequential execution flow within a program with its state
(instructions, data, PC, register state, and so on)

Thread-level parallelism refers to the execution of separate computation “thread” on
different processing units

25/99

Data-Level Parallelism

Data-Level Parallelism refers to the execution of the same operation on multiple
data in parallel

Vector processor or array processor provide SIMD (Single Intruction-Multiple Data) or
vector instructions for exploiting data-level parallelism

The popular vector instruction sets are:
MMX MultiMedia eXtension. 80-bit width (Intel, AMD)

SSE (SSE2, SSE3, SSE4) Streaming SIMD Extensions. 128-bit width (Intel, AMD)

AVX (AVX, AVX2, AVX-512) Advanced Vector Extensions . 512-bit width (Intel, AMD)

NEON Media Processing Engine. 128-bit width (ARM)

SVE (SVE, SVE2) Scalable Vector Extension. 128-2048 bit width (ARM)
26/99

Roofline Model

The Roofline model is a visual performance model used to provide performance
estimates of a given application by showing hardware limitations, and potential benefit
and priority of optimizations

27/99

Time-Memory Trade-off

The time-memory trade-off is a way of solving a problem or calculation in less time
by using more storage space (less often the opposite direction)

Examples:

• Memoization (e.g. used in dynamic programming): returning the cached result
when the same inputs occur again

• Hash table: number of entries vs. efficiency
• Lookup tables: precomputed data instead branches
• Uncompressed data: bitmap image vs. jpeg

28/99

I/O Operations

I/O Operations

I/O Operations are orders of magnitude slower than
memory accesses

29/99

I/O Streams

In general, input/output operations are one of the most expensive

• Use endl for ostream only when it is strictly necessary (prefer \n)

• Disable synchronization with printf/scanf :
std::ios base::sync with stdio(false)

• Disable IO flushing when mixing istream/ostream calls:
<istream obj>.tie(nullptr);

• Increase IO buffer size:
file.rdbuf()->pubsetbuf(buffer var, buffer size);

30/99

I/O Streams (Example)

#include <iostream>

int main() {
std::ifstream fin;
// --
std::ios_base::sync_with_stdio(false); // sync disable
fin.tie(nullptr); // flush disable

// buffer increase
const int BUFFER_SIZE = 1024 * 1024; // 1 MB
char buffer[BUFFER_SIZE];
fin.rdbuf()->pubsetbuf(buffer, BUFFER_SIZE);
// --
fin.open(filename); // Note: open() after optimizations

// IO operations
fin.close();

} 31/99

printf

• printf is faster than ostream (see speed test link)

• A printf call with the format string %s\n is converted to a puts() call
printf("%s\n", string);

• A printf call with a simple format string ending with \n is converted to a
puts() call
printf("Hello World\n");

• No optimization if the string is not ending with \n

• No optimization if one or more % are detected in the format string

www.ciselant.de/projects/gcc_printf/gcc_printf.html 32/99

https://github.com/fmtlib/fmt#speed-tests
www.ciselant.de/projects/gcc_printf/gcc_printf.html

Memory Mapped I/O

A memory-mapped file is a segment of virtual memory that has been assigned a
direct byte-for-byte correlation with some portion of a file

Benefits:
• Orders of magnitude faster than system calls
• Input can be “cached” in RAM memory (page/file cache)
• A file requires disk access only when a new page boundary is crossed
• Memory-mapping may bypass the page file completely
• Load and store raw data (no parsing/conversion)

33/99

Memory Mapped I/O - Example 1/2
#if !defined(__linux__)

#error It works only on linux
#endif
#include <fcntl.h> //::open
#include <sys/mman.h> //::mmap
#include <sys/stat.h> //::open
#include <sys/types.h> //::open
#include <unistd.h> //::lseek
// usage: ./exec <file> <byte_size> <mode>
int main(int argc, char* argv[]) {

size_t file_size = std::stoll(argv[2]);
auto is_read = std::string(argv[3]) == "READ";
int fd = is_read ? ::open(argv[1], O_RDONLY) :

::open(argv[1], O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
if (fd == -1)

ERROR("::open") // try to get the last byte
if (::lseek(fd, static_cast<off_t>(file_size - 1), SEEK_SET) == -1)

ERROR("::lseek")
if (!is_read && ::write(fd, "", 1) != 1) // try to write

ERROR("::write") 34/99

Memory Mapped I/O Example 2/2

auto mm_mode = (is_read) ? PROT_READ : PROT_WRITE;

// Open Memory Mapped file
auto mmap_ptr = static_cast<char*>(

::mmap(nullptr, file_size, mm_mode, MAP_SHARED, fd, 0));

if (mmap_ptr == MAP_FAILED)
ERROR("::mmap");

// Advise sequential access
if (::madvise(mmap_ptr, file_size, MADV_SEQUENTIAL) == -1)

ERROR("::madvise");

// MemoryMapped Operations
// read from/write to "mmap_ptr" as a normal array: mmap_ptr[i]

// Close Memory Mapped file
if (::munmap(mmap_ptr, file_size) == -1)

ERROR("::munmap");
if (::close(fd) == -1)

ERROR("::close");
35/99

Low-Level Parsing 1/2

Consider using optimized (low-level) numeric conversion routines:
template<int N, unsigned MUL, int INDEX = 0>
struct fastStringToIntStr;

inline unsigned fastStringToUnsigned(const char* str, int length) {
switch(length) {

case 10: return fastStringToIntStr<10, 1000000000>::aux(str);
case 9: return fastStringToIntStr< 9, 100000000>::aux(str);
case 8: return fastStringToIntStr< 8, 10000000>::aux(str);
case 7: return fastStringToIntStr< 7, 1000000>::aux(str);
case 6: return fastStringToIntStr< 6, 100000>::aux(str);
case 5: return fastStringToIntStr< 5, 10000>::aux(str);
case 4: return fastStringToIntStr< 4, 1000>::aux(str);
case 3: return fastStringToIntStr< 3, 100>::aux(str);
case 2: return fastStringToIntStr< 2, 10>::aux(str);
case 1: return fastStringToIntStr< 1, 1>::aux(str);
default: return 0;

}
} 36/99

Low-Level Parsing 2/2

template<int N, unsigned MUL, int INDEX>
struct fastStringToIntStr {

static inline unsigned aux(const char* str) {
return static_cast<unsigned>(str[INDEX] - '0') * MUL +

fastStringToIntStr<N - 1, MUL / 10, INDEX + 1>::aux(str);
}

};

template<unsigned MUL, int INDEX>
struct fastStringToIntStr<1, MUL, INDEX> {

static inline unsigned aux(const char* str) {
return static_cast<unsigned>(str[INDEX] - '0');

}
};

Faster parsing: lemire.me/blog/tag/simd-swar-parsing

37/99

https://lemire.me/blog/tag/simd-swar-parsing/

Speed Up Raw Data Loading

• Hard disk is orders of magnitude slower than RAM

• Parsing is faster than data reading

• Parsing can be avoided by using binary storage and mmap

• Decreasing the number of hard disk accesses improves the performance →
compression

LZ4 is lossless compression algorithm providing extremely fast decompression up to
35% of memcpy and good compression ratio

github.com/lz4/lz4

38/99

https://github.com/lz4/lz4

Locality and Memory
Access Patterns

The Von Neumann Bottleneck

Access to memory dominates other costs in a processor

The Memory Wall:

39/99

Memory Hierarchy 1/3

Modern architectures rely on complex memory hierarchy (primary memory, caches,
registers, scratchpad memory, etc.). Each level has different characteristics and
constrains (size, latency, bandwidth, concurrent accesses, etc.)

1 byte of RAM (1946) IBM 5MB hard drive (1956)

twitter.com/MIT CSAIL 40/99

https://twitter.com/MIT_CSAIL

Memory Hierarchy 2/3

Source:
“Accelerating Linear Algebra on Small Matrices from Batched BLAS to Large Scale Solvers”,
ICL, University of Tennessee 41/99

Memory Hierarchy 3/3

Intel Coffee Lake Core-i7-8700 example:

Cache level Size Latency Bandwidth

L1 cache 192 KB ∼ 1.5 ns ∼ 1,600 GB/s

L2 cache 1.5 MB ∼ 4 ns ∼ 570 GB/s

L3 cache 12 MB ∼ 12 - 40 ns ∼ 320 GB/s

DRAM / ∼ 60 ns ∼ 40 GB/s

en.wikichip.org/wiki/WikiChip
www.forrestthewoods.com/blog/memory-bandwidth-napkin-math/

42/99

https://en.wikichip.org/wiki/WikiChip
www.forrestthewoods.com/blog/memory-bandwidth-napkin-math/

Memory Locality

• Spatial Locality refers to the use of data elements within
relatively close storage locations e.g. scan arrays in increasing order, matrices by
row. It involves mechanisms such as memory prefetching and access granularity

• Temporal Locality refers to the reuse of specific data within a relatively
small time duration, and, as consequence, exploit lower levels of the memory
hierarchy (caches), e.g. multiple sparse accesses
Heavily used memory locations can be accessed more quickly than less heavily
used locations

43/99

Spatial Locality Example 1/2

A, B, C matrices of size N × N

C = A * B

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

int sum = 0;
for (int k = 0; k < N; k++)

sum += A[i][k] * B[k][j]; // row × column
C[i][j] = sum;

}
}

C = A * BT

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

int sum = 0;
for (int k = 0; k < N; k++)

sum += A[i][k] * B[j][k]; // row × row
C[i][j] = sum;

}
}

44/99

Spatial Locality Example 2/2

Benchmark:

N 64 128 256 512 1024

A * B < 1 ms 5 ms 29 ms 141 ms 1,030 ms

A * BT < 1 ms 2 ms 6 ms 48 ms 385 ms

Speedup / 2.5x 4.8x 2.9x 2.7x

45/99

Cache Optimization Example

Speeding up a random-access function

for (int i = 0; i < N; i++) // V1
out_array[i] = in_array[hash(i)];

for (int i = 0; i < N; i++) { // V2
for (int K = 0; K < N; K += CACHE) {

auto x = hash(i);
if (x >= K && x < K + CACHE)

out_array[i] = in_array[x];
}

}

V1 : 436 ms, V2 : 336 ms → 1.3x speedup
.. but it needs a careful evaluation of CACHE and it can even decrease the performance for
other sizes

pre-sorted hash(i) : 135 ms → 3.2x speedup

Reference: lemire.me/blog/2019/04/27

46/99

https://lemire.me/blog/2019/04/27/speeding-up-a-random-access-function/

Heap Memory

• Dynamic heap allocation is expensive: implementation dependent and interaction
with the operating system

• Many small heap allocations are more expensive than one large memory allocation
The default page size on Linux is 4KB. For smaller/multiple sizes, C++ uses a
suballocator

• Allocations within the page size is faster than larger allocations (suballocator)

47/99

Stack Memory

• Stack memory is faster than heap memory. The stack memory provides high
locality

• static stack allocations produces better code. It avoids filling the stack each
time the function is reached

• constexpr for arrays with dynamic indexing produces very inefficient code with
GCC. Use static constexpr instead
void f(int x) { // bad performance with GCC

constexpr int array[] = {1,2,3,4,5,6,7,8,9};
return array[x];

}

48/99

Memory-Oriented Optimizations

Maximize cache utilization:

• Prefer small data types
• Prefer std::vector<bool> over array of bool

• Prefer std::bitset<N> over std::vector<bool> if the data size is known in
advance or bounded

note: modern processors have several MBs of (L1) cache

49/99

Internal Structure Alignment

struct A1 {
char x1; // offset 0
double y1; // offset 8!! (not 1)
char x2; // offset 16
double y2; // offset 24
char x3; // offset 32
double y3; // offset 40
char x4; // offset 48
double y4; // offset 56
char x5; // offset 64 (byte 65)

}

struct A2 { // internal alignment
char x1; // offset 0
char x2; // offset 1
char x3; // offset 2
char x4; // offset 3
char x5; // offset 4
double y1; // offset 8
double y2; // offset 16
double y3; // offset 24
double y4; // offset 32 (byte 40)

}

Considering an array of structures, there are two problems:
• We are wasting 40% of memory in the first case (A1)
• In common x64 processors the cache line is 64 bytes. For the first structure A1,

every access involves two cache line operations (2x slower)

see also #pragma pack(1)
50/99

https://devblogs.microsoft.com/oldnewthing/20200103-00/?p=103290

External Structure Alignment (Padding)

Considering the previous example for the structure A2, random loads from an array of
structure A2 leads to one or two cache line operations depending on the alignment at a
specific index, e.g.

index 0 → one cache line load
index 1 → two cache line loads

It is possible to fix the structure alignment in two ways:

• The memory padding refers to introduce extra bytes at the end of the data
structure to enforce the memory alignment
e.g. add a char array of size 24 to the structure A2. It can be also extended to
2D (or N-D) data structures such as dense matrices

• Align keyword or attribute allows specifying the alignment requirement of a
type or an object (next slide) 51/99

External Structure Alignment in C++ 1/2

C++ allows specifying the alignment requirement in three ways:

• C++11 alignas(N) only for variable / struct declaration

• C++17 aligned new (e.g. new int[2, N])

• Compiler Intrinsic only for variables / struct declaration
• GCC/Clang: attribute ((aligned(N)))

• MSVC: declspec(align(N))

• Compiler Intrinsic for dynamic pointer
• GCC/Clang: builtin assume aligned(x)

• Intel: assume aligned(x)

Data alignment is essential for exploiting hardware vector instructions (SIMD)
like SSE, AVX, etc. 52/99

External Structure Alignment in C++ 2/2

struct alignas(16) A1 { // C++11
int x, y;

};

struct __attribute__((aligned(16))) A2 { // require compiler
int x, y; // support

};

auto ptr1 = new int[100, 16]; // 16B alignment
auto ptr2 = new int[100]; // 4B alignment guarantee
auto ptr3 = __builtin_assume_aligned(ptr2, 16);
// require compiler support

53/99

Arithmetic

Hardware Notes

• Instruction throughput greatly depends on processor model and characteristics

• Addition, subtraction, and bitwise operations are computed by the ALU and they
have very similar throughput

• In modern processors, multiplication and addition are computed by the same
hardware component for decreasing circuit area → multiplication and addition can
be fused in a single operation fma (floating-point) and mad (integer)

• Modern processors provide separated units for floating-point computation (FPU)

see uops.info: Latency, Throughput, and Port Usage Information 54/99

https://uops.info/table.html

Data Types

• 32-bit integral vs. floating-point: in general, integral types are faster, but it
depends on the processor characteristics

• 32-bit types are faster than 64-bit types
• 64-bit integral types are slightly slower than 32-bit integral types. Modern processors

widely support native 64-bit instructions for most operations, otherwise they require
multiple operations

• Single precision floating-points are up to three times faster than double precision
floating-points

• Small integral types are slower than 32-bit integer, but they require less
memory → cache/memory efficiency

55/99

Operations

• In modern architectures, arithmetic increment/decrement ++ / -- has the same
performance of add / sub

• Prefer prefix operator (++var) instead of the postfix operator (var++) *

• Use the assignment composite operators (a += b) instead of operators
combined with assignment (a = a + b) *

• Keep near constant values/variables → the compiler can merge their values

* the compiler automatically applies such optimization whenever possible
(this is not ensured for object types)

56/99

Integer Multiplication

• Integer multiplication requires double the number of bits of the operands

• Cast one of the two operands to a bigger integer has no cost
// gcc -m32 (32-bit system)
int f1(int x, int y) {

return x * y; // efficient
}

int64_t f2(int x, int y) {
return x * static_cast<int64_t>(y); // efficient!!

}

int64_t f3(int64_t x, int64_t y) {
return x * y; // slow

} 57/99

Power-of-Two Multiplication/Division/Modulo

• Prefer shift for power-of-two multiplications (a � b) and divisions
(a � b) only for run-time values *

• Some unsigned operations are faster than signed operations (deal with negative
number), e.g. x / 2

• Prefer bitwise and a % b → a & (b - 1) for power-of-two modulo
operations only for run-time values *

• Constant multiplication and division can be heavily optimized by the compiler,
even for non-trivial values

* the compiler automatically applies such optimizations if b is known at compile-time. Bitwise
operations make the code harder to read
Ideal divisors: when a division compiles down to just a multiplication

58/99

https://lemire.me/blog/2021/04/28/ideal-divisors-when-a-division-compiles-down-to-just-a-multiplication/?amp&__twitter_impression=true

Conversion

From To Cost

Signed Unsigned no cost, bit representation is the same

Unsigned Larger Unsigned no cost, register extended

Signed Larger Signed 1 clock-cycle, register + sign extended

Integer Floating-point

4-16 clock-cycles
Signed → Floating-point is faster than
Unsigned → Floating-point (except AVX512
instruction set is enabled)

Floating-point Integer fast if SSE2, slow otherwise (50-100 clock-cycles)

Optimizing software in C++, Agner Fog 59/99

Floating-Point Division

Multiplication is much faster than division*

not optimized:
// "value" is floating-point (dynamic)
for (int i = 0; i < N; i++)

A[i] = B[i] / value;

optimized:
div = 1.0 / value; // div is floating-point
for (int i = 0; i < N; i++)

A[i] = B[i] * div;

* Multiplying by the inverse is not the same as the division
see lemire.me/blog/2019/03/12

60/99

https://lemire.me/blog/2019/03/12/multiplying-by-the-inverse-is-not-the-same-as-the-division/

Floating-Point FMA

Modern processors allow performing a * b + c in a single operation, called fused
multiply-add (std::fma in C++11). This implies better performance and accuracy

CPU processors perform computations with a larger register size than the original data
type (e.g. 48-bit for 32-bit floating-point) for performing this operation

Compiler behavior:
• GCC 9 and ICC 19 produce a single instruction for std::fma and for a * b + c with

-O3 -march=native
• Clang 9 and MSVC 19.* produce a single instruction for std::fma but not for

a * b + c

FMA: solve quadratic equation
FMA: extended precision addition and multiplication by constant 61/99

https://marc-b-reynolds.github.io/math/2020/01/10/Quadratic.html
https://marc-b-reynolds.github.io/math/2020/01/09/ConstAddMul.html

Compiler Intrinsic Functions 1/5

Compiler intrinsics are highly optimized functions directly provided by the compiler
instead of external libraries

Advantages:

• Directly mapped to hardware functionalities if available
• Inline expansion
• Do not inhibit high-level optimizations and they are portable contrary to asm code

Drawbacks:

• Portability is limited to a specific compiler
• Some intrinsics do not work on all platforms
• The same instricics can be mapped to a non-optimal instruction sequence

depending on the compiler
62/99

Compiler Intrinsic Functions 2/5

Most compilers provide intrinsics bit-manipulation functions for SSE4.2 or ABM
(Advanced Bit Manipulation) instruction sets for Intel and AMD processors
GCC examples:

builtin popcount(x) count the number of one bits

builtin clz(x) (count leading zeros) counts the number of zero bits following the
most significant one bit

builtin ctz(x) (count trailing zeros) counts the number of zero bits preceding
the least significant one bit

builtin ffs(x) (find first set) index of the least significant one bit

gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
63/99

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

Compiler Intrinsic Functions 3/5

• Compute integer log2

inline unsigned log2(unsigned x) {
return 31 - __builtin_clz(x);

}

• Check if a number is a power of 2

inline bool is_power2(unsigned x) {
return __builtin_popcount(x) == 1;

}

• Bit search and clear
inline int bit_search_clear(unsigned x) {

int pos = __builtin_ffs(x); // range [0, 31]
x &= ∼(1u << pos);
return pos;

} 64/99

Compiler Intrinsic Functions 4/5

Example of intrinsic portability issue:

builtin popcount() GCC produces popcountdi2 instruction while Intel
Compiler (ICC) produces 13 instructions

mm popcnt u32 GCC and ICC produce popcnt instruction, but it is available only
for processor with support for SSE4.2 instruction set

More advanced usage

• Compute CRC: mm crc32 u32
• AES cryptography: mm256 aesenclast epi128
• Hash function: mm sha256msg1 epu32

software.intel.com/sites/landingpage/IntrinsicsGuide/ 65/99

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Compiler Intrinsic Functions 5/5

Using intrinsic instructions are extremely dangerous if the target processor does not
natively support such instructions

Example:

“If you run code that uses the intrinsic on hardware that doesn’t support the lzcnt
instruction, the results are unpredictable” - MSVC

on the contrary, GNU and clang builtin * instructions are always well-defined.
The instruction is translated to a non-optimal operation sequence in the worst case

The instruction set support should be checked at run-time (e.g. with cpuid
function on MSVC), or, when available, by using compiler-time macro (e.g. AVX)

66/99

Automatic Compiler Function Transformation

std::abs can be recognized by the compiler and transformed to an hardware
instruction

In a similar way, C++20 provides a portable and efficient way to express bit operations
<bit>

rotate left : std::rotl
rotate right : std::rotr

count leading zero : std::countl zero
count leading one : std::countl one

count trailing zero : std::countr zero
count trailing one : std::countr one

population count : std::popcount

Why is the standard "abs" function faster than mine?
67/99

https://stackoverflow.com/questions/66023408/why-is-the-standard-abs-function-faster-than-mine

Value in a Range

Checking if a non-negative value x is within a range [A, B] can be optimized if
B > A (useful when the condition is repeated multiple times)

if (x >= A && x <= B)

// STEP 1: subtract A
if (x - A >= A - A && x - A <= B - A)
// -->
if (x - A >= 0 && x - A <= B - A) // B - A is precomputed

// STEP 2
// - convert "x - A >= 0" --> (unsigned) (x - A)
// - ensure that "B - A" is not less than zero
if ((unsigned) (x - A) <= (unsigned) (B - A))
// works even if A, B are negative (B >= A) 68/99

Value in a Range Examples

Check if a value is an uppercase letter:
uint8_t x = ...
if (x >= 'A' && x <= 'Z')

...
→

uint8_t x = ...
if (x - 'A' <= 'Z')

...

A more general case:
int x = ...
if (x >= -10 && x <= 30)

...
→

int x = ...
if ((unsigned) (x + 10) <= 40)

...

The compiler applies this optimization only in some cases
(tested with GCC/Clang 9 -O3)

69/99

Lookup Table

Lookup table is a memoization technique which allows replacing runtime computation
with precomputed values
Example: a function that computes the logarithm base 10 of a number in the range [1-100]
#include <array> // the code requires C++17
#include <cmath>
template<int SIZE, typename Lambda>
constexpr std::array<float, SIZE> build(Lambda lambda) {

std::array<float, SIZE> array{};
for (int i = 0; i < SIZE; i++)

array[i] = lambda(i);
return array;

}
float log10(int value) {

constexpr auto lamba = [](int i) { return std::log10f((float) i); };
static constexpr auto table = build<100>(lambda);
return table[value];

} 70/99

Basic Bit Manipulation

x ˆ 0 == x
x ˆ ∼0 == ∼x

-x == two-complement == ∼x + 1

x & -x // get the least significant bit
x | -x // set one after the least significant bit

(x & (x - 1)) // clear the least significant bit
x ˆ (x & (x - 1)) // get the least significant bit

71/99

Low-Level Optimizations

Collection of low-level implementations/optimization of common operations:

• Bit Twiddling Hacks
graphics.stanford.edu/∼seander/bithacks.html

• The Aggregate Magic Algorithms
aggregate.org/MAGIC

• Hackers Delight Book
www.hackersdelight.org

72/99

https://graphics.stanford.edu/~seander/bithacks.html
http://aggregate.org/MAGIC/
http://www.hackersdelight.org/

Low-Level Information

The same instruction/operation may take different clock-cycles on different
architectures/CPU type

• Agner Fog - Instruction tables (latencies, throughputs)
www.agner.org/optimize/instruction tables.pdf

• Latency, Throughput, and Port Usage Information uops.info/table.html

73/99

http://www.agner.org/optimize/instruction_tables.pdf
http://uops.info/table.html

Control Flow

Branches are expensive 1/2

Computation is faster than decision

74/99

Branches are expensive 2/2

Pipelines are an essential element in modern processors. Some processors have up to
20 pipeline stages (14/16 typically)

The downside to long pipelines includes the danger of pipeline stalls that waste CPU
time, and the time it takes to reload the pipeline on conditional branch operations
(if , while , for)

Not all control flow instructions involve a jump instructions. If the code in the branch
is small, the compiler could optimize in a conditional instruction, e.g. ccmovl

75/99

Control Flow 1/2

• Prefer switch statements instead of multiple if
- If the compiler does not use a jump-table, the cases are evaluated in order of

appearance → the most frequent cases should be placed before

- Some compilers (e.g. clang) are able to translate a sequence of if into a switch
statement

• Prefer square brackets syntax [] over pointer arithmetic operations for array
access to facilitate compiler loop optimizations (polyhedral loop transformations)

76/99

Control Flow 2/2

• Prefer signed integer for loop indexing. The compiler optimizes more
aggressively such loops since integer overflow is not defined

• Prefer range-based loop for iterating over a container 1

• Some compilers (e.g. clang) use assertion for optimization purposes: most likely
code path, not possible values, etc. 2

• Not all if statements (or branches) are translated into jump. Small code section
can be optimized in different ways 3 (see next slide)

1 The Little Things: Everyday efficiencies
2 Andrei Alexandrescu
3 Is this a branch? 77/99

https://codingnest.com/the-little-things-everyday-efficiencies/amp/?__twitter_impression=true
https://twitter.com/incomputable/status/1247234209753808897?s=20
https://bartwronski.com/2021/01/18/is-this-a-branch/

Minimize Branch Overhead

• Branch prediction: technique to guess which way a branch takes. It requires hardware
support and it is generically based on dynamic history of code executing

• Branch predication: a conditional branch is substituted by a sequence of instructions
from both paths of the branch. Only the instructions associated to a predicate (boolean
value), that represents the direction of the branch, are actually executed
int x = (condition) ? A[i] : B[i];

P = (condition) // P: predicate
@P x = A[i];

@!P x = B[i];

• Speculative execution: execute both sides of the conditional branch to better utilize the
computer resources and commit the results associated to the branch taken

78/99

Loop Hoisting 1/2

Loop Hoisting, also called loop-invariant code motion, consists of moving statements
or expressions outside the body of a loop without affecting the semantics of the
program

Base case:

for (int i = 0; i < 100; i++)
a[i] = x + y;

Better:
v = x + y;
for (int i = 0; i < 100; i++)

a[i] = v;

Loop hoisting is also important in the evaluation of loop conditions
Base case:
// "x" never changes
for (int i = 0; i < f(x); i++)

a[i] = y;

Better:
int limit = f(x);
for (int i = 0; i < limit; i++)

a[i] = y;

In the worst case, f(x) is evaluated at every iteration (especially when it belongs to
another translation unit) 79/99

Loop Hoisting 2/2

Loop hoisting can be applied for avoiding redundant initialization

Base case:
for (int i = 0; i < 100; i++) {

// allocation
std::vector v = ...
... // use "v"

}

Better:
std::vector s(max_size);
for (int i = 0; i < 100; i++) {

...
v.clear();

}

the compiler already applies such optimization when it is safe (it does not change the program
semantic) 80/99

Loop Unrolling 1/2

Loop unrolling (or unwinding) is a loop transformation technique which optimizes
the code by removing (or reducing) loop iterations

The optimization produces better code at the expense of binary size

Example:
for (int i = 0; i < N; i++)

sum += A[i];

can be rewritten as:
for (int i = 0; i < N; i += 8) {

sum += A[i];
sum += A[i + 1];
sum += A[i + 2];
sum += A[i + 3];
...

} // we suppose N is a multiple of 8 81/99

Loop Unrolling 2/2

Loop unrolling notes:

+ Improve instruction-level parallelism (ILP)
+ Allow vector (SIMD) instructions
+ Reduce control instructions and branches
- Increase compile-time/binary size
- Require more instruction decoding
- Use more memory and instruction cache

Unroll directive The Intel, IBM, and clang compilers (but not GCC) provide the
preprocessing directive #pragma unroll (to insert above the loop) to force loop unrolling.
The compiler already applies the optimization in most cases

see lemire.me/blog/2019/04/12 82/99

https://lemire.me/blog/2019/04/12/why-are-unrolled-loops-faster/

Branch Hints

C++20 [[likely]] and [[unlikely]] provide a hint to the compiler to optimize
a conditional statement, such as while , for , if

for (i = 0; i < 300; i++) {
[[unlikely]] if (rand() < 10)

return false;
}

switch (value) {
[[likely]] case 'A': return 2;
[[unlikely]] case 'B': return 4;

}

83/99

Recursion 1/2

Avoid run-time recursion (very expensive). Prefer iterative algorithms instead (see
next slides)

Recursion cost: The program must store all variables (snapshot) at each recursion
iteration on the stack, and remove them when the control return to the caller instance

The tail recursion optimization avoids to maintain caller stack and pass the control to
the next iteration. The optimization is possible only if all computation can be executed
before the recursive call

84/99

Recursion 2/2

Via Twitter - Jan Wildeboer

85/99

https://twitter.com/jwildeboer/status/1218865157864067077?s=09

Functions

Function Call Cost

Function call methods:

Direct: Function address is known at compile-time
Indirect: Function address is known only at run-time

Inline: The function code is fused in the caller code

Function call cost:

• The caller pushes the arguments on the stack in reverse order
• Jump to function address
• The caller clears (pop) the stack
• The function pushes the return value on the stack
• Jump to the caller address

Reference: The True Cost of Calls
86/99

https://hbfs.wordpress.com/2008/12/30/the-true-cost-of-calls/

Argument Passing 1/2

pass by-value small data types (≤ 8/16 bytes)
The data are copied into registers, instead of stack

pass by-pointer introduces one level of indirection
They should be used only for raw pointers (potentially NULL)

pass by-reference may introduce one level of indirection
pass-by-reference is more efficient than pass-by-pointer as
it facilitates variable elimination by the compiler, and the function
code does not require checking for NULL pointer

Most compilers optimize pass by-value with pass by-reference for passive data
structures

87/99

Argument Passing 2/2

For active objects with non-trivial (and expensive) copy constructor or destructor:

by-value Expensive, hard to optimize
by-pointer/reference ok. Prefer pass-by- const -X (const overloading can also be

cheaper)

For passive objects with trivial copy constructor and destructor:

by-const-value Always produce the optimal code (converted in pass-by-ref if
needed)

by-value Produce optimal code except for GCC (tested with GCC 9.2)
by-reference Could introduce a level of indirection

88/99

Function Optimizations 1/2

• Pass by-value built-in types and passive data structured (no side-effect. The
compiler already applies heuristics to determine the most efficient way to pass the
parameter (by-value or by-reference). Pass by-reference does not allow the
compiler to optimize in pass by-value (if not inline)

• Keep small the number of function parameters. The parameters can be passed by
using the registers instead filling and emptying the stack

• Consider combining several function parameters in a structure

• const modifier applied to pointers and references does not produce better code
in most cases, but it is useful for ensuring read-only accesses

• const applied to pass by-value does not change the function signature and, for
this reason, should be avoided in function declaration

GoTW#81
89/99

http://www.gotw.ca/gotw/081.htm

inline Function Declaration 1/2

inline (internal linkage)
inline specifier when applied to internal linkage functions (static or anonymous
namespace) is a hint for the compiler.
The code of the function can be copied where it is called (inlining)

inline void f() { ... }

• It is just a hint for the compiler that can ignore it (inline increases the
compiler heuristic threshold)

• inline functions increase the binary size because they are expanded in-place for
every function call

90/99

inline Function Declaration 2/2

Compilers have different heuristics for function inlining

• Number of lines (even comments: How new-lines affect the Linux kernel
performance)

• Number of assembly instructions

• Inlining depth (recursive)

GCC/Clang extensions allow to force inline/non-inline functions:
attribute ((always_inline)) void f() { ... }
attribute ((noinline)) void f() { ... }

• An Inline Function is As Fast As a Macro
• Inlining Decisions in Visual Studio

91/99

https://nadav.amit.zone/linux/2018/10/10/newline.html
https://nadav.amit.zone/linux/2018/10/10/newline.html
https://gcc.gnu.org/onlinedocs/gcc/Inline.html
https://devblogs.microsoft.com/cppblog/inlining-decisions-in-visual-studio/

Local Functions

All compilers, except MSVC, export all function symbols → slow, the symbols can be
used in other translation units

Alternatives:

• Use static functions

• Use anonymous namespace (functions and classes)

• Use GNU extension (also clang) attribute ((visibility("hidden")))

gcc.gnu.org/wiki/Visibility 92/99

https://gcc.gnu.org/wiki/Visibility

Pointers Aliasing 1/3

Consider the following example:
// suppose f() is not inline
void f(int* input, int size, int* output) {

for (int i = 0; i < size; i++)
output[i] = input[i];

}

• The compiler cannot unroll the loop (sequential execution, no ILP) because
output and input pointers can be aliased, e.g. output = input + 1

• The aliasing problem is even worse for more complex code and inhibits all kind of
optimization from code re-ordering to common sub-expression elimination

93/99

Pointers Aliasing 2/3

Most compilers (included GCC/Clang/MSVC) provide restricted pointers
(restrict) so that the programmer asserts that the pointers are not aliased
void f(int* __restrict input,

int size,
int* __restrict output) {

for (int i = 0; i < size; i++)
output[i] = input[i];

}

Potential benefits:
• Instruction-level parallelism
• Less instructions executed
• Merge common sub-expressions

94/99

Pointers Aliasing 3/3

Benchmarking matrix multiplication

void matrix_mul_v1(const int* A,
const int* B,
int N,
int* C) {

void matrix_mul_v2(const int* __restrict A,
const int* __restrict B,
int N,
int* __restrict C) {

Optimization -O1 -O2 -O3

v1 1,030 ms 777 ms 777 ms
v2 513 ms 510 ms 761 ms
Speedup 2.0x 1.5x 1.02x

95/99

C++ Objects

Variable/Object Scope

Declare local variable in the inner most scope
• the compiler will be able to fit them into registers instead stack
• it improves readability

Wrong:
int i, x;
for (i = 0; i < N; i++) {

x = value * 5;
sum += x;

}

Correct:

for (int i = 0; i < N; i++) {
int x = value * 5;
sum += x;

}

Exception! Built-in type variables and passive structures should be placed in the inner
most loop, while objects with constructors should be placed outside loops

for (int i = 0; i < N; i++) {
std::string str("prefix_");
std::cout << str + value[i];

} // str call CTOR/DTOR N times

std::string str("prefix_");
for (int i = 0; i < N; i++) {

std::cout << str + value[i];
} 96/99

C++ Objects Optimizations 1/2

• Prefer direct initialization and full object constructor instead of two-step
initialization (also for variables)

• Prefer move semantic instead of copy constructor. Mark copy constructor as
=delete (sometimes it is hard to see, e.g. implicit)

• Avoid dynamic operations: exceptions* (and use noexcept), dynamic cast,
smart pointer

• Virtual calls are slower than standard functions

• Mark final all virtual functions that are not overridden

*Investigating the Performance Overhead of C++ Exceptions 97/99

https://pspdfkit.com/blog/2020/performance-overhead-of-exceptions-in-cpp/

C++ Objects Optimizations 2/2

• Use static for all members that do not use instance member (avoid passing
this pointer)

• Avoid multiple + operations between objects to avoid temporary storage

• Prefer ++obj / --obj (return &obj), instead of obj++ , obj-- (return old
obj)

• Prefer x += obj , instead of x = x + obj → avoid the object copy

98/99

Object Implicit Conversion

#include <algorithm> // std::copy
struct A { // big object

int array[10000];
};
struct B {

int array[10000];

B(const A& a) {
std::copy(a.array, a.array + 10000, array);

}
};
//--
void f(const B& b) {}

int main() {
A a;
B b;
f(b); // no cost
f(a); // very costly

}
99/99

	General Concepts
	Asymptotic Complexity
	Optimization Cycle
	Ahmdal Law
	Throughput, Bandwidth, Latency
	Performance Bounds
	Arithmetic Intensity
	Instruction-Level Parallelism
	Little's Law
	Thread-Level Parallelism
	Data-Level Parallelism
	Roofline Model
	Time-Memory Trade-off

	I/O Operations
	printf
	Memory Mapped I/O
	Speed Up Raw Data Loading

	Locality and Memory Access Patterns
	Memory Hierarchy
	Memory Locality
	Internal Structure Alignment
	External Structure Alignment

	Arithmetic
	Data Types
	Operations
	Conversion
	Floating-Point
	Compiler Intrinsic Functions
	Value in a Range
	Lookup Table

	Control Flow
	Loop Hoisting
	Loop Unrolling
	Branch Hints
	Recursion

	Functions
	Function Call Cost
	Argument Passing
	Function Optimizations
	Function Inlining
	Pointers Aliasing

	C++ Objects
	C++ Objects Optimizations

