
Modern C++
Programming

12. C++ Ecosystem

Federico Busato

University of Verona, Dept. of Computer Science
2021, v3.09



Table of Context

1 Debugging
Assertion

Execution Debugging (gdb)

2 Memory Debugging
valgrind

Stack Protection
3 Sanitizers

Address Sanitizer

Leak Sanitizer

Memory Sanitizers

Undefined Behavior Sanitizer 1/86



Table of Context

4 Debugging Summary
5 Code Checking and Analysis

Compiler Warnings
Static Analyzers

6 Code Testing
Unit Test
Code Coverage
Fuzz Testing

7 Code Quality
clang-tidy

2/86



Table of Context

8 CMake
ctest

9 Code Documentation
doxygen

10 Code Statistics
Count Lines of Code
Cyclomatic Complexity Analyzer

3/86



Table of Context

11 Other Tools
Code Formatting - clang-format

Compiler Explorer

Code Transformation - CppInsights

Code Autocompletion - TabNine, Kite

Local Code Search - ripgrep

Code Search Engine - searchcode, grep.app

Code Exploration - SourceTrail

Code Benchmarking - Quick-Bench

Font for Coding

4/86



Feature Complete

5/86



Debugging



Is this a bug?

for (int i = 0; i <= (2ˆ32) - 1; i++) {

from: John Regehr (on Twitter)
6/86



Error Handing 1/2

A program error is a set of conditions that produce an incorrect result or unexpected
behavior

We can distinguish between two kind of errors:

Recoverable Conditions that are not under the control of the program. They
indicates “exceptional” run-time conditions. e.g. file not found, bad
allocation, wrong user input, etc.

Unrecoverable It is a synonym of a bug. The program must terminate. e.g.
out-of-bound, division by zero, etc.

7/86



Error Handing 2/2

The common ways for handling recoverable errors are:

Exceptions Robust but slower and requires more resources. They also involve code
bloat

Error values Fast but difficult to handle in complex programs

Unrecoverable errors cannot be handled. They should be prevented by using assertion
for ensuring pre-conditions and post-conditions

An assertion is a statement to detect a violated assumption. An assertion represents
an invariant in the code

It can happen both at run-time ( assert ) and compile-time ( static assert ).
Run-time assertion failures should never be exposed in the normal program execution
(e.g. release/public)

8/86



Assertion

# include <cassert> // <-- needed for "assert"
# include <cmath> // std::is_finite
# include <type_traits> // std::is_arithmetic_v

template<typename T>
T sqrt(T value) {

static_assert(std::is_arithmetic_v<T>, // precondition
"T must be an arithmetic type");

assert(std::is_finite(value) && value >= 0); // precondition
int ret = ... // sqrt computation
assert(std::is_finite(value) && ret >= 0 && // postcondition

(ret == 0 || ret == 1 || ret < value));
return ret;

}

Assertions may slow down the execution. They can be disable by define the NDEBUG
macro
# define NDEBUG // or with the flag "-DNDEBUG" 9/86



Execution Debugging (gdb)

How to compile and run for debugging:

g++ -g [-ggdb3] <program.cpp> -o program
gdb [--args] ./program <args...>

-g Enable debugging
- stores the symbol table information in the executable (mapping between assembly

and source code lines)
- for some compilers, it may disable certain optimizations
- slow down the compilation phase

-ggdb3 Produces debugging information specifically intended for gdb
- the last number produces extra debugging information, for example: including macro

definitions
- in general, it is not portable across different compiler (supported by gcc, clang) 10/86



gdb - Breakpoints/Watchpoints

Command Abbr. Description

breakpoint <file>:<line> b insert a breakpoint in a specific line

breakpoint <function name> b
insert a breakpoint in a specific
function

breakpoint <ref > if <condition> b
insert a breakpoint with a
conditional statement

delete d delete all breakpoints or watchpoints
delete <breakpoint number> delete a specific breakpoint
clear [function name/line number ] delete a specific breakpoint
enable/disable <breakpoint number> enable/disable a specific breakpoint

watch <expression>

stop execution when the value of
expression changes (variable,
comparison, etc.) 11/86



gdb - Control Flow

Command Abbr. Description

run [args] r run the program
continue c continue the execution
finish f continue until the end of the current function
step s execute next line of code (follow function calls)
next n execute next line of code

until <program point>
continue until reach line number,
function name, address, etc.

CTRL+C stop the execution (not quit)
quit q exit

12/86



gdb - Stack and Info

Command Abbr. Description

list l print code
list <function or #start,#end> l print function/range code
up u move up in the call stack
down d move down in the call stack
backtrace bt prints stack backtrace (call stack)
backtrace <full> bt print values of local variables
help [<command>] h show help about command

info <args/breakpoints/
watchpoints/registers/local>

show information about program
arguments/breakpoints/watchpoints/
registers/local variables

13/86



gdb - Print

Command Abbr. Description

print <variable> p print variable

print/h <variable> p/h print variable in hex

print/nb <variable> p/nb print variable in binary (n bytes)

print/w <address> p/w print address in binary

p /s <char array/address> print char array

p *array var@n print n array elements

p (int[4])<address> print four elements of type int

p *(char**)&<std::string> print std::string

14/86



gdb - Disassemble

Command Description

disasseble <function name> disassemble a specified function

disasseble <0xStart,0xEnd addr> disassemble function range

nexti <variable>
execute next line of code (follow
function calls)

stepi <variable> execute next line of code

x/nfu <address>

examine address
n number of elements,
f format (d: int, f: float, etc.),
u data size (b: byte, w: word, etc.)

15/86



gdb - Notes

The debugger automatically stops when:
• breakpoint (by using the debugger)
• assertion fail
• segmentation fault
• trigger software breakpoint (e.g. SIGTRAP on Linux)

github.com/scottt/debugbreak

Full story: www.yolinux.com/TUTORIALS/GDB-Commands.html (it also contains a
script to de-referencing STL Containers)

gdb reference card V5 link

16/86

https://github.com/scottt/debugbreak
www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/gdb-refcard.pdf


Memory Debugging



Memory Vulnerabilities 1/2

“70% of all the vulnerabilities in Microsoft products are
memory safety issues”

Matt Miller, Microsoft Security Engineer

“Chrome: 70% of all security bugs are memory safety
issues”

Chromium Security Report

Microsoft: 70% of all security bugs are memory safety issues
Chrome: 70% of all security bugs are memory safety issues

17/86

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/


Memory Vulnerabilities 2/2

Terms like buffer overflow, race condition, page fault, null pointer, stack exhaustion,
heap exhaustion/corruption, use-after-free, or double free – all describe memory
safety vulnerabilities

Solutions:

• Run-time check
• Static analysis
• Avoid unsafe language constructs

18/86



valgrind 1/9

valgrind is a tool suite to automatically detect many
memory management and threading bugs

How to install the last version:

$ wget ftp://sourceware.org/pub/valgrind/valgrind-3.17.0.tar.bz2
$ tar xf valgrind-3.17.0.tar.bz2
$ cd valgrind-3.17.0
$ ./configure --enable-lto
$ make -j 12
$ sudo make install
$ sudo apt install libc6-dbg #if needed

some linux distributions provide the package through apt install valgrid , but it could be an old version 19/86

http://valgrind.org


valgrind 2/9

Basic usage:
• compile with -g

• $ valgrind ./program <args...>

Output example 1:
==60127== Invalid read of size 4 !!out-of-bound access
==60127== at 0x100000D9E: f(int) (test01.C:86)
==60127== by 0x100000C22: main (test01.C:40)
==60127== Address 0x10042c148 is 0 bytes after a block of size 40 alloc'd
==60127== at 0x1000161EF: malloc (vg_replace_malloc.c:236)
==60127== by 0x100000C88: f(int) (test01.C:75)
==60127== by 0x100000C22: main (test01.C:40)

20/86



valgrind 3/9

Output example 2:

!!memory leak
==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==19182== at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130)
==19182== by 0x8048385: f (a.c:5)
==19182== by 0x80483AB: main (a.c:11)

==60127== HEAP SUMMARY:
==60127== in use at exit: 4,184 bytes in 2 blocks
==60127== total heap usage: 3 allocs, 1 frees, 4,224 bytes allocated
==60127==
==60127== LEAK SUMMARY:
==60127== definitely lost: 128 bytes in 1 blocks !!memory leak
==60127== indirectly lost: 0 bytes in 0 blocks
==60127== possibly lost: 0 bytes in 0 blocks
==60127== still reachable: 4,184 bytes in 2 blocks !!not deallocated
==60127== suppressed: 0 bytes in 0 blocks

21/86



valgrind 4/9

Memory leaks are divided into four categories:

• Definitely lost
• Indirectly lost
• Still reachable
• Possibly lost

When a program terminates, it releases all heap memory allocations. Despite this,
leaving memory leaks is considered a bad practice and makes the program unsafe with
respect to multiple internal iterations of a functionality. If a program has memory leaks
for a single iteration, is it safe for multiple iterations?

A robust program prevents any memory leak even when abnormal conditions occur

22/86



valgrind 5/9

Definitely lost indicates blocks that are not deleted at the end of the program (return
from the main() function). The common case is local variables pointing to newly
allocated heap memory

void f() {
int* y = new int[3]; // 12 bytes definitely lost

}

int main() {
int* x = new int[10]; // 40 bytes definitely lost
f();

}

23/86



valgrind 6/9

Indirectly lost indicates blocks pointed by other heap variables that are not deleted.
The common case is global variables pointing to newly allocated heap memory

struct A {
int* array;

};

int main() {
A* x = new A; // 8 bytes definitely lost
x->array = new int[4]; // 16 bytes indirectly lost

}

24/86



valgrind 7/9

Still reachable indicates blocks that are not deleted but they are still reachable at the
end of the program
int* array;
int main() {

array = new int[3];
}
// 12 bytes still reachable (global static class could delete it)

# include <cstdlib>
int main() {

int* array = new int[3];
std::abort();
// 12 bytes still reachable
... // maybe it is delete here

}

25/86



valgrind 8/9

Possibly lost indicates blocks that are still reachable but pointer arithmetic makes the
deletion more complex, or even not possible

# include <cstdlib>
int main() {

int* array = new int[3];
array++;
std::abort();
// 12 bytes still reachable
... // maybe it is delete here but you should be able

// to revert pointer arithmetic
}

26/86



valgrind 9/9

Advanced flags:

• --leak-check=full print details for each “definitely lost” or “possibly lost”
block, including where it was allocated

• --show-leak-kinds=all to combine with --leak-check=full. Print all leak kinds

• --track-fds=yes list open file descriptors on exit (not closed)

• --track-origins=yes tracks the origin of uninitialized values (very slow execution)

valgrind --leak-check=full --show-leak-kinds=all
--track-fds=yes --track-origins=yes ./program <args...>

Track stack usage:

valgrind --tool=drd --show-stack-usage=yes ./program <args...>

27/86



Stack Protection 1/2

Compile-time stack size check:

• -Wstack-usage=<byte-size> Warn if the stack usage of a function might
exceed byte-size. The computation done to determine the stack usage is
conservative (no VLA)

• -fstack-usage Makes the compiler output stack usage information for the
program, on a per-function basis

• -Wvla Warn if a variable-length array is used in the code

• -Wvla-larger-than=<byte-size> Warn for declarations of variable-length
arrays whose size is either unbounded, or bounded by an argument that allows the
array size to exceed byte-size bytes 28/86



Stack Protection 2/2

Run-time detection of stack buffer overflows
Adding FORTIFY SOURCE define, the compiler provides buffer overflow checks for the
following functions:
memcpy , mempcpy , memmove , memset , strcpy , stpcpy , strncpy , strcat , strncat , sprintf ,
vsprintf , snprintf , vsnprintf , gets .

# include <cstring> // std::memset
# include <string> // std::stoi
int main(int argc, char** argv) {

int size = std::stoi(argv[1]);
char buffer[24];
std::memset(buffer, 0xFF, size);

}

$ gcc -O1 -D FORTIFY SOURCE program.cpp -o program
$ ./program 12 # OK
$ ./program 32 # Wrong
$ *** buffer overflow detected ***: ./program terminated 29/86



Sanitizers



Address Sanitizer

Sanitizers are compiler-based instrumentation components to perform dynamic
analysis

Sanitizer are used during development and testing to discover and diagnose memory
misuse bugs and potentially dangerous undefined behavior

Sanitizer are implemented in Clang (from 3.1), gcc (from 4.8) and Xcode

Project using Sanitizers:
• Chromium
• Firefox
• Linux kernel
• Android

Memory error checking in C and C++: Comparing Sanitizers and Valgrind 30/86

https://developers.redhat.com/blog/2021/05/05/memory-error-checking-in-c-and-c-comparing-sanitizers-and-valgrind


Address Sanitizer

Address Sanitizer is a memory error detector
• heap/stack/global out-of-bounds
• memory leaks
• use-after-free, use-after-return, use-after-scope
• double-free, invalid free
• initialization order bugs
* Similar to valgrind but faster (50X slowdown)

clang++ -O1 -g -fsanitize=address -fno-omit-frame-pointer <program>

-O1 disable inlining
-g generate symbol table

• clang.llvm.org/docs/AddressSanitizer.html
• github.com/google/sanitizers/wiki/AddressSanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

31/86

https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


Leak Sanitizer

LeakSanitizer is a run-time memory leak detector
• integrated into AddressSanitizer, can be used as standalone tool
* almost no performance overhead until the very end of the process

g++ -O1 -g -fsanitize=address -fno-omit-frame-pointer <program>
clang++ -O1 -g -fsanitize=leak -fno-omit-frame-pointer <program>

• clang.llvm.org/docs/LeakSanitizer.html
• github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 32/86

https://clang.llvm.org/docs/LeakSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


Memory Sanitizers

Memory Sanitizer is detector of uninitialized reads
• stack/heap-allocated memory read before it is written
* Similar to valgrind but faster (3X slowdown)

clang++ -O1 -g -fsanitize=memory -fno-omit-frame-pointer <program>

-fsanitize-memory-track-origins=2
track origins of uninitialized values

Note: not compatible with Address Sanitizer

• clang.llvm.org/docs/MemorySanitizer.html
• github.com/google/sanitizers/wiki/MemorySanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 33/86

https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


Undefined Behavior Sanitizer

UndefinedBehaviorSanitizer is a undefined behavior detector
• signed integer overflow, floating-point types overflow, enumerated not in range
• out-of-bounds array indexing, misaligned address
• divide by zero
• etc.
* Not included in valgrind

clang++ -O1 -g -fsanitize=undefined -fno-omit-frame-pointer <program>

-fsanitize=integer Checks for undefined or suspicious integer behavior (e.g. unsigned integer
overflow)

-fsanitize=nullability Checks passing null as a function parameter, assigning null to an lvalue, and
returning null from a function

• clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

34/86

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


Debugging Summary



How to Debug Common Errors

Segmentation fault
• gdb
• valgrind
• Segmentation fault when just entered in a function → stack overflow

Double free or corruption
• gdb
• valgrind

Infinite execution
• gdb + (CTRL + C)

Incorrect results
• valgrind + assertion + gdb + UndefinedBehaviorSanitizer

35/86



Demangling

Name mangling is a technique used to solve various problems caused by the need to
resolve unique names

Transforming C++ ABI (Application binary interface) identifiers into the original
source identifiers is called demangling
Example (linking error):

_ZNSt13basic_filebufIcSt11char_traitsIcEED1Ev

After demangling:
std::basic_filebuf<char, std::char_traits<char> >::∼basic_filebuf()

How to demangle:

• make |& c++filt | grep -P '`.*(?=))'

• Online Demangler: https://demangler.com 36/86

https://demangler.com


Code Checking and
Analysis



Compiler Warnings

Enable specific warnings:

g++ -W<warning> <args...>

Disable specific warnings:

g++ -Wno-<warning> <args...>

Common warning flags to minimize accidental mismatches:
-Wall Enables many standard warnings (∼50 warnings)

-Wextra Enables some extra warning flags that are not enabled by -Wall (∼15 warnings)

-Wpedantic Issue all the warnings demanded by strict ISO C/C++

Enable ALL warnings (only clang) -Weverything
37/86



GCC Warnings

Additional GCC warning flags (≥ 5.0):
-Wcast-align
-Wcast-qual
-Wconversion
# -Wfloat-conversion
# -Wsign-conversion
-Wdate-time
-Wdouble-promotion
-Weffc++
# -Wdelete-non-virtual-dtor
# -Wnon-virtual-dtor
-Wformat-signedness
-Winvalid-pch
-Wlogical-op
-Wmissing-declarations
-Wmissing-include-dirs
-Wodr

-Wold-style-cast
-Wpragmas
-Wredundant-decls
-Wshadow
-Wsign-promo*
-Wstrict-aliasing
-Wstrict-overflow=1 # 5
-Wswitch-bool
# -Wswitch-default
# -Wswitch-enum
-Wtrampolines
-Wunused-macros
-Wuseless-cast
-Wvla
-Wformat=2
-Wno-long-long

• gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
• github.com/barro/compiler-warnings

38/86

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://github.com/barro/compiler-warnings


Static Analyzers - clang static analyzer

The Clang Static Analyzer is a source code analysis
tool that finds bugs in C/C++ programs at compile-time

It find bugs by reasoning about the semantics of code (may produce false positives)
Example:
void test() {

int i, a[10];
int x = a[i]; // warning: array subscript is undefined

}

How to use:

scan-build make

scan-build is included in the LLVM suite
39/86

https://clang-analyzer.llvm.org


Static Analyzers - cppcheck

The GCC Static Analyzer can diagnose various kinds of
problems in C/C++ code at compile-time (e.g. double-
free, use-after-free, stdio related, etc) -fanalyzer

cppcheck provides code analysis to detect bugs, undefined behavior and dangerous
coding construct. The goal is to detect only real errors in the code (i.e. have very few
false positives)

cppcheck --enable=warning,performance,style,portability,information,error
<src_file/directory>

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
cppcheck --enable=<enable_flags> --project=compile_commands.json

40/86

https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html
http://cppcheck.sourceforge.net/


Static Analyzers - PVS-Studio, FBInfer

PVS-Studio is a high-quality proprietary (free for open
source projects) static code analyzer supporting C, C++

Customers: IBM, Intel, Adobe, Microsoft, Nvidia, Bosh, IdGames, EpicGames, etc.

FBInfer is a static analysis tool (also available online)
to checks for null pointer deferencing, memory leak,
coding conventions, unavailable APIs, etc.

Customers: Amazon AWS, Facebook/Ocolus, Instagram, Whatapp, Mozilla, Spotify, Uber,
Sky, etc.

41/86

http://fbinfer.com


Static Analyzers - DeepCode, SonarSource

deepCode is an AI-powered code review system, with
machine learning systems trained on billions of lines
of code from open-source projects

Available for Visual Studio Code, Sublime, IntelliJ IDEA, and Atom

SonarSource is a static analyzer which inspects
source code for bugs, code smells, and security vul-
nerabilities for multiple languages (C++, Java, etc.)

SonarLint plugin is available for Visual Code, Visual Studio Code, Eclipse, and IntelliJ
IDEA

see also A curated list of static analysis tool 42/86

https://www.deepcode.ai/
https://www.sonarsource.com/
https://www.sonarlint.org/
https://github.com/analysis-tools-dev/static-analysis


Code Testing



Code Testing

from: Kat Maddox (on Twitter)
43/86



Unit Test 1/2

Unit testing involves breaking your program into pieces, and subjecting each piece to
a series of tests

Unit Testing Benefits:
• Increases confidence in changing/ maintaining code
• The cost of fixing a defect detected during unit testing is lesser in comparison to

that of defects detected at higher levels
• Debugging is easy. When a test fails, only the latest changes need to be debugged

C++ Unit testing frameworks:
• catch
• doctest
• Google Test
• CppUnit
• Boost.Test 44/86



Unit Test 2/2

45/86



catch 1/2

Catch2 is a multi-paradigm test framework for C++

Catch2 features
• Header only and no external dependencies
• Assertion macro
• Floating point tolerance comparisons

Basic usage:
• Create the test program
• Run the test

$./test_program [<TestName>]

• github.com/catchorg/Catch2
• The Little Things: Testing with Catch2 46/86

https://catch-lib.net
https://github.com/catchorg/Catch2/blob/master/docs/command-line.md
https://codingnest.com/the-little-things-testing-with-catch-2/


catch 2/2

# define CATCH_CONFIG_MAIN // This tells Catch to provide a main()
# include "catch.hpp" // only do this in one cpp file

unsigned Factorial(unsigned number) {
return number <= 1 ? number : Factorial(number - 1) * number;

}

"Test description and tag name"
TEST_CASE( "Factorials are computed", "[Factorial]" ) {

REQUIRE( Factorial(1) == 1 );
REQUIRE( Factorial(2) == 2 );
REQUIRE( Factorial(3) == 6 );
REQUIRE( Factorial(10) == 3628800 );

}

float floatComputation() { ... }

TEST_CASE( "floatCmp computed", "[floatComputation]" ) {
REQUIRE( floatComputation() == Approx( 2.1 ) );

}
47/86



Code Coverage 1/3

Code coverage is a measure used to describe the degree to which the source code of
a program is executed when a particular test suite runs

gcov is a tool you can use in conjunction with GCC to test code coverage in programs

lcov is a graphical front-end for gcov. It collects gcov data for multiple source files
and creates HTML pages containing the source code annotated with coverage
information

Step for code coverage:

• compile with --coverage flag (objects + linking)
• run the test
• visualize the results with gcov or lcov

48/86



Code Coverage 2/3

program.cpp:
# include <iostream>
# include <string>
int main(int argc, char* argv[]) {

int value = std::stoi(argv[1]);
if (value % 3 == 0)

std::cout << "first\n";
if (value % 2 == 0)

std::cout << "second\n";
}

$gcc --std=c++11 --coverage program.cpp -o program
$./program 9
first
$gcov program.cpp
File 'program.cpp'
Lines executed:85.71% of 7
Creating 'program.cpp.gcov'
$lcov --capture --directory . --output-file coverage.info
$genhtml coverage.info --output-directory out

49/86



Code Coverage 3/3

program.cpp.gcov:

1: 4:int main(int argc, char* argv[]) {
1: 5: int value = std::stoi(argv[1]);
1: 6: if (value % 3 == 0)
1: 7: std::cout << "first\n";
1: 8: if (value % 2 == 0)

# ####: 9: std::cout << "second\n";
4: 10:}

lcov output:

50/86



Coverage-Guided Fuzz Testing

A fuzzer is a specialized tool that tracks which areas of the code are reached, and
generates mutations on the corpus of input data in order to maximize the code
coverage

LibFuzzer is the library provided by LLVM and feeds fuzzed inputs to the library via a
specific fuzzing entrypoint

The fuzz target function accepts an array of bytes and does something interesting with these
bytes using the API under test:

extern "C" int LLVMFuzzerTestOneInput(const uint8_t* Data,
size_t Size) {

DoSomethingInterestingWithMyAPI(Data, Size);
return 0;

}

51/86

https://llvm.org/docs/LibFuzzer.html


Code Quality



Linters - clang-tidy 1/2

lint: The term was derived from the name of the undesirable bits of fiber

clang-tidy provides an extensible framework for diagnosing and fixing typical
programming errors, like style violations, interface misuse, or bugs that can be deduced
via static analysis

$cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
$clang-tidy -p .

clang-tidy searches the configuration file .clang-tidy file located in the closest
parent directory of the input file

clang-tidy is included in the LLVM suite

52/86

https://clang.llvm.org/extra/clang-tidy


Linters - clang-tidy 2/2

Coding Guidelines:
• CERT Secure Coding Guidelines
• C++ Core Guidelines
• High Integrity C++ Coding Standard

Supported Code Conventions:
• Fuchsia
• Google
• LLVM

Bug Related:
• Android related
• Boost library related
• Misc
• Modernize
• Performance
• Readability
• clang-analyzer checks
• bugprone code constructors

.clang-tidy

Checks: 'android-*,boost-*,bugprone-*,cert-*,cppcoreguidelines-*,
clang-analyzer-*,fuchsia-*,google-*,hicpp-*,llvm-*,misc-*,modernize-*,
performance-*,readability-*' 53/86



CMake



CMake Overview

CMake is an open-source, cross-platform family of tools designed to build,
test and package software

CMake is used to control the software compilation process using simple platform and
compiler independent configuration files, and generate native Makefile/Ninjia and
workspaces that can be used in the compiler environment of your choice

CMake features:
• Turing complete language
• Multi-platform (Windows, Linux, etc.)
• Open-Source
• Generate: makefiles, ninja, etc.
• Supported by many IDE: Visual Studio, Eclipse, etc.

54/86

https://cmake.org


CMake - References

• 19 reasons why CMake is actually awesome

• An Introduction to Modern CMake

• Effective Modern CMake

• Awesome CMake

• Useful Variables

55/86

https://kubasejdak.com/19-reasons-why-cmake-is-actually-awesome
https://cliutils.gitlab.io/modern-cmake/
https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1
https://github.com/onqtam/awesome-cmake
https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/Useful-Variables


CMake - Example 1 1/5

CMakeLists.txt minimal example:

project(my_project) # project name

add_executable(program program.cpp) # compile command

$ cmake . # CMakeLists.txt directory
$ make # makefile automatically generated

Scanning dependencies of target program
[100%] Building CXX object CMakeFiles/out_program.dir/program.cpp.o
Linking CXX executable program
[100%] Built target program

56/86



CMake - Example 2 2/5

project(my_project) # project name
cmake_minimum_required(VERSION 3.15) # minimum version

set(CMAKE_CXX_STANDARD 14) # force C++14
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)

add_executable(program)

# indicate include directory
target_include_directories(program

PUBLIC "${PROJECT_SOURCE_DIR}/include"
)
# find all .cpp file in src/ directory
file(GLOB_RECURSE SRCS ${PROJECT_SOURCE_DIR}/src/*.cpp)
# compile all *.cpp file
target_sources(program PRIVATE ${SRCS}) 57/86



CMake - Example 3 3/5

project(my_project) # project name
cmake_minimum_required(VERSION 3.15) # minimum version

add_executable(program)

if (CMAKE_BUILD_TYPE STREQUAL "Debug") # "Debug" mode
target_compile_options(program "-g")
target_compile_options(program "-O1")
if (CMAKE_COMPILER_IS_GNUCXX) # if compiler is gcc

target_compile_options(program "-ggdb3")
endif()

elseif (CMAKE_BUILD_TYPE STREQUAL "Release") # "Release" mode
target_compile_options(program "-O2")

endif()

target_sources(program PRIVATE program.cpp)

$ cmake -DCMAKE_BUILD_TYPE=Debug . 58/86



CMake - Example 4 4/5

project(my_project) # project name
cmake_minimum_required(VERSION 3.15) # minimum version

add_custom_target(rm # makefile target name
COMMAND rm -rf *.o # real command
COMMENT "Clear build directory")

add_executable(program)
find_package(Boost 1.36.0 REQUIRED) # compile only if Boost library

# is found
if (Boost_FOUND)

target_include_directories("${PROJECT_SOURCE_DIR}/include" PUBLIC ${Boost_INCLUDE_DIRS})
else()

message(FATAL_ERROR "Boost Lib not found")
endif()
target_sources(program PRIVATE program.cpp)

$ cmake .
$ make rm 59/86



CMake - Notes 5/5

Generate JSON compilation database (compile commands.json)
It contains the exact compiler calls for each file (used by other tools)

project(my_project) # project name
cmake_minimum_required(VERSION 3.15) # minimum version

set(CMAKE_EXPORT_COMPILE_COMMANDS ON) # <--

add_executable(program)
target_sources(program PRIVATE program.cpp)

Change the compiler:

CC=gcc CXX=g++ cmake .

60/86



ctest 1/2

CTest is a testing tool (integrated in CMake) that can be used to automate updating,
configuring, building, testing, performing memory checking, performing coverage

project(my_project)
cmake_minimum_required(VERSION 3.5)
add_executable(program program.cpp)

enable_testing()

add_test(NAME Test1 # check if "program" returns 0
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/build
COMMAND ./program <args>) # command can be anything

add_test(NAME Test2 # check if "program" print "Correct"
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/build
COMMAND ./program <args>)

set_tests_properties(Test2
PROPERTIES PASS_REGULAR_EXPRESSION "Correct") 61/86



ctest 2/2

Basic usage (call ctest):

$make test # run all tests

ctest usage:

$ctest -R Python # run all tests that contains 'Python' string
$ctest -E Iron # run all tests that not contain 'Iron' string
$ctest -I 3,5 # run tests from 3 to 5

Each ctest command can be combined with other tools (e.g. valgrind)

62/86



CMake Alternatives - xmake

xmake is a cross-platform build utility based on
Lua.

Compared with makefile/CMakeLists.txt, the configuration syntax is more concise
and intuitive. It is very friendly to novices and can quickly get started in a short time.
Let users focus more on actual project development

Comparison: xmake vs cmake

63/86

https://xmake.io
https://tboox.org/2019/05/29/xmake-vs-cmake/


Code
Documentation



doxygen 1/6

Doxygen is the de facto standard tool for generating documentation from annotated
C++ sources

Doxygen usage

• comment the code with /// or /** comment */

• generate doxygen base configuration file

$doxygen -g

• modify the configuration file doxygen.cfg

• generate the documentation

$doxygen <config_file>

An alternative in early development stage is clang-doc 64/86

https://clang.llvm.org/extra/clang-doc.html


doxygen 2/6

65/86



doxygen 3/6

Doxygen provides support for:

• Latex/MathJax Insert latex math $<code>$

• Markdown (Markdown Cheatsheet link) Italic text *<code>* , bold text
**<code>** , table, list, etc.

• Automatic cross references Between functions, variables, etc.

• Specific highlight Code `<code>` , parameter @param <param>

66/86

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet


doxygen - Guidelines 4/6

• Include in every file copyright, author, date, version

• Comment namespaces and classes

• Comment template parameters

• Distinguish input and output parameters

• Call/Hierarchy graph can be useful in large projects
(should include graphviz)
HAVE DOT = YES
GRAPHICAL HIERARCHY = YES
CALL GRAPH = YES
CALLER GRAPH = YES

µOS++ Doxygen style guide link 67/86

https://micro-os-plus.github.io/develop/doxygen-style-guide/


doxygen - Example 5/6

/**
* @copyright MyProject
* license BSD3, Apache, MIT, etc.
* @author MySelf
* @version v3.14159265359
* @date March, 2018
* @file
*/

/// @brief Namespace brief
/// description
namespace my_namespace {

/// @brief "Class brief description"
/// @tparam R "Class template for"
template<typename R>
class A {

/**
* @brief "What the function does?"
* @details "Some additional details",
* Latex/MathJax: $\sqrt a$
* @tparam T Type of input and output
* @param[in] input Input array
* @param[out] output Output array
* @return `true` if correct,
* `false` otherwise
* @remark it is *useful* if ...
* @warning the behavior is **undefined** if
* @p input is `nullptr`
* @see related_function
*/

template<typename T>
bool my_function(const T* input, T* output);

/// @brief
void related_function; 68/86



doxygen - Call Graph 6/6

69/86



Doxygen Alternatives

M.CSS Doxygen C++ theme

Doxypress Doxygen fork

clang-doc LLVM tool

Sphinx Clear, Functional C++ Documentation with Sphinx + Breathe
+ Doxygen + CMake

standardese The nextgen Doxygen for C++ (experimental)

HDoc The modern documentation tool for C++ (alpha)

Adobe Hyde Utility to facilitate documenting C++
70/86

https://mcss.mosra.cz/documentation/doxygen/
https://www.copperspice.com/documentation-doxypress.html
https://clang.llvm.org/extra/clang-doc.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#cpp-domain
https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/
https://devblogs.microsoft.com/cppblog/clear-functional-c-documentation-with-sphinx-breathe-doxygen-cmake/
https://github.com/standardese/standardese
https://hdoc.io/
https://github.com/adobe/hyde


Writing Good Documentation

Teaching the art of great documentation, by Google

71/86

https://developers.googleblog.com/2020/07/teaching-art-of-great-documentation.html


Code Statistics



Count Lines of Code - cloc

cloc counts blank lines, comment lines, and physical lines of source code in many
programming languages

$cloc my_project/

4076 text files.
3883 unique files.
1521 files ignored.

http://cloc.sourceforge.net v 1.50 T=12.0 s (209.2 files/s, 70472.1 lines/s)
-------------------------------------------------------------------------------
Language files blank comment code
-------------------------------------------------------------------------------
C 135 18718 22862 140483
C/C++ Header 147 7650 12093 44042
Bourne Shell 116 3402 5789 36882

Features: filter by-file/language, SQL database, archive support, line count diff, etc. 72/86

https://github.com/AlDanial/cloc


Cyclomatic Complexity Analyzer - lyzard 1/3

Lizard is an extensible Cyclomatic Complexity Analyzer for many programming
languages including C/C++
Cyclomatic Complexity: is a software metric used to indicate the complexity of a program. It
is a quantitative measure of the number of linearly independent paths through a program
source code

$lizard my_project/
==============================================================
NLOC CCN token param function@line@file
--------------------------------------------------------------
10 2 29 2 start_new_player@26@./html_game.c
6 1 3 0 set_shutdown_flag@449@./httpd.c
24 3 61 1 server_main@454@./httpd.c
--------------------------------------------------------------

• CCN: cyclomatic complexity (should not exceed a threshold)
• NLOC: lines of code without comments
• token: Number of conditional statements
• param: Parameter count of functions

73/86

https://github.com/terryyin/lizard


Cyclomatic Complexity Analyzer - lyzard 2/3

CCN = 3

74/86



Cyclomatic Complexity Analyzer - lyzard 3/3

CC Risk Evaluation

1-10 a simple program, without much risk
11-20 more complex, moderate risk
21-50 complex, high risk
> 50 untestable program, very high risk

CC Guidelines

1-5 The routine is probably fine
6-10 Start to think about ways to simplify the routine
> 10 Break part of the routine

Risk: Lizard: 15, OCLint: 10
• www.microsoftpressstore.com/store/code-complete-9780735619678
• blog.feabhas.com/2018/07/code-quality-cyclomatic-complexity

75/86

www.microsoftpressstore.com/store/code-complete-9780735619678
https://blog.feabhas.com/2018/07/code-quality-cyclomatic-complexity/


Other Tools



Code Formatting - clang-format

clang-format is a tool to automatically format C/C++ code (and other languages)

$ clang-format <file/directory>

clang-format searches the configuration file .clang-format file located in the
closest parent directory of the input file

clang-format example:
IndentWidth: 4
UseTab: Never
BreakBeforeBraces: Linux
ColumnLimit: 80
SortIncludes: true

76/86

clang.llvm.org/docs/ClangFormat.html


Compiler Explorer (assembly and execution)

Compiler Explorer is an interactive tool that lets you type source code and see
assembly output, control flow graph, optimization hint, etc.

Key feature: support multiple architectures and compilers

77/86

https://godbolt.org


Code Transformation - CppInsights

CppInsights See what your compiler does behind the scenes

78/86

https://cppinsights.io/


Code Autocompletion - TabNine

TabNine uses deep learning to provide code completion

Features:
• Support all languages
• C++ semantic completion is available through clangd
• Project indexing
• Recognize common language patterns
• Use even the documentation to infer this function name, return type, and arguments

Available for Visual Studio Code, IntelliJ, Sublime, Atom, and Vim

79/86

https://tabnine.com/


Code Autocompletion - Kite

Kite adds AI powered code completions to your code editor

Support 13 languages

Available for Visual Studio Code, IntelliJ, Sublime, Atom, Vim, + others

80/86

https://www.kite.com/


Local Code Search - ripgrep

Ripgrep is a code-searching-oriented tool for regex pattern

Features:
• Default recursively searches
• Skip .gitignore patterns, binary and hidden files/directories
• Windows, Linux, Mac OS support
• Up to 100x faster than GNU grep

81/86

https://github.com/BurntSushi/ripgrep


Code Search Engine - searchcode

Searchcode is a free source code search engine

Features:
• Search over 20 billion lines of code from 7,000,000 projects
• Search sources: github, bitbucket, gitlab, google code, sourceforge, etc.

82/86

https://searchcode.com/


Code Search Engine - grep.app

grep.app searches across a half million GitHub repos

83/86

https://grep.app/


Code Exploration - SourceTrail

Sourcetrail is an interactive code explorer that simplifies navigation in complex
source code

84/86



Code Benchmarking - Quick-Bench

Quick-benchmark is a micro benchmarking tool intended to quickly and simply
compare the performances of two or more code snippets. The benchmark runs on a
pool of AWS machines

85/86

http://quick-bench.com


Font for Coding

Many editors allow adding optimized fonts for programming which improve legibility
and provide extra symbols (ligatures)

Some examples:

• JetBrain Mono
• Fira Code
• Microsoft Cascadia
• Consolas Ligaturized

86/86

https://www.jetbrains.com/lp/mono/
https://github.com/tonsky/FiraCode
https://github.com/microsoft/cascadia-code
https://github.com/somq/consolas-ligaturized

	Debugging
	Assertion
	Execution Debugging (gdb)

	Memory Debugging
	valgrind
	Stack Protection

	Sanitizers
	Address Sanitizer
	Leak Sanitizer
	Memory Sanitizers
	Undefined Behavior Sanitizer

	Debugging Summary
	Code Checking and Analysis
	Compiler Warnings
	Static Analyzers

	Code Testing
	Unit Test
	Code Coverage
	Fuzz Testing

	Code Quality
	clang-tidy

	CMake
	ctest

	Code Documentation
	doxygen

	Code Statistics
	Count Lines of Code
	Cyclomatic Complexity Analyzer

	Other Tools
	Code Formatting - clang-format
	Compiler Explorer
	Code Transformation - CppInsights
	Code Autocompletion - TabNine, Kite
	Local Code Search - ripgrep
	Code Search Engine - searchcode, grep.app
	Code Exploration - SourceTrail
	Code Benchmarking - Quick-Bench
	Font for Coding


