Modern C++
Programming

12. CoDE CONVENTIONS

Federico Busato

University of Verona, Dept. of Computer Science
2019, v2.0

= Coding Style and Conventions
- #include
- Namespace
- Variables
- Functions
- Structs and Classes
- C4++11/C++14/C++17 features
- Control Flow
= Naming and Formatting
- File names and spacing
- lssues
= Other Issues
- Maintainability
- Code documentation

= C+4++4 Guidelines
1/44

C++ Project
Organization

Project Organization

Project
 m—

Root = =
bin build | doc
- submodules - third_party - data
- tests - examples - utils

2
mclude src
m] m]
== |LICENSE = | README.md

Q CMakelLists.txt Q Doxyfile Q .gitignore
ﬁ .clang-tidy Q .clang-format

2/44

Project Directories

bin Output executables
build All intermediate files
doc Project documentation
submodules Project submodules

third party (less often deps/external/extern) dependen-
cies or external libraries

data Files used by the executables
tests Source files for testing the project
examples Source files for showing project features

utils (or script) Scripts and utilities related to the
project

cmake CMake submodules (.cmake) 3/44

Project Files

include
src

LICENSE

README.md

CMakeLists.txt

Doxyfile

others

* Markdown is a language with a syntax corresponding to a subset of HTML tags

Project header files
Project source files

Describes how this project can be used and dis-
tributed

General information about the project in
Markdown* format

Describes how to compile the project

Configuration file used by doxygen to generate
the documentation (see next lecture)
.gitignore, .clang-format, .clang-tidy,
main.cpp (program entry point), etc.

github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

4/44

github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

File extensions

Common C++ file extensions:
= header .h .hh .hpp .hxx
= header implementation .i.h .i.hpp EDALAB
= SIC .C .CC .Cpp .CXX

= textually included at specific points .inc GOOCLE

Common conventions:
= .h .c .cc GOOGLE
= .hh .cc
= .hpp .cpp
= _hxx .cxx

5/44

src/include directories

src/include directories should present exactly the same

directory structure

Every directory included in src should be also present in

include

Organization:
= headers and header implementations in include
= source files in src

= The main file (if present) can be placed in src and called
main.* or placed in the project root directory with a generic

name

6/44

Common Rules

The file should have the same name of the
class/namespace that they implement

= MyClass.hpp, MyClass.i.hpp, MyClass.cpp with
class MyClass

= MyNP.hpp (my_np.hpp),
MyNP.i.hpp (my np.i.hpp),
MyNP.cpp (my np.cpp) with namespace my np
All code should be included in a namespace

— avoid global namespace pollution

7/44

Code Organization Example

= include = main.cpp (if necessary)

- MyClass1.hpp README .md

- MyTemplClass.hpp

. = CMakeLists.txt
- MyTemplClass.i.hpp

- subdirl = Doxyfile
i - LICENSE
- MyLib.i.hpp

(template/inline functions) * build Gz

. src = bin (empty)
- MyClassl.cpp = doc (empty)

- MyTemplClass.cpp

T = test
(specialization)

et - testl.cpp

- test2.cpp

- MyLib.cpp 8/44

Coding Styles and
Conventions

Most important rule:
BE CONSISTENT!!

“The best code explains itself”
GOOGLE

9/44

Code Quality

“The worst thing that can happen to a code base is size”

— Steve Yegge
LAST PUSH

WELCOME TO

/& ‘ PURGATORY

ILL JUST CHECK
YOUR CODE QUALITY

10/44

MONKEYUSER. COM

Bad Code

How my code looks like for other people?

HIS WHAT 15 ALL
WHY 15 T THIS cRap 3

STRUCTURE HERE 7 THIS SIGN DOESN'T

HELP ME MUCH.

/

® = oy

I

i

GooD GoD! WHAT THE HELL

WHAT A HORRIBLY DESIGNED
DOES THIS CONTRAPTION Do7?

STREET, MOST INEFFICIENT.

“
S /‘;—55&5

"

abstrusegoose.com/432

https://abstrusegoose.com/432

Coding Styles

Coding styles are common guidelines to improve the
readability, maintainability, prevent common errors, and make
the code more uniform

Most popular coding styles:

= LLVM Coding Standards
1lvm.org/docs/CodingStandards.html

= Google C++ Style Guide
google.github.io/styleguide/cppguide.html

Minors:
= Webkit Coding Style webkit.org/code-style-guidelines
= Mozilla Coding Style developer.mozilla.org

= Chromium Coding Style chromium.googlesource.com 12/44

https://llvm.org/docs/CodingStandards.html
https://google.github.io/styleguide/cppguide.html
https://webkit.org/code-style-guidelines/
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style#CC_practices
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md

#include and namespace

#include 1/3

= #include preprocessor should be placed immediately after
the header file comment and include guards LLVM

= Include as less as possible, especially
in header files LLVM, GOOGLE

= Every includes must be self-contained (the project must
compile with every include order)

= Use include guard instead #pragma once GOOGLE

13/44

#include 2/3

Order of #include LLVM, GOOGLE

(1) Main Module Header (it is only one)
(2) Local project includes (in alphetical order)
(3) System includes (in alphetical order)

System includes are self-contained, local includes might not

Project includes LLVM, GOOGLE

= should be indicated with "" syntax
= should be absolute paths from the project include root
€.g. #include "directoryl/header.hpp"

System includes LLVM, GOOGLE

= should be indicated with <> syntax

€.g. #include <iostream>
14/44

F#include

= Report at least one function used for each include
<iostream> // std::cout, std::cin

= Use C++ headers instead of C headers:
<cassert> instead of <assert.h>
<cmath> instead of <math.h>, etc.

Example:

#include

#include

#1include

#1include
#include

#1include

"MyClass.hpp" // MyClass

// [blank line]
"my_dir/my_headerA.hpp" // npA::ClassA, npB::f2()
"my_dir/my_headerB.hpp" // np::9()

// [blank line]

<tostream> // std::cout
<cmath> // std::fabs()
<vector> // std::vector

15/44

Namespaces

Namespace guidelines:

= Avoid using namespace -directives at global scope
LLVM, GOOGLE

= Limit using namespace -directives at local scope and prefer

explicit namespace specification GOOCGLE
= Always place code in a namespace GOOGLE
= Avoid anonymous namespaces in headers GOOGLE

= Prefer anonymous namespaces instead of
static variables GOOGLE

16/44

Namespaces

Style guidelines:

= The content of namespaces are not indented GOOGLE

= Close namespace declarations with

} // namespace <namespace identifier> LLVM

= Close anonymous namespace declarations with
} // namespace GOOGLE

17/44

Entities

= Avoid static and global variables LLVM, GOOGLE

= Place a variables in the narrowest scope possible, and initialize
variables in the declaration GOOGLE, Isocpp

= Declaration of pointer variables or arguments may be placed with
the asterisk adjacent to either the type or to the variable name
for all in the same way
char* c; char *c; GOOGLE

= Use fixed-width integer type (e.g. int64.t) GOOGLE
= Use brace initialization to convert arithmetic types

(narrowing) e.g. int64_t{x} GOOGLE
18/44

Functions

Code guidelines:

Do not return pointers to local initialized heap memory!

Prefer return values rather than output parameters GOOGLE

Limit overloaded functions GOOGLE

Default arguments are allowed only on non-virtual
functions GOOCLE

Do not pass by-const value

Prefer pass by-reference instead by-value except for raw
arrays and built-in types

19/44

Functions

Style guidelines:

= All parameters should be aligned if possible
(especially in the declaration) GOOGLE

void f(int a,
const int* b);

= Parameter names should be the same for declaration and

definition CLANG-TIDY

= Do not use inline when declaring a function (only in the
definition — .1i.hpp files) LLVM

20/44

Structs and Classes

Code guidelines:

= Use a struct only for passive objects that carry data;
everything else is a class GOOCGLE

= Objects that are fully initialized by constructor call GOOGLE

Minors:

= Use braced initializer lists for aggregate types
A{1, 2}; LLVM, GOOGLE

= Do not use braced initializer lists for constructors LLVM

= Do not define implicit conversions. Use the explicit
keyword for conversion operators and single-argument
constructors GOOCLE

21/44

Structs and Classes

Style guidelines:

Class inheritance declarations order:
public, protected, private GOOGLE

= First data members, then function members

» Declare class data members in special way*. Examples:
GOOGLE

- Trailing underscore (e.g. member var_)
EDALAB, .NET

- Leading underscore (e.g. _member_var)

- Public members (e.g. m_member_var)

= Avoid use of this-> keyword

*
- It helps to keep track of class variables and local function variables
- The first character is helpful in filtering through the list of available variables 22/44

Structs and Classes

struct A { // passive data structure
int X;
float y;

};

class B {
public:
BQO;

void public_function();

protected:
int _a; // in general, it is mot public in
// derived classes
void _protected_function(); // "protected_function()" is mot wrong

// it may be public in derived classes

private:
int _5%4
float _y;

void _private_function();
Ny 23/44

Modern C++ Features

Modern C++4 Features

Use C++11/C++14/C++17 features wherever possible

= Use constexpr instead of macros GOOGLE

= static_cast reiterpreter _cast instead of

old style cast (type) (< C++11) GOOGLE
= Use range-for loops whatever possible LLVM
= Use auto to avoid type names that are noisy, obvious, or

unimportant
auto array = new int[10];

auto var = static_cast<int>(var); LLVM, GOOGLE

24/44

Modern C++4 Features

= nullptr instead 0 or NULL LLVM, GOOGLE

Use [[deprecated]] to indicate deprecated functions

= Use [[noreturn]] to indicate functions that do not return

= Use using instead typedef

25/44

Modern C++4 Features

Use C++11/C++14/C++17 features for classes

Use defaulted default constructor = default

= Use always override/final function member keyword

= Use = delete to mark deleted functions

= Use braced direct-list-initialization or copy-initialization for
setting default data member value

struct A {
int x = 3; // copy-initialization
int x { 3 }; // direct-list-initialization

Ig

26/44

Control Flow

Control Flow

= Multi-lines statements and complex conditions require curly
braces GOOCLE

= Boolean expression longer than the standard line length requires
to be consistent in how you break up the lines GOOCLE

= Curly braces are not required for single-line statements (but
allowed) (for, while, if) GOOGLE

= The if and else keywords belong on separate lines GOOGLE

if (c1) { // not mandatory if (complex_conditionl &&
<statement> complex_condition2) { // required
¥ <statement1>
}
if (c2) { // required
<statementl> // error!!
<statement2> if (c1) <statementl>; else <statement2>

3 27/44

Control Flow

= Do not use else after a return LLVM

if (condition) // wrong!!
return true;
else

return false;

return condition; // Corret

if (condition) { // wrong!!
< codel >

return;
}

else
< code2 >

if (condition) { // Corret
< codel >
return;
}
< code2 > 28/44

Control Flow

» Use early exits (continue , break , return)
to simplify the code LLVM

= Turn predicate loops into predicate functions LLVM
= Merge multiple conditional statements

for (<loop_conditionl>) { // should be
if (<condition2>) { // an external

var = ... // function
break; /7
} Vs
} /7

if (<conditioni1>) { // error!!
if (<condition2>)
<statement>

if (<conditionl> && <condition2>) // correct
<statement> 29/44

Naming and Formatting

Never use tab LLVM, GOOGLE
- tab — 2 spaces GOOCLE
- tab — 4 spaces LLVM

Never put trailing whitespace at the end of a line ~ GOOGLE

Separate commands, operators, etc.,
by a space LLVM, GOOGLE

if (axb<10&&c) // wrong!!
if (a * ¢ < 10 && c) // correct

Line length (width) should be at most 80 characters long
(help code view on a terminal) LLVM, GOOGLE

30/44

Naming Conventions

Camel style Uppercase first word letter (sometimes called Pascal
style) (less readable, shorter names)

CamelStyle

Snake style lower case words separated by single underscore (good
readability, longer names)

snake_style

Macro style upper case words separated by single underscore
(good readability, longer names)

MACRO_STYLE

General rule: avoid abbreviations and very long names 31/44

Entity Names 1/2

Variable Variable names should be nouns
= Camel style e.g. MyVar LLVM
= Snake style e.g. my_var GOOCLE

Constant = Camel style + k prefix, e.g. kConstantVar
GOOGLE
= Macro style e.g. CONSTANT_VAR

Enum

Camel style + k prefix
e.g. enum MyEnum { kEnumVarl, kEnumVar2 }
GOOGLE

= Camel style
e.g. enum MyEnum { EnumVarl, EnumVar2 } LLVM

= prefer enum class 32/44

Entity Names 2/2

Namespace Snake style
e.g. my_namespace GooGLE, LLVM

Typename Camel style (including classes, structs, enums,
typedefs, etc.)
e.g. HelloWorldClass LLVM, GOOGLE

Function Should be verb phrases (as they represent actions)
= Lowercase Camel style, e.g. myFunc() LLVM

= Uppercase Camel style for standard functions
e.g. MyFunc() GOOGLE

= Snake style for cheap functions
e.g. my_func() GOOGLE, STD

33/44

Macro and Files

Macro Macro style
e.g. MY_MACRO GOOGLE

= do not use macro for enumerator, constant,

and functions

File = Snake style (my_file) GOOGLE

= Camel style (MyFile) LLVM

34/44

Naming and Formatting Issues

= Reserved names:
- double underscore followed by any character __var
- single underscore followed by uppercase _VAR

= Use common loop variable names
- i, j, k, 1 used in order

- it for iterators

= Use true, false for boolean variables instead numeric

value 0, 1

= Prefer consecutive alignment

int varl = ...
long long int var2 = ...

35/44

Naming and Formatting Issues

= Use the same line ending (e.g. '\n') for all files

Use UTF-8 encoding for portability

Close files with a blank line

= The hash mark that starts a preprocessor directive should
always be at the beginning of the line GOOGLE

#1f defined (MACRO)
define MACRO2
#endif

36/44

Other Issues

Maintainability

Avoid defining macros, especially in headers GOOCLE
#undef macros wherever possible

Prefer sizeof (variable/value) instead of
sizeof (type) GOOGLE

Avoid complicated template programming GOOCLE

Use the assert to document preconditions and
assumptions LLVM

Do not use RTT/ (dynamic_cast)
or exceptions LLVM, GOOGLE

37/44

Code Documentation

= Each file should start with a license LLVM

= Each file should include

- @author name, surname, affiliation, email
- @version

- @date e.g. year and month

- @file the purpose of the file

in both header and source files

38/44

Code Documentation

= Use always the same style of comment
= Comment methods/classes/namespaces only in header files

= Be aware of the comment style, e.g.

- Multiple lines
/%%

* commentl
* comment?2
*/
- single line
/// comment

= The first sentence (beginning with @brief) is used as an
abstract

= Include @param[in] , @param[out] , @param[in,out] ,

Q@return tags 39/44

C++ Guidelines

C++ Guidelines

C++ Core Guidelines

Authors: Bjarne Stroustrup, Herb Sutter

@ CORE GUIDELINES

The guidelines are focused on relatively high-level issues, such as
interfaces, resource management, memory management, and
concurrency. Such rules affect application architecture and library
design. Following the rules will lead to code that is statically type
safe, has no resource leaks, and catches many more programming
logic errors than is common in code today

40/44

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

C++ Guidelines

High Integrity C++ Coding Standard (HIC++)

i PRQA

High Integrity C++
I © © ¢

Coding Standard
Version 4.0

‘wwwcodingstandard com

This document defines a set of
rules for the production of high
quality C++ code.

The guiding principles of this
standard are maintenance,
portability, readability — and

robustness

41/44

http://www.codingstandard.com/section/index/
http://www.codingstandard.com/section/index/

C++ Guidelines

CERT C++ Secure Coding

Author: Aaron Ballman

SEI CERT
C++ Coding Standard

Rules for Developing Safe, Reliable, and
Secure Systems in C++

This standard provides rules for
secure coding in the C++ pro-
gramming language.

The goal of these rules is to de-
velop safe, reliable, and secure
systems, for example by elimi-
nating undefined behaviors that
can lead to undefined program
behaviors and exploitable vul-
nerabilities

42/44

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682&src=spaceshortcut

C++ Guidelines

MISRA C++ Coding Standard

MISRA C++ provides coding stan-

@ e dards for developing safety-critical
systems.

MISRA C++:2008 The standard has been accepted
Guidelines | worldwide across all safety sectors
for the use

of the where safety, quality or reliabil-
C++ language . . .

in critical V)\\\ ity are issues of concern includ-
systely \ ing Automotive, Industrial, Medi-

cal devices, Railways, Nuclear en-

ergy, and Embedded systems

43/44

https://www.misra.org.uk/

C++ Guidelines

AUTOSAR C++ Coding Standard

AUTO SAR

AUTOSAR C++ was designed
as an addendum to MISRA
C++:2008 for the usage of the
C++14 language.

The main application sector is
automotive, but it can be used
in other embedded application
sectors

44/44

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf

	C++ Project Organization
	Coding Styles and Conventions
	#include and namespace
	Entities
	Modern C++ Features
	Control Flow
	Naming and Formatting
	Other Issues
	C++ Guidelines

