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Integral Data Types



A Firmware Bug

“Certain SSDs have a firmware bug causing them to irrecoverably fail after
exactly 32,768 hours of operation. SSDs that were put into service at the
same time will fail simultaneously, so RAID won’t help”

HPE SAS Solid State Drives - Critical Firmware Upgrade

Via twitter.com/martinkl/status/1202235877520482306?s=19 4/67

https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00092491en_us
https://twitter.com/martinkl/status/1202235877520482306?s=19


Overflow Implementations

Note: Computing the average in the right way is not trivial, see On finding the average
of two unsigned integers without overflow

related operations: ceiling division, rounding division

ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
5/67

https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html


Potentially Catastrophic Failure

51 days = 51 · 24 · 60 · 60 · 1000 = 4 406 400 000 ms

Boeing 787s must be turned off and on every 51 days to prevent ‘misleading data’
being shown to pilots

6/67

https://www.theregister.co.uk/2020/04/02/boeing_787_power_cycle_51_days_stale_data/
https://www.theregister.co.uk/2020/04/02/boeing_787_power_cycle_51_days_stale_data/


C++ Data Model

LP32 Windows 16-bit APIs (no more used)
ILP32 Windows 32-bit APIs, Unix 32-bit (Linux, Mac OS)
LLP64 Windows 64-bit APIs
LP64 Linux 64-bit APIs

Model/Bits short int long long long pointer

ILP32 16 32 32 64 32
LLP64 16 32 32 64 64
LP64 16 32 64 64 64

char is always 1 byte

C++ Fundamental types
7/67

https://en.cppreference.com/w/cpp/language/types


Fixed Width Integers 1/3

int* t <cstdint>
C++ provides fixed width integer types.
They have the same size on any architecture:

int8 t, uint8 t
int16 t, uint16 t
int32 t, uint32 t
int64 t, uint64 t

Good practice: Prefer fixed-width integers instead of native types. int and
unsigned can be directly used as they are widely accepted by C++ data models

8/67



Fixed Width Integers 2/3

int* t types are not “real” types, they are merely typedefs to appropriate
fundamental types

C++ standard does not ensure a one-to-one mapping:

• There are five distinct fundamental types ( char , short , int , long ,
long long )

• There are four int* t overloads ( int8 t , int16 t , int32 t , and
int64 t )

ithare.com/c-on-using-int t-as-overload-and-template-parameters
9/67

http://ithare.com/c-on-using-int_t-as-overload-and-template-parameters/


Fixed Width Integers 3/3

Warning: I/O Stream interprets uint8 t and int8 t as char and not as integer
values
int8_t var;
cin >> var; // read '2'
cout << var; // print '2'
int a = var * 2;
cout << a; // print '100' !!

10/67



size t and ptrdiff t

size t ptrdiff t <cstddef>

size t and ptrdiff t are aliases data types capable of storing the biggest
representable value on the current architecture

• size t is an unsigned integer type (of at least 16-bit)

• ptrdiff t is the signed version of size t commonly used for computing
pointer differences

• size t is commonly used to represent size measures

• size t / ptrdiff t are 4 bytes on 32-bit architectures, and 8 bytes on 64-bit
architectures

• C++23 adds uz / UZ literal for size t

• C++23 adds z / Z literal for ptrdiff t 11/67



When Use Signed/Unsigned Integer? 1/3

Signed and unsigned integers use the same hardware for their operations, but they
have very different semantic:

signed integers
• Represent positive, negative, and zero values (ZZZ)

• More negative values (231 − 1) than positive (231 − 2)

• Overflow/underflow is undefined behavior
Possible behavior:

overflow: (231 − 1) + 1 → min
underflow: −231 − 1 → max

• Bit-wise operations are implementation-defined

• Commutative, reflexive, not associative (overflow/underflow)
12/67



When Use Signed/Unsigned Integer? 2/3

unsigned integers

• Represent only non-negative values (NNN)

• Overflow/underflow is well-defined (modulo 232)

• Discontinuity in 0, 232 − 1

• Bit-wise operations are well-defined

• Commutative, reflexive, associative

13/67



When Use Signed/Unsigned Integer? 3/3

Google Style Guide

Because of historical accident, the C++ standard also uses unsigned integers to
represent the size of containers - many members of the standards body believe this
to be a mistake, but it is effectively impossible to fix at this point

Solution: use int64 t

max value: 263 − 1 = 9,223,372,036,854,775,807 or
9 quintillion (9 billion of billion),
about 292 years (nanoseconds),
9 million terabytes

Subscripts and sizes should be signed, WG21 P1428R0, Bjarne Stroustrup
Don’t add to the signed/unsigned mess, WG21 P1491R0, Bjarne Stroustrup

14/67

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1428r0.pdf


Arithmetic Type Limits

Query properties of arithmetic types in C++11:

# include <limits>

std::numeric_limits<int>::max(); // 231 − 1
std::numeric_limits<uint16_t>::max(); // 65, 535

std::numeric_limits<int>::min(); // −231

std::numeric_limits<unsigned>::min(); // 0

* this syntax will be explained in the next lectures

15/67



Promotion and Truncation

Promotion to a larger type keeps the sign
int16_t x = -1;
int y = x; // sign extend
cout << y; // print -1

Truncation to a smaller type is implemented as a modulo operation with respect to
the number of bits of the smaller type
int x = 65537; // 2ˆ16 + 1
int16_t y = x; // x % 2ˆ16
cout << y; // print 1

int z = 32769; // 2ˆ15 + 1 (does not fit in a int16_t)
int16_t w = z; // (int16_t) (x % 2ˆ16 = 32769)
cout << w; // print -32767

16/67



Mixing Signed/Unsigned Errors 1/2

unsigned a = 10; // array is small
int b = -1;
array[10ull + a * b] = 0; // ?

A Segmentation fault!

int f(int a, unsigned b, int* array) { // array is small
if (a > b)

return array[a - b]; // ?
return 0;

}

A Segmentation fault for a < 0 !

// v.size() return unsigned
for (size_t i = 0; i < v.size() - 1; i++)

array[i] = 3; // ?

A Segmentation fault for v.size() == 0 ! 17/67



Mixing Signed/Unsigned Errors � 2/2

Easy case:

unsigned x = 32; // x can be also a pointer
x += 2u - 4; // 2u - 4 = 2 + (2ˆ32 - 4)

// = 2ˆ32 - 2
// (32 + (2ˆ32 - 2)) % 2ˆ32

cout << x; // print 30 (as expected)

What about the following code?

uint64_t x = 32; // x can be also a pointer
x += 2u - 4;
cout << x;

18/67



Undefined Behavior 1/4

More negative values than positive
int x = std::numeric_limits<int>::max() * -1; // (2ˆ31 -1) * -1
cout << x; // -2ˆ31 +1 ok

int y = std::numeric_limits<int>::min() * -1; // -2ˆ31 * -1
cout << y; // hard to see in complex examples // 2ˆ31 overflow!!

A pratical example:
void f(int* ptr, int pos) {

pos++;
if (pos < 0)

return; // <-- the compiler assumes that
ptr[pos] = 0; // signed overflow never happen

} // and removes the if statement
int main() { // compiled with optimizations

int tmp[10]; // leads to segmentation faults
f(tmp, INT_MAX);

}
19/67



Undefined Behavior 2/4

Initialize an integer with a value larger then its range is undefined behavior
int z = 3000000000; // undefined behavior!!

Bitwise operations on signed integer types is undefined behavior
int y = 1 << 12; // undefined behavior!!

Shift larger than #bits of the data type is undefined behavior even for unsigned
unsigned y = 1u << 32u; // undefined behavior!!

Undefined behavior in implicit conversion
uint16_t a = 65535; // 0xFFFF
uint16_t b = 65535; // 0xFFFF expected: 4'294'836'225
cout << (a * b); // print '-131071' undefined behavior!! (int overflow)

The Usual Arithmetic Confusions
20/67

https://shafik.github.io/c++/2021/12/30/usual_arithmetic_confusions.html


Undefined Behavior 3/4

Even worse example:
# include <iostream>

int main() {
for (int i = 0; i < 4; ++i)

std::cout << i * 1000000000 << std::endl;
}
// with optimizations, it is an infinite loop
// --> 1000000000 * i > INT_MAX
// undefined behavior!!

// the compiler translates the multiplication constant into an addition

Why does this loop produce undefined behavior?
21/67

https://stackoverflow.com/questions/24296571/why-does-this-loop-produce-warning-iteration-3u-invokes-undefined-behavior-an/24297811#24297811


Undefined Behavior � 4/4

Is the following loop safe?

void f(int size) {
for (int i = 1; i < size; i += 2)

...
}

• What happens if size is equal to INT MAX ?
• How to make the previous loop safe?
• i >= 0 && i < size is not the solution because of undefined behavior of

signed overflow
• Can we generalize the solution when the increment is i += step ?

22/67



Overflow / Underflow

Detecting overflow/underflow for unsigned integral types is not trivial

// some examples
bool is_add_overflow(unsigned a, unsigned b) {

return (a + b) < a || (a + b) < b;
}

bool is_mul_overflow(unsigned a, unsigned b) {
unsigned x = a * b;
return a != 0 && (x / a) != b;

}

Overflow/underflow for signed integral types is not defined !! Undefined behavior
must be checked before performing the operation

23/67



Floating-point Types
and Arithmetic



IEEE Floating-Point Standard

IEEE754 is the technical standard for floating-point arithmetic

The standard defines the binary format, operations behavior, rounding rules, exception
handling, etc.

First Release : 1985
Second Release : 2008. Add 16-bit, 128-bit, 256-bit floating-point types

Third Release : 2019. Specify min/max behavior
see The IEEE Standard 754: One for the History Books

IEEE764 technical document:
754-2019 - IEEE Standard for Floating-Point Arithmetic

In general, C/C++ adopts IEEE754 floating-point standard:
en.cppreference.com/w/cpp/types/numeric limits/is iec559

24/67

https://www.computer.org/csdl/magazine/co/2019/12/08909942/1f8KFWxbTCU
https://ieeexplore.ieee.org/document/8766229
https://en.cppreference.com/w/cpp/types/numeric_limits/is_iec559


32/64-bit Floating-Point

• IEEE764 Single-precision (32-bit) float

Sign
1-bit

Exponent (or base)
8-bit

Mantissa (or significant)
23-bit

• IEEE764 Double-precision (64-bit) double

Sign
1-bit

Exponent (or base)
11-bit

Mantissa (or significant)
52-bit

25/67



128/256-bit Floating-Point

• IEEE764 Quad-Precision (128-bit) std::float128 C++23

Sign
1-bit

Exponent (or base)
15-bit

Mantissa (or significant)
112-bit

• IEEE764 Octuple-Precision (256-bit) (not standardized in C++)

Sign
1-bit

Exponent (or base)
19-bit

Mantissa (or significant)
236-bit

26/67



16-bit Floating-Point

• IEEE754 16-bit Floating-point ( std::binary16 ) C++23 → GPU, Arm7

Sign
1-bit

Exponent
5-bit

Mantissa
10-bit

• Google 16-bit Floating-point ( std::bfloat16 ) C++23 → TPU, GPU, Arm8

Sign
1-bit

Exponent
8-bit

Mantissa
7-bit

half-precision-arithmetic-fp16-versus-bfloat16
27/67

https://nickhigham.wordpress.com/2018/12/03/half-precision-arithmetic-fp16-versus-bfloat16/


8-bit Floating-Point (Non-Standardized in C++/IEEE)

• E4M3

Sign
1-bit

Exponent
4-bit

Mantissa
3-bit

• E5M2

Sign
1-bit

Exponent
5-bit

Mantissa
2-bit

• Floating Point Formats for Machine Learning, IEEE draft
• FP8 Formats for Deep Learning, Intel, Nvidia, Arm 28/67

https://github.com/P3109/Public/blob/main/Shared%20Reports/P3109%20WG%20Interim%20report.pdf
https://arxiv.org/pdf/2209.05433.pdf


Other Real Value Representations (Non-standardized in C++/IEEE) 1/2

• TensorFloat-32 (TF32) Specialized floating-point format for deep learning
applications

• Posit (John Gustafson, 2017), also called unum III (universal number), represents
floating-point values with variable-width of exponent and mantissa.
It is implemented in experimental platforms

• NVIDIA Hopper Architecture In-Depth
• Beating Floating Point at its Own Game: Posit Arithmetic
• Posits, a New Kind of Number, Improves the Math of AI
• Comparing posit and IEEE-754 hardware cost

29/67

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf
https://spectrum.ieee.org/floating-point-numbers-posits-processor
https://hal.archives-ouvertes.fr/hal-03195756v3/document


Other Real Value Representations (Non-standardized in C++/IEEE) 2/2

• Microscaling Formats (MX) Specification for low-precision floating-point
formats defined by AMD, Arm, Intel, Meta, Microsoft, NVIDIA, and Qualcomm.
It includes FP8, FP6, FP4, (MX)INT8

• Fixed-point representation has a fixed number of digits after the radix point
(decimal point). The gaps between adjacent numbers are always equal. The range
of their values is significantly limited compared to floating-point numbers.
It is widely used on embedded systems

• OCP Microscaling Formats (MX) Specification
30/67

https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf


Floating-point Representation 1/2

Floating-point number:

• Radix (or base): β

• Precision (or digits): p
• Exponent (magnitude): e
• Mantissa: M

n = M︸︷︷︸
p

×βe → IEEE754: 1.M × 2e

float f1 = 1.3f; // 1.3
float f2 = 1.1e2f; // 1.1 · 102

float f3 = 3.7E4f; // 3.7 · 104

float f4 = .3f; // 0.3
double d1 = 1.3; // without "f"
double d2 = 5E3; // 5 · 103 31/67



Floating-point Representation 2/2

Exponent Bias
In IEEE754 floating point numbers, the exponent value is offset from the actual value
by the exponent bias

• The exponent is stored as an unsigned value suitable for comparison

• Floating point values are lexicographic ordered

• For a single-precision number, the exponent is stored in the range [1, 254] (0 and 255
have special meanings), and is biased by subtracting 127 to get an exponent value in the
range [−126, +127]

0 10000111 11000000000000000000000
+ 2(135−127) = 28 1

21 + 1
22 = 0.5+0.25 = 0.75 normal→ 1.75

+1.75 ∗ 28 = 448.0 32/67



Floating-point - Normal/Denormal 1/2

Normal number
A normal number is a floating point value that can be represented with at least one
bit set in the exponent or the mantissa has all 0s

Denormal number
Denormal (or subnormal) numbers fill the underflow gap around zero in
floating-point arithmetic. Any non-zero number with magnitude smaller than the
smallest normal number is denormal

A denormal number is a floating point value that can be represented with all 0s in
the exponent, but the mantissa is non-zero

33/67



Floating-point - Normal/Denormal 2/2

Why denormal numbers make sense: (↓ normal numbers)

The problem: distance values from zero (↓ denormal numbers)

Floating-point representation, by Carl Burch
34/67

http://www.cburch.com/books/float/index.html


Infinity 1/2

Infinity
In the IEEE754 standard, inf (infinity value) is a numeric data type value that
exceeds the maximum (or minimum) representable value

Operations generating inf :

• ±∞ · ±∞
• ±∞ · ±finite value
• finite value op finite value > max value
• non-NaN / ± 0

There is a single representation for +inf and -inf

Comparison: (inf == finite value) → false
(±inf == ±inf) → true

35/67



Infinity 2/2

cout << 0 / 0; // undefined behavior
cout << 0.0 / 0.0; // print "nan"
cout << 5.0 / 0.0; // print "inf"
cout << -5.0 / 0.0; // print "-inf"

auto inf = std::numeric_limits<float>::infinity;
cout << (-0.0 == 0.0); // true, 0 == 0
cout << ((5.0f / inf) == ((-5.0f / inf)); // true, 0 == 0
cout << (10e40f) == (10e40f + 9999999.0f); // true, inf == inf
cout << (10e40) == (10e40f + 9999999.0f); // false, 10e40 != inf

36/67



Not a Number (NaN)

NaN
In the IEEE754 standard, NaN (not a number) is a numeric data type value
representing an undefined or unrepresentable value

Operations generating NaN :
• Operations with a NaN as at least one operand
• ±∞ · ∓∞ , 0 · ∞
• 0/0, ∞/∞
• √x , log(x) for x < 0
• sin−1(x), cos−1(x) for x < −1 or x > 1

There are many representations for NaN (e.g. 224 − 2 for float)

Comparison: (NaN == x) → false, for every x
(NaN == NaN) → false 37/67



Machine Epsilon

Machine epsilon
Machine epsilon εεε (or machine accuracy) is defined to be the smallest number that
can be added to 1.0 to give a number other than one

IEEE 754 Single precision : εεε = 2−23 ≈ 1.19209 ∗ 10−7

IEEE 754 Double precision : εεε = 2−52 ≈ 2.22045 ∗ 10−16

38/67



Units at the Last Place (ULP)

ULP
Units at the Last Place is the gap between consecutive floating-point numbers

ULP(p, e) = βe−(p−1) → 2e−(p−1)

Example:
β = 10, p = 3
π = 3.1415926... → x = 3.14 × 100

ULP(3, 0) = 10−2 = 0.01

Relation with εεε:

• εεε = ULP(p, 0)
• ULPx = εεε ∗ βe(x)

39/67



Floating-Point Representation of a Real Number

The machine floating-point representation fl(x) of a real number x is expressed as

fl (x) = x (1 + δ), where δ is a small constant

The approximation of a real number x has the following properties:

Absolute Error : |fl(x) − x | ≤ 1
2 · ULPx

Relative Error :
∣∣∣∣fl (x) − x

x

∣∣∣∣ ≤ 1
2 · εεε

40/67



Floating-point - Cheatsheet 1/3

• NaN (mantissa ̸= 0)
∗ 11111111 ***********************

• ± infinity
∗ 11111111 00000000000000000000000

• Lowest/Largest (±3.40282 ∗ 10+38)
∗ 11111110 11111111111111111111111

• Minimum (normal) (±1.17549 ∗ 10−38)
∗ 00000001 00000000000000000000000

• Denormal number (< 2−126)(minimum: 1.4 ∗ 10−45)
∗ 00000000 ***********************

• ±0
∗ 00000000 00000000000000000000000 41/67



Floating-point - Cheatsheet 2/3

E4M3 E5M2 half

Exponent 4 [0*-14] (no inf) 5-bit [0*-30]

Bias 7 15

Mantissa 4-bit 2-bit 10-bit

Largest (±) 1.75 ∗ 28

448
1.75 ∗ 215

57, 344
216

65, 536

Smallest (±) 2−6

0.015625
2−14

0.00006
Smallest
(denormal*)

2−9

0.001953125
2−16

1.5258 ∗ 10−5
2−24

6.0 · 10−8

Epsilon 2−4

0.0625
2−2

0.25
2−10

0.00098



Floating-point - Cheatsheet 3/3

bfloat16 float double

Exponent 8-bit [0*-254] 11-bit [0*-2046]

Bias 127 1023

Mantissa 7-bit 23-bit 52-bit

Largest (±) 2128

3.4 · 1038
21024

1.8 · 10308

Smallest (±) 2−126

1.2 · 10−38
2−1022

2.2 · 10−308

Smallest
(denormal*)

/ 2−149

1.4 · 10−45
2−1074

4.9 · 10−324

Epsilon 2−7

0.0078
2−23

1.2 · 10−7
2−52

2.2 · 10−16



Floating-point - Limits

# include <limits>
// T: float or double

std::numeric_limits<T>::max(); // largest value

std::numeric_limits<T>::lowest(); // lowest value (C++11)

std::numeric_limits<T>::min(); // smallest value

std::numeric_limits<T>::denorm min() // smallest (denormal) value

std::numeric_limits<T>::epsilon(); // epsilon value

std::numeric_limits<T>::infinity() // infinity

std::numeric_limits<T>::quiet NaN() // NaN
46/67



Floating-point - Useful Functions

# include <cmath> // C++11

bool std::isnan(T value) // check if value is NaN
bool std::isinf(T value) // check if value is ±infinity
bool std::isfinite(T value) // check if value is not NaN

// and not ±infinity

bool std::isnormal(T value); // check if value is Normal

T std::ldexp(T x, p) // exponent shift x ∗ 2p

int std::ilogb(T value) // extracts the exponent of value

47/67



Floating-point Arithmetic Properties 1/2

Floating-point operations are written
• ⊕ addition
• ⊖ subtraction
• ⊗ multiplication
• ⊘ division

⊙ ∈ {⊕, ⊖, ⊗, ⊘}

op ∈ {+, −, ∗, \} denotes exact precision operations

48/67



Floating-point Arithmetic Properties 2/2

(P1) In general, a op b ̸= a ⊙ b

(P2) Not Reflexive a ̸= a
• Reflexive without NaN

(P3) Not Commutative a ⊙ b ̸= b ⊙ a
• Commutative without NaN (NaN ̸= NaN)

(P4) In general, Not Associative (a ⊙ b) ⊙ c ̸= a ⊙ (b ⊙ c)

(P5) In general, Not Distributive (a ⊕ b) ⊗ c ̸= (a · c) ⊕ (b · c)

(P6) Identity on operations is not ensured (k ⊘ a) ⊗ a ̸= k

(P7) No overflow/underflow Floating-point has “saturation” values inf, -inf
• Adding (or subtracting) can “saturate” before inf, -inf

49/67



Detect Floating-point Errors ⋆ 1/2

C++11 allows determining if a floating-point exceptional condition has occurred by
using floating-point exception facilities provided in <cfenv>

#include <cfenv>
// MACRO
FE_DIVBYZERO // division by zero
FE_INEXACT // rounding error
FE_INVALID // invalid operation, i.e. NaN
FE_OVERFLOW // overflow (reach saturation value +inf)
FE_UNDERFLOW // underflow (reach saturation value -inf)
FE_ALL_EXCEPT // all exceptions

// functions
std::feclearexcept(FE_ALL_EXCEPT); // clear exception status
std::fetestexcept(<macro>); // returns a value != 0 if an

// exception has been detected
50/67



Detect Floating-point Errors ⋆ 2/2

#include <cfenv> // floating point exceptions
#include <iostream>
#pragma STDC FENV_ACCESS ON // tell the compiler to manipulate the floating-point

// environment (not supported by all compilers)
// gcc: yes, clang: no

int main() {
std::feclearexcept(FE_ALL_EXCEPT); // clear
auto x = 1.0 / 0.0; // all compilers
std::cout << (bool) std::fetestexcept(FE_DIVBYZERO); // print true

std::feclearexcept(FE_ALL_EXCEPT); // clear
auto x2 = 0.0 / 0.0; // all compilers
std::cout << (bool) std::fetestexcept(FE_INVALID); // print true

std::feclearexcept(FE_ALL_EXCEPT); // clear
auto x4 = 1e38f * 10; // gcc: ok
std::cout << std::fetestexcept(FE_OVERFLOW); // print true

}

see What is the difference between quiet NaN and signaling NaN?
51/67

https://stackoverflow.com/questions/18118408/what-is-the-difference-between-quiet-nan-and-signaling-nan


Floating-point Issues



Some Examples... 1/4

Ariene 5: data conversion from 64-bit
floating point value to 16-bit signed in-
teger → $137 million

Patriot Missile: small chopping error
at each operation, 100 hours activity
→ 28 deaths 52/67



Some Examples... 2/4

Integer type is more accurate than floating type for large numbers
cout << 16777217; // print 16777217
cout << (int) 16777217.0f; // print 16777216!!
cout << (int) 16777217.0; // print 16777217, double ok

float numbers are different from double numbers
cout << (1.1 != 1.1f); // print true !!!

53/67



Some Examples... 3/4

The floating point precision is finite!

cout << setprecision(20);
cout << 3.33333333f; // print 3.333333254!!
cout << 3.33333333; // print 3.333333333
cout << (0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1); // print 0.59999999999999998

Floating point arithmetic is not associative
cout << 0.1 + (0.2 + 0.3) == (0.1 + 0.2) + 0.3; // print false

IEEE764 Floating-point computation guarantees to produce deterministic output,
namely the exact bitwise value for each run, if and only if the order of the operations
is always the same
→ same result on any machine and for all runs

54/67



Some Examples... 4/4

“Using a double-precision floating-point value, we can represent easily the
number of atoms in the universe.

If your software ever produces a number so large that it will not fit in a
double-precision floating-point value, chances are good that you have a bug”

Daniel Lemire, Prof. at the University of Quebec

“ NASA uses just 15 digits of π to calculate interplanetary travel.
With 40 digits, you could calculate the circumference of a circle the size of the
visible universe with an accuracy that would fall by less than the diameter of
a single hydrogen atom”

Latest in space, Twitter

Number of atoms in the universe versus floating-point values 55/67

https://lemire.me/blog/2020/03/15/number-of-atoms-in-the-universe-versus-floating-point-values/


Floating-point Algorithms

• addition algorithm (simplified):
(1) Compare the exponents of the two numbers. Shift the smaller number to the right until its

exponent would match the larger exponent
(2) Add the mantissa
(3) Normalize the sum if needed (shift right/left the exponent by 1)

• multiplication algorithm (simplified):
(1) Multiplication of mantissas. The number of bits of the result is twice the size of the operands

(46 + 2 bits, with +2 for implicit normalization)
(2) Normalize the product if needed (shift right/left the exponent by 1)
(3) Addition of the exponents

• fused multiply-add (fma):
• Recent architectures (also GPUs) provide fma to compute addition and multiplication in a single

instruction (performed by the compiler in most cases)
• The rounding error of fma(x , y , z) is less than (x ⊗ y) ⊕ z 56/67



Catastrophic Cancellation 1/5

Catastrophic Cancellation
Catastrophic cancellation (or loss of significance) refers to loss of relevant
information in a floating-point computation that cannot be revered

Two cases:

(C1) a ± b, where a ≫ b or b ≫ a. The value (or part of the value) of the smaller
number is lost

(C2) a − b, where a, b are approximation of exact values and a ≈ b, namely a loss of
precision in both a and b. a − b cancels most of the relevant part of the result
because a ≈ b. It implies a small absolute error but a large relative error
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Catastrophic Cancellation (case 1) - Granularity 2/5

Intersection = 16, 777, 216 = 224
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Catastrophic Cancellation (case 1) 3/5

How many iterations performs the following code?

while (x > 0)
x = x - y;

How many iterations?

float: x = 10,000,000 y = 1 -> 10,000,000
float: x = 30,000,000 y = 1 -> does not terminate
float: x = 200,000 y = 0.001 -> does not terminate
bfloat: x = 256 y = 1 -> does not terminate !!
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Catastrophic Cancellation (case 1) 4/5

Floating-point increment

float x = 0.0f;
for (int i = 0; i < 20000000; i++)
x += 1.0f;

What is the value of x at the end of the loop?

Ceiling division
⌈ a

b

⌉
// std::ceil((float) 101 / 2.0f) -> 50.5f -> 51
float x = std::ceil((float) 20000001 / 2.0f);

What is the value of x ? 60/67



Catastrophic Cancellation (case 2) 5/5

Let’s solve a quadratic equation:

x1,2 = −b ±
√

b2 − 4ac
2a

x2 + 5000x + 0.25
(-5000 + std::sqrt(5000.0f * 5000.0f - 4.0f * 1.0f * 0.25f)) / 2 // x2
(-5000 + std::sqrt(25000000.0f - 1.0f)) / 2 // catastrophic cancellation (C1)
(-5000 + std::sqrt(25000000.0f)) / 2
(-5000 + 5000) / 2 = 0 // catastrophic cancellation (C2)
// correct result: 0.00005!!

relative error : |0 − 0.00005|
0.00005 = 100%
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Floating-point Comparison 1/3

The problem
cout << (0.11f + 0.11f < 0.22f); // print true!!
cout << (0.1f + 0.1f > 0.2f); // print true!!

Do not use absolute error margins!!
bool areFloatNearlyEqual(float a, float b) {

if (std::abs(a - b) < epsilon); // epsilon is fixed by the user
return true;

return false;
}

Problems:
• Fixed epsilon “looks small” but it could be too large when the numbers being compared

are very small
• If the compared numbers are very large, the epsilon could end up being smaller than the

smallest rounding error, so that the comparison always returns false 62/67



Floating-point Comparison 2/3

Solution: Use relative error |a−b|
b < ε

bool areFloatNearlyEqual(float a, float b) {
if (std::abs(a - b) / b < epsilon); // epsilon is fixed

return true;
return false;

}

Problems:
• a=0, b=0 The division is evaluated as 0.0/0.0 and the whole if statement is (nan <

espilon) which always returns false

• b=0 The division is evaluated as abs(a)/0.0 and the whole if statement is (+inf <
espilon) which always returns false

• a and b very small. The result should be true but the division by b may produces
wrong results

• It is not commutative. We always divide by b 63/67



Floating-point Comparison 3/3

Possible solution: |a−b|
max(|a|,|b|) < ε

bool areFloatNearlyEqual(float a, float b) {
constexpr float normal_min = std::numeric_limits<float>::min();
constexpr float relative_error = <user_defined>

if (!std::isfinite(a) || !isfinite(b)) // a = ±∞, NaN or b = ±∞, NaN
return false;

float diff = std::abs(a - b);
// if "a" and "b" are near to zero, the relative error is less effective
if (diff <= normal_min) // or also: user_epsilon * normal_min

return true;

float abs_a = std::abs(a);
float abs_b = std::abs(b);
return (diff / std::max(abs_a, abs_b)) <= relative_error;

} 64/67



Minimize Error Propagation - Summary

• Prefer multiplication/division rather than addition/subtraction

• Try to reorganize the computation to keep near numbers with the same scale
(e.g. sorting numbers)

• Consider to put a zero very small number (under a threshold). Common
application: iterative algorithms

• Scale by a power of two is safe

• Switch to log scale. Multiplication becomes Add, and Division becomes
Subtraction

• Use a compensation algorithm like Kahan summation, Dekker’s FastTwoSum,
Rump’s AccSum 65/67
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