
Modern C++
Programming

14. Debugging and Testing

Federico Busato
2024-03-29



Table of Contents

1 Debugging Overview

2 Assertions

3 Execution Debugging
Breakpoints

Watchpoints / Catchpoints

Control Flow

Stack and Info

Print

Disassemble 1/76



Table of Contents

4 Memory Debugging
valgrind

5 Hardening Techniques
Stack Usage

Standard Library Checks

Undefined Behavior Protections

Control Flow Protections

2/76



Table of Contents

6 Sanitizers
Address Sanitizer

Leak Sanitizer

Memory Sanitizers

Undefined Behavior Sanitizer

7 Debugging Summary

8 Compiler Warnings

3/76



Table of Contents

9 Static Analysis

10 Code Testing
Unit Testing

Test-Driven Development (TDD)

Code Coverage

Fuzz Testing

11 Code Quality
clang-tidy

4/76



Feature Complete

5/76



Debugging Overview



Is this a bug?

for (int i = 0; i <= (2ˆ32) - 1; i++) {

“Software developers spend 35-50 percent of their time vali-
dating and debugging software. The cost of debugging, test-
ing, and verification is estimated to account for 50-75 percent
of the total budget of software development projects”

from: John Regehr (on Twitter)
The Debugging Mindset

6/76

https://queue.acm.org/detail.cfm?id=3068754


Errors, Defects, and Failures

• An error is a human mistake. Errors lead to software defects

• A defects is an unexpected behavior of the software (correctness, performance,
etc.). Defects potentially lead to software failures

• A failure is an observable incorrect behavior

7/76



Cost of Software Defects 1/2

8/76



Cost of Software Defects 2/2

Some examples:

• The Millennium Bug (2000): $100 billion
• The Morris Worm (1988): $10 million (single student)
• Ariane 5 (1996): $370 million
• Knight’s unintended trades (2012): $440 million
• Bitcoin exchange error (2011): $1.5 million
• Pentium FDIV Bug (1994): $475 million
• Boeing 737 MAX (2019): $3.9 million

see also:

11 of the most costly software errors in history
Historical Software Accidents and Errors
List of software bugs 9/76

https://raygun.com/blog/costly-software-errors-history/
https://embeddedartistry.com/fieldatlas/historical-software-accidents-and-errors/
https://en.wikipedia.org/wiki/List_of_software_bugs


Types of Software Defects

Ordered by fix complexity, (time to fix):

(1) Typos, Syntax, Formatting (seconds)

(2) Compilation Warnings/Errors (seconds, minutes)

(3) Logic, Arithmetic, Runtime Errors (minutes, hours, days)

(4) Resource Errors (minutes, hours, days)

(5) Accuracy Errors (hours, days)

(6) Performance Errors (days)

(7) Design Errors (weeks, months)
10/76



Causes of Bugs

• C++ is very error prone language, see 60 terrible tips for a C++
developer

• Human behavior, e.g. copying & pasting code is very common practice and can
introduce subtle bugs → check the code carefully, deep understanding of its
behavior

11/76

https://pvs-studio.com/en/blog/posts/cpp/1053/
https://pvs-studio.com/en/blog/posts/cpp/1053/


Program Errors

A program error is a set of conditions that produce an incorrect result or unexpected
behavior, including performance regression, memory consumption, early termination,
etc.

We can distinguish between two kind of errors:

Recoverable Conditions that are not under the control of the program. They
indicates “exceptional” run-time conditions. e.g. file not found, bad
allocation, wrong user input, etc.

Unrecoverable It is a synonym of a bug. It indicates a problem in the program logic.
The program must terminate and modified. e.g. out-of-bound, division
by zero, etc.

A recoverable should be considered unrecoverable if it is extremely rare and difficult to
handle, e.g. bad allocation due to out-of-memory error 12/76



Dealing with Software Defects

Software defects can be identifies by:

Dynamic Analysis A mitigation strategy that acts on the runtime state of a program.
Techniques: Print, run-time debugging, sanitizers, fuzzing, unit test support,

performance regression tests
Limitations: Infeasible to cover all program states

Static Analysis A proactive strategy that examines the source code for (potential)
errors.

Techniques: Warnings, static analysis tool, compile-time checks
Limitations: Turing’s undecidability theorem, exponential code paths

How programmers make sure that their software is correct

13/76

https://lemire.me/blog/2022/01/03/how-programmers-make-sure-that-their-software-is-correct/


Assertions



Unrecoverable Errors and Assertions

Unrecoverable errors cannot be handled. They should be prevented by using assertion
for ensuring pre-conditions and post-conditions

An assertion is a statement to detect a violated assumption. An assertion represents
an invariant in the code

It can happen both at run-time ( assert ) and compile-time ( static assert ).
Run-time assertion failures should never be exposed in the normal program execution
(e.g. release/public)

14/76



Assertion

# include <cassert> // <-- needed for "assert"
# include <cmath> // std::is_finite
# include <type_traits> // std::is_arithmetic_v

template<typename T>
T sqrt(T value) {

static_assert(std::is_arithmetic_v<T>, // precondition
"T must be an arithmetic type");

assert(std::is_finite(value) && value >= 0); // precondition
int ret = ... // sqrt computation
assert(std::is_finite(value) && ret >= 0 && // postcondition

(ret == 0 || ret == 1 || ret < value));
return ret;

}

Assertions may slow down the execution. They can be disable by define the NDEBUG
macro
# define NDEBUG // or with the flag "-DNDEBUG" 15/76



Execution
Debugging



Execution Debugging (gdb)

How to compile and run for debugging:

g++ -O0 -g [-g3] <program.cpp> -o program
gdb [--args] ./program <args...>

-O0 Disable any code optimization for helping the debugger. It is implicit for most
compilers

-g Enable debugging
- stores the symbol table information in the executable (mapping between assembly

and source code lines)
- for some compilers, it may disable certain optimizations
- slow down the compilation phase and the execution

-g3 Produces enhanced debugging information, e.g. macro definitions. Available for
most compilers. Suggested instead of -g 16/76



gdb - Breakpoints

Command Abbr. Description

breakpoint <file>:<line> b insert a breakpoint in a specific line

breakpoint <function name> b insert a breakpoint in a specific function

breakpoint <ref > if <condition> b insert a breakpoint with a conditional statement

delete d delete all breakpoints or watchpoints

delete <breakpoint number> d delete a specific breakpoint

clear [function name/line number ] delete a specific breakpoint

enable/disable <breakpoint number> enable/disable a specific breakpoint

info breakpoints info b list all active breakpoints

17/76



gdb - Watchpoints / Catchpoints

Command Abbr. Description

watch <expression>
stop execution when the value of expression changes
(variable, comparison, etc.)

rwatch <variable/location> stop execution when variable/location is read

delete <watchpoint number> d delete a specific watchpoint

info watchpoints list all active watchpoints

catch throw stop execution when an exception is thrown

18/76



gdb - Control Flow

Command Abbr. Description

run [args] r run the program

continue c continue the execution

finish f continue until the end of the current function

step s execute next line of code (follow function calls)

next n execute next line of code

until <program point>
continue until reach line number,
function name, address, etc.

CTRL+C stop the execution (not quit)

quit q exit

help [<command>] h show help about command
19/76



gdb - Stack and Info

Command Abbr. Description

list l print code

list <function or #start,#end> l print function/range code

up u move up in the call stack

down d move down in the call stack

backtrace [full] bt prints stack backtrace (call stack) [local vars]

info args print current function arguments

info locals print local variables

info variables print all variables

info <breakpoints/watchpoints/registers>
show information about program
breakpoints/watchpoints/registers

20/76



gdb - Print

Command Abbr. Description

print <variable> p print variable

print/h <variable> p/h print variable in hex

print/nb <variable> p/nb print variable in binary (n bytes)

print/w <address> p/w print address in binary

p /s <char array/address> print char array

p *array var@n print n array elements

p (int[4])<address> print four elements of type int

p *(char**)&<std::string> print std::string

21/76



gdb - Disassemble

Command Description

disasseble <function name> disassemble a specified function

disasseble <0xStart,0xEnd addr> disassemble function range

nexti <variable>
execute next line of code (follow
function calls)

stepi <variable> execute next line of code

x/nfu <address>

examine address
n number of elements,
f format (d: int, f: float, etc.),
u data size (b: byte, w: word, etc.)

22/76



gdb - Notes

The debugger automatically stops when:
• breakpoint (by using the debugger)
• assertion fail
• segmentation fault
• trigger software breakpoint (e.g. SIGTRAP on Linux)

github.com/scottt/debugbreak

Full story: www.yolinux.com/TUTORIALS/GDB-Commands.html (it also contains a
script to de-referencing STL Containers)

gdb reference card V5 link

23/76

https://github.com/scottt/debugbreak
www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.cs.princeton.edu/courses/archive/fall16/cos432/hw2/gdb-refcard.pdf


Memory Debugging



Memory Vulnerabilities 1/3

“70% of all the vulnerabilities in Microsoft products are memory safety
issues”

Matt Miller, Microsoft Security Engineer

“Chrome: 70% of all security bugs are memory safety issues”
Chromium Security Report

“you can expect at least 65% of your security vulnerabilities to be
caused by memory unsafety”

What science can tell us about C and C++’s security

Microsoft: 70% of all security bugs are memory safety issues
Chrome: 70% of all security bugs are memory safety issues
What science can tell us about C and C++’s security 24/76

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/


Memory Vulnerabilities 2/3

“Memory Unsafety in Apple’s OS represents 66.3%- 88.2% of all the
vulnerabilities”

“Out of bounds (OOB) reads/writes comprise ∼70% of all the vul-
nerabilities in Android”

Jeff Vander, Google, Android Media Team

“Memory corruption issues are the root-cause of 68% of listed CVEs”
Ben Hawkes, Google, Project Zero

Memory Unsafety in Apple’s Operating Systems
Google Security Blog: Queue the Hardening Enhancements
Google Project Zero 25/76

https://langui.sh/2019/07/23/apple-memory-safety/
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://googleprojectzero.blogspot.com/p/0day.html


Memory Vulnerabilities 2/2

Terms like buffer overflow, race condition, page fault, null pointer, stack exhaustion,
heap exhaustion/corruption, use-after-free, or double free – all describe memory
safety vulnerabilities

Mitigation:

• Run-time check
• Static analysis
• Avoid unsafe language constructs

26/76



valgrind 1/9

valgrind  is a tool suite to automatically detect many
memory management and threading bugs

How to install the last version:

$ wget ftp://sourceware.org/pub/valgrind/valgrind-3.21.tar.bz2
$ tar xf valgrind-3.21.tar.bz2
$ cd valgrind-3.21
$ ./configure --enable-lto
$ make -j 12
$ sudo make install
$ sudo apt install libc6-dbg #if needed

some linux distributions provide the package through apt install valgrid , but it could be an old version 27/76

http://valgrind.org


valgrind 2/9

Basic usage:
• compile with -g

• $ valgrind ./program <args...>

Output example 1:
==60127== Invalid read of size 4 !!out-of-bound access
==60127== at 0x100000D9E: f(int) (main.cpp:86)
==60127== by 0x100000C22: main (main.cpp:40)
==60127== Address 0x10042c148 is 0 bytes after a block of size 40 alloc'd
==60127== at 0x1000161EF: malloc (vg_replace_malloc.c:236)
==60127== by 0x100000C88: f(int) (main.cpp:75)
==60127== by 0x100000C22: main (main.cpp:40)

28/76



valgrind 3/9

Output example 2:

!!memory leak
==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==19182== at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130)
==19182== by 0x8048385: f (main.cpp:5)
==19182== by 0x80483AB: main (main.cpp:11)

==60127== HEAP SUMMARY:
==60127== in use at exit: 4,184 bytes in 2 blocks
==60127== total heap usage: 3 allocs, 1 frees, 4,224 bytes allocated
==60127==
==60127== LEAK SUMMARY:
==60127== definitely lost: 128 bytes in 1 blocks !!memory leak
==60127== indirectly lost: 0 bytes in 0 blocks
==60127== possibly lost: 0 bytes in 0 blocks
==60127== still reachable: 4,184 bytes in 2 blocks !!not deallocated
==60127== suppressed: 0 bytes in 0 blocks

29/76



valgrind 4/9

Memory leaks are divided into four categories:

• Definitely lost
• Indirectly lost
• Still reachable
• Possibly lost

When a program terminates, it releases all heap memory allocations. Despite this,
leaving memory leaks is considered a bad practice and makes the program unsafe with
respect to multiple internal iterations of a functionality. If a program has memory leaks
for a single iteration, is it safe for multiple iterations?

A robust program prevents any memory leak even when abnormal conditions occur

30/76



valgrind 5/9

Definitely lost indicates blocks that are not deleted at the end of the program (return
from the main() function). The common case is local variables pointing to newly
allocated heap memory

void f() {
int* y = new int[3]; // 12 bytes definitely lost

}

int main() {
int* x = new int[10]; // 40 bytes definitely lost
f();

}

31/76



valgrind 6/9

Indirectly lost indicates blocks pointed by other heap variables that are not deleted.
The common case is global variables pointing to newly allocated heap memory

struct A {
int* array;

};

int main() {
A* x = new A; // 8 bytes definitely lost
x->array = new int[4]; // 16 bytes indirectly lost

}

32/76



valgrind 7/9

Still reachable indicates blocks that are not deleted but they are still reachable at the
end of the program
int* array;

int main() {
array = new int[3];

}
// 12 bytes still reachable (global static class could delete it)

# include <cstdlib>
int main() {

int* array = new int[3];
std::abort(); // early abnormal termination
// 12 bytes still reachable
... // maybe it is delete here

}

33/76



valgrind 8/9

Possibly lost indicates blocks that are still reachable but pointer arithmetic makes the
deletion more complex, or even not possible

# include <cstdlib>
int main() {

int* array = new int[3];
array++; // pointer arithmetic
std::abort(); // early abnormal termination
// 12 bytes still reachable
... // maybe it is delete here but you should be able

// to revert pointer arithmetic
}

34/76



valgrind 9/9

Advanced flags:

• --leak-check=full print details for each “definitely lost” or “possibly lost”
block, including where it was allocated

• --show-leak-kinds=all to combine with --leak-check=full. Print all leak kinds

• --track-fds=yes list open file descriptors on exit (not closed)

• --track-origins=yes tracks the origin of uninitialized values (very slow execution)

valgrind --leak-check=full --show-leak-kinds=all
--track-fds=yes --track-origins=yes ./program <args...>

Track stack usage:

valgrind --tool=drd --show-stack-usage=yes ./program <args...>

35/76



Hardening
Techniques



References

• Compiler Options Hardening Guide for C and C++ [March, 2024]

• Hardened mode of standard library implementations

36/76

https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++.html
https://medium.com/@simontoth/daily-bit-e-of-c-hardened-mode-of-standard-library-implementations-18be2422c372


Compile-time Stack Usage

• -Wstack-usage=<byte-size> Warn if the stack usage of a function might
exceed byte-size. The computation done to determine the stack usage is
conservative (no VLA)

• -fstack-usage Makes the compiler output stack usage information for the
program, on a per-function basis

• -Wvla Warn if a variable-length array is used in the code

• -Wvla-larger-than=<byte-size> Warn for declarations of variable-length
arrays whose size is either unbounded, or bounded by an argument that allows the
array size to exceed byte-size bytes

Use compiler flags for stack protection in GCC and Clang 37/76

https://developers.redhat.com/articles/2022/06/02/use-compiler-flags-stack-protection-gcc-and-clang#stack_canary


Compile-time Stack Protection

• -Wtrampolines Check whether the compiler generates trampolines for pointers
to nested functions which may interfere with stack virtual memory protection

• -Wl,-z,noexecstack Enable data execution prevention by marking stack
memory as non-executable

38/76



Run-time Stack Usage

• -fstack-clash-protection Enables run-time checks for variable-size stack
allocation validity

• -fstack-protector-strong Enables run-time checks for stack-based buffer
overflows using strong heuristic

• -fstack-protector-all Enables run-time checks for stack-based buffer
overflows for all functions

39/76



libc Buffer Overflow Checks 1/2

FORTIFY SOURCE define: the compiler provides buffer overflow checks for the
following functions:

memcpy , mempcpy , memmove , memset , strcpy , stpcpy , strncpy , strcat ,
strncat , sprintf , vsprintf , snprintf , vsnprintf , gets .

Recent compilers (e.g. GCC 12+, Clang 9+) allow detects buffer overflows with
enhanced coverage, e.g. dynamic pointers, with FORTIFY SOURCE=3 *

*GCC’s new fortification level: The gains and costs 40/76

https://developers.redhat.com/articles/2022/09/17/gccs-new-fortification-level


libc Buffer Overflow Checks 2/2

# include <cstring> // std::memset
# include <string> // std::stoi
int main(int argc, char** argv) {

int size = std::stoi(argv[1]);
char buffer[24];
std::memset(buffer, 0xFF, size);

}

$ gcc -O1 -D FORTIFY SOURCE program.cpp -o program
$ ./program 12 # OK
$ ./program 32 # Wrong
$ *** buffer overflow detected ***: ./program terminated

41/76



Standard Library Precondictions

The standard library provides run-time precondition checks for library calls, such as
bounds-checks for strings and containers, and null-pointer checks, etc.

-D GLIBCXX ASSERTIONS for libstdc++ (GCC)
-D LIBCPP ASSERT , LIBCPP HARDENING MODE EXTENSIVE for libc++ (LLVM):

42/76



Undefined Behavior Protections 1/2

• -fno-strict-overflow Prevent code optimization (code elimination) due to
signed integer undefined behavior

• -fwrapv Signed integer has the same semantic of unsigned integer, with a
well-defined wrap-around behavior

• -fno-strict-aliasing Strict aliasing means that two objects with the same
memory address are not same if they have a different type, undefined behavior
otherwise. The flag disables this constraint

43/76



Undefined Behavior Protections 2/2

• -fno-delete-null-pointer-checks NULL pointer dereferencing is undefined
behavior and the compiler can assume that it never happens. The flag disable this
optimization

• -ftrivial-auto-var-init[=<hex pattern>] Ensures that default
initialization initializes variables with a fixed 1-byte pattern. Explicit uninitialized
variables requires the [[uninitialized]] attribute

44/76



Control Flow Protections

• -fcf-protection=full Enable control flow protection to counter Return
Oriented Programming (ROP) and Jump Oriented Programming (JOP) attacks
on many x86 architectures

• -mbranch-protection=standard Enable branch protection to counter Return
Oriented Programming (ROP) and Jump Oriented Programming (JOP) attacks
on AArch64

45/76



Other Run-time Checks

• -fPIE -pie Position-Independent Executable enables the support for address
space layout randomization, which makes exploits more difficult.

• -Wl,-z,relro,-z,now Prevents modification of the Global Offset Table
(locations of functions from dynamically linked libraries) after the program startup

• -Wl,-z,nodlopen Restrict dlopen(3) calls to shared objects

46/76



Sanitizers



Address Sanitizer

Sanitizers are compiler-based instrumentation components to perform dynamic
analysis

Sanitizer are used during development and testing to discover and diagnose memory
misuse bugs and potentially dangerous undefined behavior

Sanitizer are implemented in Clang (from 3.1), gcc (from 4.8) and Xcode

Project using Sanitizers:
• Chromium
• Firefox
• Linux kernel
• Android

Memory error checking in C and C++: Comparing Sanitizers and Valgrind 47/76

https://developers.redhat.com/blog/2021/05/05/memory-error-checking-in-c-and-c-comparing-sanitizers-and-valgrind


Address Sanitizer

Address Sanitizer  is a memory error detector
• heap/stack/global out-of-bounds
• memory leaks
• use-after-free, use-after-return, use-after-scope
• double-free, invalid free
• initialization order bugs
* Similar to valgrind but faster (50X slowdown)

clang++ -O1 -g -fsanitize=address -fno-omit-frame-pointer <program>

-O1 disable inlining
-g generate symbol table

• github.com/google/sanitizers/wiki/AddressSanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 48/76

https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


Leak Sanitizer

LeakSanitizer  is a run-time memory leak detector
• integrated into AddressSanitizer, can be used as standalone tool
* almost no performance overhead until the very end of the process

g++ -O1 -g -fsanitize=address -fno-omit-frame-pointer <program>
clang++ -O1 -g -fsanitize=leak -fno-omit-frame-pointer <program>

• github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 49/76

https://clang.llvm.org/docs/LeakSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


Memory Sanitizers

Memory Sanitizer  is a detector of uninitialized reads
• stack/heap-allocated memory read before it is written
* Similar to valgrind but faster (3X slowdown)

clang++ -O1 -g -fsanitize=memory -fno-omit-frame-pointer <program>

-fsanitize-memory-track-origins=2
track origins of uninitialized values

Note: not compatible with Address Sanitizer

• github.com/google/sanitizers/wiki/MemorySanitizer
• gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 50/76

https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


Undefined Behavior Sanitizer

UndefinedBehaviorSanitizer  is an undefined behavior detector
• signed integer overflow, floating-point types overflow, enumerated not in range
• out-of-bounds array indexing, misaligned address
• divide by zero
• etc.
* Not included in valgrind

clang++ -O1 -g -fsanitize=undefined -fno-omit-frame-pointer <program>

gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html 51/76

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


Undefined Behavior Sanitizer

-fsanitize=<options> :

undefined All of the checks other than float-divide-by-zero,
unsigned-integer-overflow, implicit-conversion,
local-bounds and the nullability-* group of checks

float-divide-by-zero Undefined behavior in C++, but defined by Clang and IEEE-754

integer Checks for undefined or suspicious integer behavior (e.g. unsigned
integer overflow)

implicit-conversion Checks for suspicious behavior of implicit conversions

local-bounds Out of bounds array indexing, in cases where the array bound can be
statically determined

nullability Checks passing null as a function parameter, assigning null to an
lvalue, and returning null from a function 52/76



Sanitizers vs. Valgrind

Valgrind - A neglected tool from the shadows or a serious debugging tool? 53/76

https://m-peko.github.io/craft-cpp/posts/valgrind-a-neglected-tool-from-the-shadows-or-a-serious-debugging-tool/


Debugging Summary



How to Debug Common Errors

Segmentation fault
• gdb, valgrind, sanitizers

• Segmentation fault when just entered in a function → stack overflow

Double free or corruption
• gdb, valgrind, sanitizers

Infinite execution
• gdb + (CTRL + C)

Incorrect results
• valgrind + assertion + gdb + sanitizers

54/76



Compiler Warnings



Compiler Warnings - GCC and Clang

Enable specific warnings:

g++ -W<warning> <args...>

Disable specific warnings:

g++ -Wno-<warning> <args...>

Common warning flags to minimize accidental mismatches:
-Wall Enables many standard warnings (∼50 warnings)

-Wextra Enables some extra warning flags that are not enabled by -Wall (∼15 warnings)

-Wpedantic Issue all the warnings demanded by strict ISO C/C++

Enable ALL warnings, only clang: -Weverything
55/76



Compiler Warnings - MSVC

Enable specific warnings:

cl.exe /W<level><warning id> <args...>

Disable specific warnings:

cl.exe /We<warning id> <args...>

Common warning flags to minimize accidental mismatches:
/W1 Severe warnings
/W2 Significant warnings
/W3 Production quality warnings
/W4 Informational warnings

/Wall All warnings 56/76



Static Analysis



Overview

Static analysis is the process of source code examination to find potential issues

Benefits of static code analysis:

• Problem identification before the execution
• Analyze the program outside the execution environment
• The analysis is independent from the run-time tests
• Enforce code quality and compliance by ensuring that the code follows specific

rules and standards
• Identify security vulnerabilities

57/76



Static Analyzers - Clang and GCC

The Clang Static Analyzer  (LLVM suite) finds bugs by reasoning
about the semantics of code (may produce false positives)

void test() {
int i, a[10];
int x = a[i]; // warning: array subscript is undefined

}

scan-build make

The GCC Static Analyzer  can diagnose various kinds of problems
in C/C++ code at compile-time (e.g. double-free, use-after-free, stdio
related, etc) by adding the -fanalyzer flag

58/76

https://clang-analyzer.llvm.org
https://gcc.gnu.org/onlinedocs/gcc/Static-Analyzer-Options.html


Static Analyzers - cppcheck

The MSVC Static Analyzer  Enables code analysis and control op-
tions (e.g. double-free, use-after-free, stdio related, etc) by adding the
/analyze flag

cppcheck  provides code analysis to detect bugs, undefined behavior and
dangerous coding construct. The goal is to detect only real errors in the
code (i.e. have very few false positives)

cppcheck --enable=warning,performance,style,portability,information,error
<src_file/directory>

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
cppcheck --enable=<enable_flags> --project=compile_commands.json

59/76

https://learn.microsoft.com/en-us/cpp/build/reference/analyze-code-analysis?view=msvc-170
http://cppcheck.sourceforge.net/


Popular Static Analyzers - PVS-Studio, SonarLint

PVS-Studio  is a high-quality proprietary (free for open source projects)
static code analyzer supporting C, C++

Customers: IBM, Intel, Adobe, Microsoft, Nvidia, Bosh, IdGames, EpicGames, etc.

SonarSource  is a static analyzer which inspects source code for bugs,
code smells, and security vulnerabilities for multiple languages (C++, Java,
etc.)

SonarLint plugin is available for Visual Code, Visual Studio Code, Eclipse, and IntelliJ IDEA

60/76

https://www.sonarsource.com/
https://www.sonarlint.org/


Other Static Analyzers - FBInfer, DeepCode

FBInfer  is a static analysis tool (also available online) to checks for
null pointer dereferencing, memory leak, coding conventions, unavailable
APIs, etc.

Customers: Amazon AWS, Facebook/Ocolus, Instagram, Whatapp, Mozilla, Spotify, Uber,
Sky, etc.

deepCode  is an AI-powered code review system, with machine learning
systems trained on billions of lines of code from open-source projects

Available for Visual Studio Code, Sublime, IntelliJ IDEA, and Atom

see also: A curated list of static analysis tool 61/76

http://fbinfer.com
https://www.deepcode.ai/
https://github.com/analysis-tools-dev/static-analysis


Code Testing



Code Testing

see Case Study 4: The $440 Million Software Error at Knight Capital

from: Kat Maddox (on Twitter)
62/76

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html


Code Testing

Unit Test A unit is the smallest piece of code that can be logically isolated in a
system. Unit test refers to the verification of a unit. It supposes the
full knowledge of the code under testing (white-box testing)
Goals: meet specifications/requirements, fast development/debugging

Functional Test Output validation instead of the internal structure (black-box testing)
Goals: performance, regression (same functionalities of previous
version), stability, security (e.g. sanitizers), composability (e.g.
integration test)

63/76



Unit Testing 1/3

Unit testing involves breaking your program into pieces, and subjecting each piece to
a series of tests

Unit testing should observe the following key features:

• Isolation: Each unit test should be independent and avoid external interference
from other parts of the code

• Automation: Non-user interaction, easy to run, and manage
• Small Scope: Unit tests focus on small portions of code or specific

functionalities, making it easier to identify bugs

Popular C++ Unit testing frameworks:

catch, doctest, Google Test, CppUnit, Boost.Test

64/76



Unit Testing 2/3

65/76



Unit Testing 3/3

JetBrains C++ Developer Ecosystem 2022 66/76

https://www.jetbrains.com/lp/devecosystem-2022/cpp/


Test-Driven Development (TDD)

Unit testing is often associated with the Test-Driven Development (TDD)
methodology. The practice involves the definition of automated functional tests before
implementing the functionality

The process consists of the following steps:

1. Write a test for a new functionality
2. Write the minimal code to pass the test
3. Improve/Refactor the code iterating with the test verification
4. Go to 1.

67/76



Test-Driven Development (TDD) - Main advantages

• Software design. Strong focus on interface definition, expected behavior,
specifications, and requirements before working at lower level

• Maintainability/Debugging Cost Small, incremental changes allow you to catch
bugs as they are introduced. Later refactoring or the introduction of new features
still rely on well-defined tests

• Understandable behavior. New user can learn how the system works and its
properties from the tests

• Increase confidence. Developers are more confident that their code will work as
intended because it has been extensively tested

• Faster development. Incremental changes, high confidence, and automation
make it easy to move through different functionalities or enhance existing ones

68/76



catch 1/2

Catch2  is a multi-paradigm test framework for C++

Catch2 features
• Header only and no external dependencies
• Assertion macro
• Floating point tolerance comparisons

Basic usage:
• Create the test program
• Run the test

$ ./test_program [<TestName>]

• github.com/catchorg/Catch2
• The Little Things: Testing with Catch2 69/76

https://catch-lib.net
https://github.com/catchorg/Catch2/blob/master/docs/command-line.md
https://codingnest.com/the-little-things-testing-with-catch-2/


catch 2/2

# define CATCH_CONFIG_MAIN // This tells Catch to provide a main()
# include "catch.hpp" // only do this in one cpp file

unsigned Factorial(unsigned number) {
return number <= 1 ? number : Factorial(number - 1) * number;

}

"Test description and tag name"
TEST_CASE( "Factorials are computed", "[Factorial]" ) {

REQUIRE( Factorial(1) == 1 );
REQUIRE( Factorial(2) == 2 );
REQUIRE( Factorial(3) == 6 );
REQUIRE( Factorial(10) == 3628800 );

}

float floatComputation() { ... }

TEST_CASE( "floatCmp computed", "[floatComputation]" ) {
REQUIRE( floatComputation() == Approx( 2.1 ) );

}
70/76



Code Coverage 1/3

Code coverage is a measure used to describe the degree to which the source code of
a program is executed when a particular execution/test suite runs

gcov and llvm-profdata/llvm-cov are tools used in conjunction with compiler
instrumentation (gcc, clang) to interpret and visualize the raw code coverage
generated during the execution

gcovr and lcov are utilities for managing gcov/llvm-cov at higher level and
generating code coverage results

Step for code coverage:

• Compile with --coverage flag (objects + linking)
• Run the program / test
• Visualize the results with gcovr, llvm-cov, lcov

71/76

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://llvm.org/docs/CommandGuide/llvm-cov.html
https://gcovr.com/en/stable/index.html
https://github.com/linux-test-project/lcov


Code Coverage 2/3

program.cpp:
# include <iostream>
# include <string>

int main(int argc, char* argv[]) {
int value = std::stoi(argv[1]);
if (value % 3 == 0)

std::cout << "first\n";
if (value % 2 == 0)

std::cout << "second\n";
}

$ gcc -g --coverage program.cpp -o program
$ ./program 9
first
$ gcovr -r --html --html-details <path> # generate html
# or
$ lcov --coverage --directory . --output-file coverage.info
$ genhtml coverage.info --output-directory <path> # generate html 72/76



Code Coverage 3/3

1: 4:int main(int argc, char* argv[]) {
1: 5: int value = std::stoi(argv[1]);
1: 6: if (value % 3 == 0)
1: 7: std::cout << "first\n";
1: 8: if (value % 2 == 0)

# ####: 9: std::cout << "second\n";
4: 10:}

73/76



Coverage-Guided Fuzz Testing

A fuzzer is a specialized tool that tracks which areas of the code are reached, and
generates mutations on the corpus of input data in order to maximize the code
coverage

LibFuzzer  is the library provided by LLVM and feeds fuzzed inputs to the library via
a specific fuzzing entrypoint

The fuzz target function accepts an array of bytes and does something interesting with these
bytes using the API under test:

extern "C" int LLVMFuzzerTestOneInput(const uint8_t* Data,
size_t Size) {

DoSomethingInterestingWithMyAPI(Data, Size);
return 0;

}

74/76

https://llvm.org/docs/LibFuzzer.html


Code Quality



Linters - clang-tidy 1/2

lint: The term was derived from the name of the undesirable bits of fiber

clang-tidy  provides an extensible framework for diagnosing and fixing typical
programming errors, like style violations, interface misuse, or bugs that can be deduced
via static analysis

$ cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .
$ clang-tidy -p .

clang-tidy searches the configuration file .clang-tidy file located in the closest
parent directory of the input file

clang-tidy is included in the LLVM suite

75/76

https://clang.llvm.org/extra/clang-tidy


Linters - clang-tidy 2/2

Coding Guidelines:
• CERT Secure Coding Guidelines
• C++ Core Guidelines
• High Integrity C++ Coding Standard

Supported Code Conventions:
• Fuchsia
• Google
• LLVM

Bug Related:
• Android related
• Boost library related
• Misc
• Modernize
• Performance
• Readability
• clang-analyzer checks
• bugprone code constructors

.clang-tidy

Checks: 'android-*,boost-*,bugprone-*,cert-*,cppcoreguidelines-*,
clang-analyzer-*,fuchsia-*,google-*,hicpp-*,llvm-*,misc-*,modernize-*,
performance-*,readability-*' 76/76


	Debugging Overview
	Assertions
	Execution Debugging
	Breakpoints
	Watchpoints / Catchpoints
	Control Flow
	Stack and Info
	Print
	Disassemble

	Memory Debugging
	valgrind

	Hardening Techniques
	Stack Usage
	Standard Library Checks
	Undefined Behavior Protections
	Control Flow Protections

	Sanitizers
	Address Sanitizer
	Leak Sanitizer
	Memory Sanitizers
	Undefined Behavior Sanitizer

	Debugging Summary
	Compiler Warnings
	Static Analysis
	Code Testing
	Unit Testing
	Test-Driven Development (TDD)
	Code Coverage
	Fuzz Testing

	Code Quality
	clang-tidy


