
Modern C++
Programming

1. Introduction

Federico Busato
2023-04-02

Table of Context

1 A Little History of C/C++ Programming Language

2 Areas of Application and Popularity

3 C++ Philosophy

4 C++ Weaknesses

5 Books and References

6 The Course

1/58

About Motivation 1/5

“When recruiting research assistants, I look at grades as the last indi-
cator. I find that imagination, ambition, initiative, curiosity, drive,
are far better predictors of someone who will do useful work with me. Of
course, these characteristics are themselves correlated with high grades,
but there is something to be said about a student who decides that a
given course is a waste of time and that he works on a side project in-
stead.

Breakthroughs don’t happen in regular scheduled classes, they happen
in side projects. We want people who complete the work they were as-
signed, but we also need people who can reflect critically on what
is genuinely important”

Daniel Lemire, Prof. at the University of Quebec
2/58

About Motivation 2/5

Academic excellence is not a strong predictor
of career excellence

“Across industries, research shows that the correlation between grades
and job performance is modest in the first year after college and trivial
within a handful of years...
Academic grades rarely assess qualities like creativity, leadership and team-
work skills, or social, emotional and political intelligence. Yes, straight-A
students master cramming information and regurgitating it on exams.
But career success is rarely about finding the right solution to a
problem — it’s more about finding the right problem to solve...”

3/58

About Motivation 3/5

“Getting straight A’s requires conformity. Having an influential
career demands originality.

This might explain why Steve Jobs finished high school with a 2.65
G.P.A., J.K. Rowling graduated from the University of Exeter with
roughly a C average, and the Rev. Dr. Martin Luther King Jr. got only
one A in his four years at Morehouse

If your goal is to graduate without a blemish on your transcript, you
end up taking easier classes and staying within your comfort zone. If
you’re willing to tolerate the occasional B...You gain experience coping
with failures and setbacks, which builds resilience”

4/58

About Motivation 4/5

“Straight-A students also miss out socially. More time studying in
the library means less time to start lifelong friendships, join new clubs or
volunteer...Looking back, I don’t wish my grades had been higher. If I
could do it over again, I’d study less”

Adam Grant, the New York Times

www.nytimes.com/2018/12/08/opinion/college-gpa-career-success.html
5/58

https://www.nytimes.com/2018/12/08/opinion/college-gpa-career-success.html

About Motivation 5/5

“Got a 2.4 GPA my first semester in college. Thought maybe I wasn’t
cut out for engineering. Today I’ve landing two spacecraft on Mars, and
designing one for the moon.

STEM is hard for everyone. Grades ultimately aren’t what matters.
Curiosity and persistence matter”

Ben Cichy, Chief Software Engineer,
NASA Mars Science Laboratory

https://twitter.com/bencichy/status/1197752802929364992?s=20 6/58

https://twitter.com/bencichy/status/1197752802929364992?s=20

About Programming 1/2

“And programming computers was so fascinating. You create your
own little universe, and then it does what you tell it to do”

Vint Cerf, TCP/IP co-inventor and Turing Award

“Most good programmers do programming not because they expect to
get paid or get adulation by the public, but because it is fun to program”

Linus Torvalds, principal developer of the Linux kernel

“You might not think that programmers are artists, but programming
is an extremely creative profession. It’s logic-based creativity”

John Romero, co-founder of id Software
7/58

About Programming 2/2

Creativity Programming is extremely creative. The ability to perceive the problem in
a novel ways, provide new and original solutions. Creativity allows
recognizing and generating alternatives

Form of Art Art is the expression of human creative skills. Every programmer has his
own style. Codes and algorithms show elegance and beauty in the same
way as painting or music

Learn Programming gives the opportunity to learn new things every day,
improve own skills and knowledge

Challenge Programming is a challenge. A challenge against yourself, the problem,
and the environment

8/58

Knowledge-Experience Relation

9/58

A Little History of
C/C++
Programming
Language

The Assembly Programming Language

A long time ago, in a galaxy far,
far away....there was Assembly

• Extremely simple instructions
• Requires lots of code to do simple tasks
• Can express anything your computer can do
• Hard to read, write
• ...redundant, boring programming, bugs pro-

liferation

main:
.Lfunc_begin0:

push rbp
.Lcfi0:
.Lcfi1:

mov rbp, rsp
.Lcfi2:

sub rsp, 16
movabs rdi, .L.str

.Ltmp0:
mov al, 0
call printf
xor ecx, ecx
mov dword ptr [rbp - 4], eax
mov eax, ecx
add rsp, 16
pop rbp
ret

.Ltmp1:

.Lfunc_end0:

.L.str:

.asciz "Hello World\n"
10/58

A Little History of C 1/3

In the 1969 Dennis M. Ritchie and Ken Thompson (AT&T, Bell Labs) worked on
developing an operating system for a large computer that could be used by a thousand
users. The new operating system was called UNIX

The whole system was still written in assembly code. Besides assembler and Fortran,
UNIX also had an interpreter for the programming language B. A high-level language
like B made it possible to write many pages of code task in just a few lines of code. In
this way the code could be produced much faster than in assembly

A drawback of the B language was that it did not know data-types (everything was
expressed in machine words). Another functionality that the B language did not provide
was the use of “structures”. The lag of these things formed the reason for Dennis
M. Ritchie to develop the programming language C. In 1988 they delivered the final
standard definition ANSI C 11/58

A Little History of C 2/3

Dennis M. Ritchie, and Ken Thompson

#include "stdio.h"

int main() {
printf("Hello World\n");

} 12/58

A Little History of C 3/3

Areas of Application:

• UNIX operating system

• Computer games

• Due to their power and ease of use, C were used in the programming of the
special effects for Star Wars

Star Wars - The Empire Strikes Back
13/58

A Little History of C++ 1/3

The C++ programming language (originally named “C with Classes”) was devised
by Bjarne Stroustrup also an employee from Bell Labs (AT&T). Stroustrup started
working on C with Classes in 1979. (The ++ is C language operator)

The first commercial release of the C++ language was in October 1985

14/58

A Little History of C++ 2/3

The roots of C++

“The Evolution of C++Past, Present, and Future”, B. Stroustrup, CppCon16
15/58

A Little History of C++ 3/3

16/58

About Evolution

“If you’re teaching today what you were teaching five
years ago, either the field is dead or you are”

Noam Chomsky

17/58

Areas of Application
and Popularity

Most Popular Programming Languages
(IEEE Spectrum - 2022)

Interactive: The Top Programming Languages 2022
18/58

https://spectrum.ieee.org/top-programming-languages/

Most Popular Programming Languages (TIOBE - December. 2022)

www.tiobe.com/tiobe-index/ 19/58

https://www.tiobe.com/tiobe-index/

Most Popular Programming Languages (Redmonk - June, 2022)

redmonk.com
20/58

https://redmonk.com/sogrady/2021/08/05/language-rankings-6-21/

Why C++ is so Popular? 1/2

There may be more than 200 billion lines
of C/C++ code globally

• Performance is the defining aspect of C++. No other programming
language provides the performance-critical facilities of C++

• Provide the programmer control over every aspect of performance

• Leave no room for a lower level language

Total number of lines of all code in use? 21/58

https://skeptics.stackexchange.com/questions/5114/did-cobol-have-250-billion-lines-of-code-and-1-million-programmers-as-late-as-2

Why C++ is so Popular? 2/2

• Ubiquity. C++ can run from a low-power embedded device to large-scale
supercomputers

• Multi-Paradigm. Allow writing efficient code without losing high-level
abstraction

• Allow writing low-level code. Drivers, kernels, assembly (asm), etc.

• Ecosystem. Many support tools such as debuggers, memory checkers,
coverage, static analysis, profiling, etc.

• Maturity. C++ has a 40 years history. Many software problems have been
already addressed and developing practices have been investigated 22/58

Areas of Application 1/2

• Operating systems: Windows, Android, OS X, Linux

• Compilers: LLVM, Swift compiler

• Artificial Intelligence: TensorFlow, Caffe, Microsoft Cognitive Toolkit

• Image Editing: Adobe Premier, Photoshop, Illustrator

• Web browser: Firefox, Chrome, etc. + WebAssembly

• High-Performance Computing: drug developing and testing, large scale climate
models, physic simulations

• Embedded systems: IoT, network devices (e.g. GSM), automotive

• Google and Microsoft use C++ for web indexing 23/58

Areas of Application 2/2

• Scientific Computing: CERN/NASA*, SETI@home, Folding@home

• Database: MySQL, ScyllaDB

• Video Games: Unreal Engine, Unity

• Entertainment: Movie rendering (see Interstellar black hole rendering),
virtual reality

• Finance: electronic trading systems (Goldman, JPMorgan, Deutsche Bank)**

... and many more

* The flight code of the NASA Mars drone for the Perseverance Mission, as well as the Webb
telescope software, are mostly written in C++ github.com/nasa/fprime, James Webb Space
Telescope’s Full Deployment

** C++ is the new Python

24/58

https://twitter.com/thePiggsBoson/status/1502135238079627270
https://github.com/nasa/fprime
https://www.youtube.com/watch?v=hET2MS1tIjA&t=1900s
https://www.youtube.com/watch?v=hET2MS1tIjA&t=1900s
https://www.efinancialcareers.com/news/2021/07/modern-c-finance-jobs

Why C++ is so Important?

The End of Historical Performance Scaling

Performance limitations influence algorithm design
and research directions 25/58

An Important Example... (AI Evolution)

26/58

Performance 1/3

8.23 21.47 21.96 22.1 26.61

300
360

660

780

0

100

200

300

400

500

600

700

800

900

C++ GO SWIFT JAVA Node.js PHP Ruby Perl Python3

Ex
ec

ut
io

n
TI

m
e

(S
)

Programming Language

N-BODY SIMULATION
P R O G R A M M I N G L A N G UA G E S P E R F O R M A N C E C O M PA R I S O N

27/58

Performance 2/3

”A New Golden Age for Computer Architecture“, J. L. Heneessey, D. A. Patterson, 2019
28/58

Performance 3/3

Hello World

Language Execution Time

C (on my machine) 0.7 ms
C 2 ms
Go 4 ms
Crystal 8 ms
Shell 10 ms
Python 78 ms
Node 110 ms
Ruby 150 ms
jRuby 1.4 s

Time to "hello world" on my machine
29/58

https://twitter.com/samsaffron/status/1227755695749001216?s=09

Performance/Expressiveness Trade-off

1

10

100

1,000

10,000

100,000

1,000,000

Assembly C C++ Java JS Python

IN
ST

RU
CT

IO
N

S
PE

R
LI

N
E

Mandelbrot Static Instructions per Line

30/58

Memory Usage

Memory usage comparison of the
Neighbor-Joining and global alignment programs

A comparison of common programming languages used in bioinformatics (BMC
Informatic) 31/58

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-82
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-82

Energy Efficiency

Energy Efficiency across Programming Languages
32/58

http://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf

CO2 Production

The Ecological Impact of High-performance Computing in Astrophysics, Nature 33/58

https://www.nature.com/articles/s41550-020-1208-y

C++ Philosophy

C++ Philosophy - Performance 1/3

Do not sacrifice performance except as a last resort

Zero Overhead Principle (zero-cost abstraction)

“it basically says if you have an abstraction it should not
cost anything compared to write the equivalent code at lower
level”

“so I have say a matrix multiply it should be written in a
such a way that you could not drop to the C level of abstrac-
tion and use arrays and pointers and such and run faster”

Bjarne Stroustrup
34/58

C++ Philosophy - Type Safety 2/3

Enforce safety at compile time whenever possible

Statically Typed Language
“The C++ compiler provides type safety and catches

many bugs at compile time instead of run time (a critical
consideration for many commercial applications.)”

www.python.org/doc/FAQ.html

• The type annotation makes the code more readable

• Promote compiler optimizations and runtime efficiency

• Allow users to define their own type system 35/58

http://www.python.org/doc/FAQ.html

C++ Philosophy 3/3

• Programming model: compartmentalization, only add
features if they solve an actual problem, and allow full control

• Predictable runtime (under constraints): no garbage
collector, no dynamic type system → real-time systems

• Low resources: low memory and energy consumption →
restricted hardware platforms

• Well suited for static analysis → safety critical software

• Portability → Modern C++ standards are highly portable 36/58

Who is C++ for?

“C++ is for people who want to use hardware very well
and manage the complexity of doing that through abstrac-
tion”

Bjarne Stroustrup

“a language like C++ is not for everybody. It is gener-
ated via sharp and effective tool for professional basically and
definitely for people who aim at some kind of precision”

Bjarne Stroustrup
37/58

Suggested Video

38/58

https://www.youtube.com/watch?v=uTxRF5ag27A

C++ Weaknesses

Why C++ is so Difficult? 1/2

... and why teaching C++ as first programming language is a bad idea?

C++ is the hardest language from students to master

• More languages in one
- Standard C/C++ programming
- Preprocessor
- Object-Oriented features
- Templates and Meta-Programming

• Huge set of features

• Worry about memory management

• Low-level implementation details: pointer arithmetics, structure, padding,
undefined behavior, etc.

• Frustrating : compiler/runtime errors (e.g. seg. fault) 39/58

Why C++ is so Difficult? 2/2

“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do, it blows your whole leg off”

Bjarne Stroustrup, Creator of the C++ language

“The problem with using C++...is that there’s already a strong ten-
dency in the language to require you to know everything before you can
do anything”

Larry Wall, Creator of the Perl language

“Despite having 20 years of experience with C++, when I compile a
non-trivial chunk of code for the first time without any error or warning,
I am suspicious. It is not, usually, a good sign”

Daniel Lemire, Prof. at the University of Quebec 40/58

C++ Weaknesses

Backward-compatibility

‘‘Dangerous defaults and constructs, often originating from C, cannot be removed
or altered”

“Despite the hard work of the committee, newer features sometimes have flaws
that only became obvious after extensive user experience, which cannot then be
fixed”

“C++ practice has put an ever-increasing cognitive burden on the developer for
what I feel has been very little gain in productivity or expressiveness and at a huge cost
to code clarity”

41/58

C++ Weaknesses

C++ critics and replacements:

• Epochs: a backward-compatible language evolution mechanism

• Goals and priorities for C++

• Carbon Language

• Circle C++ Compiler

• Cppfront: Can C++ be 10x simpler & safer ... ?

42/58

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1881r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2137r0.html
https://github.com/carbon-language/carbon-lang
https://www.circle-lang.org/
https://github.com/hsutter/cppfront

Language Complexity

Every second spent trying to understand the
language is one not spent understanding the

problem

43/58

Books and
References

Suggested Books

Programming and Principles
using C++ (2nd)

B. Stroustrup, 2014

Professional C++ (5th)
S. J. Kleper, N. A. Solter, 2021

Absolute C++ (6th)
W. Savitch, 2015

44/58

Advanced Books + CMake

C++ Templates: The
Complete Guide (2nd)

D. Vandevoorde, N. M. Josuttis,
D. Gregor, 2017

Effective Modern C++
S. Meyer, 2014

Professional CMake: A
Practical Guide (14th)

C. Scott, 2023

45/58

Optimization Books

Hacker’s Delight (2nd)
H. S. Warren, 2016

Optimized C++
K. Guntheroth, 2014

46/58

Software Design Principles 1/2

Clean Code: A Handbook of Agile
Software Craftsmanship
Robert C. Martin, 2008

Clean Architecture
Robert C. Martin, 2017

47/58

Software Design Principles 2/2

Code Simplicity
M. Kanat-Alexander, 2012

A Philosophy of Software
Design (2nd)

J. Ousterhout, 2021

Software Engineering at
Google: Lessons Learned from

Programming over Time
T. Winters, 2020
(download link) 48/58

https://abseil.io/resources/swe-book

References 1/3

(Un)official C++ reference:*
• en.cppreference.com

Tutorials:
• www.learncpp.com
• www.tutorialspoint.com/cplusplus
• en.wikibooks.org/wiki/C++
• yet another insignificant...programming notes

Other resources:
• stackoverflow.com/questions/tagged/c++

* The full C++ standard draft can be found at eel.is/c++draft/full
Don’t open it! it is a html web page of 32 MB! 49/58

https://en.cppreference.com/w/
www.learncpp.com
www.tutorialspoint.com/cplusplus
https://en.wikibooks.org/wiki/C%2B%2B_Programming
https://www3.ntu.edu.sg/home/ehchua/programming/index.html
https://stackoverflow.com/questions/tagged/c%2b%2b
https://eel.is/c++draft/full

References 3/3

News:
• isocpp.org (Standard C++ Foundation)
• cpp.libhunt.com/newsletter/archive
• www.meetingcpp.com/blog/blogroll/

Main conferences:
• www.meetingcpp.com (slides)
• cppcon.org (slides)
• isocpp.com conference list

Coding exercises and other resources:
• www.hackerrank.com/domains/cpp
• leetcode.com/problemset/algorithms
• open.kattis.com
• cpppatterns.com 50/58

https://isocpp.org/
https://cpp.libhunt.com/newsletter/archive
www.meetingcpp.com/blog/blogroll/
www.meetingcpp.com
https://meetingcpp.com/mcpp/slides/
https://cppcon.org
https://github.com/CppCon
https://isocpp.org/wiki/faq/conferences-worldwide
www.hackerrank.com/domains/cpp
https://leetcode.com/problemset/algorithms/
https://open.kattis.com/
https://cpppatterns.com/

The Course

The Course

51/58

The Course

Don’t forget: The right name of the course should be
“Introduction to Modern C++ Programming”

For many topics in the course, there are more than one book devoted to present the
concepts in detail

52/58

The Course

The primary goal of the course is to drive the student, who has previous
experience with C and object-oriented features, to a proficiency level of (C++)
programming

• Proficiency : know what you are doing and the related implications
• Understand what problems/issues address a given language feature
• Learn engineering practices (e.g. code conventions, tools) and hardware/software

techniques (e.g. semantic, optimizations) that are not strictly related to C++

What the course is not:
• A theoretical course on programming
• A high-level concept description

What the course is:
• A practical course, prefer examples instead of long descriptions
• A “quite” advanced C++ programming language course 53/58

The Course

Organization:

• 21 lectures
• More than 1,000 slides
• C++03 / C++11 / C++14 / C++17 / C++20 / (C++23)

Roadmap:

• Review C concepts in C++ (built-in types, memory management, preprocessing,
etc.)

• Introduce object-oriented and template concepts
• Present how to organize the code and the main conventions
• C++ tool goals and usage (debugger, static analysis, etc.)

54/58

Slide Legend

⋆ Advanced Concepts. In general, they are not fundamental. They can be
related to very specific aspects of the language or provide a deeper
exploration of C++ features.
A beginner reader should skip these sections/slides

⇝ See next. C++ concepts are closely linked, and it is almost impossible to
find a way to explain them without referring to future topics. These slides
should be revisited after reading the suggested topic

this is a code section

This is a language keyword/token and not a program symbol (variable,
functions, etc.). Future references could use a standard code section for better
readability 55/58

Who I Am

Federico Busato, Ph.D.
• Senior Software Engineer at Nvidia

CUDA Mathematical Libraries

• Research/Work interests:

- Parallel/High-Performance Computing
- Graph Algorithms
- Linear Algebra
- Code Optimization

Lead of the cuSPARSE and cuSPARSELt libraries
docs.nvidia.com/cuda/cusparse/index.html

docs.nvidia.com/cuda/cusparselt/

NOT a C++ expert/“guru”, self-taught, still learning 56/58

https://twitter.com/fedebusato
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparselt/

A Little Bit about My Work 1/2

The cuSPARSE library contains a set of basic linear algebra
subroutines used for handling sparse matrices (matrix-matrix
multiplication, triangular solver, etc.) on GPU devices
cuSPARSE is part of the CUDA Toolkit (150M downloads
every years)

cuSPARSE users:
• Industrial (Google, Facebook, DoE, LLNL, etc.)
• Academic (students/researchers/national laboratories)

cuSPARSE applications:
• High-performance numerical solver
• Physic, Simulation, EDA, CAD, Computer Graphics
• (recently) AI/Deep learning 57/58

A Little Bit about My Work 2/2

The library:

• More than 300,000 lines of code

• Must provide high performance

• Works on main 32/64-bit OSes (Windows, Android, Linux, Mac, etc.)

• Works on main CPU architectures (Intel, AMD, ARM, IBM, etc.), and compilers

• Works on all GPU architectures

• Comprises host (C/C++), device code (CUDA, C++ extension) + assembly,
Perl, Fortran, Makefile, etc.

• Supports half-precision floating point, complex numbers, etc. 58/58

“What I cannot create,
I do not understand”

Richard P.
Feynman

58/58

“The only way to learn a new pro-
gramming language is by writing pro-
grams in it”

Dennis Ritchie
Creator of the C programming language

58/58

	A Little History of C/C++ Programming Language
	Areas of Application and Popularity
	C++ Philosophy
	C++ Weaknesses
	Books and References
	The Course

